The present disclosure relates generally to wireless power transfer, and more specifically to devices, systems, and methods related to wireless power transfer to remote systems such as vehicles including batteries, and in particular to mounting systems for charging pads, such as vehicle charging pads.
Remote systems, such as vehicles, have been introduced that include locomotion power derived from electricity received from an energy storage device such as a battery. For example, hybrid electric vehicles include on-board chargers that use power from vehicle braking and traditional motors to charge the vehicles. Vehicles that are solely electric generally receive the electricity for charging the batteries from other sources. Battery electric vehicles (electric vehicles) are often proposed to be charged through some type of wired alternating current (AC) such as household or commercial AC supply sources. The wired charging connections require cables or other similar connectors that are physically connected to a power supply. Cables and similar connectors may sometimes be inconvenient or cumbersome and have other drawbacks. Wireless charging systems that are capable of transferring power in free space (e.g., via a wireless field) to be used to charge electric vehicles may overcome some of the deficiencies of wired charging solutions. As such, wireless charging systems and methods that efficiently and safely transfer power for charging electric vehicles are desirable.
Improved systems for mounting vehicle charging pads used in wireless charging systems are also desired. A vehicle charging pad, or “vehicle pad,” can include a coil structure which, in some cases, is a heavy component. A cover or housing enclosing the vehicle pad can be attached directly to a vehicle underbody or to a vehicle pad shield mounted on the vehicle. The cover, which can be designed to support the entire weight of the vehicle pad, can be attached to a vehicle pad shield with screws going through the vehicle pad shield and secured into the vehicle pad cover. Such screws, however, when made of metal can create magnetic issues and disturbances during operation of the vehicle pad. Further, existing attachment systems can result in very weak holding strengths. Additionally, this vehicle pad attachment method introduces a high risk of the vehicle pad detaching upon exposure to mechanical shocks and vibrations that are typical in the automotive environment.
Thus, improved systems for mounting vehicle pads in the automotive environment are desired and remain a significant challenge in the design of wireless charging technologies.
Various implementations of systems, methods and devices within the scope of the appended claims each have several aspects, no single one of which is solely responsible for the desirable attributes described herein. Without limiting the scope of the appended claims, some prominent features are described herein.
Details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings, and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
One aspect of the disclosure provides a vehicle wireless charging pad mounting system. The system includes a vehicle pad shield and a vehicle pad cover adapted to enclose a vehicle wireless charging pad. The vehicle pad shield has a base area comprising a generally planar surface. The vehicle pad shield includes shield attachment interfaces adapted to attach the vehicle pad cover to the vehicle pad shield, the shield attachment interfaces integrally formed in the vehicle pad shield and extending in a direction generally perpendicular to the base area of the vehicle pad shield.
Another aspect of the disclosure provides a system for mounting a vehicle wireless charging pad to the underbody or the frame of a vehicle. The system includes a vehicle pad cover enclosing the vehicle wireless charging pad. The vehicle pad cover has a generally planar surface and shield attachment interfaces adapted to attach the vehicle pad cover to a vehicle pad shield. The shield attachment interfaces are integrally formed in the cover and extend in a direction generally perpendicular to the base area of the cover.
Yet another aspect of the disclosure provides a vehicle wireless charging pad mounting system. The system includes a vehicle pad cover adapted to enclose a vehicle wireless charging pad. The system also includes means for shielding the vehicle wireless charging pad, the shielding means including means for attaching the shielding means to the vehicle pad cover. The attaching means is integrally formed in the shielding means and extends in a direction generally perpendicular to the shielding means.
The various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary embodiments of the invention and is not intended to represent the only embodiments in which the invention may be practiced. The term “exemplary” used throughout this description means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other exemplary embodiments. The detailed description includes specific details for the purpose of providing a thorough understanding of the exemplary embodiments of the invention. In some instances, some devices are shown in block diagram form.
Wirelessly transferring power may refer to transferring any form of energy associated with electric fields, magnetic fields, electromagnetic fields, or otherwise from a transmitter to a receiver without the use of physical electrical conductors (e.g., power may be transferred through free space). The power output into a wireless field (e.g., a magnetic field) may be received, captured by, or coupled by a “receiving coil” to achieve power transfer.
An electric vehicle is used herein to describe a remote system, an example of which is a vehicle that includes, as part of its locomotion capabilities, electrical power derived from a chargeable energy storage device (e.g., one or more rechargeable electrochemical cells or other type of battery). As non-limiting examples, some electric vehicles may be hybrid electric vehicles that include besides electric motors, a traditional combustion engine for direct locomotion or to charge the vehicle's battery. Other electric vehicles may draw all locomotion ability from electrical power. An electric vehicle is not limited to an automobile and may include motorcycles, carts, scooters, and the like. By way of example and not limitation, a remote system is described herein in the form of an electric vehicle (EV). Furthermore, other remote systems that may be at least partially powered using a chargeable energy storage device are also contemplated (e.g., electronic devices such as personal computing devices and the like).
In some exemplary embodiments, the electric vehicle induction coil 116 may receive power when the electric vehicle induction coil 116 is located in an energy field produced by the base system induction coil 104a. The field corresponds to a region where energy output by the base system induction coil 104a may be captured by an electric vehicle induction coil 116. For example, the energy output by the base system induction coil 104a may be at a level sufficient to charge or power the electric vehicle 112. In some cases, the field may correspond to the “near field” of the base system induction coil 104a. The near-field may correspond to a region in which there are strong reactive fields resulting from the currents and charges in the base system induction coil 104a that do not radiate power away from the base system induction coil 104a. In some cases the near-field may correspond to a region that is within about ½π of wavelength of the base system induction coil 104a (and vice versa for the electric vehicle induction coil 116).
Local distribution center 130 may be configured to communicate with external sources (e.g., a power grid) via a communication backhaul 134, and with the base wireless charging system 102a via a communication link 108.
In some embodiments the electric vehicle induction coil 116 may be aligned with the base system induction coil 104a and, therefore, disposed within a near-field region simply by the driver positioning the electric vehicle 112 correctly relative to the base system induction coil 104a. In other embodiments, the driver may be given visual feedback, auditory feedback, or combinations thereof to determine when the electric vehicle 112 is properly placed for wireless power transfer. In yet other embodiments, the electric vehicle 112 may be positioned by an autopilot system, which may move the electric vehicle 112 back and forth (e.g., in zig-zag movements) until an alignment error has reached a tolerable value. This may be performed automatically and autonomously by the electric vehicle 112 without or with only minimal driver intervention provided that the electric vehicle 112 is equipped with a servo steering wheel, ultrasonic sensors, and intelligence to adjust the vehicle. In still other embodiments, the electric vehicle induction coil 116, the base system induction coil 104a, or a combination thereof may have functionality for displacing and moving the induction coils 116 and 104a relative to each other to more accurately orient them and develop more efficient coupling therebetween.
The base wireless charging system 102a may be located in a variety of locations. As non-limiting examples, some suitable locations include a parking area at a home of the electric vehicle 112 owner, parking areas reserved for electric vehicle wireless charging modeled after conventional petroleum-based filling stations, and parking lots at other locations such as shopping centers and places of employment.
Charging electric vehicles wirelessly may provide numerous benefits. For example, charging may be performed automatically, virtually without driver intervention and manipulations thereby improving convenience to a user. There may also be no exposed electrical contacts and no mechanical wear out, thereby improving reliability of the wireless power transfer system 100. Manipulations with cables and connectors may not be needed, and there may be no cables, plugs, or sockets that may be exposed to moisture and water in an outdoor environment, thereby improving safety. There may also be no sockets, cables, and plugs visible or accessible, thereby reducing potential vandalism of power charging devices. Further, since an electric vehicle 112 may be used as distributed storage devices to stabilize a power grid, a docking-to-grid solution may be used to increase availability of vehicles for Vehicle-to-Grid (V2G) operation.
A wireless power transfer system 100 as described with reference to
As a further explanation of the vehicle-to-grid capability, the wireless power transmit and receive capabilities may be configured to be reciprocal such that the base wireless charging system 102a transfers power to the electric vehicle 112 and the electric vehicle 112 transfers power to the base wireless charging system 102a e.g., in times of energy shortfall. This capability may be useful to stabilize the power distribution grid by allowing electric vehicles to contribute power to the overall distribution system in times of energy shortfall caused by over demand or shortfall in renewable energy production (e.g., wind or solar).
With reference to
The base system transmit circuit 206 including the base system induction coil 204 and electric vehicle receive circuit 222 including the electric vehicle induction coil 216 may be tuned to substantially the same frequencies and may be positioned within the near-field of an electromagnetic field transmitted by one of the base system induction coil 204 and the electric vehicle induction coil 216. In this case, the base system induction coil 204 and electric vehicle induction coil 216 may become coupled to one another such that power may be transferred to the electric vehicle receive circuit 222 including capacitor C2 and electric vehicle induction coil 216. The capacitor C2 may be provided to form a resonant circuit with the electric vehicle induction coil 216 that resonates at a desired frequency. Element k(d) represents the mutual coupling coefficient resulting at coil separation. Equivalent resistances Req,1 and Req,2 represent the losses that may be inherent to the induction coils 204 and 216 and the anti-reactance capacitors C1 and C2. The electric vehicle receive circuit 222 including the electric vehicle induction coil 316 and capacitor C2 receives power P2 and provides the power P2 to an electric vehicle power converter 238 of an electric vehicle charging system 214.
The electric vehicle power converter 238 may include, among other things, a LF/DC converter configured to convert power at an operating frequency back to DC power at a voltage level matched to the voltage level of an electric vehicle battery unit 218. The electric vehicle power converter 238 may provide the converted power PLDC to charge the electric vehicle battery unit 218. The power supply 208, base charging system power converter 236, and base system induction coil 204 may be stationary and located at a variety of locations as discussed above. The battery unit 218, electric vehicle power converter 238, and electric vehicle induction coil 216 may be included in an electric vehicle charging system 214 that is part of electric vehicle 112 or part of the battery pack (not shown). The electric vehicle charging system 214 may also be configured to provide power wirelessly through the electric vehicle induction coil 216 to the base wireless power charging system 202 to feed power back to the grid. Each of the electric vehicle induction coil 216 and the base system induction coil 204 may act as transmit or receive induction coils based on the mode of operation.
While not shown, the wireless power transfer system 200 may include a load disconnect unit (LDU) to safely disconnect the electric vehicle battery unit 218 or the power supply 208 from the wireless power transfer system 200. For example, in case of an emergency or system failure, the LDU may be triggered to disconnect the load from the wireless power transfer system 200. The LDU may be provided in addition to a battery management system for managing charging to a battery, or it may be part of the battery management system.
Further, the electric vehicle charging system 214 may include switching circuitry (not shown) for selectively connecting and disconnecting the electric vehicle induction coil 216 to the electric vehicle power converter 238. Disconnecting the electric vehicle induction coil 216 may suspend charging and also may adjust the “load” as “seen” by the base wireless charging system 102a (acting as a transmitter), which may be used to “cloak” the electric vehicle charging system 114 (acting as the receiver) from the base wireless charging system 102a. The load changes may be detected if the transmitter includes the load sensing circuit. Accordingly, the transmitter, such as a base wireless charging system 202, may have a mechanism for determining when receivers, such as an electric vehicle charging system 114, are present in the near-field of the base system induction coil 204.
As described above, in operation, assuming energy transfer towards the vehicle or battery, input power is provided from the power supply 208 such that the base system induction coil 204 generates a field for providing the energy transfer. The electric vehicle induction coil 216 couples to the radiated field and generates output power for storage or consumption by the electric vehicle 112. As described above, in some embodiments, the base system induction coil 204 and electric vehicle induction coil 216 are configured according to a mutual resonant relationship such that the resonant frequency of the electric vehicle induction coil 216 and the resonant frequency of the base system induction coil 204 are very close or substantially the same. Transmission losses between the base wireless power charging system 202 and electric vehicle charging system 214 are minimal when the electric vehicle induction coil 216 is located in the near-field of the base system induction coil 204.
As stated, an efficient energy transfer occurs by coupling a large portion of the energy in the near field of a transmitting induction coil to a receiving induction coil rather than propagating most of the energy in an electromagnetic wave to the far-field. When in the near field, a coupling mode may be established between the transmit induction coil and the receive induction coil. The area around the induction coils where this near field coupling may occur is referred to herein as a near field coupling mode region.
While not shown, the base charging system power converter 236 and the electric vehicle power converter 238 may both include an oscillator, a driver circuit such as a power amplifier, a filter, and a matching circuit for efficient coupling with the wireless power induction coil. The oscillator may be configured to generate a desired frequency, which may be adjusted in response to an adjustment signal. The oscillator signal may be amplified by a power amplifier with an amplification amount responsive to control signals. The filter and matching circuit may be included to filter out harmonics or other unwanted frequencies and match the impedance of the power conversion module to the wireless power induction coil. The power converters 236 and 238 may also include a rectifier and switching circuitry to generate a suitable power output to charge the battery.
The electric vehicle induction coil 216 and base system induction coil 204 as described throughout the disclosed embodiments may be referred to or configured as “loop” antennas, and more specifically, multi-turn loop antennas. The induction coils 204 and 216 may also be referred to herein or be configured as “magnetic” antennas. The term “coil” generally refers to a component that may wirelessly output or receive energy four coupling to another “coil.” The coil may also be referred to as an “antenna” of a type that is configured to wirelessly output or receive power. As used herein, coils 204 and 216 are examples of “power transfer components” of a type that are configured to wirelessly output, wirelessly receive, and/or wirelessly relay power. Loop (e.g., multi-turn loop) antennas may be configured to include an air core or a physical core such as a ferrite core. An air core loop antenna may allow the placement of other components within the core area. Physical core antennas including ferromagnetic or ferromagnetic materials may allow development of a stronger electromagnetic field and improved coupling.
As discussed above, efficient transfer of energy between a transmitter and receiver occurs during matched or nearly matched resonance between a transmitter and a receiver. However, even when resonance between a transmitter and receiver are not matched, energy may be transferred at a lower efficiency. Transfer of energy occurs by coupling energy from the near field of the transmitting induction coil to the receiving induction coil residing within a region (e.g., within a predetermined frequency range of the resonant frequency, or within a predetermined distance of the near-field region) where this near field is established rather than propagating the energy from the transmitting induction coil into free space.
A resonant frequency may be based on the inductance and capacitance of a transmit circuit including an induction coil (e.g., the base system induction coil 204) as described above. As shown in
As described above, according to some embodiments, coupling power between two induction coils that are in the near field of one another is disclosed. As described above, the near field may correspond to a region around the induction coil in which electromagnetic fields exist but may not propagate or radiate away from the induction coil. Near-field coupling-mode regions may correspond to a volume that is near the physical volume of the induction coil, typically within a small fraction of the wavelength. According to some embodiments, electromagnetic induction coils, such as single and multi-turn loop antennas, are used for both transmitting and receiving since magnetic near field amplitudes in practical embodiments tend to be higher for magnetic type coils in comparison to the electric near fields of an electric type antenna (e.g., a small dipole). This allows for potentially higher coupling between the pair. Furthermore, “electric” antennas (e.g., dipoles and monopoles) or a combination of magnetic and electric antennas may be used.
The base wireless charging system 302 includes a base charging system controller 342 and the electric vehicle charging system 314 includes an electric vehicle controller 344. The base charging system controller 342 may include a base charging system communication interface 162 to other systems (not shown) such as, for example, a computer, and a power distribution center, or a smart power grid. The electric vehicle controller 344 may include an electric vehicle communication interface to other systems (not shown) such as, for example, an on-board computer on the vehicle, other battery charging controller, other electronic systems within the vehicles, and remote electronic systems.
The base charging system controller 342 and electric vehicle controller 344 may include subsystems or modules for specific application with separate communication channels. These communications channels may be separate physical channels or separate logical channels. As non-limiting examples, a base charging alignment system 352 may communicate with an electric vehicle alignment system 354 through a communication link 376 to provide a feedback mechanism for more closely aligning the base system induction coil 304 and electric vehicle induction coil 316, either autonomously or with operator assistance. Similarly, a base charging guidance system 362 may communicate with an electric vehicle guidance system 364 through a guidance link to provide a feedback mechanism to guide an operator in aligning the base system induction coil 304 and electric vehicle induction coil 316. In addition, there may be separate general-purpose communication links (e.g., channels) supported by base charging communication system 372 and electric vehicle communication system 374 for communicating other information between the base wireless power charging system 302 and the electric vehicle charging system 314. This information may include information about electric vehicle characteristics, battery characteristics, charging status, and power capabilities of both the base wireless power charging system 302 and the electric vehicle charging system 314, as well as maintenance and diagnostic data for the electric vehicle 112. These communication channels may be separate physical communication channels such as, for example, Bluetooth, zigbee, cellular, etc.
Electric vehicle controller 344 may also include a battery management system (BMS) (not shown) that manages charge and discharge of the electric vehicle principal battery, a parking assistance system based on microwave or ultrasonic radar principles, a brake system configured to perform a semi-automatic parking operation, and a steering wheel servo system configured to assist with a largely automated parking ‘park by wire’ that may provide higher parking accuracy, thus reducing the need for mechanical horizontal induction coil alignment in any of the base wireless charging system 102a and the electric vehicle charging system 114. Further, electric vehicle controller 344 may be configured to communicate with electronics of the electric vehicle 112. For example, electric vehicle controller 344 may be configured to communicate with visual output devices (e.g., a dashboard display), acoustic/audio output devices (e.g., buzzer, speakers), mechanical input devices (e.g., keyboard, touch screen, and pointing devices such as joystick, trackball, etc.), and audio input devices (e.g., microphone with electronic voice recognition).
Furthermore, the wireless power transfer system 300 may include detection and sensor systems. For example, the wireless power transfer system 300 may include sensors for use with systems to properly guide the driver or the vehicle to the charging spot, sensors to mutually align the induction coils with the required separation/coupling, sensors to detect objects that may obstruct the electric vehicle induction coil 316 from moving to a particular height and/or position to achieve coupling, and safety sensors for use with systems to perform a reliable, damage free, and safe operation of the system. For example, a safety sensor may include a sensor for detection of presence of animals or children approaching the wireless power induction coils 104a, 116 beyond a safety radius, detection of metal objects near the base system induction coil 304 that may be heated up (induction heating), detection of hazardous events such as incandescent objects on the base system induction coil 304, and temperature monitoring of the base wireless power charging system 302 and electric vehicle charging system 314 components.
The wireless power transfer system 300 may also support plug-in charging via a wired connection. A wired charge port may integrate the outputs of the two different chargers prior to transferring power to or from the electric vehicle 112. Switching circuits may provide the functionality as needed to support both wireless charging and charging via a wired charge port.
To communicate between a base wireless charging system 302 and an electric vehicle charging system 314, the wireless power transfer system 300 may use both in-band signaling and an RF data modem (e.g., Ethernet over radio in an unlicensed band). The out-of-band communication may provide sufficient bandwidth for the allocation of value-add services to the vehicle user/owner. A low depth amplitude or phase modulation of the wireless power carrier may serve as an in-band signaling system with minimal interference.
In addition, some communication may be performed via the wireless power link without using specific communications antennas. For example, the wireless power induction coils 304 and 316 may also be configured to act as wireless communication transmitters. Thus, some embodiments of the base wireless power charging system 302 may include a controller (not shown) for enabling keying type protocol on the wireless power path. By keying the transmit power level (amplitude shift keying) at predefined intervals with a predefined protocol, the receiver may detect a serial communication from the transmitter. The base charging system power converter 336 may include a load sensing circuit (not shown) for detecting the presence or absence of active electric vehicle receivers in the vicinity of the near field generated by the base system induction coil 304. By way of example, a load sensing circuit monitors the current flowing to the power amplifier, which is affected by the presence or absence of active receivers in the vicinity of the near field generated by base system induction coil 104a. Detection of changes to the loading on the power amplifier may be monitored by the base charging system controller 342 for use in determining whether to enable the oscillator for transmitting energy, to communicate with an active receiver, or a combination thereof.
To enable wireless high power transfer, some embodiments may be configured to transfer power at a frequency in the range from 10-60 kHz. This low frequency coupling may allow highly efficient power conversion that may be achieved using solid state devices. In addition, there may be less coexistence issues with radio systems compared to other bands.
The wireless power transfer system 100 described may be used with a variety of electric vehicles 102 including rechargeable or replaceable batteries.
It may be useful for the electric vehicle induction coil to be integrated flush with a bottom side of electric vehicle battery unit or the vehicle body so that there are no protrusive parts and so that the specified ground-to-vehicle body clearance may be maintained. This configuration may require some room in the electric vehicle battery unit dedicated to the electric vehicle wireless power subsystem. The electric vehicle battery unit 422 may also include a battery-to-EV cordless interface 422, and a charger-to-battery cordless interface 426 that provides contactless power and communication between the electric vehicle 412 and a base wireless charging system 102a as shown in
In some embodiments, and with reference to
The design of this deployable electric vehicle induction coil module 542d is similar to that of
As discussed above, the electric vehicle induction coil module 542d that is deployed may contain only the coil 536d (e.g., Litz wire) and ferrite material 538d. Ferrite backing may be provided to enhance coupling and to prevent from excessive eddy current losses in a vehicle's underbody or in the conductive shield 532d. Moreover, the electric vehicle induction coil module 542d may include a flexible wire connection to power conversion electronics and sensor electronics. This wire bundle may be integrated into the mechanical gear for deploying the electric vehicle induction coil module 542d.
With reference to
Furthermore, the disclosed embodiments are applicable to parking lots having one or more parking spaces or parking areas, wherein at least one parking space within a parking lot may comprise a base wireless charging system 102a. Guidance systems (not shown) may be used to assist a vehicle operator in positioning an electric vehicle 112 in a parking area to align an electric vehicle induction coil 116 within the electric vehicle 112 with a base wireless charging system 102a. Guidance systems may include electronic based approaches (e.g., radio positioning, direction finding principles, and/or optical, quasi-optical and/or ultrasonic sensing methods) or mechanical-based approaches (e.g., vehicle wheel guides, tracks or stops), or any combination thereof, for assisting an electric vehicle operator in positioning an electric vehicle 112 to enable an induction coil 116 within the electric vehicle 112 to be adequately aligned with a charging induction coil within a charging base (e.g., base wireless charging system 102a).
As discussed above, the electric vehicle charging system 114 may be placed on the underside of the electric vehicle 112 for transmitting and receiving power from a base wireless charging system 102a. For example, an electric vehicle induction coil 116 may be integrated into the vehicle's underbody preferably near a center position providing maximum safety distance in regards to EM exposure and permitting forward and reverse parking of the electric vehicle.
The system 600 also includes a vehicle pad shield or base plate 615. In some implementations, the vehicle pad shield 615 includes aluminum. The vehicle pad cover 610 can be attached to the vehicle pad shield 615 using shield attachment interfaces. In this implementation, the shield attachment interfaces include clips 620 that are integrated in the vehicle pad cover 610. In another implementation (not illustrated), the shield attachment interfaces include clips integrated in the vehicle pad shield 615. Systems and methods for attaching the vehicle pad cover 610 to the vehicle pad shield 615 are described in greater detail below.
The vehicle pad cover 610 also includes mounting brackets 625 that can be formed integral with the vehicle pad cover 610. In the implementation illustrated in
Embodiments of the system 600 can advantageously support the entire vehicle pad, which can include heavy components, in the automotive environment. Additionally, embodiments of the system 600 can be more mechanically robust than implementations that do not use mounting brackets 625, such as the implementation illustrated in
Drawbacks associated with mounting systems which do not include mounting brackets or shield attachment interfaces as described herein will now be described with reference to
Drawbacks associated with the mounting system 700's lack of shield attachment interfaces as described herein will now be described. In the implementation illustrated in
In this implementation, the vehicle pad cover 710 is attached to the vehicle pad shield 715 with shield screws 740 going through the plurality of peripheral apertures 745 in the vehicle pad shield 715 and secured into the vehicle pad cover 710. In some cases, the shield screws 740 are tapped into apertures 750 provided on the lip 755 of the vehicle pad cover 710. The shield screws 740 can include metal. In the illustrated implementation, twenty (20) shield screws 740 are used to mount the vehicle pad cover 710 to the vehicle pad shield 715, requiring significant time, assembly resources, and alignment mechanisms to drive the shield screws 740 into the apertures 745, 750. More or fewer than twenty (20) shield screws may be used to assemble the vehicle charging pad 705. Further, in this implementation, additional space and material in the vehicle pad cover 710 and the vehicle pad shield 715 are required to provide sufficient space to host the shield screws 740. In one example, each shield screw 740 requires about 5 mm of additional space to host the shield screw 740 in the vehicle pad cover 710 and the vehicle pad shield 715. Additionally, the shield screws 740, when made of metal as in this implementation, can create magnetic issues and disturbances during operation of the vehicle charging pad 705. In cases where the shield screws 740 are not made of metal, this method of attaching the vehicle pad cover 710 to the vehicle pad shield 715 can result in very weak holding strengths.
Drawbacks associated with the mounting system 700's lack of mounting brackets as described herein will now be described. The assembled vehicle charging pad 705 can be attached to a vehicle, such as a vehicle's underbody, using mounting structures or fasteners 730. In the illustrated implementation, mounting apertures 747 are formed near the corners of the longitudinally extending tabs 760 of the vehicle pad shield 715. Fasteners 730, such as bolts, screws, rivets, or nails or any other suitable component, can pass through the mounting apertures 747 to secure an assembled charging pad in place. In an implementation in which the charging pad serves as a vehicle charging pad, the charging pad may be secured to the undercarriage or frame of the vehicle to position the vehicle charging pad underneath the vehicle as discussed above. The mounting system 700 using mounting structures 730 involves drawbacks, however, including a high risk that the assembled vehicle charging pad 705 and/or the vehicle pad cover 710 will detach from the vehicle and/or the vehicle pad shield 715 when exposed to mechanical shocks and vibrations typical in the automotive environment.
Implementations of the mounting system 600 illustrated in
The mounting system 600 can also simplify installation of the assembled vehicle charging pad 605 to the vehicle. In the implementation illustrated in
The mounting system 800 includes a vehicle pad cover or “tray” 810. The tray can include plastic or other suitable materials. The mounting system 800 also includes a vehicle pad shield 815. In some cases, the vehicle pad shield includes a metal, such as aluminum. In this implementation, the vehicle pad shield 815 is a rectangular structure including a generally planar surface or base area 865. The vehicle pad shield 815 need not have a generally rectangular shape, and other shapes are possible. The base area 865 of the vehicle pad shield 815 can be configured to shield conductive structures in the vehicle pad which generate a wireless power field.
The vehicle pad shield 815 can be attached to the vehicle pad cover 810 using shield attachment interfaces. In this implementation, the shield attachment interfaces include clips 820 integrally formed in the vehicle pad shield 815. The clips 820 in this example include closed clips having a generally rectangular surface 872 and a generally rectangular aperture 874 in the surface 872. Other shapes and configurations are possible. The closed clips 820 extend in a direction generally perpendicular to the base area 865 of the vehicle pad shield 815. In this implementation, for example, the rectangular surface 872 of the closed clips 820 forms a plane that is generally perpendicular to a plane formed by the base area 865 of the vehicle pad shield 815.
In other implementations, the closed clips 820 do not extend in a direction generally perpendicular to the base area 865, but extend in a plane that is different than the plane formed by the base area 865. For example, the plane formed by the generally rectangular surface 872 of the closed clips 820 can be angled relative to the plane formed by the base area 865.
In the illustrated implementation, the clips 820 are integrally formed with the vehicle pad shield 815, extending from a periphery of the base area 865. In one example, the vehicle pad shield 815 is molded or formed as one piece with the clips 820 extending generally perpendicular to the base area 865. In another implementation that is not illustrated, the clips 820 can be attached to the periphery of the base area 865 by welding or any other suitable attachment mechanism.
The closed clips 820 are configured to accept prongs 876, or other suitable connectors, integrally formed in an outer surface 878 of the vehicle pad cover 810. The prongs 876 are generally rectangular and conform to the generally rectangular shape of the apertures 874 of the closed clips 820. Other shapes are possible.
The vehicle pad shield 815 can be coupled to the vehicle pad cover 810 by inserting the prongs 876 into the closed clips 820 of the vehicle pad shield 815. In some implementations, the clips 820 and the prongs 876 couple together in a snap-fit arrangement.
In some implementations, the shield attachment interfaces include closed clips integrally formed on the vehicle pad cover rather than the vehicle pad shield. Turning again to
Additionally, shield attachment interfaces such as closed clips 620 and 820 can advantageously reduce the overall size of the mounting systems described herein. In contrast to the implementation illustrated in
Additionally, mounting systems having shield attachment interfaces can advantageously include mounting brackets as described herein. Although mounting bracket features are not illustrated in
Implementations of the vehicle pad mounting systems described herein can also reduce magnetic loss due to eddy current effects.
The vehicle pad cover 910 includes prongs 976 in the shape of a T (“T-shaped prongs”). The T-shaped prongs 976 extend in a direction generally perpendicular to a generally planar base area 980 of the vehicle pad cover 910. The double-L clips 925 can be adapted to receive the T-shaped prongs 976. In some implementations, the double-L clips 925 and the T-shaped prongs 976 couple together in a snap-fit arrangement to attach the vehicle pad cover 910 to the vehicle pad shield 915.
Implementations of the mounting system 900 can advantageously reduce magnetic loss due to eddy current effects. In some implementations, the negative effect of the mounting system 900 on magnetic fields in the system is relatively minimal or, in some cases, there is no impact on the magnetic fields. Without being bound by any particular theory, higher magnetic losses would ordinarily be expected with the introduction of metal structures, such as double-L clips 925 including aluminum, extending along the periphery of the base area 965 of the vehicle pad shield 915 in a direction generally perpendicular to the base area 965. As such, introducing implementations of the shield attachment interfaces described herein would ordinarily be discouraged to avoid blocking flux fields associated with the assembled vehicle charging pad.
However, implementations of the shield attachment interfaces described herein, such as the double-L clips 925, resulted in less than 0.5% loss of efficiency during magnetic simulation testing, as shown in the test results illustrated in
Additionally, as described above, implementations of the mounting system 900 can further increase strength and mechanical robustness of the assembled vehicle charging pad, while reducing the size of the charging pad, since the space needed to host shield screws can be eliminated or reduced in an arrangement where the vehicle pad cover 910 is clipped to the vehicle pad shield 915. Further, the space needed to host mounting structures (such as mounting structures 730 shown in
In another implementation that is not illustrated in
In one implementation, the vehicle pad cover 1010 and the vehicle pad shield 1015 are coupled by lowering the vehicle pad cover 1010 onto the vehicle pad shield 1015 in the direction of arrow 1082, then sliding the vehicle pad cover 1010 along the base area 1065 of the vehicle pad shield 1015 in the direction of arrow 1084. This motion in the direction of arrow 1084 can lock the prongs 1076 into the single-L clips 1020 to securely lock or attach the vehicle pad cover 1010 into place on the vehicle pad shield 1015 to form an assembled vehicle charging pad. It will be understood that while this implementation illustrates the engagement mechanism with downward and leftward motions, upward and rightward motions are also appropriate depending on the relative positions of the vehicle pad cover 1010 and the vehicle pad shield 1015.
In some cases, the vehicle pad cover 1010 and the vehicle pad shield 1015 can be secured together with additional features included in the mounting system 1000. In this implementation, the vehicle pad shield 1015 is a generally rectangular planar structure which includes two longitudinally extending tabs 1060 extending from each of the shorter sides of the rectangular structure. The vehicle pad shield 1015 need not be generally rectangular, and other shapes are possible. In the illustrated implementation, mounting apertures 1047 are formed near the corners of the longitudinally extending tabs 1060 of the vehicle pad shield 1015. The vehicle pad cover 1010 includes mounting brackets 1025 which align with the mounting apertures 1047 of the vehicle pad shield 1015 after the vehicle pad cover 1010 is moved in the direction of arrow 1084 and prongs 1076 engage single-L clips 1020. Fasteners, such as bolts, screws, rivets, or nails or any other suitable component, can pass through the mounting apertures 1047 and the mounting brackets 1025 to securely engage the vehicle pad cover 1010 and the vehicle pad shield 1015. In some implementations, the fasteners passing through the mounting apertures 1047 and the mounting brackets 1025 are also used to attach the assembled vehicle charging pad to another structure, such as a vehicle underbody or frame.
While the implantation of the vehicle pad shield 1015 illustrated in
In another implementation, the vehicle pad shield 1015 having single-L clips 1020 is integrally formed in the vehicle underbody or frame, and the vehicle pad cover 1010 is attached to the integrated shield by moving the vehicle pad cover in an upward direction into contact with the base area 1065 of the vehicle pad shield 1015, and then to the left or right to lock the prongs 1076 into engagement with the single-L clips 1020. In an implementation where the vehicle pad shield 1015 includes longitudinally extending tabs 1060, fasteners passing through mounting brackets 1025 and tabs 1060 can be configured to securely lock the vehicle pad shield 1015 and the vehicle pad cover 1010 together, as well as to secure the assembled vehicle charging pad to the vehicle underbody or frame. In implementations of the vehicle pad shield 1015 that do not include longitudinally extending tabs 1060, fasteners passing through mounting brackets 1025 on the vehicle pad cover 1010 can be configured to securely attach the assembled vehicle charging pad to the vehicle underbody or frame.
For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the inventions have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Various modifications of the above described embodiments will be readily apparent, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
This application claims priority to and the benefit under 35 U.S.C. §119(e) to U.S. Provisional Application No. 61/765,589, filed Feb. 15, 2013, entitled “VEHICLE WIRELESS CHARGING PAD MOUNTING SYSTEMS,” the disclosure of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61765589 | Feb 2013 | US |