The present invention relates generally to motion sensing devices and more specifically to accelerometers that are utilized in integrated circuits.
Accelerometers are widely used for motion sensing applications. Conventionally, an accelerometer consists of a suspended proof mass and a means of measuring the proof mass displacement with respect to the reference frame. Recent advances in microelectronics technology enabled fabrication of accelerometers with integrated electronics in volume production. One of the first applications of these integrated micromachined sensors was in airbag deployment for automobiles (Analog Device's XL50).
The first accelerometer products that were fabricated using MEMS technology were introduced by large corporations such as Analog Devices, ST and Bosch who had already infrastructure to produce integrated circuits. Integrated circuit fabrication mostly involves depositing several dielectric layers and selectively etching these layers. Therefore the first MEMS accelerometers were fabricated using the same techniques due to the ease of integration with electronics and compatibility with existing CMOS manufacturing equipment.
Building mechanical structures on silicon wafer based on the deposition and etching of different structural layers is called surface micromachining. In surface micromachining usually a sacrificial layer is deposited on a substrate followed by a deposition of mechanical layer where the moving parts of the accelerometer are going to be defined. The moving parts are later released by selectively removing the sacrificial layer. This method has many shortcomings for building low cost and high performance accelerometers. For example, there are contradicting requirements over the area (cost) of the accelerometer and the noise performance. The Brownian noise level of the accelerometer is proportional to the size of the proof mass. In surface micromachining, the proof mass height is determined by the deposited film thickness which is usually limited to less than 10 microns. Therefore, building heavy proof masses requires relatively large area which in return increases the cost.
Surface micromachining also necessitates complex fabrication steps. Depositing thick films which are required for low accelerometer noise is a very sophisticated process. Moreover, non-uniformity of the deposited films and large variation of the material properties have negative impact on the process yield and cost. Controlling stress level in the film is another issue which needs to be dealt with otherwise undesired curling of the released structures may occur. In addition, moveable parts released by using sacrificial wet etching may suffer from the stiction problem if their mechanical properties are not selected properly. Stiction can be avoided by fabricating structures with high spring constants. But this adversely affects the sensitivity of the accelerometer where the sensitivity is inversely proportional to the resonant frequency. Therefore, stiction problem limits the accelerometer sensitivity.
In addition to above described technical difficulties, surface micromachining tools are not readily available to small companies. Most of the required equipment can only be supported by a complicated infrastructure that only large companies can afford. This sets a very high barrier for small start-up companies that want to enter the accelerometer market. Surface micromachining is not a feasible solution for companies which do not have access to the expensive fabrication equipment.
Bulk micromachining, on the other hand, overcomes most of the technical difficulties of surface micromachining as well as it provides a viable solution for fabless semiconductor MEMS companies. In contrast to surface micromachining, bulk micromachining defines structures by selectively etching the substrate. Since the height of the structures is defined in the substrate, it is possible to build accelerometers with increased height and reduced foot print without the complexities associated with building structures using deposited layers. Increased mass in a small foot print provides fabricating accelerometer with better noise performance at a reduced cost. In addition, bulk micromachining techniques are readily available through MEMS foundaries. Bulk micromachined devices can easily be built on off the shelf SOI (silicon on insulator) substrates.
Another important process step for fabricating low cost MEMS device is the integration of mechanical parts with the electronics. To address this need “Nasiri-Fabrication” platform was introduced previously (U.S. Pat. No. 7,104,129, entitled “Vertically integrated MEMS structure with electronics in a hermetically sealed cavity”). This fabrication process makes use of bulk micromachining and readily allows for the wafer level integration of the MEMS substrate and the electronics (CMOS) substrate. In addition to integration, this method encapsulates the mechanical parts in a low pressure hermetically sealed chamber that protects the MEMS device against adverse effect of environment such as humidity. In summary, use of bulk micromachining and water scale MEM-CMOS integration result in low cost and high performance accelerometers. This patent describes a novel accelerometer design that uses bulk silicon machining and Nasiri-Fabrication integration solution.
There is a need for a small low cost high performance accelerometer. The present invention addresses such a need.
An accelerometer that is fabricated by bulk micromachining and integrated with CMOS wafer by Nasiri-Fabrication process is disclosed. The accelerometer comprises an actuator substrate; a reference substrate; and at least one moving proof mass on the actuator substrate. The proof mass is anchored to a cover plate at a single point, on the reference substrate with at least one flexure spring. The accelerometer also includes at least one electrode coupled to each proof mass, wherein a capacitance of the electrode increases and decreases with the motion of the other proof mass.
In one embodiment, a process is utilized that provides a low pressure cavity for hermetic protection of the moving parts from moisture and as such. Hence added features in the design are to allow for squeeze film dampening in order for the accelerometer to operate properly. The quality factor of the accelerometer resonances is suppressed by these dampers. The accelerometer can also be integrated with gyroscopes, that operate in a low pressure environment, without a need for separately encapsulating the sensors in different chambers.
Acceleration sensing in each axis is achieved by separate structures where the motion of the proof mass affects the value of sense capacitor. Two structures can be used per axis to enable full bridge measurements to further reduce the mechanical noise, susceptibility to power supply changes, cross axis coupling and the complexity of the sense electronics. To reduce the sensitivity to packaging and temperature changes, each mechanical structure is anchored to a single anchor pillar bonded to the top cover.
The present invention relates generally to motion sensing devices and more specifically to accelerometers utilized in integrated circuits. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiments and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein.
A method and system in accordance with the present invention relates to the accelerometers that are fabricated using silicon micromachining methods that have been described in U.S. Pat. No. 6,892,575, entitled “X-Y axis dual-mass tuning fork gyroscope with vertically integrated electronics and wafer-scale hermetic packaging”, issued May 17, 2005, and assigned to the assignee of the present application; and Published Application No. US2005/0170656, entitled “Vertical Integration of a Mems Structure with Electronics in a Hermetically Sealed Cavity,” filed Feb. 2, 2004, and assigned to the assignee of the present application, both of which are incorporated by reference in their entirety herein.
Accordingly, these references disclose that the proof masses of the accelerometers are defined on a MEMS wafer that will be attached to a CMOS wafer to form a vacuum sealed cavity. The MEMS wafer is composed of two layers, actuator layer and cover layer. The MEMS structures are fabricated on the actuator layer that is bonded to the cover layer which has cavities over the moving parts.
The previously mentioned “Nasiri-Fabrication” process described in U.S. Pat. No. 7,104,129 provides a low pressure cavity for hermetic protection of the moving parts from moisture and as such. Hence added features in the design are to allow for squeeze film dampening in order for the accelerometer to operate properly. The quality factor of the accelerometer resonances is suppressed by these dampers. The accelerometer can also be integrated with gyroscopes, that operate in a low pressure environment, without a need for separately encapsulating the sensors in different chambers.
An accelerometer in accordance with the present invention uses three different structures for each axis and may use one or more proof masses per axis.
Structures for X-Axis Accelerometer and Y-Axis Accelerometer
The structures for proving an X-axis accelerometer and a Y-axis accelerometer are very similar to each other. To describe these two types of accelerometers in more detail refer now to the following description in conjunction with the accompanying Figures.
Each of the accelerometers 250 and 350 comprise a proof mass 200 and 300, flexural springs 202 and 302 and dampers 204 and 304. The mechanical parts are fabricated for example, by using deep reactive ion etching (DRIE) of a low resistivity single crystal silicon wafer. The proof mass 200 and 300 is attached to an anchor 206 and 306 through the flexural springs 202 and 302 as shown in
In a preferred embodiment, the motion of the proof mass 200 and 300 is sensed by parallel plate electrodes 208a, 208b and 308a, 308b that are placed perpendicular to the motion of the proof mass 200 and 300. The electrodes 208a, 208b and 308a, 308b are held fixed by means of diffusion and eutectic bond. Each pair of electrodes 208a, 208b and 308a, 308b is used to enable differential capacitance sensing. The capacitance sensing can be implemented utilizing a bridge configuration. This feature will be described in detail later in this specification.
The dampers 204 and 304 attached to the proof mass 200 and 300 and the anchor 206 and 306 introduce damping to lower the quality factor of the resonance. The dampers 204 and 304 allow for the proper operation of the accelerometers in a low pressure vacuum environment which is required for the rate sensor operation.
It is desirable to fabricate dampers with very small gaps in between to increase the squeezed film damping. However, fabrication (usually DRIE) limitations dictate the minimum gap that can be achieved over a long distance.
The over range limiters (stoppers) 210 and 310 are provided in the sense direction since in this direction the springs have the lowest spring constants. The over range limit in the other directions can be either provided by other sets of stoppers or by making the spring constants very high. As shown in
Structures for Z-Axis Accelerometer
To increase the damping further, one can place a thin film under proof masses 403a and 403b reducing the gap between the CMOS die and the proof mass. The placement and the shape of the proof masses are chosen such that the two accelerometers can be fit in a very small area as shown
Electronic Detection
The capacitance change of the accelerometers described above can be detected by various circuits. Here, only full bridge circuits are described but other means of capacitive detection such as pseudo bridge, half bridge can also be employed.
Description of Variations and Alternate Embodiments
The structures of
Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4510802 | Peters | Apr 1985 | A |
4601206 | Watson | Jul 1986 | A |
4736629 | Cole | Apr 1988 | A |
4783742 | Peters | Nov 1988 | A |
4841773 | Stewart | Jun 1989 | A |
5251484 | Mastache | Oct 1993 | A |
5349858 | Yagi et al. | Sep 1994 | A |
5359893 | Dunn | Nov 1994 | A |
5367631 | Levy | Nov 1994 | A |
5415040 | Nottmeyer | May 1995 | A |
5433110 | Gertz et al. | Jul 1995 | A |
5440326 | Quinn | Aug 1995 | A |
5444639 | White | Aug 1995 | A |
5511419 | Dunn | Apr 1996 | A |
5541860 | Takei et al. | Jul 1996 | A |
5574221 | Park et al. | Nov 1996 | A |
5629988 | Burt et al. | May 1997 | A |
5635638 | Geen | Jun 1997 | A |
5698784 | Hotelling | Dec 1997 | A |
5703293 | Zabler et al. | Dec 1997 | A |
5703623 | Hall et al. | Dec 1997 | A |
5734373 | Rosenberg et al. | Mar 1998 | A |
5780740 | Lee et al. | Jul 1998 | A |
5825350 | Case, Jr. | Oct 1998 | A |
5895850 | Buestgens | Apr 1999 | A |
5898421 | Quinn | Apr 1999 | A |
5955668 | Hsu et al. | Sep 1999 | A |
5992233 | Clark | Nov 1999 | A |
5996409 | Funk et al. | Dec 1999 | A |
6067858 | Clark et al. | May 2000 | A |
6122961 | Geen et al. | Sep 2000 | A |
6134961 | Touge et al. | Oct 2000 | A |
6158280 | Nonomura | Dec 2000 | A |
6168965 | Malinovich et al. | Jan 2001 | B1 |
6189381 | Huang et al. | Feb 2001 | B1 |
6230564 | Matsunaga et al. | May 2001 | B1 |
6250156 | Seshia et al. | Jun 2001 | B1 |
6250157 | Touge | Jun 2001 | B1 |
6269254 | Mathis | Jul 2001 | B1 |
6279043 | Hayward et al. | Aug 2001 | B1 |
6292170 | Chang et al. | Sep 2001 | B1 |
6343349 | Braun et al. | Jan 2002 | B1 |
6370937 | Hsu | Apr 2002 | B2 |
6374255 | Peurach et al. | Apr 2002 | B1 |
6386033 | Negoro | May 2002 | B1 |
6391673 | Ha et al. | May 2002 | B1 |
6393914 | Zarabadi et al. | May 2002 | B1 |
6424356 | Chang et al. | Jul 2002 | B2 |
6429895 | Onuki | Aug 2002 | B1 |
6430998 | Kawai et al. | Aug 2002 | B2 |
6480320 | Nasiri | Nov 2002 | B2 |
6481283 | Cardarelli | Nov 2002 | B1 |
6481284 | Geen et al. | Nov 2002 | B2 |
6481285 | Shkel et al. | Nov 2002 | B1 |
6487369 | Sato | Nov 2002 | B1 |
6487908 | Geen et al. | Dec 2002 | B2 |
6494096 | Sakai et al. | Dec 2002 | B2 |
6508122 | McCall et al. | Jan 2003 | B1 |
6508125 | Otani | Jan 2003 | B2 |
6513380 | Reeds, III et al. | Feb 2003 | B2 |
6520017 | Schoefthaler et al. | Feb 2003 | B1 |
6533947 | Nasiri et al. | Mar 2003 | B2 |
6573883 | Bartlett | Jun 2003 | B1 |
6636521 | Guillianelli | Oct 2003 | B1 |
6646289 | Badehi | Nov 2003 | B1 |
6668614 | Itakura | Dec 2003 | B2 |
6720994 | Grottodden et al. | Apr 2004 | B1 |
6725719 | Cardarelli | Apr 2004 | B2 |
6758093 | Tang et al. | Jul 2004 | B2 |
6794272 | Turner et al. | Sep 2004 | B2 |
6796178 | Jeong et al. | Sep 2004 | B2 |
6823733 | Ichinose | Nov 2004 | B2 |
6834249 | Orchard | Dec 2004 | B2 |
6845669 | Acar et al. | Jan 2005 | B2 |
6848304 | Geen | Feb 2005 | B2 |
6859751 | Cardarelli | Feb 2005 | B2 |
6860150 | Cho | Mar 2005 | B2 |
6892575 | Nasiri et al. | May 2005 | B2 |
6915693 | Kim et al. | Jul 2005 | B2 |
6918297 | MacGugan | Jul 2005 | B2 |
6918298 | Park | Jul 2005 | B2 |
6938484 | Najafi et al. | Sep 2005 | B2 |
6939473 | Nasiri et al. | Sep 2005 | B2 |
6955086 | Yoshikawa et al. | Oct 2005 | B2 |
6963345 | Boyd et al. | Nov 2005 | B2 |
6972480 | Zilber et al. | Dec 2005 | B2 |
6981416 | Chen et al. | Jan 2006 | B2 |
7004025 | Tamura | Feb 2006 | B2 |
7028546 | Hoshal | Apr 2006 | B2 |
7028547 | Shiratori et al. | Apr 2006 | B2 |
7036372 | Chojnacki et al. | May 2006 | B2 |
7040163 | Shcheglov et al. | May 2006 | B2 |
7040922 | Harney et al. | May 2006 | B2 |
7057645 | Hara et al. | Jun 2006 | B1 |
7077007 | Rich et al. | Jul 2006 | B2 |
7104129 | Nasiri et al. | Sep 2006 | B2 |
7121141 | McNeil | Oct 2006 | B2 |
7154477 | Hotelling et al. | Dec 2006 | B1 |
7155975 | Mitani et al. | Jan 2007 | B2 |
7158118 | Liberty | Jan 2007 | B2 |
7159442 | Jean | Jan 2007 | B1 |
7168317 | Chen | Jan 2007 | B2 |
7180500 | Marvit et al. | Feb 2007 | B2 |
7196404 | Schirmer et al. | Mar 2007 | B2 |
7210351 | Lo et al. | May 2007 | B2 |
7222533 | Mao et al. | May 2007 | B2 |
7236156 | Liberty et al. | Jun 2007 | B2 |
7237437 | Fedora | Jul 2007 | B1 |
7239301 | Liberty et al. | Jul 2007 | B2 |
7240552 | Acar et al. | Jul 2007 | B2 |
7243561 | Ishigami et al. | Jul 2007 | B2 |
7247246 | Nasiri et al. | Jul 2007 | B2 |
7250112 | Nasiri et al. | Jul 2007 | B2 |
7258011 | Nasiri et al. | Aug 2007 | B2 |
7260789 | Hunleth et al. | Aug 2007 | B2 |
7262760 | Liberty | Aug 2007 | B2 |
7284430 | Acar et al. | Oct 2007 | B2 |
7289898 | Hong et al. | Oct 2007 | B2 |
7290435 | Seeger et al. | Nov 2007 | B2 |
7299695 | Tanaka et al. | Nov 2007 | B2 |
7325454 | Saito et al. | Feb 2008 | B2 |
7331212 | Manlove et al. | Feb 2008 | B2 |
7333087 | Soh et al. | Feb 2008 | B2 |
7352567 | Hotelling et al. | Apr 2008 | B2 |
7377167 | Acar et al. | May 2008 | B2 |
7386806 | Wroblewski | Jun 2008 | B2 |
7395181 | Foxlin | Jul 2008 | B2 |
7414611 | Liberty | Aug 2008 | B2 |
7424213 | Imada | Sep 2008 | B2 |
7437931 | Dwyer et al. | Oct 2008 | B2 |
7442570 | Nasiri et al. | Oct 2008 | B2 |
7458263 | Nasiri et al. | Dec 2008 | B2 |
7508384 | Zhang et al. | Mar 2009 | B2 |
7522947 | Tsuda | Apr 2009 | B2 |
7533569 | Sheynblat | May 2009 | B2 |
7549335 | Inoue et al. | Jun 2009 | B2 |
7552636 | Datskos | Jun 2009 | B2 |
7617728 | Cardarelli | Nov 2009 | B2 |
7621183 | Seeger et al. | Nov 2009 | B2 |
7677099 | Nasiri et al. | Mar 2010 | B2 |
7677100 | Konaka | Mar 2010 | B2 |
7765869 | Sung et al. | Aug 2010 | B2 |
7779689 | Li et al. | Aug 2010 | B2 |
7783392 | Oikawa | Aug 2010 | B2 |
7784344 | Pavelescu et al. | Aug 2010 | B2 |
20020027296 | Badehi | Mar 2002 | A1 |
20020189351 | Reeds et al. | Dec 2002 | A1 |
20030159511 | Zarabadi et al. | Aug 2003 | A1 |
20040016995 | Kuo et al. | Jan 2004 | A1 |
20040066981 | Li et al. | Apr 2004 | A1 |
20040160525 | Kingetsu et al. | Aug 2004 | A1 |
20040179108 | Sorek et al. | Sep 2004 | A1 |
20050066728 | Chojnacki | Mar 2005 | A1 |
20050110778 | Ben Ayed | May 2005 | A1 |
20050170656 | Nasiri et al. | Aug 2005 | A1 |
20050212751 | Marvit et al. | Sep 2005 | A1 |
20060017837 | Sorek et al. | Jan 2006 | A1 |
20060032308 | Acar et al. | Feb 2006 | A1 |
20060033823 | Okamura | Feb 2006 | A1 |
20060061545 | Hughes et al. | Mar 2006 | A1 |
20060115297 | Nakamaru | Jun 2006 | A1 |
20060119710 | Ben-Ezra et al. | Jun 2006 | A1 |
20060139327 | Dawson et al. | Jun 2006 | A1 |
20060164382 | Kulas et al. | Jul 2006 | A1 |
20060164385 | Smith et al. | Jul 2006 | A1 |
20060185502 | Nishitani et al. | Aug 2006 | A1 |
20060187308 | Lim et al. | Aug 2006 | A1 |
20060251410 | Trutna, Jr. | Nov 2006 | A1 |
20070035630 | Lindenstruth et al. | Feb 2007 | A1 |
20070063985 | Yamazaki et al. | Mar 2007 | A1 |
20070113207 | Gritton | May 2007 | A1 |
20070146325 | Poston et al. | Jun 2007 | A1 |
20070167199 | Kang | Jul 2007 | A1 |
20070176898 | Suh | Aug 2007 | A1 |
20080009348 | Zalewski et al. | Jan 2008 | A1 |
20080088602 | Hotelling | Apr 2008 | A1 |
20080098315 | Chou et al. | Apr 2008 | A1 |
20080134784 | Jeng et al. | Jun 2008 | A1 |
20080158154 | Liberty et al. | Jul 2008 | A1 |
20080204566 | Yamazaki et al. | Aug 2008 | A1 |
20080314147 | Nasiri et al. | Dec 2008 | A1 |
20090005975 | Forstall et al. | Jan 2009 | A1 |
20090005986 | Soehren | Jan 2009 | A1 |
20090043504 | Bandyopadhyay et al. | Feb 2009 | A1 |
20090088204 | Culbert et al. | Apr 2009 | A1 |
20090326851 | Tanenhaus | Dec 2009 | A1 |
20100013814 | Jarczyk | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
0429391 | Aug 1995 | EP |
Number | Date | Country | |
---|---|---|---|
20080314147 A1 | Dec 2008 | US |