Claims
- 1. A method of controlling the operation of an automated kinematic device comprising the steps of:(a) operating a teleoperational sensory machine to generate spatial position data that describes a sequence of operational movements of a kinematic travel path, to be followed by components of said automated kinematic device, during a desired sequential kinematic behavior thereof, along a sequence of spatial conditions that define a desired dynamic spatial geometry profile along which said automated kinematic device is to travel during operation thereof; (b) generating a virtual reality simulation of kinematic behavior of said automated kinematic device along said sequence of spatial conditions that describe said desired dynamic spatial geometry profile along said prescribed sequential kinematic travel path to be followed by said automated kinematic device in accordance with said data generated in step (a); (c) generating, from the kinematic behavior of said automated kinematic device simulated in step (b), a sequence of instructions which, when executed to control the operation of said automated kinematic device, cause said automated kinematic device to exhibit said desired sequential kinematic behavior along said sequence of spatial conditions that describe said desired dynamic spatial geometry profile along said prescribed sequential kinematic travel path; and (d) controlling the operation of said automated kinematic device in accordance with said sequence of instructions generated in step (c), thereby causing said automated kinematic device to exhibit said desired sequential kinematic behavior along said sequence of spatial conditions that describe said desired dynamic spatial geometry profile of said prescribed sequential kinematic travel path.
- 2. A method according to claim 1, wherein step (b) includes, in the course of generating said virtual reality simulation, selectively interactively modifying one or more parameters of said virtual reality simulation sequential kinematic behavior of said automated kinematic device, as necessary, to enable said automated kinematic device to realize said dynamic spatial geometry profile of said prescribed sequential kinematic travel path.
- 3. A method according to claim 1, wherein said automated kinematic device comprises a multi-axis robot.
- 4. A system for controlling the operation of an automated kinematic device comprising:a travel path generation unit which is operative to generate data representative of a sequence of movements to be followed by components of said automated kinematic device, during a desired sequential kinematic behavior thereof, along a sequence of spatial conditions subsequent to a starting condition of said automated kinematic device, said sequence of spatial conditions describing a desired dynamic spatial geometry profile of a prescribed sequential kinematic travel path of said automated kinematic device; and a virtual reality simulator coupled to said travel path generation unit, and which is operative to generate a virtual reality simulation of kinematic behavior of said automated kinematic device along said sequence of spatial conditions that describe said desired dynamic spatial geometry profile along said prescribed sequential kinematic travel path to be followed by said automated kinematic device in accordance with said data generated by said travel path generation unit, and to produce a sequence of instructions which, when executed to control the operation of said automated kinematic device, cause said automated kinematic device to exhibit said desired sequential kinematic behavior along said sequence of spatial conditions that describe said desired dynamic spatial geometry profile of said prescribed sequential kinematic travel path.
- 5. A system according to claim 4, wherein said virtual reality simulator is operative, in the course of generating said virtual reality simulation, to selectively modify one or more parameters of said simulated sequential kinematic behavior of said automated kinematic device, as necessary, to enable said automated kinematic device to realize said dynamic spatial geometry profile of said prescribed sequential kinematic travel path, and to generate said sequence of instructions for controlling the operation of said automated kinematic device, in accordance with one or more parameters which have been selectively modified.
- 6. A system according to claim 4, wherein said automated kinematic device comprises a multi-axis robot.
CROSS-REFERENCE TO RELATED APPLICATION
This is a continuation-in-part of copending U.S. patent application Ser. No. 08/906,012 (hereinafter referred to as the '012 application), filed Aug. 4, 1997, (now abandoned) by John E. White et al, entitled: “Virtual Reality Simulation-Based Training of Sequential Behavior of Automated Kinematic Machine,” assigned to the assignee of the present application, and the disclosure of which is incorporated herein.
US Referenced Citations (24)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
08/906012 |
Aug 1997 |
US |
Child |
09/484734 |
|
US |