Marshall, E. Science, vol. 269, pp. 1050-1055, Aug. 25, 1995.* |
Anderson, W. F., Scientific American, Sep. 1995, pp. 124-128.* |
Blau et al., The New England Journal of Medicine, Nov. 2, 1995, pp. 1204-1207.* |
Enholm, B., et al., “Adenoviral Express ion of Vascular Endothelial Grwoth Factor-C Induces Lymphangiogenesis in the Skin,” Circ. Res., 88:623-629, 2001. |
Hiltunen, H.O., et al., “ Intravascular Adenovirus-Mediated VEGF-C Gene Transfer Reduces Neointima Formation in Balloon-Benuded Rabbit Aorta,” Circulation, 102:2262-2268, 2000. |
Karkkainen, M. J.., et al., “A Model for Gene Therapy of Human Herditary Lymphedema,” Proc. Natl. Acad. Sci., U.S.A., 98(22):12677-12682, 2001. |
Saaristo, A., et al., “Ad enoviral VEGF-C overexpression induces bood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes,” FASEB J., 16:1041-1049, 2002. |
Saaraisto, A., et al., “L ymphangiogenic Gene Therapy With Minimal Blood Vascular Side Effects,” J. Exp. Med., 196(6):719-730, 2002. |
U.S. patent application Ser. No. 08/601,132, Alitalo et al., filed Feb. 14, 1996. |
Achen, M.G. et al., “Vascular Endothelial Growth Factor D (VEGF-D) is a Ligand for the Tyrosine Kinases VEGF Receptor 2 (Flk1) and VEGF Receptor 3 (Flt4),” Proceedings of the National Academy of Science, USA, 95:548-553 (Jan., 1998). |
Adams, M.D. et al., “Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence,” Nature, 377(6547 Supplement):3-174 (Sep., 1995). |
Alitalo et al., “Vascular Endothelial Growth Factors and Receptors Involved in Angiogenesis,” The 9th International Conference of the International Society of Differentiation (ISD), Development, Cell Differentiation and Cancer, Pisa (Italy), Sep. 28-Oct. 2, 1996, p. 66 (Abstract S22). |
Alitalo et al., “Vascular Endothelial Growth Factors B and C and Receptors Involved in Angiogenesis,” German-American Academic Council Foundation (GAAC)/ Stiftung Deutsch-Amerikanisches Akademisches Konzil (DAAK), 2nd Symposium on Current Problems in Molecular Medicine: The Role of Cytokines in Human Disease, Nov. 17-20, 1996. Ringberg Castle, Germany, p. 1 (Abstract). |
Andersson et al., “Assignment of Interchain Disulfide Bonds in Platelet-Derived Growth Factor (PDGF) and Evidence for Agonist Activity of Monomeric PDGF,” J. Biol. Chem., 267(16):11260-11266 (Jun. 5, 1992). |
Aprelikova et al., “FLT4, a Novel Class III Receptor Tyrosine Kinase in Chromosome 5q33-qter,” Cancer Research, 52:746-748 (Feb. 1, 1992). |
Asahara et al., Isolation of Putative Progenitor Endothlial Cells for Angiogenesis, Science, 275: 964-967 (Feb., 1997). |
Auffray et al. H. sapiens partial cDNA sequence: clone c-IIwf11. EST-STS Accession No. Z44272. Nov. 6, 1994. |
Ausprunk, et al., “Migration and Proliferation of Endothelial Cells in Preformed and Newly Formed Blood Vessels during Tumor Angiogenesis,” Microvasc. Res., 14:53-65 (1977). |
Basilico et al., “The FGF Family of Growth Factors and Oncogenes,” Adv. Cancer Res., 59:145-165 (1992). |
Berse et al., “Vascular Permeability Factor (Vascular Endothelial Growth Factor) Gene is Expressed Differentially in Normal Tissues, Macrophages, and Tumors,” Mol. Biol. Cell., 3:211-220 (Feb., 1992). |
Betsholtz et al., “cDNA Sequence and Chromosomal Localization of Human Platelet-Derived Growth Factor A-Chain and Its Expression in Tumor Cell Lines,” Nature, 320:695-699 (Apr., 1986). |
Borg et al., “Biochemical Characterization of Two Isoforms of FLT4, a VEGF Receptor-Related Tyrosine Kinase,” Oncogene, 10:973-84 (1995). |
Bowie et al., “Deciphering the Message in Protein Sequences: tolerance to amino acid substitutions,” Science, 247:1306-1310 (Mar. 16, 1990). |
Breier et al., “Expression of Vascular Endothelial Growth Factor During Ebryonic Angiogenesis and Endothelial Cell Differentiation,” Development, 114:521-532 (1992). |
Cao et al., “Heterodimers of Placenta Growth Factor/Vascular Endothelial Growth Factor,” J. Biol. Chem., 271(6):3154-3162 (Feb. 9, 1996). |
Capecchi, M.R., “Altering the Genome by Homologous Recombination,” Science, 244:1288-1292 (Jun. 16, 1989). |
Chen and Shyu, “Selective Degradation of Early-Response-Gene mRNAs: Functional Analyses of Sequence Features of the AU-Rich Elements,” Mol. Cell Biol., 14(12):8471-8482 (Dec., 1994). |
Cheng and Flanagan, “Identification and Cloning of ELF-1, A Developmentally Expressed Ligand for the Mek4 and Sek Receptor Tyrosine Kinases,” Cell, 79:157-168 (Oct. 7, 1994). |
Claesson-Welsh et al., “Identification and Structural Analysis of the A Type Receptor for Platelet-derived Growth Factor,” J. Biol. Chem., 264(3):1742-1747 (Jan. 25, 1989). |
Claesson-Welsh et al., “cDNA Cloning and Expression of a Human Platelet-Derived Growth Factor (PDGF) Receptor Specific for B-Chain-Containing PDGF Molecules,” Mol. Cell Biol., 8(8):3476-3486 (Aug., 1988). |
Claesson-Welsh et al., “cDNA Cloning and Expression of the Human A-type Platelet-Derived Growth Factor (PDGF) Receptor Establishes Structural Similarity to the B-type PDGF Receptor,” Proc. Nat'l Acad. Sci. USA, 86(13):4917-4921 (Jul., 1989). |
Coffin et al., “Angioblast Differentiation and Morphogenesis of the Vascular Endothelium in the Mouse Embryo,” Devel. Biol., 148:51-62 (1991). |
Cohen, T. et al., “VEGF121, A Vascular Endothelial Growth Factor (VEGF) Isoform Lacking Heparin Binding Ability, Requires Cell-Surface Heparan Sulfates for Efficient Binding to the VEGF Receptors of Human Melanoma Cells,” Journal of Biological Chemistry, 270(19):11322-11326 (May 12, 1995). |
Collins et al., “Cultured Human Endothelial Cells Express Platelet-Derived Growth Factor B Chain: cDNA Cloning and Structural Analysis,” Nature, 316:748-750 (Aug., 1985). |
Cowling et al., “Erythropoietin and Myeloid Colony Stimulating Factors,” TIBTECH, 10(10):349-357 (Oct., 1992). |
Curran and Franza, “Fos and Jun: The AP-1 Connection,” Cell, 55:395-397 (Nov. 4, 1988). |
De Vries et al., “The fms-Like Tyrosine Kinase, a Receptor for Vascular Endothelial Growth Factor,” Science, 255:989-991 (Feb. 21, 1992). |
Dignam et al., “Balbiani Ring 3 in Chironomus tentans Encodes a 185-kDa Secretory Protein Which is Synthesized Throughout the Fourth Larval Instar,” Gene, 88:133-140 (1990). |
DiSalvo et al., “Purification and Characterization of a Naturally Occurring Vascular Endothelial Growth Factor: Placenta Growth Factor Heterodimer,” J. Biol. Chem., 270(13):7717-7723 (Mar. 31, 1995). |
Don et al., “‘Touchdown’ PCR to Circumvent Spurious Priming During Gene Amplification,” Nucl. Acids Res., 19: 4008 (1991). |
Yonemura, Y., et al., “Role of Vascular Endothelial Growth Factor C Expression in the Development of Lymph Node Metastasis in Gastric Cancer,” Clin. Cancer Res., 5:1823-1829 (Jul. 1999). |
Dumont et al., “Dominant-negative and Targeted Null Mutations in the Endothelial Receptor Tyrosine Kinase, tek, Reveal a Critical Role in Vasculogenesis of the Embryo,” Genes Dev., 8:1897-1909 (1994). |
Dumont et al., “Vascularization of the Mouse Embryo: A Study of flk-1, tek, tie and Vascular Endothelial Growth Factor Expression During Development,” Development Dynamics, 203:80-92 (1995). |
Dvorak et al., “Review: Vascular Permeability Factor/Vascular Endothelial Growth Factor, Microvascular Hyperpermeability, and Angiogenesis,” Amer. J. Path., 146:1029-1039 (1995). |
Eichmann et al., “Two Molecules Related to the VEGF Receptor are Expressed in Early Endothelial Cells During Avian Embryonic Development,” Mech. Dev., 42:33-48 (1993). |
Ferrara et al., “Molecular and Biological Properties of the Vascular Endothelial Growth Factor Family of Proteins,” Endocrine Rev., 13(1):18-32 (1992). |
Finnerty et al., “Molecular Cloning of Murine FLT and FLT4,” Oncogene, 8(11):2293-2298 (1993). |
Flamme et al., “Vascular Endothelial Growth Factor (VEGF) and VEGF-Receptor 2 (flk-1) are Expressed During Vasculogenesis and Vascular Differentiation in the Quail Embryo,” Devel. Biol., 169:699-712 (1995). |
Flanagan and Leder, “The kit Ligand: A Cell Surface Molecule Altered in Steel Mutant Fibroblasts,” Cell, 63:185-194 (Oct. 5, 1990). |
Folkman, “Angiogenesis in Cancer, Vascular, Rheumatoid and Other Disease,” Nature Med., 1(1):27-31 (1995). |
Folkman et al., “Angiogenesis,” J. Biol. Chem., 267(16):10931-10934 (Jun. 5, 1992). |
Folkman et al., “Long-term Culture of Capillary Endothelial Cells,” Proc. Nat'l Acad. Sci., USA, 76(10):5217-5221 (Oct., 1979). |
Fong et al., “Role of the Flt-1 Receptor Tyrosine Kinase in Regulating the Assembly of Vascular Endothelium,” Nature, 376:66-70 (Jul. 6, 1995). |
Fossum et al., “Lymphedema Etiopathogenesis,” J. Vet. Int. Med., 6:283-293 (1992). |
Fournier et al., “Mutation of Tyrosine Residue 1337 Abrogates Ligand-Dependent Transforming Capacity of the FLT4 Receptor,” Oncogene, 11(5):921-931 (Sep. 7, 1995). |
Friesel et al., “Molecular Mechanisms of Angiogenesis: Fibroblast Growth Factor Signal Transduction,” FASEB J., 9:919-25 (1995). |
Fukumura et al., “Tumor Necrosis Factor α-induced Leukocyte Adhesion in Normal and Tumor Vessels: Effect of Tumor Type, Transplantation Site, and Host Strain,” Cancer Research, 55:4824-4829 (Nov. 1, 1995). |
Galland et al., “The Flt4 Gene Encodes a Transmembrane Tyrosine Kinase Related to the Vascular Endothelial Growth Factor Receptor,” Oncogene, 8:1233-1240 (1993). |
Genbank AA149461. “z127h03.r1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 503189 5′ similar to SW:BAR3_CHITE Q03376 Balbiani Ring Protein 3 Precursor,” Deposited by Hillier, L. et al. |
Genbank AA151613, “z127h03.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 503189 3′,” Hillier, L. et al., Dated May 14, 1997. |
Genbank AA285997, “vb88h06.r1 Soares mouse 3NbMS Mus musculus cDNA clone 764123 5′,” Deposited by Marra, M. et al. |
Genbank, AA298182 “EST113866 Bone VII Homo sapiens cDNA 5′ end,” Deposited by Adams, M.D. et al. Dated Apr. 18, 1997. |
Genbank AA298283, “EST113896 Bone VII Homo sapiens cDNA 5′ end similar to similar to vascular endothelial growth factor,” Deposited by Adams, M.D. et al. Dated Apr. 18, 1997. |
Genbank AA406492, “zv12g06.r1 Soares NhHMPu S1 Homo sapiens cDNA clone 75366 5′,” Deposited by Hillier, L. et al. Dated May 17, 1997. |
Genbank AA421713, “zu24b03.s1 Soares NhHMPu S1 Homo sapiens cDNA clone 738893 3′,” Deposited by Hillier, L. et al. Dated Oct. 16, 1997. |
Genbank AA425303, “zw46b06.s1 Soares total fetus Nb2HF8 9w Homo sapiens cDNA clone 773075 3′, mRNA sequence,” Deposited by Hillier, L. et al. Dated Oct. 16, 1997. |
Genbank AA425486, “zw46b06.r1 Soares total fetus Nb2HF8 9w Homo sapiens cDNA clone 773075 5′ similar to SW;VEGF_Mouse Q00731 Vascular Endothelial Growth Factor Precursor,” Deposited by Hillier, L. et al. |
Genbank AA478766, “ zv18h12.r1 Soares NhHMPu S1 Homo sapiens cDNA clone 754055 5′,” Deposited by Hillier, L. et al. Dated Aug. 8, 1997. |
Genbank AA479987, “zv18h12.s1 Soares NbHMPu S1 Homo sapiens cDNA clone 754055 3′,” Deposited by Hillier, J. et al. |
Genbank AA549856, “0929m3 gmbPfHB3.1, G. Roman Reddy Plasmodium falciparum genomic clone 0929m,” Deposited by Dame, J.B. et al. Dated Aug. 11-1997. |
Genbank C21512. “HUMGS0010510, Human Gene Signature, 3′-directed cDNA sequence,” Deposited by Okubo, K. Dated Oct. 1, 1996. |
Genbank H05134, “ y185b08.s1 Homo sapiens cDNA clone 44993 3′,” Deposited by Hillier, L. et al. Dated Jun. 21, 1995. |
Genbank H05177, “y185b08.r1 Homo sapiens cDNA clone 44993 5′,” Deposited by Hillier, L. et al. Dated Jun. 21, 1995. |
Genbank H07899, “y186g06.s1 Homo sapiens cDNA clone 45138 3′,” Deposited by Hillier, L. et al. Dated Jun. 23, 1995. |
Genbank H81867, “yv83d09.r1 Homo sapiens cDNA clone 249329 5′,” Deposited by Hillier, L. et al. |
Genbank H81868, “yv83d09.s1 Homo sapiens cDNA clone 249329 3′,” Deposited by Hillier, L. et al. Dated Nov. 9, 1995. |
Genbank H96533, “yw04b12.r1 Soares melanocyte 2NbHM Homo sapiens cDNA clone 251231 5′,” Deposited by Hillier, L. et al. Dated Nov. 25, 1996. |
Genbank H96876, “yw04b12.s1 Soares melanocyte 2NbHM Homo sapiens cDNA clone 251231 3′,” Deposited by Hillier, L. et al. Dated Nov. 25, 1996. |
Genbank M21616, “Human Platelet-derived Growth Factor (PDGF) Receptor mRNA, Complete cds.” Deposited by Claesson-Welsh et al., Dated Sep. 28, 1992. |
Genbank M22734, “Human Platelet-derived Growth Factor A Type Receptor mRNA, Complete cds.,” Deposited by Claesson-Welsh et al., Dated Jan. 7, 1995. |
Genbank M32977, “Human Heparin-binding Vascular Endothelial Growth Factor (VEGF) mRNA, Complete cds.” Deposited by Leung et al., Dated Feb. 28. 1991. |
Genbank N31713, “yy15b12.s1 Homo sapiens cDNA clone 271295 3′,” Deposited by Hillier, L. et al. Dated Jan. 10, 1996. |
Genbank N31720, “yy15d12.s1 Homo sapiens cDNA clone 271319 3′,” Deposited by Hillier, L. et al. Dated Jan. 10, 1996. |
Genbank N42368, “yy15b11.r1 Homo sapiens cDNA clone 271293 5′,” Deposited by Hillier, L. et al. Dated Jan. 25, 1996. |
Genbank N42374, “yy15d11.r1 Homo sapiens cDNA clone 271317 5′,” Deposited by Hillier, L. et al. Dated Jan. 25, 1996. |
Genbank N50972, “yy94b08.s1 Homo sapiens cDNA clone 281175 3′,” Deposited by Hillier, L. et al. Dated Feb. 14, 1996. |
Genbank N82975, “TgESTzy53h10.r1 TgRH Tachyzoite cDNA Toxoplasma gondii cDNA clone tgzy53h10.r1 5′,” Deposited by Hehl, A. et al. Dated Sep. 10, 1997. |
Genbank N94399, “zb76f04.s1 Soares senescent fibroblasts NbHSF Homo sapiens cDNA clone 309535 3′,” Deposited by Hillier, L. et al. Dated Aug. 20, 1996. |
Genbank R77495, “yi79e04.s1 Homo sapiens cDNA clone 145470 3′,” Deposited by Hillier, L. et al. Dated Jun. 7, 1995. |
Genbank S66407, “FLT4 Receptor Tyrosine Kinase Isoform FLT4 Long (3′Region, Alternatively Spliced) [Human, mRNA Partial, 216 nt]. . . ” Deposited by Pajusola et al., Dated Dec. 17, 1993. |
Genbank T81481, “yd29f07.s1 Homo sapiens cDNA clone 109669 3′,” Deposited by Hillier, L. et al. Dated Mar. 15, 1995. |
Genbank T81690, “yd29f07.r1 Homo sapiens cDNA clone 109669 5′ similar to SP:BAR3_CHITE Q03376 Balbiani Ring Protein 3,” Deposited by Hillier, L. et al., Dated Mar. 15, 1995. |
Genbank T84377, “yd37h08.r1 Homo sapiens cDNA clone 110463 5′ similar to SP:BAR3_CHITE Q03376 Balbiani Ring Protein 3,” Deposited by Hillier, L. et al. Dated Mar. 16, 1995. |
Genbank T89295, “yd37h08.s1 Homo sapiens cDNA clone 110463 3′,” Deposited by Hillier, L. et al. Dated Mar. 20, 1995. |
Genbank U48800, “Mus Musculus Vascular Endothelial Growth Factor B Precursor (VEGF-B) mRNA, Complete Cds.,” Deposited by Olofsson et al., Dated Aug. 19, 1996. |
Genbank U48801, “Human Vascular Endothelial Growth Factor B Precursor (VEGF-B) mRNA, Complete eds.” Deposited by Olofsson et al., Dated Aug. 19, 1996. |
Genbank X02811, “Human mRNA for Platelet-derived Growth Factor B Chain (PDGF-B),” Deposited by Collins et al., Dated Mar. 27, 1995. |
Genbank X15997, “Human Vascular Permeability Factor mRNA, Complete Cds.,” Deposited by Keck et al., Dated Jun. 15, 1990. |
Genbank X54936, “H. sapiens mRNA for Placenta Growth Factor (PIGF)” Deposited by Persico, M.G, Dated Nov. 12, 1991. |
Genbank X60280, “Vector Plasmid pLTRpoly DNA.,” Deposited by Maekelae, T.P., Dated Jul. 16, 1996. |
Genbank X68203, “H. sapiens mRNA for FLT4, Class III Receptor Tyrosine Kinase.,” Deposited by Aprelikova, O., Dated Nov. 30, 1993. |
Genbank X94216, “Homo sapiens mRNA for VEGF-C protein ,” Deposited by Joukov et al., Dated Feb. 6, 1996. |
Genbank Z40230, “H. sapiens partial cDNA sequence; clone c-1wf11,” Deposited by Genexpress. Dated Sep. 21, 1995. |
Genbank Z44272. “H. sapiens partial cDNA sequence; clone c-1wf11,” Deposited by Genexpress. Dated Sep. 21, 1995. |
Harlow et al., Antibodies, a Laboratory Manual, Cold Spring Harbor Laboratory Press, pp. 72-137, 141-157, 287 & 321-358 (1988). |
Heldin et al., “Structure of Platelet-Derived Growth Factor: Implications for Functional Properties,” Growth Factors, 8:245-252 (1993) |
Hillier et al., “The WashU-Merck EST Project,” EMBL Database entry HS991157, Accession No. H07991, Jul. 2, 1995. |
Hillier et al., y185b08.21 Homo sapiens cDNA clone 44993 5′. EST-STS Accession No. H05177, (Jun. 21, 1995). |
Hillier et al., y186g06.r1 Homo sapiens cDNA clone 45138 5′. EST-STS Accession No. H07991 (Jun. 23, 1995). |
Hillier et al., yd29f07.r1 Homo sapiens cDNA clone 109669 5′ similar to SP:BAR3_CHITE Q03376 Balbiani Ring Protein 3. EST-STS Accession No. T81690. Mar. 15, 1995. |
Jeltsch, M. et al., “Hyperplasia of Lymphatic Vessels in VEGF-C Transgenic Mice,” Science, 276:1423-1425 (May, 1997). |
Joukov et al., “A Novel Vascular Endothelial Growth Factor, VEGF-C, Is a Ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) Receptor Tyrosine Kinases,” EMBO J., 15(2):290-298 (1996). |
Joukov, V. et al., “A Novel Vascular Endothelial Growth Factor VEGF-C iIs A Ligand for the FLT4 (VEGFR-3) and KDR (VEGFR-2) Receptor Tyrosine Kinases,” EMBL Sequence Data Library, XP002066362, accession No. X94216. Dated Feb. 1, 1996. |
Joukov, V. et al., “A Recombinant Mutant Vascular Endothelial Growth Factor-C that has Lost Vascular Endothelial Growth Factor Receptor-2 Binding, Activation, and Vascular Permeability Activities,” Journal of Biological Chemistry, 273(12):6599-6602 (Mar. 20, 1998). |
Joukov, V. et al., “Proteolytic Processing Regulates Receptor Specificity and Activity of VEGF-C,” EMBO Journal, 16(13):3898-3911 (Jun., 1997). |
Kaipainen et al., “Expression of the FMS-Like Tyrosine Kinase 4 Gene Becomes Restricted to Lymphatic Endothelium During Development,” Proc. Nat'l Acad. Sci., USA, 92:3566-3570 (Apr., 1995). |
Kaipainen et al., “The Related FLT4, FLT1 and KDR Receptor Tyrosine Kinases Show Distinct Expression Patterns in Human Fetal Endothelial Cells,” J. Exp. Med., 178:2077-2088 (Dec., 1993). |
Kaipainen et al., “Enhanced Expression of the Tie Receptor Tyrosine Kinase Messenger RNA in the Vascular Endothelium of Metastatic Melanomas,” Cancer Res., 54:6571-6577 (Dec. 15, 1994). |
Keyt et al., “Identification of Vascular Endothelial Growth Factor Determinants for Binding KDR and FLT-1 Receptors,” J. Biol. Chem., 271(10):5638-5646 (Mar. 8, 1996). |
Kim et al., “The Vascular Endothelial Growth Factor Proteins: Identification of Biologically Relevant Regions by Neutralizing Monoclonal Antibodies,” Growth Factors, 7(1):53-64 (1992). |
Korhonen et al., “The Mouse Tie Receptor Tyrosine Kinase Gene: Expression During Embryonic Angiogenesis,” Oncogene, 9:395-403 (1994). |
Kozak, “An Analysis of 5′-Non-Coding Sequences from 699 Vertebrate Messenger RNAs,” Nucl. Acids Res. 15: 8125-8148 (1987). |
Kukk et al., “VEGF-C Receptor Binding and Pattern of Expression with VEGFR-3 Suggests a Role in Lymphatic Vascular Development,” Development, 122:3829-3837 (1996). |
Leak, L.V., “Electron Microscopic Observations on Lymphatic Capillaries and the Structural Components of the Connective Tissue-Lymph Interface,” Microvasc. Res., 2:361-391 (1970). |
Lee et al., “Vascular Endothelial Growth Factor-Related Protein: A Ligand and Specific Activator of the Tyrosine Kinase Receptor Flt4,” Proc. Nat'l Acad. Sci., USA, 93:1988-1992 (Mar., 1996). |
Lee, J. et al., “Vascular Endothelial Growth Factor Related Protein (vrp): A Ligand and Specific Activator of the Tyrosine Kinase Receptor Flt4,” EMBL Sequence Data Library, XP002066361, accession No. U4142, Dated Jan. 10, 1996. |
Leu et al., “Flow Velocity in the Superficial Lymphatic Network of the Mouse Tail,” Am. J. Physiol., 267:H1507-H1513 (1994). |
Leung et al., “Vascular Endothelial Growth Factor Is a Secreted Angiogenic Mitogen,” Science, 246:1306-1309 (Dec. 8, 1989). |
Levy et al., “Post-transcriptional Regulation of Vascular Endothelial Growth Factor by Hypoxia,” J. Biol. Chem., 271(5):2746-2753 (Feb. 2, 1996). |
Levy et al., “Transcriptional Regulation of the Rat Vascular Endothelial Growth Factor Gene by Hypoxia,” J. Biol. Chem., 270(22):13333-13340 (Jun. 2, 1995). |
Lyman et al., “Molecular Cloning of a Ligand for the flt3/ftk-2 Tyrosine Kinase Receptor: A Proliferative Factor for Primitive Hematopoietic Cells,” Cell, 75:1157-1167 (Dec. 17, 1993). |
Maglione et al., “Isolation of a Human Placenta cDNA Coding for a Protein Related to the Vascular Permeability Factor,” Proc. Nat'l Acad. Sci., USA, 88:9267-9271 (Oct., 1991). |
Maglione et al., “Two Alternative mRNAs Coding for the Angiogenic Factor, Placenta Growth Factor (PIGF) are Transcribed from a Single Gene of Chromosome 14,” Oncogene, 8:925-931 (1993). |
Mäkelä et al., “Plasmid pLTRpoly: A Versatile High-Efficiency Mammalian Expression Vector,” Gene, 118: 293-294 (1992). |
Matthews et al., “A Receptor Tyrosine Kinase cDNA Isolated from a Population of Enriched Primitive Hematopoietic Cells and Exhibiting Close Genetic Linkage to c-kit,” Proc. Nat'l Acad. Sci., USA, 88:9026-9030 (Oct., 1991). |
Metzelaar et al., “CD63 Antigen, ” J. of Biol. Chem., 266(5):3239-3245 (Feb. 15, 1991). |
Miles et al., “Vascular Reactions to Histamine, Histamine-Liberator and Leukotaxine in the Skin of Guinea-Pigs,” J. Physiol., 118:228-257 (1952). |
Millauer et al., “Glioblastoma Growth Inhibited in vivo by a Dominant-Negative Flk-1 Mutant,” Nature, 367:576-579 (Feb. 10, 1994). |
Millauer et al., “High Affinity VEGF Binding and Development Expression Suggest Flk-1 as a Major Regulator of Vasculogenesis and Angiogenesis,” Cell, 72:835-846 (Mar. 26, 1993). |
Mitchell et al., “Transcription Factor AP-2 is Expressed in Neural Crest Cell Lineages During Mouse Embryogenesis,” Genes and Dev., 5:105-119 (1991). |
Morgenstern et al., “Advanced Mammalian Gene Transfer: High Titre Retroviral Vectors With Multiple Drug Selection Markers and a Complementary Helper-Free Packaging Cell Line,” Nucl. Acids Res., 18(12):3587-3595 (1990). |
Mount, S.M., “A Catalogue of Splice Junction Sequences,” Nucl. Acids. Res., 10(2):459-472 (1982). |
Muragaki et al., “Mouse Co118a1 is expressed in a tissue-specific manner as three alternative variants and is localized in basement membrane zones,” Proc. Nat'l Acad Sci., USA, 92:8763-8776 (Sep., 1995). |
Mustonen et al., “Endothelial Receptor Tyrosine Kinases Involved in Angiogenesis,” J. Cell Biol., 129:895-898 (May, 1995). |
Nelson and Sun, “The 50- and 58-kdalton Keratin Classes as Molecular Markers for Stratified Squamous Epithelia: Cell Culture Studies,” J. Cell Biol., 97:244-251 (Jul., 1983). |
Neufeld, G. et al., “Vascular Endothelial Growth Factor and Its Receptors,” Prog. Growth Fact. Res., 5:89-97 (1994). |
Oefner et al., “Crystal Structure of Human Platelet-derived Growth Factor BB,” EMBO J., 11(11):3921-3926 (1992). |
Oelrichs et al., “NYK/FLK-1: A Putative Receptor Tyrosine Kinase Isolated from E10 Embryonic Neuroepithelium is Expressed in Endothelial Cells of the Developing Embryo,” Oncogene, 8:11-18 (1993). |
Olofsson et al., “Vascular Endothelial Growth Factor B, A Novel Growth Factor for Endothelial Cells,” Proc. Nat'l Acad. Sci. USA, 93:2576-2581 (Mar., 1996). |
Orlandini et al., “Identification of a c-fos induced gene that is related to the platelet-derived growth factor/vascular endolethial growth factor family,” Proc. Nat'l Acad. Sci., USA, 93(21):11675-11680 (Oct., 1996). |
Paavonen et al., “Chromosomal Localization and Regulation of Human Vascular Endothelial Growth Factors B and C (VEGF-B and VEGF-C),” IX International Vascular Biology Meeting, Seattle, Washington, Sep. 4-8, 1996, p. 76 (Abstract 299). |
Paavonen et al., “Novel Human Vascular Endothelial Growth Factor Genes VEGF-B and VEGF-C Localize to Chromosomes 11q13 and 4q34, Respectively,” Circulation 93(6):1079-1082 (Mar. 15, 1996). |
Pajusola, “Cloning and Characterization of a New Endothelial Receptor Tyrosine Kinase Flt4 and Two Novel VEGF-Like Growth Factors VEGF-B and VEGF-C,” Academic Dissertation, Molecular/Cancer Biology Laboratory and Department of Pathology, Haartman Institute and Department of Biosciences, Division of Genetics, University of Helsinki, (Jan. 26, 1996). |
Pajusola et al., “FLT4 Receptor Tyrosine Kinase Contains Seven Immunoglobulin-Like Loops and Is Expressed in Multiple Human Tissues and Cell Lines,” Cancer Res., 52:5738-5743 (Oct. 15, 1992). |
Pajusola et al., “Signalling Properties of FLT4, a Proteolytically Processed Receptor Tyrosine Kinase Related to Two VEGF Receptors,” Oncogene, 9:3545-3555 (1994). |
Pajusola et al., “Two Humans FLT4 Receptor Tyrosine Kinase Isoforms With Distinct Carboxy Terminal Tails are Produced by Alternative Processing of Primary Transcripts,” Oncogene, 8: 2931-2937 (1993). |
Park et al., “Placenta Growth Factor. Potentiation of Vascular Endothelial Growth Factor Bioactivity In vitro and In vivo, and High Affinity Binding to Flt-1 but not to Flk-1/KDR,” J. Biol. Chem., 269(41):25646-25654 (Oct. 14, 1994). |
Partanen et al., “A Novel Endothelial Cell Surface Receptor Tyrosine Kinase with Extracellular Epidermal Growth Factor Homology Domains,” Mol. & Cell. Biol., 12(4):1698-1707 (Apr., 1992). |
Partanen et al., “Putative Tyrosine Kinases Expressed in K-562 Human Leukemia Cells,” Proc. Nat'l Acad. Sci., USA, 87:8913-8917 (Nov., 1990). |
Paulsson, G. et al., “The Balbiani Ring 3 Gene in Chironomus tentans has a Diverged Repetitive Structure Split by Many Introns,” J. Mol. Biol. 211:331-349 (1990). |
Pear et al., “Production of High-titer Helper-free Retroviruses by Transient Transfection,” Proc. Nat'l Acad. Sci., USA90:8392-8396 (Sep., 1993). |
Pertovaara et al., “Vascular Endothelial Growth Factor Is Induced in Response to Transforming Growth Factor-β in Fibroblastic and Epithelial Cells,” J. Biol. Chem., 269(9):6271-6274 (Mar. 4, 1994). |
Peters et al., “Vascular Endothelial Growth Factor Receptor Expression during Embryogenesis and Tissue Repair Suggests a Role in Endothelial Differentiation and Blood Vessel Growth,” Proc. Nat'l Acad. Sci., USA, 90:8915-8918 (Oct., 1993). |
Pötgens et al., “Covalent Dimerization of Vascular Permeability Factor/Vascular Endothelial Growth Factor Is Essential for Its Biological Activity,” J. Biol. Chem., 269(52):32879-32885 (Dec. 30, 1994). |
Pugh and Tijan, “Transcription from a TATA-less promoter requires a multisubunit TFIID complex,” Genes and Dev., 5:1935-1945 (1991). |
Puri et al., “The Receptor Tyrosine Kinase TIE is Required for Integrity and Survival of Vascular Endothelial Cells,” EMBO J., 14:5884-5891 (1995). |
Quinn et al., “Fetal Liver Kinase 1 is a Receptor for Vascular Endothelial Growth Factor and is Selectively Expressed in Vascular Endothelium,” Proc. Nat'l Acad. Sci., USA, 90:7533-7537 (Aug., 1993). |
Reeck et al., “Homology” in proteins and nucleic acids: a terminology muddle and a way out of it [letter], Cell, 50:667 (Aug., 1987). |
Risau et al., “Changes on the Vascular Extracellular Matrix During Embryonic Vasculogenesis and Angiogenesis,” Devel. Biol. 125:441-450 (1988). |
Risau et al., “Platelet-Derived Growth Factor is Angiogenic In Vivo,” Growth Factors, 7:261-266 (1992). |
Risau, W., “Differentiation of Endothelium,” FASEB J., 9:926-933 (1995). |
Sabin, F.R., “The Lymphatic System in Human Embryos, With A Consideration of the Morphology of the System as a Whole,” Am. J. Anat., 9(1):43-91 (1909). |
Saksela et al., “Cell-Associated Plasminogen Activation: Regulation and Physiological Function ,” Ann. Rev. Cell Biol., 4:93-126 (1988). |
Sambrook et al., Molecular Cloning: a Laboratory Manual, Second Edition, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory (1989), pp. 2.60-2.79, 4.21-4.32, 7.3-7.36, and 9.47-9.51. |
Sato et al., “Distinct Roles of the Receptor Tyrosine Kinases Tie-1 and Tie-2 in Blood Vessel Formation,” Nature, 376:70-74 (Jul. 6, 1995). |
Schmelz et al., “Complexus adhaerentes, A New Group of Desmoplakin-containing Junctions in Endothelial Cells: II. Different Types of Lymphatic Vessels,” Differentiation, 57:97-117 (1994). |
Schneider et al., “A One-step Purification of Membrane Proteins Using a High Efficiency Immunomatrix,” J. Biol. Chem., 257(18):10766-70769 (Sep. 25, 1982). |
Seetharam et al., “A Unique Signal Transduction from FLT Tyrosine Kinase, a Receptor for Vascular Endothelial Growth Factor VEGF,” Oncogene, 10:135-147 (1995). |
Senger et al., “Tumor Cells Secrete a Vascular Permeability Factor That Promotes Accumulation of Ascites Fluid,” Science, 219:983-985 (Feb. 25, 1983). |
Shalaby et al., “Failure of Blood-Island Formation and Vasculogenesis in Flk-1-deficient Mice,” Nature, 376:62-66 (Jul. 6, 1995). |
Shibuya et al., “Nucleotide Sequence and Expression of a Novel Human Receptor-Type Tyrosine Kinase Gene (flt) Closely Related to the fms Family,” Oncogene, 5:519-524 (1990). |
Shibuya, M., “Role of VEGF-FLT Receptor System in Normal and Tumor Angiogenesis,” Adv. Cancer Res., 67:281-316 (1995). |
Shweiki et al., “Patterns of Expression of Vascular Endothelial Growth Factor (VEGF) and VEGF Receptors in Mice Suggest a Role in Hormonally Regulated Angiogenesis,” J. Clin. Invest., 91:2235-2243 (May, 1993). |
Sitaras et al., “Constitutive Production of Platelet-Derived Growth Factor-Like Proteins by Human Prostate Carcinoma Cell Lines,” Cancer Research, 48(7):1930-1935 (Apr. 1, 1988). |
Southern and Berg, “Transformation of Mammalian Cells to Antibiotic Resistance with a Bacterial Gene Under Control of the SV40 Early Region Promoter,” J. Mol. Appl. Genet., 1:327-341 (1982). |
Swartz et al., “Transport in Lymphatic Capillaires. I. Macroscopic measurements using residence time distribution theory,” Am. J. Physiol., 270:H324-H329 (1996). |
Terman et al., “Identification of New Endothelial Cell Growth Factor Receptor Tyrosine Kinase,” Oncogene, 6:1677-1683 (1991). |
Terman et al., “Identification of the KDR Tyrosine Kinase as a Receptor for Vascular Endothelial Cell Growth Factor,” Biochem. Biophys. Res. Commun., 187:1579-1586 (Sep. 30, 1992). |
Terman et al., “VEGF Receptor Subtypes KDR and FLT1 Show Different Sensitivities to Heparin and Placenta Growth Factor,” Growth Factors, 11(3):187-195 (1994). |
Tessier et al., “Enhanced Secretion From Insect Cells of a Foreign Protein Fused to the Honeybee Melittin Signal Peptide,” Gene, 98: 177-183 (1991). |
Tischer et al., “The Human Gene for Vascular Endothelial Growth Factor, Multiple Protein Forms are Encoded Through Alternative Exon Splicing,” J. Biol. Chem., 266(18):11947-11954 (Jun. 25, 1991). |
Udaka et al., “Simple Method for Quantitation of Enhanced Vascular Permeability,” Proc. Soc. Exp. Biol. Med., 133:1384-1387 (1970). |
Van der Geer et al., “Receptor Protein-Tyrosine Kinases and Their Signal Transduction Pathways,” Ann. Rev. Cell Biol., 10:251-337 (1994). |
Vassar et al., “Tissue-specific and Differentiation -specific Expression of a Human K14 Keratin Gene in Transgenic Mice,” Proc. Nat'l Acad,. Sci., USA, 86:1563-1567 (Mar., 1989). |
Vassar et al., “Transgenic Mice Provide New Insights Into the Role of TGF-α During Epidermal Development and Differentiation,” Genes & Dev., 5:714-727 (1991). |
Vassborn et al., “Reversion of Autocrine Transformation by a Dominant Negative Platelet-Derived Growth Factor Mutant,” Mol. Cell. Biol., 13(7):4066-4076 (Jul., 1993). |
Västrik et al., “Expression of the Mad Gene During Cell Differentiation In Vivo and Its Inhibition of Cell Growth In Vitro,” J. Cell. Biol., 128(6):1197-1208 (Mar., 1995). |
von Heijne, G., “A New Method for Predicting Signal Sequence Cleavage Sites,” Nucleic Acids Res., 14(11):4683-4690 (1986). |
Waltenberger et al., “Different Signal Transduction Properties of KDR and Flt1, Two Receptors for Vascular Endothelial Growth Factor,” J. Biol. Chem, 269(43):26988-26995 (Oct. 28, 1994). |
Wanaka et al., “Expression of FGF Receptor Gene in Rat Development,” Development, 111:455-468 (1991). |
Witzenbichler, B., et al., “Vascular Endothelial Growth Factor-C (VEGF-C/VEGF-2) Promotes Angiogenesis in the Setting of Tissue Ischemia,” American Journal of Pathology, vol. 153, No. 2:381-394 (Aug. 1998). |
Wen et al., “Neu Differentiation Factor: A Transmembrane Glycoprotein Containing an EGF Domain and an Immunoglobulin Homology Unit,” Cell 69:559-572 (May 1, 1992). |
Yamane et al., “A New Communication System Between Hepatocytes and Sinusoidal Endothelial Cells in Liver Through Vascular Endothelial Growth Factor and Flt Tyrosine Kinase Receptor Family (Flt-1 and KDR/Flk-1),” Oncogene, 9:2683-2690 (1994). |
Hatva, E. et al., “Vascular Growth Factors and Receptors in Capillary Hemangioblastomas and Hemangiopericytomas,” Am. J. Pathol., 148:763-775 (1996). |
Böhling, T. et al., “Expression of Growth Factors and Growth Factor Receptors in Capillary Hemangioblastoma,” J. Neuropathol. Exp. Neurol., 55:522-527 (1996). |
Joukov et al., “Identification of Csk Tyrosine Phosphorylation Sites and a Tyrosine Residue Important for Kinase Domain Structure,” Biochem. J., 322:927-935 (1997). |
Enholm, B. et al., “Comparison of VEGF, VEGF-B, VEGF-C, and Ang-1 mRNA Regulation by Serum, Growth Factors, Oncoproteins and Hypoxia,” Oncogene, 14:2475-2483 (1997). |
Oh, S.J. et al., “VEGF and VEGF-C: Specific Induction of Angiogenesis and Lymphangiogenesis in the Differentiated Avian Chorioallantoic Membrane,” Dev. Biol., 188:96-109 (1997). |
Chilov, D. et al., “Genomic Organization of Human and Mouse Genes for Vascular Endothelial Growth Factor C,” J. Biol. Chem., 272:25176-25183 (1997). |
Cao, Y. et al., “Vascular Endothelial Growth Factor-C Induces Angiogenesis in Vivo,” Proc. Natl. Acad., Sci., 95:14389-14394 (1998). |
Joukov, V.et al., “Vascular Endothelial Growth Factors VEGF-B and VEGF-C,” J. Cell. Physiol., 173:211-215 (1997). |
Wang et al., “Signal Transduction in Human Hematopoietic Cells by Vascular Endothelial Growth Factor Related Protein, a Novel Ligand for the FLT4 Receptor,” Blood, 90:3507-3515 (1997). |
Alitalo, K., “Vascular Endothelial Growth Factors B and C and Receptors Involved in Angiogenesis,” IX International Vascular Biology Meeting, Seattle, Washington, USA, Sep. 4-8, 1996, p. 1 (ABSTRACT). |
Hu, J. et al., “A Novel Regulatory Function of Proteolytically Cleaved VEGF-2 for Vascular Endothelial and Smooth Muscle Cells,” FASEB J., 11:498-504 (1997). |
GenBank Accession No. AAA85214 “Vascular Endothelial Growth Factor Related Protein,” Deposited by Lee et al., dated Jan. 9, 1996. |
GenBank Accession No. U43142, “Human Vascular Endothelial Growth Factor Related Protein VRP mRNA,” Deposited by Lee et al., dated Jan. 9, 1996. |
Fielder et al., “Expression of FLT4 and its Ligand VEGF-C in acute myeloid Leukemia,” Leukemia, 11(8):1234-1237 (Aug., 1977). |
Marchio, S., et al., “Vascular Endothelial Growth Factor-C Stimulates the Migration and Proliferation of Kaposi's Sarcoma Cells,” J. Biol. Chem., 274(39):27617-22 (Sep. 24, 1999). |
Ohta, Y., et al., “VEGF and VEGF type C play an important role in angiogenesis and lymphangiogenesis in human malignant mesothelioma tumours,” Br. J. Cancer, 81(1):54-61 (Sep. 1999). |
Skobe, M., et al., “Vascular Endothelial Growth Factor-C (VEGF-C) and its Receptors KDR and flt-4 are Expressed in AIDS-Associated Kaposi's Sarcoma,” J. Invest. Dermatology, 113:1047-1053 (1999). |
Tsurusaki, T., et al., “Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis,” Br. J. Cancer, 801(2):309-313 (1999). |
Valtola, R., et al., “VEGFR-3 and Its Ligand VEGF-C Are Associated with Angiogenesis in Breast Cancer,” Am. J. Pathol., 154(5):1381-90 (May 1999). |