Electrical switches are used for many applications. An important use and application for electrical switches is in power electronics where electrical switches are used in numerous applications including high voltage electrical switches for, for example, for AC to AC, AC to DC, DC to DC, and DC to AC power supplies, power inverters, power converters, electrical vehicle (EV) and a host of other applications. Although there are numerous types of electrical switches including bipolar junction transistors (BJTs) and hetero junction bipolar transistors (HBTs), field effect transistors of a large number of types and varieties including metal oxide semiconductor field effect transistors (MOSFETs), junction field effect transistors (JFETs), insulated gate bipolar transistor (IGBTs), high electron mobility transistors (HEMT), modulation doped field effect transistors (MODFETs), etc., there is still much room for improvement including in terms of both performance and cost. Both lateral (horizontal) and vertical electrical switches are commonplace with each type having its respective advantages and disadvantages. For a number of reasons as the switching voltage increases, usually vertical switching transistors are preferred. A class of vertical transistors that has gained significant popularity is a vertical MOSFET typically made of and based on the semiconductor silicon (Si) materials system including both native and deposited silicon dioxide (SiO2). There are a number of types of vertical FETs including so-called planar vertical FETs/MOSFETs, U vertical FETs/MOSFETs, V vertical FETs/MOSFETs, etc. The maturity of Si processing, manufacturing, and infrastructure is, among other things, impressive and extensive. In terms of cost, it is hard to beat or compete with the cost of Si-based high voltage power devices; however the performance of these devices still has room for improvement.
Various embodiments of the present invention provide a transistor structure that permits higher performance from a standard vertical field effect transistor (FET) structure to be realized. The present invention combines the superior blocking performance of a GaN layer with the extremely advanced and mature Si manufacturing and infrastructure. The present invention can be realized and implemented in a number of ways and forms with some exemplary examples provided here within. The present invention replaces the low electric field breakdown of, for example, unintentionally/un-doped or low doped n-type silicon epitaxial material with an electric field breakdown of unintentionally/un-doped or low doped n-type GaN or related epitaxial material as the blocking layer.
The embodiments shown and discussed are intended to be examples of the present invention and in no way or form should these examples be viewed as being limiting of and for the present invention.
This summary provides only a general outline of some embodiments of the invention. The phrases “in one embodiment,” “according to one embodiment,” “in various embodiments”, “in one or more embodiments”, “in particular embodiments” and the like generally mean the particular feature, structure, or characteristic following the phrase is included in at least one embodiment of the present invention, and may be included in more than one embodiment of the present invention. Importantly, such phrases do not necessarily refer to the same embodiment. This summary provides only a general outline of some embodiments of the invention. Additional embodiments are disclosed in the following detailed description, the appended claims and the accompanying drawings.
A further understanding of the various embodiments of the present invention may be realized by reference to the Figures which are described in remaining portions of the specification. In the Figures, like reference numerals may be used throughout several drawings to refer to similar components.
A device structure and architecture that provides an enhanced performance switching transistor is disclosed that, for example, increases the breakdown voltage or reduces the on resistance of the switching transistor or both. In some embodiments, the enhanced performance switching transistor comprises a vertical transistor, a non-planar device in which one or more of the elements, such as, but not limited to, the drain, source and/or gate, are vertically stacked. In some embodiments, the enhanced performance switching transistor comprises an enhancement-mode device, in which a positive gate-to-source voltage creates the conductive channel within the transistor. In some other embodiments, the enhanced performance switching transistor comprises a depletion-mode device. In some embodiments, the enhanced performance switching transistor comprises a hetero-device, using differing semiconductor materials for various regions of the transistor.
The transistor may be any suitable type of transistor or other device, such as a MOSFET or field effect transistor of any type and many types of materials including but not limited to metal oxide semiconductor FET (MOSFET), junction FET (JFET), high electron mobility transistor (HEMT), etc., or an insulated gate bipolar transistor (IGBT) or other types of transistor structures including bipolar junction transistors (BJTs), heterojunction bipolar transistors (HBTs), Darlington transistors, etc. and can be made of any suitable material including but not limited to silicon, gallium arsenide, gallium nitride, silicon carbide, etc which has a suitably high voltage rating. A blocking layer with a high electric field breakdown is provided to achieve a high breakdown voltage. The blocking layer in the device may be adapted in any suitable manner, including material selection, thickness, etc., in order to achieve the desired breakdown voltage. Such materials include, among others, GaN and SiC based materials. Although the Figures illustrate GaN drift layers, again other materials such as SiC may also be used. Materials development in other semiconductor materials systems including wide band gap (WBG) materials such as gallium nitride (GaN) and silicon carbide (SiC) and materials based on these WBG materials improve both lateral and vertical device performance including in vertical FETs that contain GaN and/or SiC as part of their structures and architectures including as active layers, blocking layers, substrates, etc. Growing GaN on non-native substrates (heteroepitaxy) can be realized with typically, for example, GaN grown on, for example, GaN (homoepitaxy), SiC and Si substrates with certain types of crystallographic orientations and relationships being employed.
Referring to
For example, the transistor 700 includes a silicon layer on the GaN epilayer 702 and stress relieving/management layer 705, where the silicon layer can be doped as desired, for example forming a P− body 606 with an N− epi region 712 and N+ regions 708, 710 underneath a gate oxide 714 in a SiO2 layer. A gate 716 and field oxide 718 are formed over the gate oxide 714 and underneath a source 720. Again, the transistor 700 is not limited to the example shown in
Standard Si vertical FET processes and processing may be used or the vertical FET process may be modified, changed, optimized, enhanced, improved, altered, etc. as needed or desired to achieve, for example, the desired electrical performance and/or cost structure. Temperature and process profiles, alternations, modification, improvements, enhancements, etc. including those involving, but not limited to, growth, implantation, annealing, rapid thermal annealing, diffusion, oxidation, etching, deposition, crystallization, re-crystallization, crystallographic orientation(s) and structure(s), etc. may be used to realize certain implementations of the present invention.
Although a planar structure is illustrated and depicted in the Figures, the present invention is applicable to any type of vertical transistor and, in particular, field effect transistors, especially vertical field effect transistors including trench vertical FETs, UFETs, VFETs, DFETs, UMOSFETs, VMOSFETs, DMOSFETS, U Groove, V Groove, etc. and may also be applicable to other types of hetero junction and heterostructures including, but not limited to, high electron mobility transistors (HEMTs), modulation doped FETs (MODFETs), other 2-D electron gas transistors, polar transistors, stress-polarization transistors, etc.
Although the Figures depict and illustrate the hetero-interface between the Si and GaN occurring at the junction between the Si p-type body and potentially the Si n-epi to the GaN n-epi, this depiction and illustration is merely for illustrative example purposes and is in no way intended to be limiting. The junction and/or the growth interface between the Si and GaN can for example, but not limited to, occur at any one of a numerous places with a few of these mentioned here: at the p-body interface to the n-epi; at the N+ source to p-body interface; within the p-body itself (i.e., a p-Si to p-GaN heterojunction) and any other appropriate interfaces. The thickness of the GaN blocking layer can be tailored and set to meet the specifics of the intended application including the electrical, mechanical, thermal specifications, etc.
Although the Figures depict and illustrate a single GaN epilayer, it is to be understood that the blocking layer could consist of a plurality of layers including a plurality of GaN layer(s), GaN layers with distributed stress management layers and other stress altering, controlling, relief, etc. layers, templates, etc. These plurality of multiple layers can be conductive as needed and also have a high breakdown field and/or other properties depending on the location and purpose of such layers. In addition a transition/buffer layer may exist at the interface between the example GaN epilayer depicted and illustrated in the Figures and the Si material. Such a buffer/transition layer may be thin or thick, may be a nitride material such as AlN or AlGaN or other material including a metal, semiconductor, semi-metal, intermetallic, alloy, compound, element, phase, allotrope(s), other crystalline materials, nanotube(s), a material of any composition and structure, etc or combinations of these in any form and use. A distributed stress-management/control layer or layer(s) may also be used. In addition, with reference to
Embodiments of the present invention may be grown and fabricated, bonded, assembled, etc. such that the highest temperature processes, growth, operation is below that/compatible with Si power MOSFETs so that no appreciable diffusion including diffusion of junctions occurs and the Si power MOSFET remains intact and unchanged after the completion of the of the incorporation of the GaN drift layer and related layers. In some embodiments of the present invention, the structure can be inverted during growth and fabrication such that the thinned down/etched Si power device effectively acts as a substrate for the growth of the GaN layer(s) which, may be grown on template(s), transition layer(s), buffers, etc.; in some other embodiments of the present invention, the thinned down power MOSFET can be temporarily bonded/attached to a temporary additional substrate that provides, for example, but not limited to, mechanical strength, thermal coefficient of expansion and/or thermal/stress management and relief/reduction/mitigation during, for example, the growth, processing, fabrication and/or assembly, etc. of the present invention. This may be in addition to stress-management and reduction/mitigation layer(s)/film(s) that have been permanently built in/added during the growth and/or subsequent processes and processing, packaging, etc. for example, to maintain proper performance and avoid/mitigate potential mechanical, stress, mismatch, cracking, etc. issues that may otherwise occur during processing, fabrication, assembly, bonding, packaging, operation, etc.
In other embodiments of the present invention, the Si structure may be completely or partially grown/fabricated on a GaN epitaxial material drift region to realize certain embodiments/implementations of the hybrid Si-GaN based vertical power device(s) including, but not limited to, vertical power MOSFETs and IGBTs.
Should the growth of the GaN on Si for the result in temperatures (i.e., the GaN growth/deposition temperature) that may cause diffusion in the dopants and associated junctions (e.g., pn (PN) junctions, nn (NN) junctions, and/or pp (PP) junctions of any doping level) of the Si-based power device(s), then appropriate modifications to the processing and architecture of the Si power device so as to compensate for, for example but not limited to, the diffusion that will occur during the growth of the GaN drift region on the Si power device including potentially one or more of the buffer layer(s), the GaN drift region stress-management layer(s), template(s), adhesion, and/or bonding layer(s)/film(s), etc,
The present invention can allow for thinned downed/etched back power MOSFET structures essentially of any type including those discussed above and then growing a GaN epilayer on, for example, the etched back/thinned down (001) which is also written as (100) orientation Si to create and fabricate a Si power FET structure with, for example, a GaN epitaxial drift region. Such structures can then have an appropriate mechanical and electrical support structure or structures to enable the device to be completed and, for example, packaged. Band gap offsets also referred to band offsets (i.e., conduction band and/or valance band offsets) can be used to support current transport; if necessary additional steps and/or layers including, but not limited to, hetero-interfaces, superlattice(s), heavily doped layers, tunneling layers, tunnel junctions, etc., other processing steps and techniques, or combinations of these, etc. In addition, other methods including but not limited to wafer bonding, other types of bonding, attaching, epitaxial growth, regrowth, diffusion blocking layers, chemical mechanical polishing (CMP), surfactants, templates, crystal orientation, layers, etc. can also be used. The present invention can use but is not limited to using chemical vapor deposition (CVD), metalorganic CVD (MOCVD), organometallic vapor phase epitaxy (OMVPE), atomic layer epitaxy (ALE), atomic layer deposition (ALD), migration-enhanced epitaxy (MEE), elective area growth, selective area epitaxy, molecular beam epitaxy (MBE), gas source molecular beam epitaxy (GSMBE), chemical beam epitaxy (CBE), plasma enhanced CVD (PECVD), plasma enhanced MBE (PEMBE), liquid phase epitaxy (LPE), selective epitaxy growth (SEG), selective area etching (SAE), epitaxial lateral overgrowth (ELO), vapor phase epitaxy (VPE) including all types of VPE, physical vapor deposition (PVD), electron beam evaporation, sputtering, sol gel processes, ink jet, screen printing, chemical etching, dry etching including reactive ion etching (RIE) and deep RIE (DRIE), etc., combinations of these, etc. to create, fabricate, etc., implementations and embodiments of the present invention.
Turning to
Integration and co-integration of radio frequency (RF), microwave, millimeter-wave (mm-wave), optical, opto-electronics, light emitting diodes (LEDs), solid state lasers, integrated circuits (ICs), application specific integrated circuits (ASICs), memory including but not limited to, FLASH, electrically erasable read only memory (EEPROM, E2PROM, etc.), programmable read only memory (PROM), random access memory (RAM), static random access memory (SRAM), high temperature electronics, etc. The present invention allows the integration of lateral and vertical devices including but not limited to GaN-related containing material (i.e., GaN, AlGaN, AlN, etc.) with Si-based power devices and ICs including but not limited to complementary metal oxide semiconductor (CMOS), SOI, n-channel MOS (NMOS), p-channel MOS (PMOS), doubly diffused MOS (DMOS), bipolar CMOS DMOS (BCD), etc.
The present invention allows for the replacement of the Si drift region/voltage blocking/holding region of a power transistor with a GaN drift region/voltage blocking/holding region and by doing so to, among other things, achieve higher, better, greater, etc. performance.
The examples, illustrations, Figures and implementations contained within are not to be construed as limiting in any way or form.
The example embodiments disclosed herein illustrate certain features of the present invention and are not limiting in any way, form or function of present invention. The present invention is, likewise, not limited in materials choices including semiconductor materials such as, but not limited to, silicon (Si), silicon carbide (SiC), silicon on insulator (SOI), other silicon combination and alloys such as silicon germanium (SiGe), etc., diamond, graphene, gallium nitride (GaN) and GaN-based materials, gallium arsenide (GaAs) and GaAs-based materials, etc.
The present invention can include many types of switching elements including, but not limited to, field effect transistors (FETs) such as metal oxide semiconductor field effect transistors (MOSFETs) including either p-channel or n-channel MOSFETs, junction field effect transistors (JFETs), metal emitter semiconductor field effect transistors (MESFETs), other double diffused MOSFETs and lateral diffused MOSFETs (LDMOS), etc. again, either p-channel or n-channel or both, high electron mobility transistors (HEMTs), unijunction transistors, modulation doped field effect transistors (MODFETs), insulated gate bipolar transistor (IGBT), BCD devices including but not limited to transistors, other types of transistors, switches, structures, including but not limited to silicon controlled rectifiers, diodes, rectifiers, triacs, thyristors, etc. The present invention may also be applicable to certain types of hetero-interface or heterojunction bipolar transistors.
While detailed descriptions of one or more embodiments of the invention have been given above, various alternatives, modifications, and equivalents will be apparent to those skilled in the art without varying from the spirit of the invention. Therefore, the above description should not be taken as limiting the scope of the invention, which is defined by the appended claims.
The present application claims priority to (is a non-provisional of) U.S. Pat. App. No. 61/846,074, entitled “Vertical Enhancement Hetero Wide Bandgap Transistor”, and filed Jul. 15, 2013 by Laurence P. Sadwick, the entirety of which is incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
61846074 | Jul 2013 | US |