Virtual image device

Information

  • Patent Grant
  • 9052414
  • Patent Number
    9,052,414
  • Date Filed
    Tuesday, February 7, 2012
    13 years ago
  • Date Issued
    Tuesday, June 9, 2015
    10 years ago
Abstract
This document describes various apparatuses embodying, and techniques for implementing, a virtual image device. The virtual image device includes a projector and a lens configured to generate a virtual image as well as two diffraction gratings, substantially orthogonally-oriented to each other, that act to increase a field-of-view of the virtual image. The virtual image device can be implemented as a pair of eyeglasses and controlled to generate the virtual image in front of lenses of the eyeglasses so that a wearer of the eyeglasses, looking through the lenses of the eyeglasses, sees the virtual image.
Description
BACKGROUND

A virtual image can be made by pointing a video projector into a lens to project the virtual image from a surface of the lens. A pair of eyeglasses, or spectacles, can include a virtual image projector to project a virtual image in front of the eyes of a wearer of the eyeglasses. Virtual image projectors small enough to be placed on a pair of eyeglasses, however, typically project a virtual image with a narrow field-of-view.


SUMMARY

This document describes various apparatuses embodying, and techniques for implementing, a virtual image device. The virtual image device includes a projector and a lens configured to generate a virtual image as well as two diffraction gratings, substantially orthogonally-oriented to each other, that act to increase a field-of-view of the virtual image. The virtual image device can be implemented as a pair of eyeglasses and controlled to generate the virtual image in front of lenses of the eyeglasses so that a wearer of the eyeglasses sees the virtual image. This summary is provided to introduce simplified concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of a virtual image device are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:



FIG. 1 illustrates an example environment of a projector and a wedge light guide configured to generate a virtual image.



FIG. 2 illustrates an example environment in which a virtual image device can be implemented.



FIG. 3 is a detailed example of two liquid crystal diffraction gratings that are substantially orthogonally-oriented to each other.



FIG. 4 is a more-detailed example of a virtual image device.



FIG. 5 is another more-detailed example of virtual image device when implemented as a pair of rectangular eyeglasses in accordance with one embodiment.



FIG. 6 illustrates an example method for controlling a virtual image device to generate a virtual image.



FIG. 7 illustrates an example device in which techniques for a virtual image device can be implemented.





DETAILED DESCRIPTION

Overview


It is well know that if a picture is placed in the focal plane of a lens, and an eye looks through the lens from its other focal plane, that the eye will see a virtual image. This arrangement, however, is bulky and unsuitable for integration into a pair of eyeglasses and other slim devices. A wedge light guide is a lens with a focal plane at one end of the light guide so that the arrangement is slim. Consider for example, FIG. 1, which illustrates an example embodiment 100 of a wedge light guide 102 and a projector 104. Projector 104 projects light rays 106 and 108 into the thick end of the wedge light guide causing the light rays to reflect back and forth at progressively steeper angles until a “critical angle” is reached, at which point the light rays exit the wedge light guide causing a projected image 110 to emerge from the face of the wedge.


However, a wedge light guide, by itself, is unsuitable to generate virtual images when coupled to a pair of eyeglasses for the following reasons: 1) the focal plane of the wedge light guide is one dimensional making it difficult to project a large virtual image, 2) the focal length of the wedge light guide is too large, and 3) the field-of-view of a virtual image projected by the wedge light guide is too narrow.


This document describes various apparatuses embodying, and techniques for implementing, a virtual image device. This virtual image device includes a projector and a lens configured to generate a virtual image, such as a wedge light guide type of lens. In some embodiments, the lens is a wedge light guide. The virtual image device further includes two diffraction gratings, substantially orthogonally-oriented to each other, that act to increase a field-of-view of the virtual image. The two diffraction gratings can include a horizontal liquid crystal diffraction grating configured to increase a vertical field-of-view of the virtual image and a vertical liquid crystal diffraction grating configured to increase a horizontal field-of-view of the virtual image. The virtual image device may be implemented as a pair of eyeglasses and controlled to generate the virtual image for a wearer of the eyeglasses.


Example Environment



FIG. 2 is an illustration of an example environment 200 in which a virtual image device can be implemented. Environment 200 can be implemented in a virtual image device 202, which is illustrated, by way of example and not limitation, as a pair of eyeglasses 204. Eyeglasses 204 can include sunglasses, spectacles, goggles, or any other type of head-mounted display device. While virtual image device 202 will be described as being implemented as a pair of eyeglasses 204, it is to be noted that virtual image device may also be implemented as any other type of virtual image display device that can generate three-dimensional (3D) and/or multi-view images, such as a television device 206.


Virtual image device 202 includes processor(s) 208 and computer-readable media 210, which includes memory media 212 and storage media 214. Computer-readable media 210 also includes a controller 216. How controller 216 is implemented and used varies, and is described as part of the methods discussed below.


Virtual image device 202 includes a projector 218 and a lens 220 that can be controlled by controller 216 to generate a virtual image that can be viewed by a wearer of eyeglasses 204, referred to as “viewer” herein. The frame of a pair of eyeglasses may be slightly curved, which may render regular projectors unsuitable. Therefore, in some embodiments, projector 218 is a holographic projector that can be controlled to adjust to the curvature of a pair of eyeglasses. In some embodiments, lens 220 can be implemented as a wedge light guide. As described herein, the term “wedge light guide” describes a wedge-shaped lens or light guide that permits light input into the wedge light guide to fan out within the wedge light guide via total internal reflection before reaching a critical angle for internal reflection and exiting via another surface of the wedge light guide. The light may exit the wedge light guide at a glancing angle relative to the viewing surface of the wedge light guide to generate a virtual image.


Virtual image device 202 further includes two diffraction gratings 222, substantially orthogonally-oriented to each other, configured to increase a field-of-view of the virtual image. As described herein, the term “diffraction gratings” includes any type of diffractive optical element. In some embodiments, the diffraction gratings comprise liquid crystal diffraction gratings. Projector 218, lens 220, and diffraction gratings 222 may be coupled to lenses of eyeglasses 204 to generate a virtual image of infinitely distant objects directly in front of the viewer's eye to cause a pupil of the viewer's eye to adjust to an infinite or near-infinite focal length to focus on the objects. Projector 218 may be at least partially transparent so that the viewer can see external objects as well as virtual images when looking through the lenses of eyeglasses 204. In addition, it is to be appreciated that projector 218 may be small enough to fit onto the lenses of eyeglasses 204 without being noticeable to the viewer.


In some embodiments, projector 218 can be implemented as two projectors to generate a virtual image in front of each of the viewer's eyes. When two projectors are used, each projector 218 can project the same virtual image concurrently so that the viewer's right eye and left eye receive the same image at the same time. Alternately, the projectors may project slightly different images concurrently, so that the viewer receives a stereoscopic image (e.g., a three-dimensional image).


In some embodiments, virtual image device 202 may also include a pupil tracker 224 that locates and tracks positions of the pupils of the viewer. Pupil tracker 224 provides these positions to controller 216 to enable the controller to control virtual image device 202 to render the virtual image based on the positions of the pupils of the viewer. For example, controller 216 can control virtual image device 202 to generate a virtual image that concentrates through pupils of a viewer. In some embodiments, pupil tracker 224 is further configured to determine a change in the positions of the pupils. For example, pupil tracker 224 can determine when the pupils move left, right, up, or down. Pupil tracker 224 provides this change in the positions of the pupils to controller 216 to enable controller 216 to control virtual image device 202 to generate the virtual image based on the change in the positions of the pupils.


In some cases, pupil tracker 224 includes an infrared-sensitive camera and a synchronously modulated infra-red LED. Pupil tracker 224 locates the positions of the pupils by taking a picture of the viewer with a flash and identifying “red eye” caused by the flash to locate the positions of the pupils. For example, the positions of the pupils, as indicated by the red eye, can be identified in an otherwise low contrast infra-red image of the viewer's face.


In some cases, virtual image device 202 includes light re-director 226, which is located adjacent to a viewing surface of lens 220 to diffuse collimated light emitted by lens 220. This collimated light may exit lens 220 at a glancing angle with respect to the viewing surface. Thus, light re-director 226 can re-direct the emitted light of lens 220 towards the pupils of a viewer and may provide a diffusing function in one dimension. Light re-director 226 can be configured as any suitable structure, such as a turning film of prisms or a light-guide panel having a prismatic textured surface. By varying angles of prisms or prismatic features over a surface of light re-director 226, light re-director 226 can be configured to have optical power capable of directing the collimated light emitted from the viewing surface of lens 220 towards the pupils of the viewer.


In order to generate a virtual image, light rays from projector 218 are deflected as the light rays exit lens 220 so that the light rays concentrate through each pupil of the viewer. A two-dimensional liquid crystal display (LCD), which modulates light rays in both the vertical and horizontal directions, can be configured to deflect the light rays to concentrate through each pupil of the viewer. For example, a two-dimensional LCD can be controlled to alternate between being opaque and transparent so that it acts like a diffraction grating. Alternately, the LCD can be configured to modulate the phase of light so it acts like a blazed diffraction grating. Conventional LCDs, however, have pixels no smaller than five microns so the deflection angle is only a few degrees. This small deflection angle can cause a small virtual image to be generated. Furthermore, two-dimensional LCDs may use an active matrix of transistors. When the LCDs are opaque, the transistors cause aperture diffraction of external light coming from the outside world. Accordingly, in accordance with various embodiments, virtual image device 202 uses two diffraction gratings 222, substantially orthogonally-oriented to each other, to deflect light rays leaving lens 220 to cause the light rays to concentrate through the pupils of the viewer.


In an embodiment, the two liquid crystal diffraction gratings 222 can be positioned behind an LCD of virtual image device 202 to scan the illumination of the LCD. Using two liquid crystal diffraction gratings 222 to scan the illumination separate from the LCD enables virtual image device 202 to be equipped with a low resolution LCD because the LCD does not need to scan the image.



FIG. 3 illustrates a detailed example of two diffraction gratings 222 that are substantially orthogonally-oriented to each other. In some embodiments, the two diffraction gratings are passive liquid crystal diffraction gratings that do not require transistors to modulate light rays. By eliminating the need for transistors, the passive liquid crystal diffraction gratings will have substantially less unwanted diffraction of external light. Each of the two liquid crystal diffraction gratings 222 are configured to scan light rays in a single direction (e.g., vertically or horizontally). Scanning light rays in a single direction is known in the art, and is not discussed in detail herein.


Liquid crystal diffraction gratings 222, in this example, include vertical liquid crystal diffraction grating 302 and horizontal liquid crystal diffraction grating 304, which are substantially orthogonally-oriented to each other. Vertical liquid crystal diffraction grating 302 includes vertical diffraction gratings to scan the virtual image horizontally (e.g., side to side). Horizontal liquid crystal diffraction grating 304 includes horizontal diffraction gratings to scan the virtual image vertically (e.g., up and down). By aligning vertical liquid crystal diffraction grating 302 orthogonal to horizontal liquid crystal diffraction grating 304, the virtual image can be separately scanned at a large angle in both the horizontal and vertical directions. The two liquid crystal diffraction gratings, therefore, increase the field-of-view of the virtual image on both a horizontal and a vertical plane to generate a virtual image with a wide field-of-view.



FIG. 4 illustrates a detailed example of virtual image device 202 in accordance with various embodiments. In this example, virtual image device 202 includes a first projector 402 that injects light into a first wedge light guide 404, a second projector 406 that injects light into a second wedge light guide 408, a horizontal liquid crystal diffraction grating 410, and a vertical liquid crystal diffraction grating 412. In this example, horizontal liquid crystal diffraction grating 410 is between the wedges and vertical liquid crystal diffraction grating 412. Alternately, the positions of the diffraction gratings can be switched so that vertical liquid crystal diffraction grating 412 is between the wedges and horizontal liquid crystal diffraction grating 410. Light injected by first projector 402 into first light guide 404 generates a first virtual image 414 that can be viewed by a right eye of the viewer. Light injected by second projector 406 into second wedge light guide 408 generates a second virtual image 416 that can be viewed by a left eye of the viewer.


Horizontal liquid crystal diffraction grating 410 receives first virtual image 414 and second virtual image 416 and increases the vertical field-of-view of the first virtual image and the second virtual image by scanning the virtual images in the vertical direction. Vertical liquid crystal diffraction grating 412 receives first virtual image 414 and second virtual image 416 and increases the horizontal field-of-view of the first virtual image and the second virtual image by scanning the virtual images in the horizontal direction. In some embodiments, first virtual image 414 and second virtual image 416 are the same virtual image so that the right eye and left eye of the viewer see the same virtual image. Alternately, first virtual image 414 and second virtual image 416 may be slightly different virtual images, so that the viewer receives a stereoscopic image.


In some embodiments, virtual image device 202 can be implemented as rectangular eyeglasses with rectangular lenses to further increase the field-of-view of virtual images projected by virtual image device 202. FIG. 5 illustrates an example of virtual image device 202 when implemented as rectangular eyeglasses 502. In this example the lenses of rectangular eyeglasses 502 are tilted, relative to a face of a wearer of the eyeglasses, to take advantage of the diagonal from corners 504 to 506, from corners 508 to 510, from corners 512 to 514, and from corners 516 to 518 of rectangular eyeglasses 502 to maximize the field-of-view of virtual images generated by the eyeglasses. In other words, by tilting the glasses, a wider viewing surface is created because the length of the diagonal of a rectangle is longer than the length of either side of the rectangle.


Additionally, by tilting rectangular eyeglasses 502 relative to the wearer's face, a converged area is created below the nose of the wearer of the eyeglasses, which can be used to display virtual images for hand-eye-coordination tasks. For example, corners 512 and 516 create a stereo area where each eye of the wearer can look down to where the wearer's hands typically are located to give an extended stereo area to display virtual images for hand-eye-coordination tasks. The configuration of rectangular eyeglasses 502 also creates “heads up” zones at the upper corners 504, 508, 514, and 518, which enables display of information that is out of the way of the wearer's primary focus of interest. For example, corners 504 and 508 enable the field-of-view for each eye of the wearer to extend across the nose to create a stereo area where each eye can look across the nose to see what the other eye sees. Corners 514 and 518, located at the upper outer corners of rectangular eyeglasses 502, provide an extended heads up display area.


Example Method



FIG. 6 is flow diagram depicting an example method 600 for controlling a virtual image device to generate a virtual image. Block 602 receives data corresponding to a virtual image (e.g., video data corresponding to a movie or to television programming) Block 604 receives positions of pupils of a viewer. For example, controller 216 receives the positions of the pupils of the viewer from pupil tracker 224.


Block 606 controls a projector to inject light rays into a lens positioned proximate two liquid crystal diffraction gratings, substantially orthogonally-oriented to each other, effective to generate the virtual image with a wide field-of-view based on the positions of the pupils of the viewer. For example, controller 216 controls projector 218 to inject light rays into lens 220 positioned proximate two liquid crystal diffraction gratings 222 effective to generate the virtual image with a wide field-of-view based on the positions of the pupils of the viewer.


Block 608 receives a change in the positions of the pupils of the viewer. Block 610 controls the projector to inject light rays into the lens effective to generate the virtual image with a wide field-of-view based on the change in the positions of the pupils of the viewer. For example, controller 216 controls projector 218 to inject light rays into lens 220 positioned proximate the two liquid crystal diffraction gratings 222 effective to generate the virtual image with a wide field-of-view based on the change in the positions of the pupils of the viewer.


Example Device



FIG. 7 illustrates various components of example device 700 that can be implemented as any type of client, server, and/or display device as described with reference to the previous FIGS. 1-6 to implement apparatuses embodying, and techniques enabling, a virtual image device. In embodiments, device 700 can be implemented as one or a combination of a wired and/or wireless device, a head-mounted display device (e.g., eyeglasses, sunglasses, etc.) as a form of flat panel display, television, television client device (e.g., television set-top box, digital video recorder (DVR), etc.), consumer device, computer device, server device, portable computer device, user device, communication device, video processing and/or rendering device, appliance device, gaming device, electronic device, and/or as another type of device. Device 700 may also be associated with a viewer (e.g., a person or user) and/or an entity that operates the device such that a device describes logical devices that include users, software, firmware, and/or a combination of devices.


Device 700 includes communication devices 702 that enable wired and/or wireless communication of device data 704 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). The device data 704 or other device content can include configuration settings of the device, media content stored on the device, and/or information associated with a user of the device. Media content stored on device 700 can include any type of audio, video, and/or image data. Device 700 includes one or more data inputs 706 via which any type of data, media content, and/or inputs can be received, such as user-selectable inputs, messages, music, television media content, recorded video content, and any other type of audio, video, and/or image data received from any content and/or data source.


Device 700 also includes communication interfaces 708, which can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. The communication interfaces 708 provide a connection and/or communication links between device 700 and a communication network by which other electronic, computing, and communication devices communicate data with device 700.


Device 700 includes one or more processors 710 (e.g., any of microprocessors, controllers, and the like), which process various computer-executable instructions to control the operation of device 700 and to enable techniques for implementing a virtual image device. Alternatively or in addition, device 700 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits, which are generally identified at 712. Although not shown, device 700 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.


Device 700 also includes computer-readable storage media 714, such as one or more memory devices that enable persistent and/or non-transitory data storage (i.e., in contrast to mere signal transmission), examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), non-volatile RAM (NVRAM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. Device 700 can also include a mass storage media device 716.


Computer-readable storage media 714 provides data storage mechanisms to store the device data 704, as well as various device applications 718 and any other types of information and/or data related to operational aspects of device 700. For example, an operating system 720 can be maintained as a computer application with the computer-readable storage media 714 and executed on processors 710. The device applications 718 may include a device manager, such as any form of a control application, software application, signal-processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, and so on.


The device applications 718 also include any system components or modules to implement techniques using or enabling a virtual image device. In this example, the device applications 718 can include controller 216 for controlling a virtual image device.


Conclusion


This document describes various apparatuses embodying, and techniques for implementing, a virtual image device. Although the invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed invention.

Claims
  • 1. A virtual image device comprising: a projector configured to output light rays; a lens configured to receive the light rays from the projector and to generate a virtual image; and two diffraction gratings, positioned proximate the lens, to increase a field-of-view of the virtual image, the two diffraction gratings substantially orthogonally-oriented to each other, a first diffraction grating of the two diffraction gratings configured to increase a vertical field-of-view of the virtual image and a second diffraction grating of the two diffraction gratings configured to increase a horizontal field-of-view of the virtual image.
  • 2. The virtual image device as described in claim 1, wherein the two diffraction gratings comprise passive liquid crystal diffraction gratings.
  • 3. The virtual image device as described in claim 2, wherein the virtual image device comprises a pair of eyeglasses, and wherein the projector, the lens, and the two passive liquid crystal diffraction gratings are coupled to the pair of eyeglasses to generate the virtual image for a wearer of the pair of eyeglasses.
  • 4. The virtual image device as described in claim 1, wherein the first diffraction grating comprises a horizontal diffraction grating, and wherein the second diffraction grating comprises a vertical diffraction grating.
  • 5. A virtual image device as described in claim 1, wherein the virtual image device comprises a pair of eyeglasses, and wherein lenses of the pair of eyeglasses are rectangular, and tilted relative to a face of the wearer, to maximize the vertical field-of-view and the horizontal field-of-view of the virtual image.
  • 6. The virtual image device as described in claim 1, wherein the virtual image device comprises a three-dimensional display device or a multi-view display device.
  • 7. The virtual image device as described in claim 1, further comprising a pupil tracker configured to locate positions of pupils of a viewer, wherein the virtual image device is controlled to generate the virtual image based on the positions of the pupils.
  • 8. The virtual image device as described in claim 7, further comprising a light re-director to deflect the virtual image based on the positions of the pupils of the viewer.
  • 9. The virtual image device as described in claim 1, wherein the lens comprises a wedge light guide, the wedge light guide configured to receive the light rays from the projector and to generate the virtual image by projecting the virtual image from a surface of the wedge light guide.
  • 10. The virtual image device as described in claim 1, wherein the lens is further configured to generate the virtual image for a first eye of a viewer and the virtual image device further comprises: an additional projector configured to output additional light rays; andan additional lens configured to receive the additional light rays from the additional projector and to generate an additional virtual image for a second eye of the viewer.
  • 11. The virtual image device as described in claim 1, wherein the projector is at least partially transparent.
  • 12. The virtual image device as described in claim 1, wherein the projector comprises a holographic projector.
  • 13. A head-mounted display device comprising: a pupil tracker configured to locate a position of a first pupil and a position of a second pupil of a wearer of the head-mounted display device;a first projector configured to inject light rays into a first wedge light guide effective to generate a first virtual image based on the position of the first pupil;a second projector configured to inject light rays corresponding to the virtual image into a second wedge light guide effective to generate a second virtual image based on the position of the second pupil;two liquid crystal diffraction gratings, substantially orthogonally-oriented to each other, comprising: a horizontal liquid crystal diffraction grating configured to increase a vertical field-of-view of the first virtual image and the second virtual image; anda vertical liquid crystal diffraction grating configured to increase a horizontal field-of-view of the first virtual image and the second virtual image.
  • 14. The head-mounted display device as described in claim 13, wherein the head-mounted display device is a pair of eyeglasses.
  • 15. The head-mounted display device as described in claim 13, wherein the head-mounted display device comprises a pair of eyeglasses, with rectangular lenses that are tilted relative to a face of the wearer, to further increase the vertical field-of-view and the horizontal field-of-view of the virtual image.
  • 16. The head-mounted display device as described in claim 13, further comprising a turning film configured to direct the first virtual image to the first pupil and to direct the second virtual image to the second pupil.
  • 17. A virtual image device comprising: a pupil tracker configured to locate positions of pupils of a viewer;a projector configured to output light rays;a lens configured to receive the light rays from the projector and to generate a virtual image based on the position of the pupils of the viewer; andtwo diffraction gratings, positioned proximate the lens, to increase a field-of-view of the virtual image, the two diffraction gratings substantially orthogonally-oriented to each other.
  • 18. The virtual image device as described in claim 17, further comprising a light re-director to deflect the virtual image based on the positions of the pupils of the viewer.
  • 19. The virtual image device as described in claim 17, wherein the lens comprises a wedge light guide, the wedge light guide configured to receive the light rays from the projector and to generate the virtual image by projecting the virtual image from a surface of the wedge light guide.
  • 20. The virtual image device as described in claim 17, wherein the virtual image device comprises a head-mounted display device.
US Referenced Citations (355)
Number Name Date Kind
4046975 Seeger, Jr. Sep 1977 A
4065649 Carter et al. Dec 1977 A
4239338 Borrelli et al. Dec 1980 A
4243861 Strandwitz Jan 1981 A
4302648 Sado et al. Nov 1981 A
4317013 Larson Feb 1982 A
4365130 Christensen Dec 1982 A
4492829 Rodrique Jan 1985 A
4527021 Morikawa et al. Jul 1985 A
4559426 Van Zeeland et al. Dec 1985 A
4576436 Daniel Mar 1986 A
4588187 Dell May 1986 A
4607147 Ono et al. Aug 1986 A
4615579 Whitehead Oct 1986 A
4651133 Ganesan et al. Mar 1987 A
5220521 Kikinis Jun 1993 A
5283559 Kalendra et al. Feb 1994 A
5331443 Stanisci Jul 1994 A
5339382 Whitehead Aug 1994 A
5406415 Kelly Apr 1995 A
5548477 Kumar et al. Aug 1996 A
5558577 Kato Sep 1996 A
5681220 Bertram et al. Oct 1997 A
5745376 Barker et al. Apr 1998 A
5748114 Koehn May 1998 A
5781406 Hunte Jul 1998 A
5807175 Davis et al. Sep 1998 A
5818361 Acevedo Oct 1998 A
5828770 Leis et al. Oct 1998 A
5861990 Tedesco Jan 1999 A
5874697 Selker et al. Feb 1999 A
5926170 Oba Jul 1999 A
5971635 Wise Oct 1999 A
5999147 Teitel Dec 1999 A
6002389 Kasser Dec 1999 A
6005209 Burleson et al. Dec 1999 A
6012714 Worley et al. Jan 2000 A
6040823 Seffernick et al. Mar 2000 A
6044717 Biegelsen et al. Apr 2000 A
6046857 Morishima Apr 2000 A
6061644 Leis May 2000 A
6178443 Lin Jan 2001 B1
6195136 Handschy et al. Feb 2001 B1
6232934 Heacock et al. May 2001 B1
6254105 Rinde et al. Jul 2001 B1
6279060 Luke et al. Aug 2001 B1
6300986 Travis Oct 2001 B1
6329617 Burgess Dec 2001 B1
6344791 Armstrong Feb 2002 B1
6353503 Spitzer et al. Mar 2002 B1
6362861 Hertz et al. Mar 2002 B1
6380497 Hashimoto et al. Apr 2002 B1
6437682 Vance Aug 2002 B1
6469755 Adachi et al. Oct 2002 B1
6511378 Bhatt et al. Jan 2003 B1
6532147 Christ, Jr. Mar 2003 B1
6543949 Ritchey et al. Apr 2003 B1
6565439 Shinohara et al. May 2003 B2
6600121 Olodort et al. Jul 2003 B1
6603408 Gaba Aug 2003 B1
6617536 Kawaguchi Sep 2003 B2
6685369 Lien Feb 2004 B2
6704864 Philyaw Mar 2004 B1
6721019 Kono et al. Apr 2004 B2
6725318 Sherman et al. Apr 2004 B1
6774888 Genduso Aug 2004 B1
6776546 Kraus et al. Aug 2004 B2
6784869 Clark et al. Aug 2004 B1
6795146 Dozov et al. Sep 2004 B2
6813143 Makela Nov 2004 B2
6819316 Schulz et al. Nov 2004 B2
6833955 Niv Dec 2004 B2
6847488 Travis Jan 2005 B2
6856506 Doherty et al. Feb 2005 B2
6861961 Sandbach et al. Mar 2005 B2
6914197 Doherty et al. Jul 2005 B2
6950950 Sawyers et al. Sep 2005 B2
6970957 Oshins et al. Nov 2005 B1
6976799 Kim et al. Dec 2005 B2
7007238 Glaser Feb 2006 B2
7025908 Hayashi et al. Apr 2006 B1
7051149 Wang et al. May 2006 B2
7058252 Woodgate et al. Jun 2006 B2
7066634 Kitamura et al. Jun 2006 B2
7091436 Serban Aug 2006 B2
7101048 Travis Sep 2006 B2
7106222 Ward et al. Sep 2006 B2
7123292 Seeger et al. Oct 2006 B1
7152985 Benitez et al. Dec 2006 B2
7194662 Do et al. Mar 2007 B2
7199931 Boettiger et al. Apr 2007 B2
7213991 Chapman et al. May 2007 B2
7218830 Iimura May 2007 B2
7277087 Hill et al. Oct 2007 B2
7400805 Abu-Ageel Jul 2008 B2
7447934 Dasari et al. Nov 2008 B2
7469386 Bear et al. Dec 2008 B2
7499037 Lube Mar 2009 B2
7499216 Niv et al. Mar 2009 B2
7502803 Culter et al. Mar 2009 B2
7515143 Keam et al. Apr 2009 B2
7542052 Solomon et al. Jun 2009 B2
7558594 Wilson Jul 2009 B2
7559834 York Jul 2009 B1
7561131 Ijzerman et al. Jul 2009 B2
7636921 Louie Dec 2009 B2
7643213 Boettiger et al. Jan 2010 B2
7656392 Bolender Feb 2010 B2
7733326 Adiseshan Jun 2010 B1
7777972 Chen et al. Aug 2010 B1
7782342 Koh Aug 2010 B2
7813715 McKillop et al. Oct 2010 B2
7855716 McCreary et al. Dec 2010 B2
7884807 Hovden et al. Feb 2011 B2
D636397 Green Apr 2011 S
7918559 Tesar Apr 2011 B2
7928964 Kolmykov-Zotov et al. Apr 2011 B2
7945717 Rivalsi May 2011 B2
7967462 Ogiro et al. Jun 2011 B2
7973771 Geaghan Jul 2011 B2
7978281 Vergith et al. Jul 2011 B2
8035614 Bell et al. Oct 2011 B2
8035624 Bell et al. Oct 2011 B2
8053688 Conzola et al. Nov 2011 B2
8065624 Morin et al. Nov 2011 B2
8069356 Rathi et al. Nov 2011 B2
RE42992 David Dec 2011 E
8102362 Ricks et al. Jan 2012 B2
8115718 Chen et al. Feb 2012 B2
8130203 Westerman Mar 2012 B2
8154524 Wilson et al. Apr 2012 B2
D659139 Gengler May 2012 S
8169421 Wright et al. May 2012 B2
8220929 Miyawaki et al. Jul 2012 B2
8229509 Paek et al. Jul 2012 B2
8229522 Kim et al. Jul 2012 B2
8249263 Cragun Aug 2012 B2
8310768 Lin et al. Nov 2012 B2
8345920 Ferren et al. Jan 2013 B2
8416206 Carpendale et al. Apr 2013 B2
8466902 Boer et al. Jun 2013 B2
8582206 Travis Nov 2013 B2
8717664 Wang et al. May 2014 B2
8749529 Powell et al. Jun 2014 B2
9019615 Travis Apr 2015
20020134828 Sandbach et al. Sep 2002 A1
20030165017 Amitai Sep 2003 A1
20030197687 Shetter Oct 2003 A1
20040052506 Togino Mar 2004 A1
20040174709 Buelow, II et al. Sep 2004 A1
20040258924 Berger et al. Dec 2004 A1
20040268000 Barker et al. Dec 2004 A1
20050001957 Amimori et al. Jan 2005 A1
20050002073 Nakamura et al. Jan 2005 A1
20050057515 Bathiche Mar 2005 A1
20050059489 Kim Mar 2005 A1
20050100690 Mayer et al. May 2005 A1
20050146512 Hill et al. Jul 2005 A1
20050264653 Starkweather et al. Dec 2005 A1
20050264988 Nicolosi Dec 2005 A1
20060002101 Wheatley et al. Jan 2006 A1
20060028400 Lapstun et al. Feb 2006 A1
20060085658 Allen et al. Apr 2006 A1
20060125799 Hillis et al. Jun 2006 A1
20060154725 Glaser et al. Jul 2006 A1
20060156415 Rubinstein et al. Jul 2006 A1
20060181514 Newman Aug 2006 A1
20060195522 Miyazaki Aug 2006 A1
20060227393 Herloski Oct 2006 A1
20060238550 Page Oct 2006 A1
20060239006 Chaves et al. Oct 2006 A1
20060279501 Lu et al. Dec 2006 A1
20070002587 Miyashita Jan 2007 A1
20070047260 Lee et al. Mar 2007 A1
20070062089 Homer et al. Mar 2007 A1
20070072474 Beasley et al. Mar 2007 A1
20070182663 Biech Aug 2007 A1
20070189667 Wakita et al. Aug 2007 A1
20070234420 Novotney et al. Oct 2007 A1
20070236408 Yamaguchi et al. Oct 2007 A1
20070247432 Oakley Oct 2007 A1
20070260892 Paul et al. Nov 2007 A1
20070279744 Fujimoto Dec 2007 A1
20070283179 Burnett et al. Dec 2007 A1
20080005423 Jacobs et al. Jan 2008 A1
20080080166 Duong et al. Apr 2008 A1
20080088593 Smoot Apr 2008 A1
20080094398 Ng et al. Apr 2008 A1
20080104437 Lee May 2008 A1
20080122803 Izadi et al. May 2008 A1
20080150913 Bell et al. Jun 2008 A1
20080151478 Chern Jun 2008 A1
20080158185 Westerman Jul 2008 A1
20080179507 Han Jul 2008 A2
20080225205 Travis Sep 2008 A1
20080238884 Harish Oct 2008 A1
20080253822 Matias Oct 2008 A1
20080316002 Brunet et al. Dec 2008 A1
20080320190 Lydon et al. Dec 2008 A1
20090009476 Daley, III Jan 2009 A1
20090033623 Lin Feb 2009 A1
20090067156 Bonnett et al. Mar 2009 A1
20090073957 Newland et al. Mar 2009 A1
20090096738 Chen et al. Apr 2009 A1
20090140985 Liu Jun 2009 A1
20090142020 Van Ostrand et al. Jun 2009 A1
20090189974 Deering Jul 2009 A1
20090200384 Masalkar Aug 2009 A1
20090251008 Sugaya Oct 2009 A1
20090262492 Whitchurch et al. Oct 2009 A1
20090303204 Nasiri et al. Dec 2009 A1
20090320244 Lin Dec 2009 A1
20090321490 Groene et al. Dec 2009 A1
20100001963 Doray et al. Jan 2010 A1
20100026656 Hotelling et al. Feb 2010 A1
20100038821 Jenkins et al. Feb 2010 A1
20100045633 Gettemy Feb 2010 A1
20100051432 Lin et al. Mar 2010 A1
20100053534 Hsieh et al. Mar 2010 A1
20100053771 Travis et al. Mar 2010 A1
20100072351 Mahowald Mar 2010 A1
20100077237 Sawyers Mar 2010 A1
20100085321 Pundsack Apr 2010 A1
20100102206 Cazaux et al. Apr 2010 A1
20100103112 Yoo et al. Apr 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100149100 Meiby Jun 2010 A1
20100149111 Olien Jun 2010 A1
20100149117 Chien et al. Jun 2010 A1
20100161522 Tirpak et al. Jun 2010 A1
20100164857 Liu et al. Jul 2010 A1
20100171891 Kaji et al. Jul 2010 A1
20100174421 Tsai et al. Jul 2010 A1
20100177388 Cohen et al. Jul 2010 A1
20100180063 Ananny et al. Jul 2010 A1
20100188299 Rinehart et al. Jul 2010 A1
20100206614 Park et al. Aug 2010 A1
20100214659 Levola Aug 2010 A1
20100222110 Kim et al. Sep 2010 A1
20100250988 Okuda et al. Sep 2010 A1
20100274932 Kose Oct 2010 A1
20100279768 Huang et al. Nov 2010 A1
20100282953 Tam Nov 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100289457 Onnerud et al. Nov 2010 A1
20100295812 Burns et al. Nov 2010 A1
20100296163 Saarikko Nov 2010 A1
20100302378 Marks et al. Dec 2010 A1
20100302469 Yue et al. Dec 2010 A1
20100306538 Thomas et al. Dec 2010 A1
20100308778 Yamazaki et al. Dec 2010 A1
20100308844 Day et al. Dec 2010 A1
20100315348 Jellicoe et al. Dec 2010 A1
20100325155 Skinner et al. Dec 2010 A1
20110002577 Van Ostrand Jan 2011 A1
20110007047 Fujioka et al. Jan 2011 A1
20110012873 Prest et al. Jan 2011 A1
20110019123 Prest et al. Jan 2011 A1
20110031287 Le Gette et al. Feb 2011 A1
20110032215 Sirotich et al. Feb 2011 A1
20110035209 Macfarlane Feb 2011 A1
20110037721 Cranfill et al. Feb 2011 A1
20110043479 van Aerle et al. Feb 2011 A1
20110043990 Mickey et al. Feb 2011 A1
20110044579 Travis et al. Feb 2011 A1
20110060926 Brooks et al. Mar 2011 A1
20110069148 Jones et al. Mar 2011 A1
20110072391 Hanggie et al. Mar 2011 A1
20110074688 Hull et al. Mar 2011 A1
20110096035 Shen Apr 2011 A1
20110102326 Casparian et al. May 2011 A1
20110122071 Powell May 2011 A1
20110134032 Chiu et al. Jun 2011 A1
20110163955 Nasiri et al. Jul 2011 A1
20110164370 McClure et al. Jul 2011 A1
20110167181 Minoo et al. Jul 2011 A1
20110167287 Walsh et al. Jul 2011 A1
20110167391 Momeyer et al. Jul 2011 A1
20110169778 Nungester et al. Jul 2011 A1
20110170289 Allen et al. Jul 2011 A1
20110179864 Raasch et al. Jul 2011 A1
20110184646 Wong et al. Jul 2011 A1
20110193787 Morishige et al. Aug 2011 A1
20110197156 Strait et al. Aug 2011 A1
20110205372 Miramontes Aug 2011 A1
20110216039 Chen et al. Sep 2011 A1
20110227913 Hyndman Sep 2011 A1
20110234535 Hung et al. Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110242440 Noma et al. Oct 2011 A1
20110242670 Simmonds Oct 2011 A1
20110248920 Larsen Oct 2011 A1
20110290686 Huang Dec 2011 A1
20110291993 Miyazaki Dec 2011 A1
20110297566 Gallagher et al. Dec 2011 A1
20110304577 Brown Dec 2011 A1
20110304815 Newell Dec 2011 A1
20110316807 Corrion Dec 2011 A1
20110317399 Hsu Dec 2011 A1
20120007821 Zaliva Jan 2012 A1
20120023459 Westerman Jan 2012 A1
20120024682 Huang et al. Feb 2012 A1
20120044179 Hudson Feb 2012 A1
20120047368 Chinn et al. Feb 2012 A1
20120050975 Garelli et al. Mar 2012 A1
20120062850 Travis Mar 2012 A1
20120068919 Lauder et al. Mar 2012 A1
20120075249 Hoch Mar 2012 A1
20120092279 Martin Apr 2012 A1
20120094257 Pillischer et al. Apr 2012 A1
20120099749 Rubin et al. Apr 2012 A1
20120102436 Nurmi Apr 2012 A1
20120102438 Robinson et al. Apr 2012 A1
20120113031 Lee et al. May 2012 A1
20120113223 Hilliges et al. May 2012 A1
20120117409 Lee et al. May 2012 A1
20120127118 Nolting et al. May 2012 A1
20120140396 Zeliff et al. Jun 2012 A1
20120145525 Ishikawa Jun 2012 A1
20120146943 Fairley et al. Jun 2012 A1
20120162088 van Lieshout et al. Jun 2012 A1
20120162126 Yuan et al. Jun 2012 A1
20120162693 Ito Jun 2012 A1
20120170284 Shedletsky Jul 2012 A1
20120182242 Lindahl et al. Jul 2012 A1
20120182743 Chou Jul 2012 A1
20120188243 Fujii et al. Jul 2012 A1
20120194448 Rothkopf Aug 2012 A1
20120195063 Kim et al. Aug 2012 A1
20120200532 Powell et al. Aug 2012 A1
20120224073 Miyahara Sep 2012 A1
20120243102 Takeda et al. Sep 2012 A1
20120243204 Robinson Sep 2012 A1
20120246377 Bhesania Sep 2012 A1
20120256959 Ye et al. Oct 2012 A1
20120268912 Minami et al. Oct 2012 A1
20120274811 Bakin Nov 2012 A1
20120300275 Vilardell et al. Nov 2012 A1
20130027354 Yabuta et al. Jan 2013 A1
20130063873 Wodrich et al. Mar 2013 A1
20130106813 Hotelling et al. May 2013 A1
20130107572 Holman et al. May 2013 A1
20130120760 Raguin et al. May 2013 A1
20130181926 Lim Jul 2013 A1
20130207896 Robinson et al. Aug 2013 A1
20130222353 Large Aug 2013 A1
20130229357 Powell Sep 2013 A1
20130265220 Fleischmann et al. Oct 2013 A1
20130329301 Travis Dec 2013 A1
20130332628 Panay Dec 2013 A1
20140022629 Powell Jan 2014 A1
20140098085 Lee Apr 2014 A1
20140168131 Rihn Jun 2014 A1
20140233237 Lutian Aug 2014 A1
20140254032 Chen Sep 2014 A1
Foreign Referenced Citations (14)
Number Date Country
1440513 Sep 2003 CN
0271956 Jun 1988 EP
2353978 Aug 2011 EP
2381290 Oct 2011 EP
10301055 Nov 1998 JP
10326124 Dec 1998 JP
2001174746 Jun 2001 JP
2009003053 Jan 2009 JP
2009122551 Jun 2009 JP
20110064265 Jun 2011 KR
WO-9964784 Dec 1999 WO
WO-0079327 Dec 2000 WO
WO-2011016200 Feb 2011 WO
WO-2012063410 May 2012 WO
Non-Patent Literature Citations (108)
Entry
International Search Report and Written Opinion, Application No. PCT/US2013/051421, Dec. 6, 2013, 10 pages.
International Search Report and Written Opinion, Application No. PCT/US2013/063156, Dec. 5, 2013, 9 pages.
Non-Final Office Action, U.S. Appl. No. 13/409,967, Dec. 10, 2013, 5 pages.
Non-Final Office Action, U.S. Appl. No. 13/408,257, Dec. 5, 2013, 13 pages.
Notice of Allowance, U.S. Appl. No. 13/409,967, Feb. 14, 2014, 4 pages.
Restriction Requirement, U.S. Appl. No. 13/494,722, Dec. 20, 2013, 6 pages.
“Accessing Device Sensors”, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, 4 pages.
“ACPI Docking for Windows Operating Systems”, Retrieved from: <http://www.scritube.com/limba/engleza/software/ACPI-Docking-for-Windows-Opera331824193.php> on Jul. 6, 2012,10 pages.
“Cirago Slim Case®—Protective case with built-in kickstand for your iPhone 5®”, Retrieved from <http://cirago.com/wordpress/wp-content/uploads/2012/10/ipc1500brochure1.pdf> on Jan. 29, 2013, 1 page.
“First One Handed Fabric Keyboard with Bluetooth Wireless Technology”, Retrieved from: <http://press.xtvworld.com/article3817.html> on May 8, 2012,(Jan. 6, 2005), 2 pages.
“Force and Position Sensing Resistors: An Emerging Technology”, Interlink Electronics, Available at <http://staff.science.uva.nl/˜vlaander/docu/FSR/An—Exploring—Technology.pdf>,(Feb. 1990), pp. 1-6.
“Frogpad Introduces Weareable Fabric Keyboard with Bluetooth Technology”, Retrieved from: <http://www.geekzone.co.nz/content.asp?contentid=3898> on May 7, 2012,(Jan. 7, 2005), 3 pages.
“Incipio LG G-Slate Premium Kickstand Case—Black Nylon”, Retrieved from: <http://www.amazon.com/Incipio-G-Slate-Premium-Kickstand-Case/dp/B004ZKP916> on May 8, 2012, 4 pages.
International Search Report and Written Opinion, International Application No. PCT/US2011/050471, (Apr. 9, 2012), 8 pages.
“Membrane Keyboards & Membrane Keypads”, Retrieved from: <http://www.pannam.com/> on May 9, 2012,(Mar. 4, 2009), 2 pages.
“Microsoft Reveals Futuristic 3D Virtual HoloDesk Patent”, Retrieved from <http://www.patentbolt.com/2012/05/microsoft-reveals-futuristic-3d-virtual-holodesk-patent.htmlt> on May 28, 2012, (May 23, 2012), 9 pages.
“Motion Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—motion.html> on May 25, 2012, 7 pages.
Non-Final Office Action, U.S. Appl. No. 12/882,994, (Feb. 1, 2013),17 pages.
Non-Final Office Action, U.S. Appl. No. 13/471,001, (Feb. 19, 2013),15 pages.
Non-Final Office Action, U.S. Appl. No. 13/471,139, (Mar. 21, 2013),12 pages.
Non-Final Office Action, U.S. Appl. No. 13/471,202, (Feb. 11, 2013),10 pages.
Non-Final Office Action, U.S. Appl. No. 13/471,336, (Jan. 18, 2013),14 pages.
Non-Final Office Action, U.S. Appl. No. 13/651,195, (Jan. 2, 2013),14 pages.
Non-Final Office Action, U.S. Appl. No. 13/651,232, (Jan. 17, 2013),15 pages.
Non-Final Office Action, U.S. Appl. No. 13/651,272, (Feb. 12, 2013),10 pages.
Non-Final Office Action, U.S. Appl. No. 13/651,287, (Jan. 29, 2013),13 pages.
Non-Final Office Action, U.S. Appl. No. 13/651,304, (Mar. 22, 2013), 9 pages.
Non-Final Office Action, U.S. Appl. No. 13/651,327, (Mar. 22, 2013), 6 pages.
Non-Final Office Action, U.S. Appl. No. 13/651,871, (Mar. 18, 2013),14 pages.
Non-Final Office Action, U.S. Appl. No. 13/651,976, (Feb. 22, 2013),16 pages.
Non-Final Office Action, U.S. Appl. No. 13/653,321, (Feb. 1, 2013),13 pages.
Non-Final Office Action, U.S. Appl. No. 13/653,682, (Feb. 7, 2013),11 pages.
Notice of Allowance, U.S. Appl. No. 13/470,633, (Mar. 22, 2013), 7 pages.
“Position Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—position.html> on May 25, 2012, 5 pages.
Restriction Requirement, U.S. Appl. No. 13/471,139, (Jan. 17, 2013), 7 pages.
Restriction Requirement, U.S. Appl. No. 13/651,304, (Jan. 18, 2013), 7 pages.
Restriction Requirement, U.S. Appl. No. 13/651,726, (Feb. 22, 2013), 6 pages.
Restriction Requirement, U.S. Appl. No. 13/651,871, (Feb. 7, 2013), 6 pages.
“SoIRxTM E-Series Multidirectional Phototherapy ExpandableTM 2-Bulb Full Body Panel System”, Retrieved from: < http://www.solarcsystems.com/us—multidirectional—uv—light—therapy—1—intro.html > on Jul. 25, 2012,(2011), 4 pages.
“The Microsoft Surface Tablets Comes With Impressive Design and Specs”, Retrieved from <http://microsofttabletreview.com/the-microsoft-surface-tablets-comes-with-impressive-design-and-specs> on Jan. 30, 2013, (Jun. 2012), 2 pages.
“Tilt Shift Lenses: Perspective Control”, retrieved from http://www.cambridgeincolour.com/tutorials/tilt-shift-lenses1.htm, (Mar. 28, 2008),11 Pages.
“Virtualization Getting Started Guide”, Red Hat Enterprise Linux 6, Edition 0.2, retrieved from <http://docs.redhat.com/docs/en-US/Red—Hat—Enterprise—Linux/6/html-single/Virtualization—Getting—Started—Guide/index.html> on Jun. 13, 2012, 24 pages.
“What is Active Alignment?”, http://www.kasalis.com/active—alignment.html, retrieved on Nov. 22, 2012, 2 Pages.
Bert, et al., “Passive Matrix Addressing of Electrophoretic Image Display”, Conference on International Display Research Conference, Retrieved from <http://www.cmst.be/publi/eurodisplay2002—s14-1.pdf>, (Oct. 1, 2002), 4 pages.
Block, Steve et al., “DeviceOrientation Event Specification”, W3C, Editor's Draft, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012,(Jul. 12, 2011),14 pages.
Brown, Rich “Microsoft Shows Off Pressure-Sensitive Keyboard”, retrieved from <http://news.cnet.com/8301-17938—105-10304792-1.html> on May 7, 2012, (Aug. 6, 2009), 2 pages.
Burge, et al., “Determination of off-axis aberrations of imaging systems using on-axis measurements”, SPIE Proceeding, Retrieved from <http://www.loft.opics.arizona.edu/documents/journal—articles/Jim—Burge—Determination—of—off-axis—aberrations—of—imaging—systems—using—on-axis—measurements.pdf>,(Sep. 21, 2011),10 pages.
Butler, Alex et al., “SideSight: Multi-“touch” Interaction around Small Devices”, In the proceedings of the 21st annual ACM symposium on User interface software and technology., retrieved from <http://research.microsoft.com/pubs/132534/sidesight—crv3.pdf> on May 29, 2012,(Oct. 19, 2008), 4 pages.
Chang, Jee-Gong et al., “Optical Design and Analysis of LCD Backlight Units Using ASAP”, Optical Engineering, Available at <http://www.opticsvalley.com/resources/kbasePDF/ma—oe—001—optical—design.pdf>,(Jun. 2003),15 pages.
Crider, Michael “Sony Slate Concept Tablet “Grows” a Kickstand”, Retrieved from: <http://androidcommunity.com/sony-slate-concept-tablet-grows-a-kickstand-20120116/> on May 4, 2012,(Jan. 16, 2012), 9 pages.
Dietz, Paul H., et al., “A Practical Pressure Sensitive Computer Keyboard”, In Proceedings of UIST 2009,(Oct. 2009), 4 pages.
Diverdi, et al., “An Immaterial Pseudo-3D Display with 3D Interaction”, In the proceedings of Three-Dimensional Television: Capture, Transmission, and Display, Springer, Retrieved from <http://www.cs.ucsb.edu/˜holl/pubs/DiVerdi-2007-3DTV.pdf>,(Feb. 6, 2007), 26 pages.
Glatt, Jeff “Channel and Key Pressure (Aftertouch).”, Retrieved from: <http://home.roadrunner.com/˜jgglatt/tutr/touch.htm> on Jun. 11, 2012, 2 pages.
Grossman, et al., “Multi-Finger Gestural Interaction with 3D Volumetric Displays”, In the proceedings of the 17th annual ACM symposium on User interface software and technology, Retrieved from <http://www.dgp.toronto.edu/papers/tgrossman—UIST2004.pdf>,(Oct. 24, 2004), pp. 61-70.
Hanlon, Mike “ElekTex Smart Fabric Keyboard Goes Wireless”, Retrieved from: <http://www.gizmag.com/go/5048/ > on May 7, 2012,(Jan. 15, 2006), 5 pages.
Izadi, Shahram et al., “ThinSight: A Thin Form-Factor Interactive Surface Technology”, Communications of the ACM, vol. 52, No. 12, retrieved from <http://research.microsoft.com/pubs/132532/p90-izadi.pdf> on Jan. 5, 2012,(Dec. 2009), pp. 90-98.
Kaur, Sukhmani “Vincent Liew's redesigned laptop satisfies ergonomic needs”, Retrieved from: <http://www.designbuzz.com/entry/vincent-liew-s-redesigned-laptop-satisfies-ergonomic-needs/> on Jul. 27, 2012,(Jun. 21, 2010), 4 pages.
Khuntontong, Puttachat et al., “Fabrication of Molded Interconnection Devices by Ultrasonic Hot Embossing on Thin Polymer Films”, IEEE Transactions on Electronics Packaging Manufacturing, vol. 32, No. 3,(Jul. 2009), pp. 152-156.
Lee, C.M.G “Flat-Panel Autostereoscopic 3D Display”, Optoelectronics, IET, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04455550>,(Feb. 2008),pp. 24-28.
Lee, et al., “Depth-Fused 3D Imagery on an Immaterial Display”, In the proceedings of IEEE Transactions on Visualization and Computer Graphics, vol. 15, No. 1, Retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04540094>,(Jan. 2009), 20-33.
Lee, et al., “LED Light Coupler Design for a Ultra Thin Light Guide”, Journal of the Optical Society of Korea, vol. 11, Issue.3, Retrieved from <http://opticslab.kongju.ac.kr/pdf/06.pdf>,(Sep. 2007), 5 pages.
Linderholm, Owen “Logitech Shows Cloth Keyboard for PDAs”, Retrieved from: <http://www.pcworld.com/article/89084/logitech—shows—cloth—keyboard—for—pdas.html> on May 7, 2012,(Mar. 15, 2002), 5 pages.
Liu, et al., “Three-dimensional PC: toward novel forms of human-computer interaction”, In the proceedings of Three-Dimensional Video and Display: Devices and Systems vol. CR76, Retrieved from <http://www.google.co.in/url?sa=t&rct=j&q=Three-dimensional+PC:+toward+novel+forms+of+human-computer+interaction&source=web&cd=1&ved=0CFoQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.ed%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.32.9469%26rep%3Drep1%26,(Nov. 5, 2000), pp. 250-281.
McLellan, Charles “Eleksen Wireless Fabric Keyboard: a first look”, Retrieved from: <http://www.zdnetasia.com/eleksen-wireless-fabric-keyboard-a-first-look-40278954.htm> on May 5, 2012,(Jul. 17, 2006), 9 pages.
Peli, Eli “Visual and Optometric Issues with Head-Mounted Displays”, IS & T/OSA Optics & Imaging in the Information Age, The Society for Imaging Science and Technology, available at <http://www.u.arizona.edu/˜zrui3/zhang—pHMPD—spie07.pdf>,(1996), pp. 364-369.
Post, E.R. et al., “E-Broidery: Design and Fabrication of Textile-Based Computing”, IBM Systems Journal, vol. 39, Issue 3 & 4,(Jul. 2000), pp. 840-860.
Purcher, Jack “Apple is Paving the Way for a New 3D GUI for IOS Devices”, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012,(Jan. 12, 2012), 15 pages.
Reisman, et al., “A Screen-Space Formulation for 2D and 3D Direct Manipulation”, In the proceedings of the 22nd annual ACM symposium on User interface, Retrieved from <http://innovis.cpsc.ucalgary.ca/innovis/uploads/Courses/TableTopDetails2009/Reisman2009.pdf>,(Oct. 4, 2009), pp. 69-78.
Schoning, Johannes et al., “Building Interactive Multi-Touch Surfaces”, Journal of Graphics, GPU, and Game Tools, vol. 14, No. 3, available at <http://www.libavg.com/raw-attachment/wiki/Multitouch/Multitouchguide—draft.pdf>,(Nov. 2009), pp. 35-55.
Takamatsu, Seiichi et al., “Flexible Fabric Keyboard with Conductive Polymer-Coated Fibers”, In Proceedings of Sensors 2011,(Oct. 28, 2011), 4 pages.
Yan, Jin-Ren et al., “Edge-Lighting Light Guide Plate Based on Micro-Prism for Liquid Crystal Display”, Journal of Display Technology, vol. 5, No. 9, Available at <http://ieeexplore.ieee.org/ielx5/9425/5196834/05196835.pdf?tp=&arnumber=5196835&isnumber=5196834>,(Sep. 2009), pp. 355-357.
Yu, et al., “A New Driving Scheme for Reflective Bistable Cholesteric Liquid Crystal Displays”, Society for Information Display International Symposium Digest of Technical Papers, Retrieved from <http://www.ee.ust.hk/˜eekwok/publications/1997/bcd—sid.pdf>,(May 1997), 4 pages.
Zhang, et al., “Model-Based Development of Dynamically Adaptive Software”, In Proceedings of ICSE 2006, Available at <http://www.irisa.fr/lande/lande/icse-proceedings/icse/p371.pdf>,(May 20, 2006), pp. 371-380.
Zhang, Rui “Design of Head Mounted Displays”, Retrieved at <<http://www.optics.arizona.edu/optomech/student%20reports/2007/Design%20of%20mounteddisplays%20Zhang.pdf>>, (Dec. 12, 2007), 6 pages.
Final Office Action, U.S. Appl. No. 13/408,257, Mar. 28, 2014, 17 pages.
Foreign Office Action, CN Application No. 201320328022.1, Oct. 18, 2013, 3 Pages.
Foreign Office Action, CN Application No. 201320328022.1, Feb. 17, 2014, 4 Pages.
Non-Final Office Action, U.S. Appl. No. 13/494,722, May 9, 2014, 8 pages.
Non-Final Office Action, U.S. Appl. No. 13/492,232, Apr. 30, 2014, 9 pages.
International Search Report and Written Opinion, Application No. PCT/US2014/020050, May 9, 2014, 10 pages.
International Search Report and Written Opinion, Application No. PCT/US2014/016654, May 16, 2014, 11 pages.
International Search Report and Written Opinion, Application No. PCT/US2013/075180, May 6, 2014, 12 pages.
Non-Final Office Action, U.S. Appl. No. 13/408,257, Jul. 2, 2014, 20 pages.
Non-Final Office Action, U.S. Appl. No. 13/647,507, Jun. 19, 2014, 22 pages.
Non-Final Office Action, U.S. Appl. No. 13/714,401, Jul. 8, 2014, 11 pages.
Non-Final Office Action, U.S. Appl. No. 13/773,496, Jun. 23, 2014, 10 pages.
PCT Search Report and Written Opinion, Application No. PCT/US2013/028479, (Jun. 17, 2013),10 pages.
PCT Search Report, Application No. PCT/US2013/042790, (Aug. 8, 2013), 9 pages.
Notice of Allowance, U.S. Appl. No. 12/882,994, (Jul. 12, 2013), 9 pages.
Chinese Search Report, Application No. 201110272868.3, (Apr. 1, 2013),10 pages.
International Search Report and Written Opinion, Application No. PCT/US2013/042550, (Sep. 24, 2013),14 pages.
“Welcome to Windows 7”, Retrieved from: <http://www.microsoft.com/en-us/download/confirmation.aspx?id=4984> on Aug. 1, 2013, (Sep. 16, 2009), 3 pages.
Prospero, Michael “Samsung Outs Series 5 Hybrid PC Tablet”, Retrieved from: <http://blog.laptopmag.com/samsung-outs-series-5-hybrid-pc-tablet-running-windows-8> on Oct. 31, 2013, (Jun. 4, 2012), 7 pages.
“For any kind of proceeding 2011 springtime as well as coil nailers as well as hotter summer season”, Retrieved at <<http://www.ladyshoesworld.com/2011/09/18/for-any-kind-of-proceeding-2011-springtime-as-well-as-coil-nailers-as-well-as-hotter-summer-season/>> Sep. 18, 2011, pp. 2.
Travis, et al., “Flat Projection for 3-D”, Retrieved at <<http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01605201>> In the Proceedings of the IEEE, vol. 94, No. 3, Mar. 3, 2006, pp. 539-549.
“Microsoft Develops Glasses-Free Eye-Tracking 3D Display”, Retrieved at <<http://www.tech-faq.com/microsoft-develops-glasses-free-eye-tracking-3d-display.html>> Retrieved Date: Nov. 2, 2011, pp. 3.
Final Office Action, U.S. Appl. No. 13/492,232, Nov. 17, 2014, 13 pages.
Final Office Action, U.S. Appl. No. 13/647,507, Oct. 27, 2014, 33 pages.
Final Office Action, U.S. Appl. No. 13/714,401, Nov. 25, 2014, 15 pages.
Final Office Action, U.S. Appl. No. 13/773,496, Nov. 4, 2014, 11 pages.
Non-Final Office Action, U.S. Appl. No. 13/786,233, Nov. 20, 2014, 13 pages.
Written Opinion, Application No. PCT/US2014/020050, Sep. 22, 2014, 6 Pages.
“Final Office Action”, U.S. Appl. No. 13/408,257, Dec. 10, 2014, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/492,232, Feb. 24, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/647,507, Feb. 9, 2015, 37 pages.
“Notice of Allowance”, U.S. Appl. No. 13/494,722, Dec. 18, 2014, 7 pages.
“Advisory Action”, U.S. Appl. No. 13/408,257, Apr. 8, 2015, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/714,401, Apr. 17, 2015, 14 pages.
Related Publications (1)
Number Date Country
20130201094 A1 Aug 2013 US