Visual place recognition based self-localization for autonomous vehicles

Information

  • Patent Grant
  • 10606274
  • Patent Number
    10,606,274
  • Date Filed
    Monday, October 30, 2017
    7 years ago
  • Date Issued
    Tuesday, March 31, 2020
    4 years ago
Abstract
Methods and systems herein can let an autonomous vehicle localize itself precisely and in near real-time in a digital map using visual place recognition. Commercial GPS solutions used in the production of autonomous vehicles generally have very low accuracy. For autonomous driving, the vehicle may need to be able to localize in the map very precisely, for example, within a few centimeters. The method and systems herein incorporate visual place recognition into the digital map and localization process. The roadways or routes within the map can be characterized as a set of nodes, which can be augmented with feature vectors that represent the visual scenes captured using camera sensors. These feature vectors can be constantly updated on the map server and then provided to the vehicles driving the roadways. This process can help create and maintain a diverse set of features for visual place recognition.
Description
FIELD

The present disclosure is generally directed to vehicle systems, in particular, toward autonomous vehicle systems.


BACKGROUND

In recent years, transportation methods have changed substantially. This change is due in part to a concern over the limited availability of natural resources, a proliferation in personal technology, and a societal shift to adopt more environmentally friendly transportation solutions. These considerations have encouraged the development of a number of new flexible-fuel vehicles, hybrid-electric vehicles, and electric vehicles.


Generally, vehicles rely on the Global Positioning System (GPS) to provide location data. Transmissions from the orbiting GPS satellites allow a vehicle to triangulate the vehicle's position and associate that position with a digital map or geographic information system (GIS) information to determine the location of the vehicle. Unfortunately, GPS signals can be interfered with by large buildings, canyons, trees, power lines, etc. Thus, it is not always possible to receive a GPS signal. Further, the GPS signal is only accurate to a few meters. A self-driving vehicle can therefore not rely on GPS to determine the exact position of the vehicle as a self-driving vehicle may need locate itself within a lane or roadway that is only a few meters wide and may travel through areas that do not receive a GPS signal





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a vehicle in accordance with embodiments of the present disclosure;



FIG. 2 shows a plan view of the vehicle in accordance with at least some embodiments of the present disclosure;



FIG. 3A is a block diagram of an embodiment of a communication environment of the vehicle in accordance with embodiments of the present disclosure;



FIG. 3B is a block diagram of an embodiment of interior sensors within the vehicle in accordance with embodiments of the present disclosure;



FIG. 3C is a block diagram of an embodiment of a navigation system of the vehicle in accordance with embodiments of the present disclosure;



FIG. 4 shows an embodiment of the instrument panel of the vehicle according to one embodiment of the present disclosure;



FIG. 5 is a block diagram of an embodiment of a communications subsystem of the vehicle;



FIG. 6 is a block diagram of a computing environment associated with the embodiments presented herein;



FIG. 7 is a block diagram of a computing device associated with one or more components described herein;



FIG. 8A shows a visual representation of an embodiment of a vehicle localization system in accordance with embodiments of the present disclosure;



FIG. 8B shows another visual representation of an embodiment of a vehicle localization system in accordance with embodiments of the present disclosure;



FIG. 8C shows another visual representation of an embodiment of a vehicle localization system in accordance with embodiments of the present disclosure;



FIG. 8D shows another visual representation of an embodiment of a vehicle localization system in accordance with embodiments of the present disclosure;



FIG. 8E shows another visual representation of an embodiment of a vehicle localization system in accordance with embodiments of the present disclosure;



FIG. 8F shows another visual representation of an embodiment of a vehicle localization system in accordance with embodiments of the present disclosure;



FIG. 8G shows another visual representation of an embodiment of a vehicle localization system in accordance with embodiments of the present disclosure;



FIG. 8H shows another visual representation of an embodiment of a vehicle localization system in accordance with embodiments of the present disclosure;



FIG. 9A is a diagram of an embodiment of a data store that stores localization data in accordance with embodiments of the present disclosure;



FIG. 9B is a diagram of an embodiment of a data structure that stores localization data in accordance with embodiments of the present disclosure;



FIG. 9C is another diagram of an embodiment of another data structure that stores localization data in accordance with embodiments of the present disclosure;



FIG. 10 is a process diagram of an embodiment of a method for creating segment information for determining the local position of a vehicle in accordance with embodiments of the present disclosure; and



FIG. 11 is a process diagram of an embodiment of a method for determining the local position of a vehicle in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present disclosure will be described in connection with a vehicle, and in some embodiments, a self-driving vehicle. Methods and systems herein can let an autonomous vehicle localize itself precisely and in near real-time in a digital map using visual place recognition. Commercial GPS solutions used in the production of autonomous vehicles generally have very low accuracy. For autonomous driving, the vehicle may need to be able to localize in the map very precisely, for example, within a few centimeters. Additionally, in urban areas with high-rise buildings, the vehicles will face problems with poor GPS Signal reception.


The embodiments described herein solve these and other problems by incorporating visual place recognition into the digital map and localization process. The roadways or routes within the map can be characterized as a set of nodes. The nodes in the map can be augmented with feature vectors that represent the visual scenes captured using camera sensors or other sensors. These feature vectors can be constantly updated on the map server, based on the real-time information that is being generated by the vehicles (both autonomous and non-autonomous) on the different road segments, and then provided to the vehicles driving the roadways. This process can help create and maintain a diverse set of features for visual place recognition to counter the situations where a scene environment can be changing due to weather, construction, or other phenomenon.


For the self-localization of the autonomous vehicle, a combination of approaches, for example, particle-filtering and/or visual odometry, may be used to identify potential current positions of the vehicle and use visual feature matching (visual place recognition) to aid with faster and more efficient solution. The localization of the vehicle may be an iterative process and may take a short amount of time (e.g., a few seconds) to converge to a location on the map. The use of visual place recognition, by embedding the feature vectors into the map and doing real-time feature comparison, expedites this iterative localization process by huge margin, for example, to milliseconds.


The above methods are an improvement over other existing localization methods. For example, some other systems use a Mixture of Gaussians-based approach to localize based purely on visual odometry information. This Mixture of Gaussians approach has issues converging faster to a precise location on the map as there are number of potential road segments that could have similar road topology giving ambiguous visual odometry segments for matching with the map information. In the embodiments herein, visual place recognition can augment the segment nodes in the high definition (HD) maps. At each map node, the navigation system or map system can store a feature vector captured using the camera sensors. As the localization algorithm tries to localize the current position, the navigation system can continuously capture images using the camera or other sensors, may then extract the image feature vectors, and may then match the feature vectors that are captured by the sensors with the feature vectors that are currently stored at each node in the map. Thereby, the likely number of possible locations where the vehicle may be located is reduced.


Other existing system may use a three-dimensional (3D) Light Detection and Ranging (LiDAR) point cloud-based matching for localization. The digital map itself, in these 3D LiDAR systems, is created using dense 3D point clouds. The dense 3D point cloud based maps are created by capturing 3D points using LiDARs and mapping the same road segment multiple times. The embodiments herein do depend on these dense 3D point clouds but can employ a HD map that can be generated from these dense 3D point clouds. Dense 3D point cloud based maps are not practical to deploy in a production environment due to the huge computational and memory footprint requirements, which are impractical to place in a vehicle.



FIG. 1 shows a perspective view of a vehicle 100 in accordance with embodiments of the present disclosure. The electric vehicle 100 comprises a vehicle front 110, vehicle aft or rear 120, vehicle roof 130, at least one vehicle side 160, a vehicle undercarriage 140, and a vehicle interior 150. In any event, the vehicle 100 may include a frame 104 and one or more body panels 108 mounted or affixed thereto. The vehicle 100 may include one or more interior components (e.g., components inside an interior space 150, or user space, of a vehicle 100, etc.), exterior components (e.g., components outside of the interior space 150, or user space, of a vehicle 100, etc.), drive systems, controls systems, structural components, etc.


Although shown in the form of a car, it should be appreciated that the vehicle 100 described herein may include any conveyance or model of a conveyance, where the conveyance was designed for the purpose of moving one or more tangible objects, such as people, animals, cargo, and the like. The term “vehicle” does not require that a conveyance moves or is capable of movement. Typical vehicles may include but are in no way limited to cars, trucks, motorcycles, busses, automobiles, trains, railed conveyances, boats, ships, marine conveyances, submarine conveyances, airplanes, space craft, flying machines, human-powered conveyances, and the like.


In some embodiments, the vehicle 100 may include a number of sensors, devices, and/or systems that are capable of assisting in driving operations, e.g., autonomous or semi-autonomous control. Examples of the various sensors and systems may include, but are in no way limited to, one or more of cameras (e.g., independent, stereo, combined image, etc.), infrared (IR) sensors, radio frequency (RF) sensors, ultrasonic sensors (e.g., transducers, transceivers, etc.), RADAR sensors (e.g., object-detection sensors and/or systems), LIDAR (Light Imaging, Detection, And Ranging) systems, odometry sensors and/or devices (e.g., encoders, etc.), orientation sensors (e.g., accelerometers, gyroscopes, magnetometer, etc.), navigation sensors and systems (e.g., GPS, etc.), and other ranging, imaging, and/or object-detecting sensors. The sensors may be disposed in an interior space 150 of the vehicle 100 and/or on an outside of the vehicle 100. In some embodiments, the sensors and systems may be disposed in one or more portions of a vehicle 100 (e.g., the frame 104, a body panel, a compartment, etc.).


The vehicle sensors and systems may be selected and/or configured to suit a level of operation associated with the vehicle 100. Among other things, the number of sensors used in a system may be altered to increase or decrease information available to a vehicle control system (e.g., affecting control capabilities of the vehicle 100). Additionally or alternatively, the sensors and systems may be part of one or more advanced driver assistance systems (ADAS) associated with a vehicle 100. In any event, the sensors and systems may be used to provide driving assistance at any level of operation (e.g., from fully-manual to fully-autonomous operations, etc.) as described herein.


The various levels of vehicle control and/or operation can be described as corresponding to a level of autonomy associated with a vehicle 100 for vehicle driving operations. For instance, at Level 0, or fully-manual driving operations, a driver (e.g., a human driver) may be responsible for all the driving control operations (e.g., steering, accelerating, braking, etc.) associated with the vehicle. Level 0 may be referred to as a “No Automation” level. At Level 1, the vehicle may be responsible for a limited number of the driving operations associated with the vehicle, while the driver is still responsible for most driving control operations. An example of a Level 1 vehicle may include a vehicle in which the throttle control and/or braking operations may be controlled by the vehicle (e.g., cruise control operations, etc.). Level 1 may be referred to as a “Driver Assistance” level. At Level 2, the vehicle may collect information (e.g., via one or more driving assistance systems, sensors, etc.) about an environment of the vehicle (e.g., surrounding area, roadway, traffic, ambient conditions, etc.) and use the collected information to control driving operations (e.g., steering, accelerating, braking, etc.) associated with the vehicle. In a Level 2 autonomous vehicle, the driver may be required to perform other aspects of driving operations not controlled by the vehicle. Level 2 may be referred to as a “Partial Automation” level. It should be appreciated that Levels 0-2 all involve the driver monitoring the driving operations of the vehicle.


At Level 3, the driver may be separated from controlling all the driving operations of the vehicle except when the vehicle makes a request for the operator to act or intervene in controlling one or more driving operations. In other words, the driver may be separated from controlling the vehicle unless the driver is required to take over for the vehicle. Level 3 may be referred to as a “Conditional Automation” level. At Level 4, the driver may be separated from controlling all the driving operations of the vehicle and the vehicle may control driving operations even when a user fails to respond to a request to intervene. Level 4 may be referred to as a “High Automation” level. At Level 5, the vehicle can control all the driving operations associated with the vehicle in all driving modes. The vehicle in Level 5 may continually monitor traffic, vehicular, roadway, and/or environmental conditions while driving the vehicle. In Level 5, there is no human driver interaction required in any driving mode. Accordingly, Level 5 may be referred to as a “Full Automation” level. It should be appreciated that in Levels 3-5 the vehicle, and/or one or more automated driving systems associated with the vehicle, monitors the driving operations of the vehicle and the driving environment.


As shown in FIG. 1, the vehicle 100 may, for example, include at least one of a ranging and imaging system 112 (e.g., LIDAR, etc.), an imaging sensor 116A, 116F (e.g., camera, IR, etc.), a radio object-detection and ranging system sensors 116B (e.g., RADAR, RF, etc.), ultrasonic sensors 116C, and/or other object-detection sensors 116D, 116E. In some embodiments, the LIDAR system 112 and/or sensors may be mounted on a roof 130 of the vehicle 100. In one embodiment, the RADAR sensors 116B may be disposed at least at a front 110, aft 120, or side 160 of the vehicle 100. Among other things, the RADAR sensors may be used to monitor and/or detect a position of other vehicles, pedestrians, and/or other objects near, or proximal to, the vehicle 100. While shown associated with one or more areas of a vehicle 100, it should be appreciated that any of the sensors and systems 116A-K, 112 illustrated in FIGS. 1 and 2 may be disposed in, on, and/or about the vehicle 100 in any position, area, and/or zone of the vehicle 100.


Referring now to FIG. 2, a plan view of a vehicle 100 will be described in accordance with embodiments of the present disclosure. In particular, FIG. 2 shows a vehicle sensing environment 200 at least partially defined by the sensors and systems 116A-K, 112 disposed in, on, and/or about the vehicle 100. Each sensor 116A-K may include an operational detection range R and operational detection angle. The operational detection range R may define the effective detection limit, or distance, of the sensor 116A-K. In some cases, this effective detection limit may be defined as a distance from a portion of the sensor 116A-K (e.g., a lens, sensing surface, etc.) to a point in space offset from the sensor 116A-K. The effective detection limit may define a distance, beyond which, the sensing capabilities of the sensor 116A-K deteriorate, fail to work, or are unreliable. In some embodiments, the effective detection limit may define a distance, within which, the sensing capabilities of the sensor 116A-K are able to provide accurate and/or reliable detection information. The operational detection angle may define at least one angle of a span, or between horizontal and/or vertical limits, of a sensor 116A-K. As can be appreciated, the operational detection limit and the operational detection angle of a sensor 116A-K together may define the effective detection zone 216A-D (e.g., the effective detection area, and/or volume, etc.) of a sensor 116A-K.


In some embodiments, the vehicle 100 may include a ranging and imaging system 112 such as LIDAR, or the like. The ranging and imaging system 112 may be configured to detect visual information in an environment surrounding the vehicle 100. The visual information detected in the environment surrounding the ranging and imaging system 112 may be processed (e.g., via one or more sensor and/or system processors, etc.) to generate a complete 360-degree view of an environment 200 around the vehicle. The ranging and imaging system 112 may be configured to generate changing 360-degree views of the environment 200 in real-time, for instance, as the vehicle 100 drives. In some cases, the ranging and imaging system 112 may have an effective detection limit 204 that is some distance from the center of the vehicle 100 outward over 360 degrees. The effective detection limit 204 of the ranging and imaging system 112 defines a view zone 208 (e.g., an area and/or volume, etc.) surrounding the vehicle 100. Any object falling outside of the view zone 208 is in the undetected zone 212 and would not be detected by the ranging and imaging system 112 of the vehicle 100.


Sensor data and information may be collected by one or more sensors or systems 116A-K, 112 of the vehicle 100 monitoring the vehicle sensing environment 200. This information may be processed (e.g., via a processor, computer-vision system, etc.) to determine targets (e.g., objects, signs, people, markings, roadways, conditions, etc.) inside one or more detection zones 208, 216A-D associated with the vehicle sensing environment 200. In some cases, information from multiple sensors 116A-K may be processed to form composite sensor detection information. For example, a first sensor 116A and a second sensor 116F may correspond to a first camera 116A and a second camera 116F aimed in a forward traveling direction of the vehicle 100. In this example, images collected by the cameras 116A, 116F may be combined to form stereo image information. This composite information may increase the capabilities of a single sensor in the one or more sensors 116A-K by, for example, adding the ability to determine depth associated with targets in the one or more detection zones 208, 216A-D. Similar image data may be collected by rear view cameras (e.g., sensors 116G, 116H) aimed in a rearward traveling direction vehicle 100.


In some embodiments, multiple sensors 116A-K may be effectively joined to increase a sensing zone and provide increased sensing coverage. For instance, multiple RADAR sensors 116B disposed on the front 110 of the vehicle may be joined to provide a zone 216B of coverage that spans across an entirety of the front 110 of the vehicle. In some cases, the multiple RADAR sensors 116B may cover a detection zone 216B that includes one or more other sensor detection zones 216A. These overlapping detection zones may provide redundant sensing, enhanced sensing, and/or provide greater detail in sensing within a particular portion (e.g., zone 216A) of a larger zone (e.g., zone 216B). Additionally or alternatively, the sensors 116A-K of the vehicle 100 may be arranged to create a complete coverage, via one or more sensing zones 208, 216A-D around the vehicle 100. In some areas, the sensing zones 216C of two or more sensors 116D, 116E may intersect at an overlap zone 220. In some areas, the angle and/or detection limit of two or more sensing zones 216C, 216D (e.g., of two or more sensors 116E, 116J, 116K) may meet at a virtual intersection point 224.


The vehicle 100 may include a number of sensors 116E, 116G, 116H, 116J, 116K disposed proximal to the rear 120 of the vehicle 100. These sensors can include, but are in no way limited to, an imaging sensor, camera, IR, a radio object-detection and ranging sensors, RADAR, RF, ultrasonic sensors, and/or other object-detection sensors. Among other things, these sensors 116E, 116G, 116H, 116J, 116K may detect targets near or approaching the rear of the vehicle 100. For example, another vehicle approaching the rear 120 of the vehicle 100 may be detected by one or more of the ranging and imaging system (e.g., LIDAR) 112, rear-view cameras 116G, 116H, and/or rear facing RADAR sensors 116J, 116K. As described above, the images from the rear-view cameras 116G, 116H may be processed to generate a stereo view (e.g., providing depth associated with an object or environment, etc.) for targets visible to both cameras 116G, 116H. As another example, the vehicle 100 may be driving and one or more of the ranging and imaging system 112, front-facing cameras 116A, 116F, front-facing RADAR sensors 116B, and/or ultrasonic sensors 116C may detect targets in front of the vehicle 100. This approach may provide critical sensor information to a vehicle control system in at least one of the autonomous driving levels described above. For instance, when the vehicle 100 is driving autonomously (e.g., Level 3, Level 4, or Level 5) and detects other vehicles stopped in a travel path, the sensor detection information may be sent to the vehicle control system of the vehicle 100 to control a driving operation (e.g., braking, decelerating, etc.) associated with the vehicle 100 (in this example, slowing the vehicle 100 as to avoid colliding with the stopped other vehicles). As yet another example, the vehicle 100 may be operating and one or more of the ranging and imaging system 112, and/or the side-facing sensors 116D, 116E (e.g., RADAR, ultrasonic, camera, combinations thereof, and/or other type of sensor), may detect targets at a side of the vehicle 100. It should be appreciated that the sensors 116A-K may detect a target that is both at a side 160 and a front 110 of the vehicle 100 (e.g., disposed at a diagonal angle to a centerline of the vehicle 100 running from the front 110 of the vehicle 100 to the rear 120 of the vehicle). Additionally or alternatively, the sensors 116A-K may detect a target that is both, or simultaneously, at a side 160 and a rear 120 of the vehicle 100 (e.g., disposed at a diagonal angle to the centerline of the vehicle 100).



FIGS. 3A-3C are block diagrams of an embodiment of a communication environment 300 of the vehicle 100 in accordance with embodiments of the present disclosure. The communication system 300 may include one or more vehicle driving vehicle sensors and systems 304, sensor processors 340, sensor data memory 344, vehicle control system 348, communications subsystem 350, control data 364, computing devices 368, display devices 372, and other components 374 that may be associated with a vehicle 100. These associated components may be electrically and/or communicatively coupled to one another via at least one bus 360. In some embodiments, the one or more associated components may send and/or receive signals across a communication network 352 to at least one of a navigation source 356A, a control source 356B, or some other entity 356N.


In accordance with at least some embodiments of the present disclosure, the communication network 352 may comprise any type of known communication medium or collection of communication media and may use any type of protocols, such as SIP, TCP/IP, SNA, IPX, AppleTalk, and the like, to transport messages between endpoints. The communication network 352 may include wired and/or wireless communication technologies. The Internet is an example of the communication network 352 that constitutes an Internet Protocol (IP) network consisting of many computers, computing networks, and other communication devices located all over the world, which are connected through many telephone systems and other means. Other examples of the communication network 352 include, without limitation, a standard Plain Old Telephone System (POTS), an Integrated Services Digital Network (ISDN), the Public Switched Telephone Network (PSTN), a Local Area Network (LAN), such as an Ethernet network, a Token-Ring network and/or the like, a Wide Area Network (WAN), a virtual network, including without limitation a virtual private network (“VPN”); the Internet, an intranet, an extranet, a cellular network, an infra-red network; a wireless network (e.g., a network operating under any of the IEEE 802.9 suite of protocols, the Bluetooth® protocol known in the art, and/or any other wireless protocol), and any other type of packet-switched or circuit-switched network known in the art and/or any combination of these and/or other networks. In addition, it can be appreciated that the communication network 352 need not be limited to any one network type, and instead may be comprised of a number of different networks and/or network types. The communication network 352 may comprise a number of different communication media such as coaxial cable, copper cable/wire, fiber-optic cable, antennas for transmitting/receiving wireless messages, and combinations thereof.


The driving vehicle sensors and systems 304 may include at least one navigation 308 (e.g., global positioning system (GPS), etc.), orientation 312, odometry 316, LIDAR 320, RADAR 324, ultrasonic 328, camera 332, infrared (IR) 336, and/or other sensor or system 338. These driving vehicle sensors and systems 304 may be similar, if not identical, to the sensors and systems 116A-K, 112 described in conjunction with FIGS. 1 and 2.


The navigation sensor 308 may include one or more sensors having receivers and antennas that are configured to utilize a satellite-based navigation system including a network of navigation satellites capable of providing geolocation and time information to at least one component of the vehicle 100. Examples of the navigation sensor 308 as described herein may include, but are not limited to, at least one of Garmin® GLO™ family of GPS and GLONASS combination sensors, Garmin® GPS 15x™ family of sensors, Garmin® GPS 16x™ family of sensors with high-sensitivity receiver and antenna, Garmin® GPS 18x OEM family of high-sensitivity GPS sensors, Dewetron DEWE-VGPS series of GPS sensors, GlobalSat 1-Hz series of GPS sensors, other industry-equivalent navigation sensors and/or systems, and may perform navigational and/or geolocation functions using any known or future-developed standard and/or architecture.


The orientation sensor 312 may include one or more sensors configured to determine an orientation of the vehicle 100 relative to at least one reference point. In some embodiments, the orientation sensor 312 may include at least one pressure transducer, stress/strain gauge, accelerometer, gyroscope, and/or geomagnetic sensor. Examples of the navigation sensor 308 as described herein may include, but are not limited to, at least one of Bosch Sensortec BMX 160 series low-power absolute orientation sensors, Bosch Sensortec BMX055 9-axis sensors, Bosch Sensortec BMI055 6-axis inertial sensors, Bosch Sensortec BMI160 6-axis inertial sensors, Bosch Sensortec BMF055 9-axis inertial sensors (accelerometer, gyroscope, and magnetometer) with integrated Cortex M0+ microcontroller, Bosch Sensortec BMP280 absolute barometric pressure sensors, Infineon TLV493D-A1B6 3D magnetic sensors, Infineon TLI493D-W1B6 3D magnetic sensors, Infineon TL family of 3D magnetic sensors, Murata Electronics SCC2000 series combined gyro sensor and accelerometer, Murata Electronics SCC1300 series combined gyro sensor and accelerometer, other industry-equivalent orientation sensors and/or systems, which may perform orientation detection and/or determination functions using any known or future-developed standard and/or architecture.


The odometry sensor and/or system 316 may include one or more components that is configured to determine a change in position of the vehicle 100 over time. In some embodiments, the odometry system 316 may utilize data from one or more other sensors and/or systems 304 in determining a position (e.g., distance, location, etc.) of the vehicle 100 relative to a previously measured position for the vehicle 100. Additionally or alternatively, the odometry sensors 316 may include one or more encoders, Hall speed sensors, and/or other measurement sensors/devices configured to measure a wheel speed, rotation, and/or number of revolutions made over time. Examples of the odometry sensor/system 316 as described herein may include, but are not limited to, at least one of Infineon TLE4924/26/27/28C high-performance speed sensors, Infineon TL4941plusC(B) single chip differential Hall wheel-speed sensors, Infineon TL5041plusC Giant Magnetoresistance (GMR) effect sensors, Infineon TL family of magnetic sensors, EPC Model 25SP Accu-CoderPro™ incremental shaft encoders, EPC Model 30M compact incremental encoders with advanced magnetic sensing and signal processing technology, EPC Model 925 absolute shaft encoders, EPC Model 958 absolute shaft encoders, EPC Model MA36S/MA63S/SA36S absolute shaft encoders, Dynapar™ F18 commutating optical encoder, Dynapar™ HS35R family of phased array encoder sensors, other industry-equivalent odometry sensors and/or systems, and may perform change in position detection and/or determination functions using any known or future-developed standard and/or architecture.


The LIDAR sensor/system 320 may include one or more components configured to measure distances to targets using laser illumination. In some embodiments, the LIDAR sensor/system 320 may provide 3D imaging data of an environment around the vehicle 100. The imaging data may be processed to generate a full 360-degree view of the environment around the vehicle 100. The LIDAR sensor/system 320 may include a laser light generator configured to generate a plurality of target illumination laser beams (e.g., laser light channels). In some embodiments, this plurality of laser beams may be aimed at, or directed to, a rotating reflective surface (e.g., a mirror) and guided outwardly from the LIDAR sensor/system 320 into a measurement environment. The rotating reflective surface may be configured to continually rotate 360 degrees about an axis, such that the plurality of laser beams is directed in a full 360-degree range around the vehicle 100. A photodiode receiver of the LIDAR sensor/system 320 may detect when light from the plurality of laser beams emitted into the measurement environment returns (e.g., reflected echo) to the LIDAR sensor/system 320. The LIDAR sensor/system 320 may calculate, based on a time associated with the emission of light to the detected return of light, a distance from the vehicle 100 to the illuminated target. In some embodiments, the LIDAR sensor/system 320 may generate over 2.0 million points per second and have an effective operational range of at least 100 meters. Examples of the LIDAR sensor/system 320 as described herein may include, but are not limited to, at least one of Velodyne® LiDAR™ HDL-64E 64-channel LIDAR sensors, Velodyne® LiDAR™ HDL-32E 32-channel LIDAR sensors, Velodyne® LiDAR™ PUCK™ VLP-16 16-channel LIDAR sensors, Leica Geosystems Pegasus: Two mobile sensor platform, Garmin® LIDAR-Lite v3 measurement sensor, Quanergy M8 LiDAR sensors, Quanergy S3 solid state LiDAR sensor, LeddarTech® LeddarVU compact solid state fixed-beam LIDAR sensors, other industry-equivalent LIDAR sensors and/or systems, and may perform illuminated target and/or obstacle detection in an environment around the vehicle 100 using any known or future-developed standard and/or architecture.


The RADAR sensors 324 may include one or more radio components that are configured to detect objects/targets in an environment of the vehicle 100. In some embodiments, the RADAR sensors 324 may determine a distance, position, and/or movement vector (e.g., angle, speed, etc.) associated with a target over time. The RADAR sensors 324 may include a transmitter configured to generate and emit electromagnetic waves (e.g., radio, microwaves, etc.) and a receiver configured to detect returned electromagnetic waves. In some embodiments, the RADAR sensors 324 may include at least one processor configured to interpret the returned electromagnetic waves and determine locational properties of targets. Examples of the RADAR sensors 324 as described herein may include, but are not limited to, at least one of Infineon RASIC™ RTN7735PL transmitter and RRN7745PL/46PL receiver sensors, Autoliv ASP Vehicle RADAR sensors, Delphi L2C0051TR 77 GHz ESR Electronically Scanning Radar sensors, Fujitsu Ten Ltd. Automotive Compact 77 GHz 3D Electronic Scan Millimeter Wave Radar sensors, other industry-equivalent RADAR sensors and/or systems, and may perform radio target and/or obstacle detection in an environment around the vehicle 100 using any known or future-developed standard and/or architecture.


The ultrasonic sensors 328 may include one or more components that are configured to detect objects/targets in an environment of the vehicle 100. In some embodiments, the ultrasonic sensors 328 may determine a distance, position, and/or movement vector (e.g., angle, speed, etc.) associated with a target over time. The ultrasonic sensors 328 may include an ultrasonic transmitter and receiver, or transceiver, configured to generate and emit ultrasound waves and interpret returned echoes of those waves. In some embodiments, the ultrasonic sensors 328 may include at least one processor configured to interpret the returned ultrasonic waves and determine locational properties of targets. Examples of the ultrasonic sensors 328 as described herein may include, but are not limited to, at least one of Texas Instruments TIDA-00151 automotive ultrasonic sensor interface IC sensors, MaxBotix® MB8450 ultrasonic proximity sensor, MaxBotix® ParkSonar™-EZ ultrasonic proximity sensors, Murata Electronics MA40H1S-R open-structure ultrasonic sensors, Murata Electronics MA40S4R/S open-structure ultrasonic sensors, Murata Electronics MA58MF14-7N waterproof ultrasonic sensors, other industry-equivalent ultrasonic sensors and/or systems, and may perform ultrasonic target and/or obstacle detection in an environment around the vehicle 100 using any known or future-developed standard and/or architecture.


The camera sensors 332 may include one or more components configured to detect image information associated with an environment of the vehicle 100. In some embodiments, the camera sensors 332 may include a lens, filter, image sensor, and/or a digital image processor. It is an aspect of the present disclosure that multiple camera sensors 332 may be used together to generate stereo images providing depth measurements. Examples of the camera sensors 332 as described herein may include, but are not limited to, at least one of ON Semiconductor® MT9V024 Global Shutter VGA GS CMOS image sensors, Teledyne DALSA Falcon2 camera sensors, CMOSIS CMV50000 high-speed CMOS image sensors, other industry-equivalent camera sensors and/or systems, and may perform visual target and/or obstacle detection in an environment around the vehicle 100 using any known or future-developed standard and/or architecture.


The infrared (IR) sensors 336 may include one or more components configured to detect image information associated with an environment of the vehicle 100. The IR sensors 336 may be configured to detect targets in low-light, dark, or poorly-lit environments. The IR sensors 336 may include an IR light emitting element (e.g., IR light emitting diode (LED), etc.) and an IR photodiode. In some embodiments, the IR photodiode may be configured to detect returned IR light at or about the same wavelength to that emitted by the IR light emitting element. In some embodiments, the IR sensors 336 may include at least one processor configured to interpret the returned IR light and determine locational properties of targets. The IR sensors 336 may be configured to detect and/or measure a temperature associated with a target (e.g., an object, pedestrian, other vehicle, etc.). Examples of IR sensors 336 as described herein may include, but are not limited to, at least one of Opto Diode lead-salt IR array sensors, Opto Diode OD-850 Near-IR LED sensors, Opto Diode SA/SHA727 steady state IR emitters and IR detectors, FLIR® LS microbolometer sensors, FLIR® TacFLIR 380-HD InSb MWIR FPA and HD MWIR thermal sensors, FLIR® VOx 640×480 pixel detector sensors, Delphi IR sensors, other industry-equivalent IR sensors and/or systems, and may perform IR visual target and/or obstacle detection in an environment around the vehicle 100 using any known or future-developed standard and/or architecture.


The vehicle 100 can also include one or more interior sensors 337. Interior sensors 337 can measure characteristics of the inside environment of the vehicle 100. The interior sensors 337 may be as described in conjunction with FIG. 3B.


A navigation system 302 can include any hardware and/or software used to navigate the vehicle either manually or autonomously. The navigation system 302 may be as described in conjunction with FIG. 3C.


In some embodiments, the driving vehicle sensors and systems 304 may include other sensors 338 and/or combinations of the sensors 306-337 described above. Additionally or alternatively, one or more of the sensors 306-337 described above may include one or more processors configured to process and/or interpret signals detected by the one or more sensors 306-337. In some embodiments, the processing of at least some sensor information provided by the vehicle sensors and systems 304 may be processed by at least one sensor processor 340. Raw and/or processed sensor data may be stored in a sensor data memory 344 storage medium. In some embodiments, the sensor data memory 344 may store instructions used by the sensor processor 340 for processing sensor information provided by the sensors and systems 304. In any event, the sensor data memory 344 may be a disk drive, optical storage device, solid-state storage device such as a random access memory (“RAM”) and/or a read-only memory (“ROM”), which can be programmable, flash-updateable, and/or the like.


The vehicle control system 348 may receive processed sensor information from the sensor processor 340 and determine to control an aspect of the vehicle 100. Controlling an aspect of the vehicle 100 may include presenting information via one or more display devices 372 associated with the vehicle, sending commands to one or more computing devices 368 associated with the vehicle, and/or controlling a driving operation of the vehicle. In some embodiments, the vehicle control system 348 may correspond to one or more computing systems that control driving operations of the vehicle 100 in accordance with the Levels of driving autonomy described above. In one embodiment, the vehicle control system 348 may operate a speed of the vehicle 100 by controlling an output signal to the accelerator and/or braking system of the vehicle. In this example, the vehicle control system 348 may receive sensor data describing an environment surrounding the vehicle 100 and, based on the sensor data received, determine to adjust the acceleration, power output, and/or braking of the vehicle 100. The vehicle control system 348 may additionally control steering and/or other driving functions of the vehicle 100.


The vehicle control system 348 may communicate, in real-time, with the driving sensors and systems 304 forming a feedback loop. In particular, upon receiving sensor information describing a condition of targets in the environment surrounding the vehicle 100, the vehicle control system 348 may autonomously make changes to a driving operation of the vehicle 100. The vehicle control system 348 may then receive subsequent sensor information describing any change to the condition of the targets detected in the environment as a result of the changes made to the driving operation. This continual cycle of observation (e.g., via the sensors, etc.) and action (e.g., selected control or non-control of vehicle operations, etc.) allows the vehicle 100 to operate autonomously in the environment.


In some embodiments, the one or more components of the vehicle 100 (e.g., the driving vehicle sensors 304, vehicle control system 348, display devices 372, etc.) may communicate across the communication network 352 to one or more entities 356A-N via a communications subsystem 350 of the vehicle 100. Embodiments of the communications subsystem 350 are described in greater detail in conjunction with FIG. 5. For instance, the navigation sensors 308 may receive global positioning, location, and/or navigational information from a navigation source 356A. In some embodiments, the navigation source 356A may be a global navigation satellite system (GNSS) similar, if not identical, to NAVSTAR GPS, GLONASS, EU Galileo, and/or the BeiDou Navigation Satellite System (BDS) to name a few.


In some embodiments, the vehicle control system 348 may receive control information from one or more control sources 356B. The control source 356 may provide vehicle control information including autonomous driving control commands, vehicle operation override control commands, and the like. The control source 356 may correspond to an autonomous vehicle control system, a traffic control system, an administrative control entity, and/or some other controlling server. It is an aspect of the present disclosure that the vehicle control system 348 and/or other components of the vehicle 100 may exchange communications with the control source 356 across the communication network 352 and via the communications subsystem 350.


Information associated with controlling driving operations of the vehicle 100 may be stored in a control data memory 364 storage medium. The control data memory 364 may store instructions used by the vehicle control system 348 for controlling driving operations of the vehicle 100, historical control information, autonomous driving control rules, and the like. In some embodiments, the control data memory 364 may be a disk drive, optical storage device, solid-state storage device such as a random access memory (“RAM”) and/or a read-only memory (“ROM”), which can be programmable, flash-updateable, and/or the like.


In addition to the mechanical components described herein, the vehicle 100 may include a number of user interface devices. The user interface devices receive and translate human input into a mechanical movement or electrical signal or stimulus. The human input may be one or more of motion (e.g., body movement, body part movement, in two-dimensional or three-dimensional space, etc.), voice, touch, and/or physical interaction with the components of the vehicle 100. In some embodiments, the human input may be configured to control one or more functions of the vehicle 100 and/or systems of the vehicle 100 described herein. User interfaces may include, but are in no way limited to, at least one graphical user interface of a display device, steering wheel or mechanism, transmission lever or button (e.g., including park, neutral, reverse, and/or drive positions, etc.), throttle control pedal or mechanism, brake control pedal or mechanism, power control switch, communications equipment, etc.



FIG. 3B shows a block diagram of an embodiment of interior sensors 337 for a vehicle 100. The interior sensors 337 may be arranged into one or more groups, based at least partially on the function of the interior sensors 337. For example, the interior space of a vehicle 100 may include environmental sensors, user interface sensor(s), and/or safety sensors. Additionally or alternatively, there may be sensors associated with various devices inside the vehicle (e.g., smart phones, tablets, mobile computers, wearables, etc.)


Environmental sensors may comprise sensors configured to collect data relating to the internal environment of a vehicle 100. Examples of environmental sensors may include one or more of, but are not limited to: oxygen/air sensors 301, temperature sensors 303, humidity sensors 305, light/photo sensors 307, and more. The oxygen/air sensors 301 may be configured to detect a quality or characteristic of the air in the interior space 108 of the vehicle 100 (e.g., ratios and/or types of gasses comprising the air inside the vehicle 100, dangerous gas levels, safe gas levels, etc.). Temperature sensors 303 may be configured to detect temperature readings of one or more objects, users 216, and/or areas of a vehicle 100. Humidity sensors 305 may detect an amount of water vapor present in the air inside the vehicle 100. The light/photo sensors 307 can detect an amount of light present in the vehicle 100. Further, the light/photo sensors 307 may be configured to detect various levels of light intensity associated with light in the vehicle 100.


User interface sensors may comprise sensors configured to collect data relating to one or more users (e.g., a driver and/or passenger(s)) in a vehicle 100. As can be appreciated, the user interface sensors may include sensors that are configured to collect data from users 216 in one or more areas of the vehicle 100. Examples of user interface sensors may include one or more of, but are not limited to: infrared sensors 309, motion sensors 311, weight sensors 313, wireless network sensors 315, biometric sensors 317, camera (or image) sensors 319, audio sensors 321, and more.


Infrared sensors 309 may be used to measure IR light irradiating from at least one surface, user, or other object in the vehicle 100. Among other things, the Infrared sensors 309 may be used to measure temperatures, form images (especially in low light conditions), identify users 216, and even detect motion in the vehicle 100.


The motion sensors 311 may detect motion and/or movement of objects inside the vehicle 100. Optionally, the motion sensors 311 may be used alone or in combination to detect movement. For example, a user may be operating a vehicle 100 (e.g., while driving, etc.) when a passenger in the rear of the vehicle 100 unbuckles a safety belt and proceeds to move about the vehicle 10. In this example, the movement of the passenger could be detected by the motion sensors 311. In response to detecting the movement and/or the direction associated with the movement, the passenger may be prevented from interfacing with and/or accessing at least some of the vehicle control features. As can be appreciated, the user may be alerted of the movement/motion such that the user can act to prevent the passenger from interfering with the vehicle controls. Optionally, the number of motion sensors in a vehicle may be increased to increase an accuracy associated with motion detected in the vehicle 100.


Weight sensors 313 may be employed to collect data relating to objects and/or users in various areas of the vehicle 100. In some cases, the weight sensors 313 may be included in the seats and/or floor of a vehicle 100. Optionally, the vehicle 100 may include a wireless network sensor 315. This sensor 315 may be configured to detect one or more wireless network(s) inside the vehicle 100. Examples of wireless networks may include, but are not limited to, wireless communications utilizing Bluetooth®, Wi-Fi™, ZigBee, IEEE 802.11, and other wireless technology standards. For example, a mobile hotspot may be detected inside the vehicle 100 via the wireless network sensor 315. In this case, the vehicle 100 may determine to utilize and/or share the mobile hotspot detected via/with one or more other devices associated with the vehicle 100.


Biometric sensors 317 may be employed to identify and/or record characteristics associated with a user. It is anticipated that biometric sensors 317 can include at least one of image sensors, IR sensors, fingerprint readers, weight sensors, load cells, force transducers, heart rate monitors, blood pressure monitors, and the like as provided herein.


The camera sensors 319 may record still images, video, and/or combinations thereof. Camera sensors 319 may be used alone or in combination to identify objects, users, and/or other features, inside the vehicle 100. Two or more camera sensors 319 may be used in combination to form, among other things, stereo and/or three-dimensional (3D) images. The stereo images can be recorded and/or used to determine depth associated with objects and/or users in a vehicle 100. Further, the camera sensors 319 used in combination may determine the complex geometry associated with identifying characteristics of a user. For example, the camera sensors 319 may be used to determine dimensions between various features of a user's face (e.g., the depth/distance from a user's nose to a user's cheeks, a linear distance between the center of a user's eyes, and more). These dimensions may be used to verify, record, and even modify characteristics that serve to identify a user. The camera sensors 319 may also be used to determine movement associated with objects and/or users within the vehicle 100. It should be appreciated that the number of image sensors used in a vehicle 100 may be increased to provide greater dimensional accuracy and/or views of a detected image in the vehicle 100.


The audio sensors 321 may be configured to receive audio input from a user of the vehicle 100. The audio input from a user may correspond to voice commands, conversations detected in the vehicle 100, phone calls made in the vehicle 100, and/or other audible expressions made in the vehicle 100. Audio sensors 321 may include, but are not limited to, microphones and other types of acoustic-to-electric transducers or sensors. Optionally, the interior audio sensors 321 may be configured to receive and convert sound waves into an equivalent analog or digital signal. The interior audio sensors 321 may serve to determine one or more locations associated with various sounds in the vehicle 100. The location of the sounds may be determined based on a comparison of volume levels, intensity, and the like, between sounds detected by two or more interior audio sensors 321. For instance, a first audio sensor 321 may be located in a first area of the vehicle 100 and a second audio sensor 321 may be located in a second area of the vehicle 100. If a sound is detected at a first volume level by the first audio sensors 321 A and a second, higher, volume level by the second audio sensors 321 in the second area of the vehicle 100, the sound may be determined to be closer to the second area of the vehicle 100. As can be appreciated, the number of sound receivers used in a vehicle 100 may be increased (e.g., more than two, etc.) to increase measurement accuracy surrounding sound detection and location, or source, of the sound (e.g., via triangulation, etc.).


The safety sensors may comprise sensors configured to collect data relating to the safety of a user and/or one or more components of a vehicle 100. Examples of safety sensors may include one or more of, but are not limited to: force sensors 325, mechanical motion sensors 327, orientation sensors 329, restraint sensors 331, and more.


The force sensors 325 may include one or more sensors inside the vehicle 100 configured to detect a force observed in the vehicle 100. One example of a force sensor 325 may include a force transducer that converts measured forces (e.g., force, weight, pressure, etc.) into output signals. Mechanical motion sensors 327 may correspond to encoders, accelerometers, damped masses, and the like. Optionally, the mechanical motion sensors 327 may be adapted to measure the force of gravity (i.e., G-force) as observed inside the vehicle 100. Measuring the G-force observed inside a vehicle 100 can provide valuable information related to a vehicle's acceleration, deceleration, collisions, and/or forces that may have been suffered by one or more users in the vehicle 100. Orientation sensors 329 can include accelerometers, gyroscopes, magnetic sensors, and the like that are configured to detect an orientation associated with the vehicle 100.


The restraint sensors 331 may correspond to sensors associated with one or more restraint devices and/or systems in a vehicle 100. Seatbelts and airbags are examples of restraint devices and/or systems. As can be appreciated, the restraint devices and/or systems may be associated with one or more sensors that are configured to detect a state of the device/system. The state may include extension, engagement, retraction, disengagement, deployment, and/or other electrical or mechanical conditions associated with the device/system.


The associated device sensors 323 can include any sensors that are associated with a device in the vehicle 100. As previously stated, typical devices may include smart phones, tablets, laptops, mobile computers, and the like. It is anticipated that the various sensors associated with these devices can be employed by the vehicle control system 348. For example, a typical smart phone can include, an image sensor, an IR sensor, audio sensor, gyroscope, accelerometer, wireless network sensor, fingerprint reader, and more. It is an aspect of the present disclosure that one or more of these associated device sensors 323 may be used by one or more subsystems of the vehicle 100.



FIG. 3C illustrates a GPS/Navigation subsystem(s) 302. The navigation subsystem(s) 302 can be any present or future-built navigation system that may use location data, for example, from the Global Positioning System (GPS), to provide navigation information or control the vehicle 100. The navigation subsystem(s) 302 can include several components, such as, one or more of, but not limited to: a GPS Antenna/receiver 331, a location module 333, a maps database 335, etc. Generally, the several components or modules 331-335 may be hardware, software, firmware, computer readable media, or combinations thereof.


A GPS Antenna/receiver 331 can be any antenna, GPS puck, and/or receiver capable of receiving signals from a GPS satellite or other navigation system. The signals may be demodulated, converted, interpreted, etc. by the GPS Antenna/receiver 331 and provided to the location module 333. Thus, the GPS Antenna/receiver 331 may convert the time signals from the GPS system and provide a location (e.g., coordinates on a map) to the location module 333. Alternatively, the location module 333 can interpret the time signals into coordinates or other location information.


The location module 333 can be the controller of the satellite navigation system designed for use in the vehicle 100. The location module 333 can acquire position data, as from the GPS Antenna/receiver 331, to locate the user or vehicle 100 on a road in the unit's map database 335. Using the road database 335, the location module 333 can give directions to other locations along roads also in the database 335. When a GPS signal is not available, the location module 333 may apply dead reckoning to estimate distance data from sensors 304 including one or more of, but not limited to, a speed sensor attached to the drive train of the vehicle 100, a gyroscope, an accelerometer, etc. Additionally or alternatively, the location module 333 may use known locations of Wi-Fi hotspots, cell tower data, etc. to determine the position of the vehicle 100, such as by using time difference of arrival (TDOA) and/or frequency difference of arrival (FDOA) techniques.


The maps database 335 can include any hardware and/or software to store information about maps, geographical information system (GIS) information, location information, etc. The maps database 335 can include any data definition or other structure to store the information. Generally, the maps database 335 can include a road database that may include one or more vector maps of areas of interest. Street names, street numbers, house numbers, and other information can be encoded as geographic coordinates so that the user can find some desired destination by street address. Points of interest (waypoints) can also be stored with their geographic coordinates. For example, a point of interest may include speed cameras, fuel stations, public parking, and “parked here” (or “you parked here”) information. The maps database 335 may also include road or street characteristics, for example, speed limits, location of stop lights/stop signs, lane divisions, school locations, etc. The map database contents can be produced or updated by a server connected through a wireless system in communication with the Internet, even as the vehicle 100 is driven along existing streets, yielding an up-to-date map.



FIG. 4 shows one embodiment of the instrument panel 400 of the vehicle 100. The instrument panel 400 of vehicle 100 comprises a steering wheel 410, a vehicle operational display 420 (e.g., configured to present and/or display driving data such as speed, measured air resistance, vehicle information, entertainment information, etc.), one or more auxiliary displays 424 (e.g., configured to present and/or display information segregated from the operational display 420, entertainment applications, movies, music, etc.), a heads-up display 434 (e.g., configured to display any information previously described including, but in no way limited to, guidance information such as route to destination, or obstacle warning information to warn of a potential collision, or some or all primary vehicle operational data such as speed, resistance, etc.), a power management display 428 (e.g., configured to display data corresponding to electric power levels of vehicle 100, reserve power, charging status, etc.), and an input device 432 (e.g., a controller, touchscreen, or other interface device configured to interface with one or more displays in the instrument panel or components of the vehicle 100. The input device 432 may be configured as a joystick, mouse, touchpad, tablet, 3D gesture capture device, etc.). In some embodiments, the input device 432 may be used to manually maneuver a portion of the vehicle 100 into a charging position (e.g., moving a charging plate to a desired separation distance, etc.).


While one or more of displays of instrument panel 400 may be touch-screen displays, it should be appreciated that the vehicle operational display may be a display incapable of receiving touch input. For instance, the operational display 420 that spans across an interior space centerline 404 and across both a first zone 408A and a second zone 408B may be isolated from receiving input from touch, especially from a passenger. In some cases, a display that provides vehicle operation or critical systems information and interface may be restricted from receiving touch input and/or be configured as a non-touch display. This type of configuration can prevent dangerous mistakes in providing touch input where such input may cause an accident or unwanted control.


In some embodiments, one or more displays of the instrument panel 400 may be mobile devices and/or applications residing on a mobile device such as a smart phone. Additionally or alternatively, any of the information described herein may be presented to one or more portions 420A-N of the operational display 420 or other display 424, 428, 434. In one embodiment, one or more displays of the instrument panel 400 may be physically separated or detached from the instrument panel 400. In some cases, a detachable display may remain tethered to the instrument panel.


The portions 420A-N of the operational display 420 may be dynamically reconfigured and/or resized to suit any display of information as described. Additionally or alternatively, the number of portions 420A-N used to visually present information via the operational display 420 may be dynamically increased or decreased as required, and are not limited to the configurations shown.



FIG. 5 illustrates a hardware diagram of communications componentry that can be optionally associated with the vehicle 100 in accordance with embodiments of the present disclosure.


The communications componentry can include one or more wired or wireless devices such as a transceiver(s) and/or modem that allows communications not only between the various systems disclosed herein but also with other devices, such as devices on a network, and/or on a distributed network such as the Internet and/or in the cloud and/or with another vehicle(s).


The communications subsystem 350 can also include inter- and intra-vehicle communications capabilities such as hotspot and/or access point connectivity for any one or more of the vehicle occupants and/or vehicle-to-vehicle communications.


Additionally, and while not specifically illustrated, the communications subsystem 350 can include one or more communications links (that can be wired or wireless) and/or communications busses (managed by the bus manager 574), including one or more of CANbus, OBD-II, ARCINC 429, Byteflight, CAN (Controller Area Network), D2B (Domestic Digital Bus), FlexRay, DC-BUS, IDB-1394, IEBus, I2C, ISO 9141-1/-2, J1708, J1587, J1850, J1939, ISO 11783, Keyword Protocol 2000, LIN (Local Interconnect Network), MOST (Media Oriented Systems Transport), Multifunction Vehicle Bus, SMARTwireX, SPI, VAN (Vehicle Area Network), and the like or in general any communications protocol and/or standard(s).


The various protocols and communications can be communicated one or more of wirelessly and/or over transmission media such as single wire, twisted pair, fiber optic, IEEE 1394, MIL-STD-1553, MIL-STD-1773, power-line communication, or the like. (All of the above standards and protocols are incorporated herein by reference in their entirety).


As discussed, the communications subsystem 350 enables communications between any of the inter-vehicle systems and subsystems as well as communications with non-collocated resources, such as those reachable over a network such as the Internet.


The communications subsystem 350, in addition to well-known componentry (which has been omitted for clarity), includes interconnected elements including one or more of: one or more antennas 504, an interleaver/deinterleaver 508, an analog front end (AFE) 512, memory/storage/cache 516, controller/microprocessor 520, MAC circuitry 522, modulator/demodulator 524, encoder/decoder 528, a plurality of connectivity managers 534, 558, 562, 566, GPU 540, accelerator 544, a multiplexer/demultiplexer 552, transmitter 570, receiver 572 and additional wireless radio components such as a Wi-Fi PHY/Bluetooth® module 580, a Wi-Fi/BT MAC module 584, additional transmitter(s) 588 and additional receiver(s) 592. The various elements in the device 350 are connected by one or more links/busses 5 (not shown, again for sake of clarity).


The device 350 can have one more antennas 504, for use in wireless communications such as multi-input multi-output (MIMO) communications, multi-user multi-input multi-output (MU-MIMO) communications Bluetooth®, LTE, 4G, 5G, Near-Field Communication (NFC), etc., and in general for any type of wireless communications. The antenna(s) 504 can include, but are not limited to one or more of directional antennas, omnidirectional antennas, monopoles, patch antennas, loop antennas, microstrip antennas, dipoles, and any other antenna(s) suitable for communication transmission/reception. In an exemplary embodiment, transmission/reception using MIMO may require particular antenna spacing. In another exemplary embodiment, MIMO transmission/reception can enable spatial diversity allowing for different channel characteristics at each of the antennas. In yet another embodiment, MIMO transmission/reception can be used to distribute resources to multiple users for example within the vehicle 100 and/or in another vehicle.


Antenna(s) 504 generally interact with the Analog Front End (AFE) 512, which is needed to enable the correct processing of the received modulated signal and signal conditioning for a transmitted signal. The AFE 512 can be functionally located between the antenna and a digital baseband system to convert the analog signal into a digital signal for processing and vice-versa.


The subsystem 350 can also include a controller/microprocessor 520 and a memory/storage/cache 516. The subsystem 350 can interact with the memory/storage/cache 516 which may store information and operations necessary for configuring and transmitting or receiving the information described herein. The memory/storage/cache 516 may also be used in connection with the execution of application programming or instructions by the controller/microprocessor 520, and for temporary or long-term storage of program instructions and/or data. As examples, the memory/storage/cache 520 may comprise a computer-readable device, RAM, ROM, DRAM, SDRAM, and/or other storage device(s) and media.


The controller/microprocessor 520 may comprise a general purpose programmable processor or controller for executing application programming or instructions related to the subsystem 350. Furthermore, the controller/microprocessor 520 can perform operations for configuring and transmitting/receiving information as described herein. The controller/microprocessor 520 may include multiple processor cores, and/or implement multiple virtual processors. Optionally, the controller/microprocessor 520 may include multiple physical processors. By way of example, the controller/microprocessor 520 may comprise a specially configured Application Specific Integrated Circuit (ASIC) or other integrated circuit, a digital signal processor(s), a controller, a hardwired electronic or logic circuit, a programmable logic device or gate array, a special purpose computer, or the like.


The subsystem 350 can further include a transmitter(s) 570, 588 and receiver(s) 572, 592 which can transmit and receive signals, respectively, to and from other devices, subsystems and/or other destinations using the one or more antennas 504 and/or links/busses. Included in the subsystem 350 circuitry is the medium access control or MAC Circuitry 522. MAC circuitry 522 provides for controlling access to the wireless medium. In an exemplary embodiment, the MAC circuitry 522 may be arranged to contend for the wireless medium and configure frames or packets for communicating over the wired/wireless medium.


The subsystem 350 can also optionally contain a security module (not shown). This security module can contain information regarding but not limited to, security parameters required to connect the device to one or more other devices or other available network(s), and can include WEP or WPA/WPA-2 (optionally+AES and/or TKIP) security access keys, network keys, etc. The WEP security access key is a security password used by Wi-Fi networks. Knowledge of this code can enable a wireless device to exchange information with an access point and/or another device. The information exchange can occur through encoded messages with the WEP access code often being chosen by the network administrator. WPA is an added security standard that is also used in conjunction with network connectivity with stronger encryption than WEP.


In some embodiments, the communications subsystem 350 also includes a GPU 540, an accelerator 544, a Wi-Fi/BT/BLE (Bluetooth® Low-Energy) PHY module 580 and a Wi-Fi/BT/BLE MAC module 584 and optional wireless transmitter 588 and optional wireless receiver 592. In some embodiments, the GPU 540 may be a graphics processing unit, or visual processing unit, comprising at least one circuit and/or chip that manipulates and changes memory to accelerate the creation of images in a frame buffer for output to at least one display device. The GPU 540 may include one or more of a display device connection port, printed circuit board (PCB), a GPU chip, a metal-oxide-semiconductor field-effect transistor (MOSFET), memory (e.g., single data rate random-access memory (SDRAM), double data rate random-access memory (DDR) RAM, etc., and/or combinations thereof), a secondary processing chip (e.g., handling video out capabilities, processing, and/or other functions in addition to the GPU chip, etc.), a capacitor, heatsink, temperature control or cooling fan, motherboard connection, shielding, and the like.


The various connectivity managers 534, 558, 562, 566 manage and/or coordinate communications between the subsystem 350 and one or more of the systems disclosed herein and one or more other devices/systems. The connectivity managers 534, 558, 562, 566 include a charging connectivity manager 534, a vehicle database connectivity manager 558, a remote operating system connectivity manager 562, and a sensor connectivity manager 566.


The charging connectivity manager 534 can coordinate not only the physical connectivity between the vehicle 100 and a charging device/vehicle, but can also communicate with one or more of a power management controller, one or more third parties and optionally a billing system(s). As an example, the vehicle 100 can establish communications with the charging device/vehicle to one or more of coordinate interconnectivity between the two (e.g., by spatially aligning the charging receptacle on the vehicle with the charger on the charging vehicle) and optionally share navigation information. Once charging is complete, the amount of charge provided can be tracked and optionally forwarded to, for example, a third party for billing. In addition to being able to manage connectivity for the exchange of power, the charging connectivity manager 534 can also communicate information, such as billing information to the charging vehicle and/or a third party. This billing information could be, for example, the owner of the vehicle, the driver/occupant(s) of the vehicle, company information, or in general any information usable to charge the appropriate entity for the power received.


The vehicle database connectivity manager 558 allows the subsystem to receive and/or share information stored in the vehicle database. This information can be shared with other vehicle components/subsystems and/or other entities, such as third parties and/or charging systems. The information can also be shared with one or more vehicle occupant devices, such as an app (application) on a mobile device the driver uses to track information about the vehicle 100 and/or a dealer or service/maintenance provider. In general, any information stored in the vehicle database can optionally be shared with any one or more other devices optionally subject to any privacy or confidentially restrictions.


The remote operating system connectivity manager 562 facilitates communications between the vehicle 100 and any one or more autonomous vehicle systems. These communications can include one or more of navigation information, vehicle information, other vehicle information, weather information, occupant information, or in general any information related to the remote operation of the vehicle 100.


The sensor connectivity manager 566 facilitates communications between any one or more of the vehicle sensors (e.g., the driving vehicle sensors and systems 304, etc.) and any one or more of the other vehicle systems. The sensor connectivity manager 566 can also facilitate communications between any one or more of the sensors and/or vehicle systems and any other destination, such as a service company, app, or in general to any destination where sensor data is needed.


In accordance with one exemplary embodiment, any of the communications discussed herein can be communicated via the conductor(s) used for charging. One exemplary protocol usable for these communications is Power-line communication (PLC). PLC is a communication protocol that uses electrical wiring to simultaneously carry both data, and Alternating Current (AC) electric power transmission or electric power distribution. It is also known as power-line carrier, power-line digital subscriber line (PDSL), mains communication, power-line telecommunications, or power-line networking (PLN). For DC environments in vehicles PLC can be used in conjunction with CAN-bus, LIN-bus over power line (DC-LIN) and DC-BUS.


The communications subsystem can also optionally manage one or more identifiers, such as an IP (Internet Protocol) address(es), associated with the vehicle and one or other system or subsystems or components and/or devices therein. These identifiers can be used in conjunction with any one or more of the connectivity managers as discussed herein.



FIG. 6 illustrates a block diagram of a computing environment 600 that may function as the servers, user computers, or other systems provided and described herein. The computing environment 600 includes one or more user computers, or computing devices, such as a vehicle computing device 604, a communication device 608, and/or more 612. The computing devices 604, 608, 612 may include general purpose personal computers (including, merely by way of example, personal computers, and/or laptop computers running various versions of Microsoft Corp.'s Windows® and/or Apple Corp.'s Macintosh® operating systems) and/or workstation computers running any of a variety of commercially-available UNIX® or UNIX-like operating systems. These computing devices 604, 608, 612 may also have any of a variety of applications, including for example, database client and/or server applications, and web browser applications. Alternatively, the computing devices 604, 608, 612 may be any other electronic device, such as a thin-client computer, Internet-enabled mobile telephone, and/or personal digital assistant, capable of communicating via a network 352 and/or displaying and navigating web pages or other types of electronic documents or information. Although the exemplary computing environment 600 is shown with two computing devices, any number of user computers or computing devices may be supported.


The computing environment 600 may also include one or more servers 614, 616. In this example, server 614 is shown as a web server and server 616 is shown as an application server. The web server 614, which may be used to process requests for web pages or other electronic documents from computing devices 604, 608, 612. The web server 614 can be running an operating system including any of those discussed above, as well as any commercially-available server operating systems. The web server 614 can also run a variety of server applications, including SIP (Session Initiation Protocol) servers, HTTP(s) servers, FTP servers, CGI servers, database servers, Java® servers, and the like. In some instances, the web server 614 may publish operations available operations as one or more web services.


The computing environment 600 may also include one or more file and or/application servers 616, which can, in addition to an operating system, include one or more applications accessible by a client running on one or more of the computing devices 604, 608, 612. The server(s) 616 and/or 614 may be one or more general purpose computers capable of executing programs or scripts in response to the computing devices 604, 608, 612. As one example, the server 616, 614 may execute one or more web applications. The web application may be implemented as one or more scripts or programs written in any programming language, such as Java®, C, C#®, or C++, and/or any scripting language, such as Perl, Python, or TCL, as well as combinations of any programming/scripting languages. The application server(s) 616 may also include database servers, including without limitation those commercially available from Oracle®, Microsoft®, Sybase®, IBM® and the like, which can process requests from database clients running on a computing device 604, 608, 612.


The web pages created by the server 614 and/or 616 may be forwarded to a computing device 604, 608, 612 via a web (file) server 614, 616. Similarly, the web server 614 may be able to receive web page requests, web services invocations, and/or input data from a computing device 604, 608, 612 (e.g., a user computer, etc.) and can forward the web page requests and/or input data to the web (application) server 616. In further embodiments, the server 616 may function as a file server. Although for ease of description, FIG. 6 illustrates a separate web server 614 and file/application server 616, those skilled in the art will recognize that the functions described with respect to servers 614, 616 may be performed by a single server and/or a plurality of specialized servers, depending on implementation-specific needs and parameters. The computer systems 604, 608, 612, web (file) server 614 and/or web (application) server 616 may function as the system, devices, or components described in FIGS. 1-6.


The computing environment 600 may also include a database 618. The database 618 may reside in a variety of locations. By way of example, database 618 may reside on a storage medium local to (and/or resident in) one or more of the computers 604, 608, 612, 614, 616. Alternatively, it may be remote from any or all of the computers 604, 608, 612, 614, 616, and in communication (e.g., via the network 352) with one or more of these. The database 618 may reside in a storage-area network (“SAN”) familiar to those skilled in the art. Similarly, any necessary files for performing the functions attributed to the computers 604, 608, 612, 614, 616 may be stored locally on the respective computer and/or remotely, as appropriate. The database 618 may be a relational database, such as Oracle 20i®, that is adapted to store, update, and retrieve data in response to SQL-formatted commands.



FIG. 7 illustrates one embodiment of a computer system 700 upon which the servers, user computers, computing devices, or other systems or components described above may be deployed or executed. The computer system 700 is shown comprising hardware elements that may be electrically coupled via a bus 704. The hardware elements may include one or more central processing units (CPUs) 708; one or more input devices 712 (e.g., a mouse, a keyboard, etc.); and one or more output devices 716 (e.g., a display device, a printer, etc.). The computer system 700 may also include one or more storage devices 720. By way of example, storage device(s) 720 may be disk drives, optical storage devices, solid-state storage devices such as a random access memory (“RAM”) and/or a read-only memory (“ROM”), which can be programmable, flash-updateable and/or the like.


The computer system 700 may additionally include a computer-readable storage media reader 724; a communications system 728 (e.g., a modem, a network card (wireless or wired), an infra-red communication device, etc.); and working memory 736, which may include RAM and ROM devices as described above. The computer system 700 may also include a processing acceleration unit 732, which can include a DSP, a special-purpose processor, and/or the like.


The computer-readable storage media reader 724 can further be connected to a computer-readable storage medium, together (and, optionally, in combination with storage device(s) 720) comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information. The communications system 728 may permit data to be exchanged with a network and/or any other computer described above with respect to the computer environments described herein. Moreover, as disclosed herein, the term “storage medium” may represent one or more devices for storing data, including read only memory (ROM), random access memory (RAM), magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash memory devices and/or other machine readable mediums for storing information.


The computer system 700 may also comprise software elements, shown as being currently located within a working memory 736, including an operating system 740 and/or other code 744. It should be appreciated that alternate embodiments of a computer system 700 may have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices may be employed.


Examples of the processors 340, 708 as described herein may include, but are not limited to, at least one of Qualcomm® Snapdragon® 800 and 801, Qualcomm® Snapdragon® 620 and 615 with 4G LTE Integration and 64-bit computing, Apple® A7 processor with 64-bit architecture, Apple® M7 motion coprocessors, Samsung® Exynos® series, the Intel® Core™ family of processors, the Intel® Xeon® family of processors, the Intel® Atom™ family of processors, the Intel Itanium® family of processors, Intel® Core® i5-4670K and i7-4770K 22 nm Haswell, Intel® Core® i5-3570K 22 nm Ivy Bridge, the AMD® FX™ family of processors, AMD® FX-4300, FX-6300, and FX-8350 32 nm Vishera, AMD® Kaveri processors, Texas Instruments® Jacinto C6000™ automotive infotainment processors, Texas Instruments® OMAP™ automotive-grade mobile processors, ARM® Cortex™-M processors, ARM® Cortex-A and ARM926EJ-S™ processors, other industry-equivalent processors, and may perform computational functions using any known or future-developed standard, instruction set, libraries, and/or architecture.


Visualizations of embodiments for both segmenting routes and for using feature vectors for location identification may be as shown in FIGS. 8A-8H. In FIG. 8A, a visualization 800 of a digital may represent a vehicle 100 be traveling between an origination point 804 and a destination 812. The vehicle 100 may travel along a route 816. For driverless vehicles and for location with GPS systems or other types of navigation systems, the vehicle 100 may use GPS to determine a general location 820 of the vehicle 100. Additionally or alternatively, the general location 820 may be determined by dead reckoning, visual odometry, particle filtering, and/or another process.


Dead reckoning may be the process of calculating the vehicle's position by estimating the direction and distance traveled rather than by using landmarks, astronomical observations, or electronic navigation methods. Visual odometry is related to dead reckoning in that, in computer vision systems (for example, the autonomous vehicle), visual odometry is the process of determining the position and orientation of the vehicle by analyzing the associated camera images. The analysis of a consecutive or a sequence of camera images, in visual odometry, can estimate the direction and distance traveled that is used for dead reckoning. Particle filtering can be the process of weighting and eliminating road segments, and therefore, which feature vectors, may be associated with the vehicle's position. A feature vector can be any type of visualization of an environment around a vehicle 100 at a segment 824. The feature vector may be comprised of observations of machine view of structures or static targets in the environment. The feature vector may include the outlines or partial outlines of the targets, may include a single target or multiple targets, etc. Using the process above, the vehicle 100 can weight road segments as more likely to be the exact location of the vehicle 100 if those road segments are nearer the determined position derived from GPS or dead reckoning.


Due to vagaries in signal accuracy of the GPS signal, due to interference of the GPS signal, or due to the inexactness of the dead reckoning, visual odometry, particle filtering processes above, the exact location of the vehicle 100 may be anywhere within some area represented by box 820. For example, the vehicle 100 may be within one to three meters of the vehicle's actual exact location. As such, without determining the exact position, the navigation system of the vehicle 100 may locate the vehicle 100 in an incorrect position (e.g., outside a lane or off a road surface) when the vehicle 100 may actually be driving down the middle of the lane or road. Due to these errors or inaccuracies, the vehicle 100 may not rely GPS for driverless or autonomous operation, but requires several other sensors to keep the vehicle 100 in the correct position on the road.


In a representation 822 of embodiments presented herein, the vehicle 100 may be traveling down a route 816 as shown FIG. 8B. This route 816 may be broken into or represented by two or more sections or segments 824a-824h. Each segment 824 of the route 816 may have associated therewith data, such as feature vector data.


The segment 824 can be located at the middle of the lane, and thus, when the vehicle 100 determines the nearest segment 824, the vehicle 100 can assume the vehicle's position is in the middle of the lane or the vehicle 100 can determine an error (how far from the vehicle is) from the middle of the lane or from the segment 824. This error from one or more segments 824 can be based on differences in the feature vectors described hereinafter.


The segments may have any type of frequency or separation. For example, the segment 824a may be a millimeter, an inch, a foot, etc. from segment 824b. As such, the vehicle 100 can have a more granulated or more precise location understanding based on a higher number of segments 824 per route 816.


In other embodiments, the route or the surface of the road 828 may be designated by a series of segments 824 spread throughout the area 828. In this way, the vehicle 100 can know where the vehicle is in substantially all of the road surface 828 rather than just at or near the middle of the road as shown with feature vectors 824a-824h. Regardless of how the segments 824, 828 are positioned within the route 816, the route 816 can have segments 824 associated therewith, and each of the segments 824 may have data associated therewith describing the segment's position and other information associated therewith as described in conjunction with FIGS. 9B-9C.



FIGS. 8C-8E show schematic views of machine vision or imaging sensor information 832, 836, 840, detected by at least one imaging system of the vehicle 100, describing a visual environment (e.g., at some point at or around the vehicle 100) that changes over time (e.g., while the vehicle 100 is driving, etc.). In some circumstances, the imaging system may be one or more of the imaging sensors 116A, 116F, 332, 336 (e.g., a camera, etc.) described above. The schematic views of FIGS. 8C-8E show computer-generated images 832, 836, 840 including one or more targets 844A-E that are detected as changing in shape, size, range, and/or geometry while the vehicle 100 is operating along a path 848 or roadway.



FIG. 8C shows a schematic view of imaging sensor information 166 detected by the imaging system of the vehicle 100 at a first time of travel T1 in accordance with embodiments of the present disclosure. The vehicle 100 may be driving down a street, roadway, or other driving path 848. As the vehicle 100 is driving, the imaging system 116 may visually detect targets 844A-E in a sensing area of the imaging system 116 describing (e.g., visually) an environment outside of the vehicle 100. The environment may include a first target 844A (e.g., a roadway edge, a street curb, another vehicle, a pedestrian, an object, etc.) on the roadway 848, and/or one or more other targets 844B-E (e.g., buildings, landmarks, signs, markers, etc.).


As the vehicle 100 moves along the path 848, visual characteristics associated with the targets 844A-E may change at a second time T2. FIG. 8D shows a schematic view of imaging sensor information 802 detected by the imaging system 116 of the vehicle 100 at a second time of travel T2 in accordance with embodiments of the present disclosure. In FIG. 8D, the range to all of the targets 844A-E has changed. For example, the size and shape of the building targets 844B, 844D, 844E have increased in dimension at the second time T2, while building target 844C is shown moving off-image.


As the vehicle 100 continues to move along the path 848 at a subsequent time, the visual characteristics associated with the targets 844A-E may continue to change. In FIG. 8E, a schematic view of imaging sensor information detected by the imaging system 116 of the vehicle 100 at a third time of travel T3 is shown in accordance with embodiments of the present disclosure. FIG. 8E shows that target information has changed to include a larger shape and size associated with some targets, while other targets have moved completely off-image. For instance, the building target 844B has increased in shape and size, while building target 844D is shown moving off-image and building targets 844C, 844E have moved completely off-image. In some embodiments, FIGS. 8C-8E show imaging sensor information changing over time (e.g., T1-T3) which can be the basis for visual odometry.


In view 832, a vehicle 100 may at a first road segment, for example, segment 824A, and may view buildings and other structures through one or more image sensors 116 or other sensors 304 at time T1. The visualization 832 can include one or more building targets or structures 844B-844E. Each of these structures 844B-844E can provide for a two-dimensional or 3D image associated with the segment 824. The segment 824 may be then positioned within a roadway 848 to determine the local position of the vehicle.


When the vehicle moves to a next segment as shown in view 836, the machine view 836 may change with buildings 844B-844E in different positions. By matching the visualization 832, 836 with stored information about each segment, the vehicle 100 can determine where on roadway 848 the vehicle 100 is currently located. If the views 832 and 836 do not necessarily match completely with the stored feature vectors associated with the segment 824, the vehicle 100 may extrapolate a position based on the vehicle's location or the locations of structures 844B-844E in comparison to the data stored in the vehicle database. At a further segment 824 arrived at time T3, shown in view 840, some of the buildings have disappeared and only buildings 844B and 844D are present. Thus, the vehicle 100 is further along the roadway 848. While buildings are shown as being used for characteristic localization, other types of structures or physical things may be used. For example, doorways, trees, fire hydrants, windows, street curbs, street lights, stop signs, etc. can be used to determine where a vehicle 100 is located or what may be viewed by vehicle sensors at a certain segment 824.


Another view 832 of roadway 848 may be as shown in FIG. 8F. In some configurations, the complete outlines or visualizations of the targets (e.g., buildings 844) are not used for localization. Rather, the features may comprise only portions of the targets 844 that are used to determine a location for the vehicle 100. For example, each building 844 may be broken into certain structures or elements that may be viewed by the vehicle 100. For example, feature vectors 852A-852F may represent only the corners of the buildings 844. By storing information or characteristics about these features 852, the vehicle 100 does not need to match up a complete machine visualization of all items within the view 832 to a stored image to determine a vehicle position. Rather, each feature vector 852 may only describe one or more portions of one or more targets 844 associated with the segment 824. Further, just essential data may be stored about each feature vector to determine the localization. The feature vector information may be as described in conjunction with FIG. 9B.


As shown in FIGS. 8G and 8H, the vehicle 100 can use different information in view 832 than that shown in FIG. 8D or 8E. At a next segment 824, shown in FIG. 8G, the superfluous information from view 832 is extracted in view 836. For example, in comparing FIG. 8D with FIG. 8G, the feature vectors 852, shown in FIG. 8G, eliminate extraneous information not used for the feature vectors, as shown in FIG. 8D. In this way, the feature vectors 852 become easier to identify and contain less information overall than providing information about the entire view 836.


In still a further segment 824, shown in FIG. 8H which is a derivation of the view 840 in FIG. 8E, the feature vectors 852 are shown without the representative circles. Thus, feature vector 852C, 852G, 8852H, contain all information of the view used to localize or identify the position of the vehicle 100 at the segment 824 at the locale on the road 848. In this way, the view 840 provides a much smaller data set for the feature vector(s) that can be stored locally in the vehicle 100 and used to identify the locale of the vehicle 100.


To accomplish the localization, the vehicle 100 can attempt to match the view of feature vector(s) 852 to information previously stored about feature vectors inside a database. An exact match can provide for the exact location of the vehicle 100 at the segment 824. As the vehicle 100 continues to travel on the route 816 and goes to the next segment 824, each segment 824 can be matched up by the feature vectors 852 stored for the next segment 824 in the vehicle 100, and thus the vehicle 100 can deduce the location of the vehicle 100. In this way, the vehicle 100 can determine a much more exact location compared to using GPS or by using other processes described above.


An embodiment of data store 356 for the navigation source containing geographic information system information 904 may be as shown in FIG. 9A. This GIS information 904 stores the different segments of routes or roadways combined with feature vector information. An embodiment of some of the information in the GIS information 904 may be as shown in FIG. 9B.


A data structure 908, which contains segment information for a route or roadway section, may be as shown in FIG. 9B. The data structure 908 can include one or more of, but is not limited to, a segment identifier (ID) 912, a latitude 916, a longitude 920, GIS information 924, feature information or feature characteristics 928A-928N, and/or metadata 932. There may be one or more features 852 associated with the segment 824 and there may be more or fewer feature information fields 928 than those shown in FIG. 9B, as represented by ellipsis 938. There also may be more or fewer fields than those shown in data structure 908, as represented by ellipsis 936. For each segment 824a-824h there may a different data structure 908 and thus there may be more data structures 908 than those shown in FIG. 9B, as represented by ellipsis 940.


The segment identifier 912 can be any type of identifier including an alphanumeric identifier, a numeric identifier, a globally unique identifier (GUID), or other types of identifiers. The segment ID 912 uniquely identifies the segment 824 compared to all other segments 824 in the GIS database 904. As such, the segment ID 912 may be a long series (e.g., over ten digits) of numbers, letters, and/or other symbols that provide for a greater number of different segments 824 (e.g., 1×1015 identifiers) as the road structure can be broken into many segments 824.


The latitude 916 and longitude 920 provide the location of the segment 824 identified by segment ID 912. The latitude 916 and longitude 920 can be provided in degrees, minutes, seconds, and tenths, hundredths, etc. of seconds, that provide for the location of the segment.


The GIS information 924 can provide any information beyond just the latitude and longitude information 916, 920. GIS information 924 can include elevations, street names, addresses, etc. This GIS information 924 may also identify the location of the segment, but may do so, in some configurations, in a broader sense rather than the narrower or accurate latitude and longitude 916, 920.


Feature vectors 928 are any information used to describe the feature 852, as described in conjunction with FIGS. 8A-8H. The feature vector 928 can be a location of a feature using latitude, longitude, other GIS information, viewing angle, altitude, etc. Further, the feature vector 928 can describe what the feature looks like or where the feature 852 is located in the view as shown in FIG. 8H. This feature vector information 928 can provide a description of angles, types of lines, and also an orientation or arrange of the feature 852 in association with other features 852 within a view 840. Further, the feature 928 may include a pointer or other information to other features which should be in the view 840 and can include information about how those features 852 are associated therewith by distances between features 852, angles from a set plane to another feature 852, viewing relationships, any type of grid information for the view 840 or other information. This information allows the vehicle to match the feature vector information 928 to a view as described previously in FIGS. 8A-8H. Further, the feature vector information 928 can include a previously created machine view image of the features 852 associated with the segment 824 to be visually compared by the vehicle 100. An example of feature vector information 928 may be as shown in FIG. 9C.


Metadata 932 can be any information related to the segment data structure 908 or the data therein. Further, metadata 932 can also include other information not described herein, but associated with other segment information or needed for the processes described herein. For example, the metadata 932 can include update information of when the feature vectors 928 were updated, the order in which the feature vectors 928 were added to the view for that segment 908, or other information regarding the data structure 908.


An embodiment of a feature vector data structure 928 may be as shown in FIG. 9C. The data structure 928 may include fields for one or more of, but not limited to, a feature vector ID 980, a latitude 916, a longitude 920, GIS information 928, appearance characteristics 984, and/or a view position 986. There may be more or fewer fields than those shown in FIG. 9C, as represented by ellipsis 992. Each feature vector 928, as described in conjunction with segment information 908, may have a different feature vector data structure 928, as represented by ellipsis 988.


The feature vector ID 980 can be any type of ID including an alphanumeric ID, a numeric ID, a GUID, etc. The feature vector ID 980 may include any type of information needed to uniquely identify that feature vector 928 compared to other feature vectors 928 associated with the segment data structure 908. Thus, the feature vector ID 980 need include many digits to identify the feature vector 928 compared to the other feature vectors 928 as there be a more constrained number of feature vectors 928 associated with each segment 908.


The latitude 916 and longitude 920 may be the same or similar to the data provided in latitude 916 and longitude 920 in data structure 908. The latitude 916 and longitude 920 values may be different from those given in data structure 908 (as the feature vector 852 may be in a different location), but may be of similar format or content. Similarly, the GIS information 928 may also have similar content to the GIS information 924 as described in conjunction with data structure 908 in FIG. 9B. The GIS data 924 can be any information that provides for a location of the feature vector 928 within an environment.


The appearance characteristics 984 can be any of the characteristics as described previously, describing how a feature vector appears in the machine view. For example, feature vectors 852 can include any type of line lengths, corners, angles, etc. dealing with one or more of the feature vectors 852. Further, the appearance characteristics 984 can provide information regarding how that feature vector 852 is associated with other feature vectors 852 within the view. For example, the angles or orientation of feature vector 852C-852H, in view 840 of FIG. 8H, may be described in appearance characteristics 984. Appearance characteristics 984 can also include the actual HD image of the view or the feature vector 852. As such, the feature vector information 928 can be used to identify or compare screen views 840 with information within the feature vector data structure 928 to determine similarities or likenesses.


View position 986 can be the position of any feature vector 852 within a view. For example, the view position 986 can be provided with grid coordinates for feature vectors 852 within view 840. In other words, view 840 may be separated into X and Y coordinates along a vertical and horizontal axis, respectively, that granulate or represent positions within the view 840. The view position 986 may be given by X and Y coordinates for some part or feature of the feature vector 852 to determine the feature vector's position within the view. In other configurations, the view position 986 can be a vector or angle and distance from a certain, predetermined point, such as a bottom left-hand corner of the view. In other configurations, there may be relationships or position determinations between the different feature vectors by angles, lines, and/or distances that provide a view position of one feature vector 852 with respect to another feature vector 852. There may be other methods for determining the view position of feature vectors 928 within views to determine if the current view is similar to one of the feature vector data structures 928 and thus to the segment information 908.


A method 1000 for storing information associated with a segment 824 of a route 816 may be as shown in FIG. 10. A general order for the steps of the method 1000 is shown in FIG. 10. Generally, the method 1000 starts with a start operation 1004 and ends with operation 1028. The method 1000 can include more or fewer steps or can arrange the order of the steps differently than those shown in FIG. 10. The method 1000 can be executed as a set of computer-executable instructions executed by a computer system or processor and encoded or stored on a computer readable medium. In other configurations, the method 1000 may be executed by a series of components, circuits, gates, etc. created in a hardware device, such as a System on Chip (SOC), Application Specific Integrated Circuit (ASIC), and/or a Field Programmable Gate Array (FPGA). Hereinafter, the method 1000 shall be explained with reference to the systems, components, circuits, modules, software, data structures, signaling processes, models, environments, vehicles, etc. described in conjunction with FIGS. 1-9.


A location module 333 of a navigation subsystem 302 may determine the local location, in step 1008. A location module 333 may receive information from GPS antenna receiver 331 or sensors 304 to determine a specific segment 824 or a general location 820 upon which the vehicle 100 is currently located. This location may be associated with one or more segments 824A-824H, depending on the accuracy of the information received by the location module 333. The location module can then use, for example, the process 1100, described in FIG. 11, to determine the exact segment 824 upon which the vehicle is located. The location module 333 may then provide information about that feature vector segment 908. Thus, the location module 333 may generate, store, or include any of type of location information or other information into the data structure 908. For example, the location module 333 can create the segment ID 912, the latitude 916, the longitude 920, and/or the GIS information 924. This segment information 908 describes a specific location for the segment 824 and allow the feature vector information 928 to be placed into the data structure 908.


The location module 333 may then receive sensor information 304 to determine the feature vectors in view of the sensors 304, in step 1012. Here, the location module 332 can receive the view 832. The view 832 can be from a camera 332 or from one or more of the other sensors 304. The feature vector view 832 may be only a single machine view image of the view 832 from the sensors 304. As such, only one view 832 may be associated with the feature vector segment 824 at which the vehicle 100 is currently located.


From the view 832, the location module 333 and/or the processor 708 can determine, using machine vision or some other type of process, the characterizations 984, 986 of the feature vectors 928, in step 1016. The processor 706 and/or location module 333 may identify the different feature vectors 852 in the view 832. For example, the different circles 852, as shown in FIG. 8F, may be created that identify one or more outstanding characteristics of the view 836. These outstanding characteristics can include such things as building corners, doorways, fire hydrants, landscaping, clocks, other architectural features, or any other type of characteristic of the surrounding environment that may be easily identified through machine vision based on the lines or configuration of that element. These different feature vectors 852 may then each have a separate data structure 928 created therefore, and thus, the processor 708 and/or the location module 333 can create the feature vector ID 980, the latitude 916, the longitude 920, the GIS information 924, etc.


Further, the location module 333 or processor 708 can also include the appearance characteristics 984 and/or the view position 986. The characteristics 84 may be the types of lines, lengths of lines, angles between lines, or other types of information that the vehicle 100 can use to characterize the feature vector 928 for future comparison. Further, the view position 986 may be described as where those feature vectors 852 are within the view 836 either by a grid, by an angle, or some other type of information. Thus, the location module 333 or processor 708 can devolve or can change the view 832 into the view representation 836 shown in 8G, where the feature vectors 852 are shown but nothing else. Each of these different feature vectors 852 may then be characterized by their appearance and may also then be located within the view 836. Then the view 836 may be changed to that view 840 shown in FIG. 8H where only the feature vectors 852 are shown and no other types of information, thus the resultant data structure 928 is compact and easier to access and to use to compare to views in the future. Further, the appearance characteristics 984 can include the actual HD image created by the above process.


The location module 333 may then store these characteristics 984 into the maps database 335 and/or the navigation source 356, and step 1020. In some configurations, the location module 333 may send the segment information 908 and/or feature vector information 928 through a communication interface 350 to the navigation source 356 to provide those segment characterizations 908 of the feature vectors 928 associated with the segment 824 to an external source, in step 1024. Thus, each vehicle 100 can provide views of a certain feature vector segment 824 that may then be used to build a database for all vehicles 100. In this way, the feature vectors 928 may be populated by the vehicles 100 driving the routes 816, where each feature vector 928 is associated with a segment 908, and may be updated or changed as needed as the environment around the route 816 changes to increase or eliminate certain feature vectors 852 depending on the changing environment.


An embodiment of a method 1100 for navigating using the route segments and for vehicle localization may be as shown in FIG. 11. A general order for the steps of the method 1100 is shown in FIG. 11. Generally, the method 1100 starts with a start operation 1104 and ends with operation 1136. The method 1100 can include more or fewer steps or can arrange the order of the steps differently than those shown in FIG. 11. The method 1100 can be executed as a set of computer-executable instructions executed by a computer system or processor and encoded or stored on a computer readable medium. In other configurations, the method 1100 may be executed by a series of components, circuits, gates, etc. created in a hardware device, such as a System on Chip (SOC), Application Specific Integrated Circuit (ASIC), and/or a Field Programmable Gate Array (FPGA). Hereinafter, the method 1100 shall be explained with reference to the systems, components, circuits, modules, software, data structures, signaling processes, models, environments, vehicles, etc. described in conjunction with FIGS. 1-10.


Location module 333 can receive a primary location from a GPS antenna receiver 331 or through some other process, in step 1108. Step 1108 may be optional as the location module 333 may not be able to receive a GPS position from GPS antenna receiver 331 due to interference from buildings, trees, or other structures around the vehicle 100 or may not be able to identify an initial position through other means. However, if the location module 333 can receive a primary location, for example, a location within area 820, the number of feature vectors 852 or segments 824 needed to be viewed by the location module 333 is reduced.


In other circumstances, the primary location may be received or determined through dead reckoning or some other type of process, such as visual odometry and/or particle filtering. Dead reckoning and visual odometry are both processes of estimating a position based on the last known position, a route travel based on turns sensed by the location module 333, and distance traveled based on speed of the vehicle 100 over the time of travel (which can be estimated from a speedometer or through visual odometry). From dead reckoning, the location module 333 can also minimize the number of feature vectors needed to be reviewed.


The location module 333 can then determine the feature vectors 852 that are in view of the sensors 304, in step 1112. In embodiments, the location module 333 can weight lower or filter out segments 824 that are not within or in physical proximity to area 820. Those lower weighted or filtered segments 824 are then not considered by the location module 333.


For the considered segments 824, the location module 333 can receive from a camera sensor 332, infrared sensor 336, or one or more other sensors 304 a view of the surrounding environment similar to those shown in FIGS. 8C-8E. These views may then be analyzed to determine if there are feature vectors 852 in the views, for example, those feature vectors represented by circles 852 in FIG. 8F. These feature vectors 852 then may be extracted or minimized to a view similar to FIG. 8G or 8H. This feature vector information may then be used to compare feature vectors information sensed by the sensors 304 to those feature vectors 928 already stored in the navigation source 356 or GIS database 335.


The location module 333 can retrieve the feature vectors information 928 already stored in the maps database 335 or navigation source 356, in step 1116. In some configurations, the data in navigation source 356 is updated to maps database 335 persistently or periodically. Thus, the location module 335 need not attempt to extract data from an external source but may have all GIS or location information needed in the maps database 335. Also, the location module 333 can retrieve the one or more data structures 908 associated with segments 828 and/or 824 within the determined primary location 820. As such, the location module 333 may not attempt to compare the feature vectors view 852, determined in step 1112, with every segment 824 along route 816. However, if the filtering of the segments 824 is not completed, it may also be possible, as the vehicle 100 is traveling, that the location module 333 may process a sequence of segment views 904 through several iterations to solve for a final localization. Regardless, the location module 333 can retrieve the segment information 908 for comparison to the generated feature vectors view 852, determined in step 1112.


The location module 333 may then match the view feature vectors 852, determined in step 1112, with the retrieved feature vectors information 928 associated with the segment data structures 908, retrieved in step 1116. Thus, the location module 333 can do a visual comparison of feature vectors 852, 928 both viewed and stored to see if there is a match between the feature vectors. There may be some error in the comparison as the location module 333 may not be at exactly the location of the segment 824 and thus the feature vectors 928 may be in different locations or appear slightly dissimilar to those feature vectors 852 viewed by the vehicle sensors 304. Regardless, the location module 333 can compare several different views, retrieved in step 1116, to the determined feature vectors view 852, sensed in step 1112. The closest match may then be determined.


In some instances, there may be enough segments 824 to compare that an exact match may not be possible in the allotted time before the vehicle 100 moves to a next segment 824. In such situations, the location module 333 may determine two or more possible matches, which may put the segment 824 identified for the vehicle 100 somewhere along route 816 or at two or more specific points. At a next time, when the location module 333 attempts to find the next segment 824 where the vehicle 100 should have travelled to, the location module 333 may compare feature vectors 852 to a reduced set of segment feature vectors 928 that would be associated with the previously determined set of possible segments 824. In this way, through two or more iterations of the comparisons, the location module 333 can rapidly determine the segment location 824 based off a process of elimination of unlikely segments 824. Regardless, once a match is made by the location module 333, the location module 333 can determine the location from the match, in step 1124.


The location module 333, once a match is made to the feature vectors 928, based on appearance characteristics 984 and view position 986, can determine the segment 824 associated with those feature vectors 928, in data structure 908. This segment 908 may then read or extract location information (e.g., latitude 916, longitude 920, GIS information 924) from the data structure 908. This location information 916-924 can then precisely locate the vehicle 100. As such, the location module 333 then knows the exact position of the vehicle 100 based on this segment information 908.


In some instances, there still may be an error between the segment identified 908 and the actual location of the vehicle 100. For example, if the precise location of the vehicle 100 is not exactly on the segment 824, there may be error within the view of the feature vectors when compared to the feature vectors information 928. However, based on the view error and where that error is occurring or how the error is occurring, the location module 333 can still determine a precise distance from the segment location 824 to provide that precise location for the vehicle 100. For example, if the feature vectors 852 are shifted at a certain angle and distance from the view of the feature vectors 928, that angle and distance can be correlated into a derived error (both in distance and angle) from the segment 824. For example, if the feature vectors 852, in FIG. 8F, appear shifted two pixels to the right, the view and the position of the vehicle may be from a location that is an inch to the left of segment location 825.


Based on the determined location, from step 1124, the location module 333 can then determine the next segment 824 based on the driving vector, in step 1128. The driving vector may be determined from the location of previous segment(s), a route/direction of travel, a speed of travel, and/or based on other sensor information from sensors 304, the vehicle control system 348, and/or the GPS antenna receiver 331. This travel vector information determines the direction of travel and the speed. Based on these two items of information, location module 333 can determine which of the next segments 824A-824H may be within the vector of travel 816. Based on this information, the vehicle 100 can iteratively return to step 1112 to compare determined feature vectors 852 from the new location 824 to retrieve feature vectors 928 associated with that next segment, in step 1128. Thus, the method 1100 can continue iteratively during the entire period of travel for vehicle 100. The more iterations during the route 816, the more precise the localization is.


Through this process 1100, the location module 333 can get a very exact location, possibly down to inches or millimeters. This exact location allows for automated driving that is much safer and is in less need of constant sensor input to determine the location of the vehicle 100. Rather than just looking for objects to avoid around the vehicle 100 or simply trying to maintain a certain spacing between sensed objects, the vehicle 100 can know an exact location, be able to maintain the vehicle's position on a roadway using this localization, and then enhance the performance of the vehicle in an autonomous mode by complementing the sensed position with the exact localization. Further, turns and other types of maneuvers may be more exact as the localization can also complement the driving system's use of sensors in the environment to derive an exact position and then pair this exact position with the current sensed position of the car in the environment. Thus, the vehicle's autonomous driving capabilities are greatly enhanced with the exact localization described herein.


The exemplary systems and methods of this disclosure have been described in relation to vehicle systems and electric vehicles. However, to avoid unnecessarily obscuring the present disclosure, the preceding description omits a number of known structures and devices. This omission is not to be construed as a limitation of the scope of the claimed disclosure. Specific details are set forth to provide an understanding of the present disclosure. It should, however, be appreciated that the present disclosure may be practiced in a variety of ways beyond the specific detail set forth herein.


Furthermore, while the exemplary embodiments illustrated herein show the various components of the system collocated, certain components of the system can be located remotely, at distant portions of a distributed network, such as a LAN and/or the Internet, or within a dedicated system. Thus, it should be appreciated, that the components of the system can be combined into one or more devices, such as a server, communication device, or collocated on a feature vector node of a distributed network, such as an analog and/or digital telecommunications network, a packet-switched network, or a circuit-switched network. It will be appreciated from the preceding description, and for reasons of computational efficiency, that the components of the system can be arranged at any location within a distributed network of components without affecting the operation of the system.


Furthermore, it should be appreciated that the various links connecting the elements can be wired or wireless links, or any combination thereof, or any other known or later developed element(s) that is capable of supplying and/or communicating data to and from the connected elements. These wired or wireless links can also be secure links and may be capable of communicating encrypted information. Transmission media used as links, for example, can be any suitable carrier for electrical signals, including coaxial cables, copper wire, and fiber optics, and may take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.


While the flowcharts have been discussed and illustrated in relation to a feature vector sequence of events, it should be appreciated that changes, additions, and omissions to this sequence can occur without materially affecting the operation of the disclosed embodiments, configuration, and aspects.


A number of variations and modifications of the disclosure can be used. It would be possible to provide for some features of the disclosure without providing others.


In yet another embodiment, the systems and methods of this disclosure can be implemented in conjunction with a special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element(s), an ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as discrete element circuit, a programmable logic device or gate array such as PLD, PLA, FPGA, PAL, special purpose computer, any comparable means, or the like. In general, any device(s) or means capable of implementing the methodology illustrated herein can be used to implement the various aspects of this disclosure. Exemplary hardware that can be used for the present disclosure includes computers, handheld devices, telephones (e.g., cellular, Internet enabled, digital, analog, hybrids, and others), and other hardware known in the art. Some of these devices include processors (e.g., a single or multiple microprocessors), memory, nonvolatile storage, input devices, and output devices. Furthermore, alternative software implementations including, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.


In yet another embodiment, the disclosed methods may be readily implemented in conjunction with software using object or object-oriented software development environments that provide portable source code that can be used on a variety of computer or workstation platforms. Alternatively, the disclosed system may be implemented partially or fully in hardware using standard logic circuits or VLSI design. Whether software or hardware is used to implement the systems in accordance with this disclosure is dependent on the speed and/or efficiency requirements of the system, the feature vector function, and the feature vector software or hardware systems or microprocessor or microcomputer systems being utilized.


In yet another embodiment, the disclosed methods may be partially implemented in software that can be stored on a storage medium, executed on programmed general-purpose computer with the cooperation of a controller and memory, a special purpose computer, a microprocessor, or the like. In these instances, the systems and methods of this disclosure can be implemented as a program embedded on a personal computer such as an applet, JAVA® or CGI script, as a resource residing on a server or computer workstation, as a routine embedded in a dedicated measurement system, system component, or the like. The system can also be implemented by physically incorporating the system and/or method into a software and/or hardware system.


Although the present disclosure describes components and functions implemented in the embodiments with reference to feature vector standards and protocols, the disclosure is not limited to such standards and protocols. Other similar standards and protocols not mentioned herein are in existence and are considered to be included in the present disclosure. Moreover, the standards and protocols mentioned herein and other similar standards and protocols not mentioned herein are periodically superseded by faster or more effective equivalents having essentially the same functions. Such replacement standards and protocols having the same functions are considered equivalents included in the present disclosure.


The present disclosure, in various embodiments, configurations, and aspects, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the systems and methods disclosed herein after understanding the present disclosure. The present disclosure, in various embodiments, configurations, and aspects, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments, configurations, or aspects hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease, and/or reducing cost of implementation.


The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more embodiments, configurations, or aspects for the purpose of streamlining the disclosure. The features of the embodiments, configurations, or aspects of the disclosure may be combined in alternate embodiments, configurations, or aspects other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment, configuration, or aspect. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.


Moreover, though the description of the disclosure has included description of one or more embodiments, configurations, or aspects and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights, which include alternative embodiments, configurations, or aspects to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges, or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges, or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.


Embodiments include a vehicle, comprising: a sensor to sense an environment surrounding the vehicle, wherein a feature vector describes at least a portion of the environment at a current location of the vehicle on a route; a processor in communication with the sensor, the processor to: receive information from the sensor regarding the feature vector; retrieve feature vector information associated with two or more segments of a route of travel for the vehicle; compare the received feature vector to the retrieved feature vector information; determine if the received feature vector to the retrieved feature vector information match; and if the received feature vector to the retrieved feature vector information match, determine that the current location of the vehicle is at a segment location of the segment associated with the retrieved feature vector information.


Any of the one or more above aspects, wherein the feature vector is a portion of a machine view of the environment obtained by the sensor.


Any of the one or more above aspects, wherein the received feature vector is compared visually to the retrieved feature vector information.


Any of the one or more above aspects, wherein the route is delineated into two or more segments.


Any of the one or more above aspects, wherein each segment has a known segment location.


Any of the one or more above aspects, further comprising the processor to determine a preliminary location to reduce a number of segments retrieved to compare to the received feature vector.


Any of the one or more above aspects, wherein the preliminary location is determined by a GPS signal, by dead reckoning, by visual odometry, and/or by particle filtering.


Any of the one or more above aspects, further comprising the processor to determine a next segment to compare to a next received feature vector based on a vector of travel for the vehicle.


Any of the one or more above aspects, wherein the next received feature vector is obtained by the sensor after the vehicle has traveled to a next location.


Any of the one or more above aspects, further comprising the processor to repeat one or more of: receive next information from the sensor regarding the next feature vector; retrieve next feature vector information associated with two or more next segments of the route of travel for the vehicle; compare the next received feature vector to the next retrieved feature vector information; determine if the next received feature vector to the next retrieved feature vector information match; and if the next received feature vector to the next retrieved feature vector information match, determine that a next current location of the vehicle is at a next segment location of the next segment associated with the next retrieved feature vector information.


Any of the one or more above aspects, further comprising the processor to, after determining the segment location, determine a new feature vector in view of the sensor.


Any of the one or more above aspects, further comprising the processor to characterize the new feature vector.


Any of the one or more above aspects, further comprising the processor to provide the new feature vector to another vehicle to aid the other vehicle in determining the location at the segment.


Embodiments further include a method comprising: determining, by a processor, a preliminary location of a vehicle on a route of travel, wherein the route of travel is delineated into two or more segments. receiving, by the processor, information, from a sensor, wherein the sensor senses an environment surrounding the vehicle, wherein the information comprises a feature vector, wherein the feature vector describes at least a portion of the environment at a current location of the vehicle; retrieving feature vector information associated with the two or more segments of the route of travel for the vehicle; comparing the received feature vector to the retrieved feature vector information; determine if the received feature vector to the retrieved feature vector information match; and if the received feature vector and the retrieved feature vector information match, determining that the current location of the vehicle is at a segment location of the segment associated with the retrieved feature vector information.


Any of the one or more above aspects, wherein the feature vector is a portion of a machine view of the environment obtained by the sensor, and wherein the received feature vector is compared visually to the retrieved feature vector information.


Any of the one or more above aspects, wherein the route is delineated into two or more segments, and wherein each segment has a known segment location.


Any of the one or more above aspects, wherein determining the preliminary location of the vehicle reduces a number of segments retrieved to compare to the received feature vector, and wherein the preliminary location is determined by a GPS signal, by dead reckoning, by visual odometry, and/or by particle filtering.


Any of the one or more above aspects, further comprising: determine a next segment to compare to a next received feature vector based on a vector of travel for the vehicle, wherein the next received feature vector is obtained by the sensor after the vehicle has traveled to a next location; repeating one or more of: receiving next information from the sensor regarding the next feature vector; by retrieving next feature vector information associated with two or more next segments of the route of travel for the vehicle; comparing the next received feature vector to the next retrieved feature vector information; determining if the next received feature vector to the next retrieved feature vector information match; and if the next received feature vector to the next retrieved feature vector information match, determining that a next current location of the vehicle is at a next segment location of the next segment associated with the next retrieved feature vector information.


Any of the one or more above aspects, further comprising: after determining the segment location, determining a new feature vector in view of the sensor; characterizing the new feature vector; and providing the new feature vector to another vehicle to aid the other vehicle in determining the location at the segment.


Embodiments further include a non-transitory computer readable medium having instructions stored thereon that when executed by a processor of a vehicle cause the processor to perform a method, the method comprising: determining, by a processor, a preliminary location of a vehicle on a route of travel, wherein the route of travel is delineated into two or more segments; receiving, by the processor, information, from a sensor, wherein the sensor senses an environment surrounding the vehicle, wherein the information comprises a feature vector, wherein the feature vector describes at least a portion of the environment at a current location of the vehicle; retrieving feature vector information associated with the two or more segments of the route of travel for the vehicle; comparing the received feature vector to the retrieved feature vector information; determine if the received feature vector to the retrieved feature vector information match; if the received feature vector and the retrieved feature vector information match, determining that the current location of the vehicle is at a segment location of the segment associated with the retrieved feature vector information; after determining the segment location, determining a new feature vector in view of the sensor; characterizing the new feature vector; and providing the new feature vector to another vehicle to aid the other vehicle in determining the location at the segment.


Any one or more of the aspects/embodiments as substantially disclosed herein.


Any one or more of the aspects/embodiments as substantially disclosed herein optionally in combination with any one or more other aspects/embodiments as substantially disclosed herein.


One or means adapted to perform any one or more of the above aspects/embodiments as substantially disclosed herein.


The phrases “at least one,” “one or more,” “or,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C,” “A, B, and/or C,” and “A, B, or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.


The term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more,” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising,” “including,” and “having” can be used interchangeably.


The term “automatic” and variations thereof, as used herein, refers to any process or operation, which is typically continuous or semi-continuous, done without material human input when the process or operation is performed. However, a process or operation can be automatic, even though performance of the process or operation uses material or immaterial human input, if the input is received before performance of the process or operation. Human input is deemed to be material if such input influences how the process or operation will be performed. Human input that consents to the performance of the process or operation is not deemed to be “material.”


Aspects of the present disclosure may take the form of an embodiment that is entirely hardware, an embodiment that is entirely software (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module,” or “system.” Any combination of one or more computer-readable medium(s) may be utilized. The computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.


A computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer-readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.


A computer-readable signal medium may include a propagated data signal with computer-readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer-readable signal medium may be any computer-readable medium that is not a computer-readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including, but not limited to, wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.


The terms “determine,” “calculate,” “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation or technique.


The term “electric vehicle” (EV), also referred to herein as an electric drive vehicle, may use one or more electric motors or traction motors for propulsion. An electric vehicle may be powered through a collector system by electricity from off-vehicle sources, or may be self-contained with a battery or generator to convert fuel to electricity. An electric vehicle generally includes a rechargeable electricity storage system (RESS) (also called Full Electric Vehicles (FEV)). Power storage methods may include: chemical energy stored on the vehicle in on-board batteries (e.g., battery electric vehicle or BEV), on board kinetic energy storage (e.g., flywheels), and/or static energy (e.g., by on-board double-layer capacitors). Batteries, electric double-layer capacitors, and flywheel energy storage may be forms of rechargeable on-board electrical storage.


The term “hybrid electric vehicle” refers to a vehicle that may combine a conventional (usually fossil fuel-powered) powertrain with some form of electric propulsion. Most hybrid electric vehicles combine a conventional internal combustion engine (ICE) propulsion system with an electric propulsion system (hybrid vehicle drivetrain). In parallel hybrids, the ICE and the electric motor are both connected to the mechanical transmission and can simultaneously transmit power to drive the wheels, usually through a conventional transmission. In series hybrids, only the electric motor drives the drivetrain, and a smaller ICE works as a generator to power the electric motor or to recharge the batteries. Power-split hybrids combine series and parallel characteristics. A full hybrid, sometimes also called a strong hybrid, is a vehicle that can run on just the engine, just the batteries, or a combination of both. A mid hybrid is a vehicle that cannot be driven solely on its electric motor, because the electric motor does not have enough power to propel the vehicle on its own.


The term “rechargeable electric vehicle” or “REV” refers to a vehicle with on board rechargeable energy storage, including electric vehicles and hybrid electric vehicles.

Claims
  • 1. An autonomous vehicle control system, comprising: a processor in communication with a sensor, the sensor sensing an environment surrounding a vehicle associated with the vehicle control system, wherein a feature vector describes at least a portion of the environment at a current location of the vehicle on a route, the processor being programmed to: receive view image information from the sensor comprising the feature vector;extract extraneous information from the received view image information, wherein the extraneous information comprises view information other than the feature vector, and wherein extracting the extraneous information isolates the feature vector;retrieve feature vector information associated with one or more segments of a route of travel for the vehicle;compare the isolated feature vector to the retrieved feature vector information;determine if the isolated feature vector and the retrieved feature vector information match; andif the isolated feature vector and the retrieved feature vector information match, determine that the current location of the vehicle is at a segment location of the one or more segments associated with the retrieved feature vector information.
  • 2. The control system of claim 1, wherein the feature vector is a portion of a machine view of the environment obtained by the sensor, and wherein the isolated feature vector comprises less information than is included in the view image information.
  • 3. The control system of claim 2, wherein the isolated feature vector is compared visually to the retrieved feature vector information.
  • 4. The control system of claim 3, wherein the route is delineated into two or more segments.
  • 5. The control system of claim 4, wherein each segment has a known segment location.
  • 6. The control system of claim 5, further comprising the processor being programmed to determine a preliminary location to reduce a number of segments retrieved to compare to the isolated feature vector.
  • 7. The control system of claim 6, wherein the preliminary location is determined by a GPS signal, by dead reckoning, by visual odometry, and/or by particle filtering.
  • 8. The control system of claim 7, further comprising the processor being programmed to determine a next segment to compare to a next feature vector based on a vector of travel for the vehicle.
  • 9. The control system of claim 8, wherein the next feature vector is obtained by the sensor after the vehicle has traveled to a next location.
  • 10. The control system of claim 9, further comprising the processor being programmed to repeat one or more of: receive next view image information from the sensor comprising the next feature vector;extract next extraneous information from the received next view image information, wherein the next extraneous information comprises next view information other than the next feature vector, and wherein extracting the next extraneous information isolates the next feature vector;retrieve next feature vector information associated with one or more next segments of the route of travel for the vehicle;compare the isolated next feature vector to the retrieved next feature vector information;determine if the isolated next feature vector and the retrieved next feature vector information match; andif the isolated next feature vector and the retrieved next feature vector information match, determine that a next current location of the vehicle is at a next segment location of the next segment associated with the retrieved next feature vector information.
  • 11. An autonomous vehicle control system, comprising a processor in communication with a sensor, the sensor sensing an environment surrounding a vehicle associated with the vehicle control system, wherein a feature vector describes at least a portion of the environment at a current location of the vehicle on a route, the processor being programmed to: receive information from the sensor regarding the feature vector;retrieve feature vector information associated with one or more segments of a route of travel for the vehicle;compare the received feature vector to the retrieved feature vector information,determine if the received feature vector and the retrieved feature vector information match;if the received feature vector and the retrieved feature vector information match, determine that the current location of the vehicle is at a segment location of the one or more segments associated with the retrieved feature vector information;determine, after determining the segment location, a new feature vector in view of the sensor;characterize the new feature vector; andprovide the new feature vector to another vehicle to aid the other vehicle in determining the location at the segment.
  • 12. The control system of claim 11, further comprising the processor being programmed to determine a view position where the new feature vector is located in the view of the sensor.
  • 13. The control system of claim 12, further comprising the processor being programmed to devolve a view representation of the new feature vector showing only the new feature vector and no other image information.
  • 14. A method comprising: determining, by a processor, a preliminary location of a vehicle on a route of travel, wherein the route of travel is delineated into two or more segments;receiving, by the processor, view image information, from a sensor, wherein the sensor senses an environment surrounding the vehicle, wherein the view image information comprises a feature vector, wherein the feature vector describes at least a portion of the environment surrounding the vehicle at a current location of the vehicle;extracting, by the processor, extraneous information from the received view image information, wherein the extraneous information comprises view information other than the feature vector, and wherein extracting the extraneous information isolates the feature vector;retrieving feature vector information associated with the one or more segments of the route of travel for the vehicle;comparing the isolated feature vector and the retrieved feature vector information;determining if the isolated feature vector and the retrieved feature vector information match; andif the isolated feature vector and the retrieved feature vector information match, determining that the current location of the vehicle is at a segment location of the segment associated with the retrieved feature vector information.
  • 15. The method of claim 14, wherein the feature vector is a portion of a machine view of the environment obtained by the sensor, and wherein the isolated feature vector is compared visually to the retrieved feature vector information.
  • 16. The method of claim 15, wherein the route is delineated into two or more segments, and wherein each segment has a known segment location.
  • 17. The method of claim 16, wherein determining the preliminary location of the vehicle reduces a number of segments retrieved to compare to the isolated feature vector, and wherein the preliminary location is determined by a GPS signal, by dead reckoning, by visual odometry, and/or by particle filtering.
  • 18. The method of claim 17, further comprising: determining a next segment to compare to a next feature vector based on a vector of travel for the vehicle, wherein the next feature vector is obtained by the sensor after the vehicle has traveled to a next location;repeating one or more of: receiving next view image information from the sensor comprising the next feature vector;extract next extraneous information from the next view image information received, wherein the next extraneous information comprises next view information other than the next feature vector, and wherein extracting the next extraneous information isolates the next feature vector;retrieving next feature vector information associated with one or more next segments of the route of travel for the vehicle;comparing the isolated next feature vector to the retrieved next feature vector information;determining if the isolated next feature vector to the retrieved next feature vector information match; andif the isolated next feature vector to the retrieved next feature vector information match, determining that a next current location of the vehicle is at a next segment location of the next segment associated with the retrieved next feature vector information.
  • 19. The method of claim 14, further comprising: storing, by the processor, the isolated feature vector for the segment location in a memory.
  • 20. The method of claim 19, further comprising: receiving the isolated feature vector for the segment location from a plurality of vehicles; andbuilding a database of isolated feature vectors for the segment location, the database of isolated feature vectors comprising each isolated feature vector received from the plurality of vehicles.
US Referenced Citations (1001)
Number Name Date Kind
4361202 Minovitch Nov 1982 A
4476954 Johnson et al. Oct 1984 A
4754255 Sanders et al. Jun 1988 A
4875391 Leising et al. Oct 1989 A
5035302 Thangavelu Jul 1991 A
5136498 McLaughlin et al. Aug 1992 A
5204817 Yoshida Apr 1993 A
5363306 Kuwahara et al. Nov 1994 A
5508689 Rado et al. Apr 1996 A
5521815 Rose May 1996 A
5529138 Shaw et al. Jun 1996 A
5531122 Chatham et al. Jul 1996 A
5572450 Worthy Nov 1996 A
5610821 Gazis et al. Mar 1997 A
5648769 Sato et al. Jul 1997 A
5710702 Hayashi et al. Jan 1998 A
5794164 Beckert et al. Aug 1998 A
5797134 McMillan et al. Aug 1998 A
5812067 Bergholz et al. Sep 1998 A
5825283 Camhi Oct 1998 A
5838251 Brinkmeyer et al. Nov 1998 A
5847661 Ricci Dec 1998 A
5890080 Coverdill et al. Mar 1999 A
5928294 Zelinkovsky Jul 1999 A
5949345 Beckert et al. Sep 1999 A
5983161 Lemelson et al. Nov 1999 A
5986575 Jones et al. Nov 1999 A
6038426 Williams, Jr. Mar 2000 A
6081756 Mio et al. Jun 2000 A
D429684 Johnson Aug 2000 S
6128003 Smith et al. Oct 2000 A
6137425 Oster et al. Oct 2000 A
6141620 Zyburt et al. Oct 2000 A
6148261 Obradovich et al. Nov 2000 A
6152514 McLellen Nov 2000 A
6157321 Ricci Dec 2000 A
6198996 Berstis Mar 2001 B1
6199001 Ohta et al. Mar 2001 B1
6202008 Beckert et al. Mar 2001 B1
6252544 Hoffberg Jun 2001 B1
6253161 Arias-Estrada Jun 2001 B1
6267428 Baldas et al. Jul 2001 B1
6302438 Stopper, Jr. et al. Oct 2001 B1
6310542 Gehlot Oct 2001 B1
6317058 Lemelson et al. Nov 2001 B1
6339826 Hayes, Jr. et al. Jan 2002 B2
6356838 Paul Mar 2002 B1
6388579 Adcox et al. May 2002 B1
6480224 Brown Nov 2002 B1
6480762 Uchikubo et al. Nov 2002 B1
6502022 Chastain et al. Dec 2002 B1
6519519 Stopczynski Feb 2003 B1
6557752 Yacoob May 2003 B1
6563910 Menard et al. May 2003 B2
6587739 Abrams et al. Jul 2003 B1
6598227 Berry et al. Jul 2003 B1
6607212 Reimer et al. Aug 2003 B1
6617981 Basinger Sep 2003 B2
6633800 Ward et al. Oct 2003 B1
6662077 Haag Dec 2003 B2
6675081 Shuman et al. Jan 2004 B2
6678747 Goossen et al. Jan 2004 B2
6681176 Funk et al. Jan 2004 B2
6690260 Ashihara Feb 2004 B1
6690940 Brown et al. Feb 2004 B1
6724920 Berenz et al. Apr 2004 B1
6754580 Ask et al. Jun 2004 B1
6757593 Mori et al. Jun 2004 B2
6762684 Camhi Jul 2004 B1
6765495 Dunning et al. Jul 2004 B1
6778888 Cataldo et al. Aug 2004 B2
6782240 Tabe Aug 2004 B1
6785531 Lepley et al. Aug 2004 B2
6816783 Hashima et al. Nov 2004 B2
6820259 Kawamata et al. Nov 2004 B1
6944533 Obradovich et al. Sep 2005 B2
6950022 Breed Sep 2005 B2
6958707 Siegel Oct 2005 B1
6992580 Kotzin et al. Jan 2006 B2
7019641 Lakshmanan et al. Mar 2006 B1
7020544 Shinada et al. Mar 2006 B2
7021691 Schmidt et al. Apr 2006 B1
7042345 Ellis May 2006 B2
7047129 Uotani May 2006 B2
7058898 McWalter et al. Jun 2006 B2
7096431 Tambata et al. Aug 2006 B2
7142696 Engelsberg et al. Nov 2006 B1
7164117 Breed et al. Jan 2007 B2
7187947 White et al. Mar 2007 B1
7203598 Whitsell Apr 2007 B1
7233861 Van Buer et al. Jun 2007 B2
7239960 Yokota et al. Jul 2007 B2
7277454 Mocek et al. Oct 2007 B2
7284769 Breed Oct 2007 B2
7289645 Yamamoto et al. Oct 2007 B2
7295921 Spencer et al. Nov 2007 B2
7313547 Mocek et al. Dec 2007 B2
7333012 Nguyen Feb 2008 B1
7343148 O'Neil Mar 2008 B1
7386376 Basir et al. Jun 2008 B2
7386799 Clanton et al. Jun 2008 B1
7432829 Poltorak Oct 2008 B2
7474264 Bolduc et al. Jan 2009 B2
7493140 Michmerhuizen et al. Feb 2009 B2
7526539 Hsu Apr 2009 B1
7548815 Watkins et al. Jun 2009 B2
7566083 Vitito Jul 2009 B2
7606660 Diaz et al. Oct 2009 B2
7606867 Singhal et al. Oct 2009 B1
7643913 Taki et al. Jan 2010 B2
7650234 Obradovich et al. Jan 2010 B2
7671764 Uyeki et al. Mar 2010 B2
7680596 Uyeki et al. Mar 2010 B2
7683771 Loeb Mar 2010 B1
7711468 Levy May 2010 B1
7734315 Rathus et al. Jun 2010 B2
7748021 Obradovich et al. Jun 2010 B2
RE41449 Krahnstoever et al. Jul 2010 E
7791499 Mohan et al. Sep 2010 B2
7796190 Basso et al. Sep 2010 B2
7802832 Carnevali Sep 2010 B2
7821421 Tamir et al. Oct 2010 B2
7832762 Breed Nov 2010 B2
7864073 Lee et al. Jan 2011 B2
7872591 Kane et al. Jan 2011 B2
7873471 Gieseke Jan 2011 B2
7881703 Roundtree et al. Feb 2011 B2
7891004 Gelvin et al. Feb 2011 B1
7891719 Carnevali Feb 2011 B2
7894951 Norris et al. Feb 2011 B2
7899610 McClellan Mar 2011 B2
7966678 Ten Eyck et al. Jun 2011 B2
7969290 Waeller et al. Jun 2011 B2
7969324 Chevion et al. Jun 2011 B2
8060631 Collart et al. Nov 2011 B2
8064925 Sun et al. Nov 2011 B1
8066313 Carnevali Nov 2011 B2
8098170 Szczerba et al. Jan 2012 B1
8113564 Carnevali Feb 2012 B2
8131419 Ampunan et al. Mar 2012 B2
8157310 Carnevali Apr 2012 B2
8162368 Carnevali Apr 2012 B2
8175802 Forstall et al. May 2012 B2
8233919 Haag et al. Jul 2012 B2
8245609 Greenwald et al. Aug 2012 B1
8306514 Nunally Nov 2012 B1
8334847 Tomkins Dec 2012 B2
8346233 Aaron et al. Jan 2013 B2
8346432 Van Wiemeersch et al. Jan 2013 B2
8350721 Carr Jan 2013 B2
8352282 Jensen et al. Jan 2013 B2
8369263 Dowling et al. Feb 2013 B2
8391554 Lee et al. Mar 2013 B2
8417449 Denise Apr 2013 B1
8428843 Lee et al. Apr 2013 B2
8432260 Talty et al. Apr 2013 B2
8442389 Kashima et al. May 2013 B2
8442758 Rovik et al. May 2013 B1
8467965 Chang Jun 2013 B2
8497842 Tomkins et al. Jul 2013 B2
8498809 Bill Jul 2013 B2
8509982 Montemerlo et al. Aug 2013 B2
8521410 Mizuno et al. Aug 2013 B2
8527143 Tan Sep 2013 B2
8527146 Jackson et al. Sep 2013 B1
8532574 Kirsch Sep 2013 B2
8543330 Taylor et al. Sep 2013 B2
8547340 Sizelove et al. Oct 2013 B2
8548669 Naylor Oct 2013 B2
8559183 Davis Oct 2013 B1
8577600 Pierfelice Nov 2013 B1
8578279 Chen et al. Nov 2013 B2
8583292 Preston et al. Nov 2013 B2
8589073 Guha et al. Nov 2013 B2
8600611 Seize Dec 2013 B2
8613385 Hulet et al. Dec 2013 B1
8621645 Spackman Dec 2013 B1
8624727 Saigh et al. Jan 2014 B2
8634980 Urmson et al. Jan 2014 B1
8634984 Sumizawa Jan 2014 B2
8644165 Saarimaki et al. Feb 2014 B2
8660735 Tengler et al. Feb 2014 B2
8671068 Harber et al. Mar 2014 B2
8688372 Bhogal et al. Apr 2014 B2
8698639 Fung et al. Apr 2014 B2
8705527 Addepalli et al. Apr 2014 B1
8706143 Elias Apr 2014 B1
8718797 Addepalli et al. May 2014 B1
8718910 Gueziec May 2014 B2
8725311 Breed May 2014 B1
8730033 Yarnold et al. May 2014 B2
8737986 Rhoads et al. May 2014 B2
8761673 Sakata Jun 2014 B2
8774842 Jones et al. Jul 2014 B2
8779947 Tengler et al. Jul 2014 B2
8782262 Collart et al. Jul 2014 B2
8793065 Seltzer et al. Jul 2014 B2
8798918 Onishi et al. Aug 2014 B2
8805110 Rhoads et al. Aug 2014 B2
8812171 Fillev et al. Aug 2014 B2
8817761 Gruberman et al. Aug 2014 B2
8825031 Aaron et al. Sep 2014 B2
8825277 McClellan et al. Sep 2014 B2
8825382 Liu Sep 2014 B2
8826261 Anand Ag et al. Sep 2014 B1
8838088 Henn et al. Sep 2014 B1
8862317 Shin et al. Oct 2014 B2
8972090 Weslati et al. Mar 2015 B2
8977408 Cazanas et al. Mar 2015 B1
9043016 Filippov et al. May 2015 B2
9163952 Viola et al. Oct 2015 B2
9180783 Penilla et al. Nov 2015 B1
9188985 Hobbs et al. Nov 2015 B1
9229905 Penilla et al. Jan 2016 B1
9299251 Scofield et al. Mar 2016 B2
9360342 Ignatin Jun 2016 B2
9581460 McNew et al. Feb 2017 B1
9663118 Palmer et al. May 2017 B1
9714837 North et al. Jul 2017 B2
9969404 McNew May 2018 B2
1007705 Fields et al. Sep 2018 A1
1021716 Penilla et al. Feb 2019 A1
1036051 Hirose et al. Jul 2019 A1
20010010516 Roh et al. Aug 2001 A1
20010015888 Shaler et al. Aug 2001 A1
20020009978 Dukach et al. Jan 2002 A1
20020023010 Rittmaster et al. Feb 2002 A1
20020026278 Feldman et al. Feb 2002 A1
20020045484 Eck et al. Apr 2002 A1
20020065046 Mankins et al. May 2002 A1
20020077985 Kobata et al. Jun 2002 A1
20020095249 Lang Jul 2002 A1
20020097145 Tumey et al. Jul 2002 A1
20020103622 Burge Aug 2002 A1
20020105968 Pruzan et al. Aug 2002 A1
20020126876 Paul et al. Sep 2002 A1
20020128774 Takezaki et al. Sep 2002 A1
20020143461 Burns et al. Oct 2002 A1
20020143643 Catan Oct 2002 A1
20020152010 Colmenarez et al. Oct 2002 A1
20020154217 Ikeda Oct 2002 A1
20020169531 Kawazoe et al. Nov 2002 A1
20020169551 Inoue et al. Nov 2002 A1
20020174021 Chu et al. Nov 2002 A1
20030004624 Wilson et al. Jan 2003 A1
20030007227 Ogino Jan 2003 A1
20030055557 Dutta et al. Mar 2003 A1
20030060937 Shinada et al. Mar 2003 A1
20030060977 Jijina et al. Mar 2003 A1
20030065432 Shuman et al. Apr 2003 A1
20030101451 Bentolila et al. May 2003 A1
20030109972 Tak Jun 2003 A1
20030125846 Yu et al. Jul 2003 A1
20030132666 Bond et al. Jul 2003 A1
20030149530 Stopczynski Aug 2003 A1
20030158638 Yakes et al. Aug 2003 A1
20030182435 Redlich et al. Sep 2003 A1
20030202683 Ma et al. Oct 2003 A1
20030204290 Sadler et al. Oct 2003 A1
20030230443 Cramer et al. Dec 2003 A1
20040017292 Reese et al. Jan 2004 A1
20040024502 Squires et al. Feb 2004 A1
20040036622 Dukach et al. Feb 2004 A1
20040039500 Amendola et al. Feb 2004 A1
20040039504 Coffee et al. Feb 2004 A1
20040068364 Zhao et al. Apr 2004 A1
20040070920 Flueli Apr 2004 A1
20040093155 Simonds et al. May 2004 A1
20040117494 Mitchell et al. Jun 2004 A1
20040128062 Ogino et al. Jul 2004 A1
20040153356 Lockwood et al. Aug 2004 A1
20040162019 Horita et al. Aug 2004 A1
20040180653 Royalty Sep 2004 A1
20040182574 Adnan et al. Sep 2004 A1
20040193347 Harumoto et al. Sep 2004 A1
20040203974 Seibel Oct 2004 A1
20040204837 Singleton Oct 2004 A1
20040209594 Naboulsi Oct 2004 A1
20040217850 Perttunen et al. Nov 2004 A1
20040225557 Phelan et al. Nov 2004 A1
20040249568 Endo et al. Dec 2004 A1
20040255123 Noyama et al. Dec 2004 A1
20040257208 Huang et al. Dec 2004 A1
20040260470 Rast Dec 2004 A1
20050012599 DeMatteo Jan 2005 A1
20050031100 Iggulden et al. Feb 2005 A1
20050038598 Oesterling et al. Feb 2005 A1
20050042999 Rappaport Feb 2005 A1
20050065678 Smith et al. Mar 2005 A1
20050065711 Dahlgren et al. Mar 2005 A1
20050086051 Brulle-Drews Apr 2005 A1
20050092542 Turner May 2005 A1
20050093717 Lilja May 2005 A1
20050097541 Holland May 2005 A1
20050114864 Surace May 2005 A1
20050122235 Teffer et al. Jun 2005 A1
20050124211 Diessner et al. Jun 2005 A1
20050130744 Eck et al. Jun 2005 A1
20050144156 Barber Jun 2005 A1
20050149752 Johnson et al. Jul 2005 A1
20050153760 Varley Jul 2005 A1
20050159853 Takahashi et al. Jul 2005 A1
20050159892 Chung Jul 2005 A1
20050192727 Shostak et al. Sep 2005 A1
20050197748 Holst et al. Sep 2005 A1
20050197767 Nortrup Sep 2005 A1
20050251324 Wiener et al. Nov 2005 A1
20050261815 Cowelchuk et al. Nov 2005 A1
20050278093 Kameyama Dec 2005 A1
20050283284 Grenier et al. Dec 2005 A1
20060015819 Hawkins et al. Jan 2006 A1
20060036358 Hale et al. Feb 2006 A1
20060044119 Egelhaaf Mar 2006 A1
20060047386 Kanevsky et al. Mar 2006 A1
20060058948 Blass et al. Mar 2006 A1
20060059229 Bain et al. Mar 2006 A1
20060125631 Sharony Jun 2006 A1
20060130033 Stoffels et al. Jun 2006 A1
20060142933 Feng Jun 2006 A1
20060173841 Bill Aug 2006 A1
20060175403 McConnell et al. Aug 2006 A1
20060184319 Seick et al. Aug 2006 A1
20060212909 Girard et al. Sep 2006 A1
20060241836 Kachouh et al. Oct 2006 A1
20060243056 Sundermeyer et al. Nov 2006 A1
20060250272 Puamau Nov 2006 A1
20060253307 Warren et al. Nov 2006 A1
20060259210 Tanaka et al. Nov 2006 A1
20060274829 Siemens et al. Dec 2006 A1
20060282204 Breed Dec 2006 A1
20060287807 Teffer Dec 2006 A1
20060287865 Cross et al. Dec 2006 A1
20060288382 Vitito Dec 2006 A1
20060290516 Muehlsteff et al. Dec 2006 A1
20060293856 Foessel et al. Dec 2006 A1
20070001831 Raz et al. Jan 2007 A1
20070002032 Powers et al. Jan 2007 A1
20070010942 Bill Jan 2007 A1
20070015485 DeBiasio et al. Jan 2007 A1
20070028370 Seng Feb 2007 A1
20070032225 Konicek et al. Feb 2007 A1
20070057781 Breed Mar 2007 A1
20070061057 Huang et al. Mar 2007 A1
20070067614 Berry et al. Mar 2007 A1
20070069880 Best et al. Mar 2007 A1
20070083298 Pierce et al. Apr 2007 A1
20070088488 Reeves et al. Apr 2007 A1
20070103328 Lakshmanan et al. May 2007 A1
20070115101 Creekbaum et al. May 2007 A1
20070118301 Andarawis et al. May 2007 A1
20070120697 Ayoub et al. May 2007 A1
20070135995 Kikuchi et al. Jun 2007 A1
20070156317 Breed Jul 2007 A1
20070182625 Kerai et al. Aug 2007 A1
20070182816 Fox Aug 2007 A1
20070185969 Davis Aug 2007 A1
20070192486 Wilson et al. Aug 2007 A1
20070194902 Blanco et al. Aug 2007 A1
20070194944 Galera et al. Aug 2007 A1
20070195997 Paul et al. Aug 2007 A1
20070200663 White et al. Aug 2007 A1
20070208860 Zellner et al. Sep 2007 A1
20070213090 Holmberg Sep 2007 A1
20070228826 Jordan et al. Oct 2007 A1
20070233341 Logsdon Oct 2007 A1
20070250228 Reddy et al. Oct 2007 A1
20070257815 Gunderson et al. Nov 2007 A1
20070276596 Solomon et al. Nov 2007 A1
20070280505 Breed Dec 2007 A1
20080005974 Delgado Vazquez et al. Jan 2008 A1
20080023253 Prost-Fin et al. Jan 2008 A1
20080027337 Dugan et al. Jan 2008 A1
20080033635 Obradovich et al. Feb 2008 A1
20080042824 Kates Feb 2008 A1
20080051957 Breed et al. Feb 2008 A1
20080052627 Oguchi Feb 2008 A1
20080071465 Chapman et al. Mar 2008 A1
20080082237 Breed Apr 2008 A1
20080086455 Meisels et al. Apr 2008 A1
20080090522 Oyama Apr 2008 A1
20080104227 Birnie et al. May 2008 A1
20080119994 Kameyama May 2008 A1
20080129475 Breed et al. Jun 2008 A1
20080143085 Breed et al. Jun 2008 A1
20080147280 Breed Jun 2008 A1
20080148374 Spaur et al. Jun 2008 A1
20080154712 Wellman Jun 2008 A1
20080154957 Taylor et al. Jun 2008 A1
20080161986 Breed Jul 2008 A1
20080164985 Iketani et al. Jul 2008 A1
20080169940 Lee et al. Jul 2008 A1
20080174451 Harrington et al. Jul 2008 A1
20080212215 Schofield et al. Sep 2008 A1
20080216067 Viiling Sep 2008 A1
20080228358 Wang et al. Sep 2008 A1
20080234919 Ritter et al. Sep 2008 A1
20080252487 McClellan et al. Oct 2008 A1
20080253613 Jones et al. Oct 2008 A1
20080255721 Yamada Oct 2008 A1
20080255722 McClellan et al. Oct 2008 A1
20080269958 Filev et al. Oct 2008 A1
20080281508 Fu Nov 2008 A1
20080300778 Kuznetsov Dec 2008 A1
20080305780 Williams et al. Dec 2008 A1
20080319602 McClellan et al. Dec 2008 A1
20090006525 Moore Jan 2009 A1
20090024419 McClellan et al. Jan 2009 A1
20090037719 Sakthikumar et al. Feb 2009 A1
20090040026 Tanaka Feb 2009 A1
20090055178 Coon Feb 2009 A1
20090082951 Graessley Mar 2009 A1
20090099720 Elgali Apr 2009 A1
20090112393 Maten et al. Apr 2009 A1
20090112452 Buck et al. Apr 2009 A1
20090119657 Link, II May 2009 A1
20090125174 Delean May 2009 A1
20090132294 Haines May 2009 A1
20090138336 Ashley et al. May 2009 A1
20090144622 Evans et al. Jun 2009 A1
20090157312 Black et al. Jun 2009 A1
20090158200 Palahnuk et al. Jun 2009 A1
20090180668 Jones et al. Jul 2009 A1
20090189373 Schramm et al. Jul 2009 A1
20090189979 Smyth Jul 2009 A1
20090195370 Huffman et al. Aug 2009 A1
20090210257 Chalfant et al. Aug 2009 A1
20090216935 Flick Aug 2009 A1
20090222200 Link et al. Sep 2009 A1
20090224931 Dietz et al. Sep 2009 A1
20090224942 Goudy et al. Sep 2009 A1
20090234578 Newby et al. Sep 2009 A1
20090241883 Nagoshi et al. Oct 2009 A1
20090254446 Chernyak Oct 2009 A1
20090264849 La Croix Oct 2009 A1
20090275321 Crowe Nov 2009 A1
20090278750 Man et al. Nov 2009 A1
20090278915 Kramer et al. Nov 2009 A1
20090279839 Nakamura et al. Nov 2009 A1
20090284359 Huang et al. Nov 2009 A1
20090287405 Liu et al. Nov 2009 A1
20090299572 Fujikawa et al. Dec 2009 A1
20090312998 Berckmans et al. Dec 2009 A1
20090319181 Khosravy et al. Dec 2009 A1
20100008053 Osternack et al. Jan 2010 A1
20100023204 Basir et al. Jan 2010 A1
20100035620 Naden et al. Feb 2010 A1
20100036560 Wright et al. Feb 2010 A1
20100036606 Jones Feb 2010 A1
20100042498 Schalk Feb 2010 A1
20100049397 Liu et al. Feb 2010 A1
20100052945 Breed Mar 2010 A1
20100057337 Fuchs Mar 2010 A1
20100066498 Fenton Mar 2010 A1
20100069115 Liu Mar 2010 A1
20100070338 Siotia et al. Mar 2010 A1
20100077094 Howarter et al. Mar 2010 A1
20100087987 Huang et al. Apr 2010 A1
20100090817 Yamaguchi et al. Apr 2010 A1
20100097178 Pisz et al. Apr 2010 A1
20100097239 Campbell et al. Apr 2010 A1
20100097458 Zhang et al. Apr 2010 A1
20100106344 Edwards et al. Apr 2010 A1
20100106418 Kindo et al. Apr 2010 A1
20100118025 Smith et al. May 2010 A1
20100121570 Tokue et al. May 2010 A1
20100121645 Seitz et al. May 2010 A1
20100125387 Sehyun et al. May 2010 A1
20100125405 Chae et al. May 2010 A1
20100125811 Moore et al. May 2010 A1
20100127847 Evans et al. May 2010 A1
20100131300 Collopy et al. May 2010 A1
20100134302 Ahn et al. Jun 2010 A1
20100134958 Disaverio et al. Jun 2010 A1
20100136944 Taylor et al. Jun 2010 A1
20100137037 Basir Jun 2010 A1
20100144284 Chutorash et al. Jun 2010 A1
20100145700 Kennewick et al. Jun 2010 A1
20100145987 Harper et al. Jun 2010 A1
20100152976 White et al. Jun 2010 A1
20100169432 Santori et al. Jul 2010 A1
20100174474 Nagase Jul 2010 A1
20100179712 Pepitone et al. Jul 2010 A1
20100185341 Wilson et al. Jul 2010 A1
20100188831 Ortel Jul 2010 A1
20100197359 Harris Aug 2010 A1
20100202346 Sitzes et al. Aug 2010 A1
20100211259 McClellan Aug 2010 A1
20100211282 Nakata et al. Aug 2010 A1
20100211300 Jaffe et al. Aug 2010 A1
20100211304 Hwang et al. Aug 2010 A1
20100211441 Sprigg et al. Aug 2010 A1
20100217458 Schweiger et al. Aug 2010 A1
20100222939 Namburu et al. Sep 2010 A1
20100228404 Link et al. Sep 2010 A1
20100234071 Shabtay et al. Sep 2010 A1
20100235042 Ying Sep 2010 A1
20100235744 Schultz Sep 2010 A1
20100235891 Oglesbee et al. Sep 2010 A1
20100250071 Pala et al. Sep 2010 A1
20100253493 Szczerba et al. Oct 2010 A1
20100256836 Mudalige Oct 2010 A1
20100265104 Zlojutro Oct 2010 A1
20100268426 Pathak et al. Oct 2010 A1
20100274410 Tsien et al. Oct 2010 A1
20100280751 Breed Nov 2010 A1
20100287303 Smith et al. Nov 2010 A1
20100289632 Seder et al. Nov 2010 A1
20100289643 Trundle et al. Nov 2010 A1
20100291427 Zhou Nov 2010 A1
20100295676 Khachaturov et al. Nov 2010 A1
20100304640 Sofman et al. Dec 2010 A1
20100305807 Basir et al. Dec 2010 A1
20100306080 Trandal et al. Dec 2010 A1
20100306309 Santori et al. Dec 2010 A1
20100306435 Nigoghosian et al. Dec 2010 A1
20100315218 Cades et al. Dec 2010 A1
20100321151 Matsuura et al. Dec 2010 A1
20100325626 Greschler et al. Dec 2010 A1
20100332130 Shimizu et al. Dec 2010 A1
20110000961 McNeal Jan 2011 A1
20110015853 DeKock et al. Jan 2011 A1
20110018736 Carr Jan 2011 A1
20110021213 Carr Jan 2011 A1
20110021234 Tibbits et al. Jan 2011 A1
20110028138 Davies-Moore et al. Feb 2011 A1
20110035098 Goto et al. Feb 2011 A1
20110035141 Barker et al. Feb 2011 A1
20110040438 Kluge et al. Feb 2011 A1
20110050589 Yan et al. Mar 2011 A1
20110053506 Lemke et al. Mar 2011 A1
20110077808 Hyde et al. Mar 2011 A1
20110078024 Messier et al. Mar 2011 A1
20110080282 Kleve et al. Apr 2011 A1
20110082615 Small et al. Apr 2011 A1
20110084824 Tewari et al. Apr 2011 A1
20110090078 Kim et al. Apr 2011 A1
20110092159 Park et al. Apr 2011 A1
20110093154 Moinzadeh et al. Apr 2011 A1
20110093158 Theisen et al. Apr 2011 A1
20110093438 Poulsen Apr 2011 A1
20110093846 Moinzadeh et al. Apr 2011 A1
20110105097 Tadayon et al. May 2011 A1
20110106375 Sundaram et al. May 2011 A1
20110112717 Resner May 2011 A1
20110112969 Zaid et al. May 2011 A1
20110117933 Andersson May 2011 A1
20110119344 Eustis May 2011 A1
20110130915 Wright et al. Jun 2011 A1
20110134749 Speks et al. Jun 2011 A1
20110137520 Rector et al. Jun 2011 A1
20110145331 Christie et al. Jun 2011 A1
20110172873 Szwabowski et al. Jul 2011 A1
20110175754 Karpinsky Jul 2011 A1
20110183658 Zellner Jul 2011 A1
20110187520 Filev et al. Aug 2011 A1
20110190972 Timmons et al. Aug 2011 A1
20110193707 Ngo Aug 2011 A1
20110193726 Szwabowski et al. Aug 2011 A1
20110195699 Tadayon et al. Aug 2011 A1
20110197187 Roh Aug 2011 A1
20110205047 Patel et al. Aug 2011 A1
20110209079 Tarte et al. Aug 2011 A1
20110210867 Benedikt Sep 2011 A1
20110212717 Rhoads et al. Sep 2011 A1
20110213656 Turner Sep 2011 A1
20110221656 Haddick et al. Sep 2011 A1
20110224865 Gordon et al. Sep 2011 A1
20110224898 Scofield et al. Sep 2011 A1
20110225527 Law et al. Sep 2011 A1
20110227757 Chen et al. Sep 2011 A1
20110231091 Gourlay et al. Sep 2011 A1
20110234369 Cal et al. Sep 2011 A1
20110245999 Kordonowy Oct 2011 A1
20110246210 Matsur Oct 2011 A1
20110247013 Feller et al. Oct 2011 A1
20110251734 Schepp et al. Oct 2011 A1
20110257973 Chutorash et al. Oct 2011 A1
20110267204 Chuang et al. Nov 2011 A1
20110267205 McClellan et al. Nov 2011 A1
20110286676 El Dokor Nov 2011 A1
20110288765 Conway Nov 2011 A1
20110291886 Krieter Dec 2011 A1
20110291926 Gokturk et al. Dec 2011 A1
20110298808 Rovik Dec 2011 A1
20110301844 Aono Dec 2011 A1
20110307354 Erman et al. Dec 2011 A1
20110307570 Speks Dec 2011 A1
20110309926 Eikelenberg et al. Dec 2011 A1
20110309953 Petite et al. Dec 2011 A1
20110313653 Lindner Dec 2011 A1
20110320089 Lewis Dec 2011 A1
20120006610 Wallace et al. Jan 2012 A1
20120010807 Zhou Jan 2012 A1
20120016581 Mochizuki et al. Jan 2012 A1
20120029852 Goff et al. Feb 2012 A1
20120030002 Bous et al. Feb 2012 A1
20120030512 Wadhwa et al. Feb 2012 A1
20120038489 Goldshmidt Feb 2012 A1
20120046822 Anderson Feb 2012 A1
20120047530 Shkedi Feb 2012 A1
20120053793 Sala et al. Mar 2012 A1
20120053888 Stahlin et al. Mar 2012 A1
20120059789 Sakai et al. Mar 2012 A1
20120065815 Hess Mar 2012 A1
20120065834 Senart Mar 2012 A1
20120068956 Jira et al. Mar 2012 A1
20120071097 Matsushita et al. Mar 2012 A1
20120072244 Collins et al. Mar 2012 A1
20120074770 Lee Mar 2012 A1
20120083947 Anderson et al. Apr 2012 A1
20120083960 Zhu et al. Apr 2012 A1
20120083971 Preston Apr 2012 A1
20120084773 Lee et al. Apr 2012 A1
20120089299 Breed Apr 2012 A1
20120092251 Hashimoto et al. Apr 2012 A1
20120101876 Truvey et al. Apr 2012 A1
20120101914 Kumar et al. Apr 2012 A1
20120105613 Weng et al. May 2012 A1
20120106114 Caron et al. May 2012 A1
20120109446 Yousefi et al. May 2012 A1
20120109451 Tan May 2012 A1
20120110356 Yousefi et al. May 2012 A1
20120113822 Letner May 2012 A1
20120115446 Guatama et al. May 2012 A1
20120116609 Jung et al. May 2012 A1
20120116678 Witmer May 2012 A1
20120116696 Wank May 2012 A1
20120146766 Geisler et al. Jun 2012 A1
20120146809 Oh et al. Jun 2012 A1
20120149341 Tadayon et al. Jun 2012 A1
20120150651 Hoffberg et al. Jun 2012 A1
20120155636 Muthaiah Jun 2012 A1
20120158436 Bauer et al. Jun 2012 A1
20120173135 Gutman Jul 2012 A1
20120173900 Diab et al. Jul 2012 A1
20120173905 Diab et al. Jul 2012 A1
20120179325 Faenger Jul 2012 A1
20120179547 Besore et al. Jul 2012 A1
20120188876 Chow et al. Jul 2012 A1
20120197523 Kirsch Aug 2012 A1
20120197669 Kote et al. Aug 2012 A1
20120204166 Ichihara Aug 2012 A1
20120210160 Fuhrman Aug 2012 A1
20120215375 Chang Aug 2012 A1
20120217928 Kulidjian Aug 2012 A1
20120218125 Demirdjian et al. Aug 2012 A1
20120226413 Chen et al. Sep 2012 A1
20120238286 Mallavarapu et al. Sep 2012 A1
20120239242 Uehara Sep 2012 A1
20120242510 Choi et al. Sep 2012 A1
20120254763 Protopapas et al. Oct 2012 A1
20120254804 Shema et al. Oct 2012 A1
20120259951 Schalk et al. Oct 2012 A1
20120265359 Das Oct 2012 A1
20120274459 Jaisimha et al. Nov 2012 A1
20120274481 Ginsberg et al. Nov 2012 A1
20120284292 Rechsteiner et al. Nov 2012 A1
20120289217 Reimer et al. Nov 2012 A1
20120289253 Haag et al. Nov 2012 A1
20120296567 Breed Nov 2012 A1
20120313771 Wottlifff, III Dec 2012 A1
20120316720 Hyde et al. Dec 2012 A1
20120317561 Aslam et al. Dec 2012 A1
20120323413 Kedar-Dongarkar et al. Dec 2012 A1
20120327231 Cochran et al. Dec 2012 A1
20130005263 Sakata Jan 2013 A1
20130005414 Bindra et al. Jan 2013 A1
20130013157 Kim et al. Jan 2013 A1
20130015814 Kelty et al. Jan 2013 A1
20130019252 Haase et al. Jan 2013 A1
20130024060 Sukkarie et al. Jan 2013 A1
20130030645 Divine et al. Jan 2013 A1
20130030811 Olleon et al. Jan 2013 A1
20130031540 Throop et al. Jan 2013 A1
20130031541 Wilks et al. Jan 2013 A1
20130035063 Fisk et al. Feb 2013 A1
20130046624 Calman Feb 2013 A1
20130050069 Ota Feb 2013 A1
20130055096 Kim et al. Feb 2013 A1
20130059607 Herz et al. Mar 2013 A1
20130063336 Sugimoto et al. Mar 2013 A1
20130066512 Willard et al. Mar 2013 A1
20130067599 Raje et al. Mar 2013 A1
20130075530 Shander et al. Mar 2013 A1
20130079964 Sukkarie et al. Mar 2013 A1
20130083805 Lu et al. Apr 2013 A1
20130085787 Gore et al. Apr 2013 A1
20130086164 Wheeler et al. Apr 2013 A1
20130099915 Prasad et al. Apr 2013 A1
20130103196 Monceaux et al. Apr 2013 A1
20130105264 Ruth et al. May 2013 A1
20130116882 Link et al. May 2013 A1
20130116915 Ferreira et al. May 2013 A1
20130134730 Ricci May 2013 A1
20130135118 Ricci May 2013 A1
20130138591 Ricci May 2013 A1
20130138714 Ricci May 2013 A1
20130139140 Rao et al. May 2013 A1
20130141247 Ricci Jun 2013 A1
20130141252 Ricci Jun 2013 A1
20130143495 Ricci Jun 2013 A1
20130143546 Ricci Jun 2013 A1
20130143601 Ricci Jun 2013 A1
20130144459 Ricci Jun 2013 A1
20130144460 Ricci Jun 2013 A1
20130144461 Ricci Jun 2013 A1
20130144462 Ricci Jun 2013 A1
20130144463 Ricci et al. Jun 2013 A1
20130144469 Ricci Jun 2013 A1
20130144470 Ricci Jun 2013 A1
20130144474 Ricci Jun 2013 A1
20130144486 Ricci Jun 2013 A1
20130144520 Ricci Jun 2013 A1
20130144657 Ricci Jun 2013 A1
20130145065 Ricci Jun 2013 A1
20130145279 Ricci Jun 2013 A1
20130145297 Ricci et al. Jun 2013 A1
20130145360 Ricci Jun 2013 A1
20130145401 Ricci Jun 2013 A1
20130145482 Ricci et al. Jun 2013 A1
20130147638 Ricci Jun 2013 A1
20130151031 Ricci Jun 2013 A1
20130151065 Ricci Jun 2013 A1
20130151088 Ricci Jun 2013 A1
20130151288 Bowne et al. Jun 2013 A1
20130152003 Ricci et al. Jun 2013 A1
20130154298 Ricci Jun 2013 A1
20130157640 Aycock Jun 2013 A1
20130157647 Kolodziej Jun 2013 A1
20130158778 Tengler et al. Jun 2013 A1
20130158821 Ricci Jun 2013 A1
20130166096 Jotanovic Jun 2013 A1
20130166097 Ricci Jun 2013 A1
20130166098 Lavie et al. Jun 2013 A1
20130166109 Ginsberg Jun 2013 A1
20130166152 Butterworth Jun 2013 A1
20130166208 Forstall et al. Jun 2013 A1
20130167159 Ricci et al. Jun 2013 A1
20130173531 Rinearson et al. Jul 2013 A1
20130179689 Matsumoto et al. Jul 2013 A1
20130190978 Kato et al. Jul 2013 A1
20130194108 Lapiotis et al. Aug 2013 A1
20130197796 Obradovich et al. Aug 2013 A1
20130197797 Boddy et al. Aug 2013 A1
20130198031 Mitchell et al. Aug 2013 A1
20130198737 Ricci Aug 2013 A1
20130198802 Ricci Aug 2013 A1
20130200991 Ricci et al. Aug 2013 A1
20130203400 Ricci Aug 2013 A1
20130204455 Chia et al. Aug 2013 A1
20130204457 King Aug 2013 A1
20130204466 Ricci Aug 2013 A1
20130204484 Ricci Aug 2013 A1
20130204493 Ricci et al. Aug 2013 A1
20130204943 Ricci Aug 2013 A1
20130205026 Ricci Aug 2013 A1
20130205412 Ricci Aug 2013 A1
20130207794 Patel et al. Aug 2013 A1
20130212065 Rahnama Aug 2013 A1
20130212659 Maher et al. Aug 2013 A1
20130215116 Siddique et al. Aug 2013 A1
20130218412 Ricci Aug 2013 A1
20130218445 Basir Aug 2013 A1
20130219039 Ricci Aug 2013 A1
20130226365 Brozovich Aug 2013 A1
20130226371 Rovik et al. Aug 2013 A1
20130226392 Schneider et al. Aug 2013 A1
20130226449 Rovik et al. Aug 2013 A1
20130226622 Adamson et al. Aug 2013 A1
20130227648 Ricci Aug 2013 A1
20130231784 Rovik et al. Sep 2013 A1
20130231800 Ricci Sep 2013 A1
20130232142 Nielsen et al. Sep 2013 A1
20130238165 Garrett et al. Sep 2013 A1
20130241720 Ricci et al. Sep 2013 A1
20130245882 Ricci Sep 2013 A1
20130250933 Yousefi et al. Sep 2013 A1
20130261871 Hobbs et al. Oct 2013 A1
20130261966 Wang et al. Oct 2013 A1
20130265178 Tengler et al. Oct 2013 A1
20130274997 Chien Oct 2013 A1
20130279111 Lee Oct 2013 A1
20130279491 Rubin et al. Oct 2013 A1
20130282238 Ricci et al. Oct 2013 A1
20130282357 Rubin et al. Oct 2013 A1
20130282946 Ricci Oct 2013 A1
20130288606 Kirsch Oct 2013 A1
20130293364 Ricci et al. Nov 2013 A1
20130293452 Ricci et al. Nov 2013 A1
20130293480 Kritt et al. Nov 2013 A1
20130295901 Abramson et al. Nov 2013 A1
20130295908 Zeinstra et al. Nov 2013 A1
20130295913 Matthews et al. Nov 2013 A1
20130297195 Das et al. Nov 2013 A1
20130300554 Braden Nov 2013 A1
20130301584 Addepalli et al. Nov 2013 A1
20130304371 Kitatani et al. Nov 2013 A1
20130308265 Arnouse Nov 2013 A1
20130309977 Heines et al. Nov 2013 A1
20130311038 Kim et al. Nov 2013 A1
20130325453 Levien et al. Dec 2013 A1
20130325568 Mangalvedkar et al. Dec 2013 A1
20130329372 Wilkins Dec 2013 A1
20130332023 Bertosa et al. Dec 2013 A1
20130338914 Weiss Dec 2013 A1
20130339027 Dokor et al. Dec 2013 A1
20130345929 Bowden et al. Dec 2013 A1
20140021915 Staley et al. Jan 2014 A1
20140028542 Lovitt et al. Jan 2014 A1
20140032014 DeBiasio et al. Jan 2014 A1
20140054957 Bellis Feb 2014 A1
20140058672 Wansley et al. Feb 2014 A1
20140066014 Nicholson et al. Mar 2014 A1
20140067201 Visintainer et al. Mar 2014 A1
20140067564 Yuan Mar 2014 A1
20140070917 Protopapas Mar 2014 A1
20140081544 Fry Mar 2014 A1
20140088798 Himmelstein Mar 2014 A1
20140096068 Dewan et al. Apr 2014 A1
20140097955 Lovitt et al. Apr 2014 A1
20140109075 Hoffman et al. Apr 2014 A1
20140109080 Ricci Apr 2014 A1
20140120829 Bhamidipati et al. May 2014 A1
20140121862 Zarrella et al. May 2014 A1
20140125802 Beckert et al. May 2014 A1
20140143839 Ricci May 2014 A1
20140156133 Cullinane et al. Jun 2014 A1
20140164611 Molettiere et al. Jun 2014 A1
20140168062 Katz et al. Jun 2014 A1
20140168436 Pedicino Jun 2014 A1
20140169621 Burr Jun 2014 A1
20140171752 Park et al. Jun 2014 A1
20140172727 Abhyanker et al. Jun 2014 A1
20140188533 Davidson Jul 2014 A1
20140195272 Sadiq et al. Jul 2014 A1
20140198216 Zhai et al. Jul 2014 A1
20140200737 Lortz et al. Jul 2014 A1
20140207328 Wolf et al. Jul 2014 A1
20140220966 Muetzel et al. Aug 2014 A1
20140222298 Gurin Aug 2014 A1
20140223384 Graumann Aug 2014 A1
20140240089 Chang Aug 2014 A1
20140244078 Downey et al. Aug 2014 A1
20140244096 An et al. Aug 2014 A1
20140244111 Gross et al. Aug 2014 A1
20140244156 Magnusson et al. Aug 2014 A1
20140245277 Petro et al. Aug 2014 A1
20140245278 Zellen Aug 2014 A1
20140245284 Alrabady et al. Aug 2014 A1
20140252091 Morse et al. Sep 2014 A1
20140257627 Hagan, Jr. Sep 2014 A1
20140267035 Schalk et al. Sep 2014 A1
20140277936 El Dokor et al. Sep 2014 A1
20140278070 McGavran et al. Sep 2014 A1
20140278071 San Filippo et al. Sep 2014 A1
20140278086 San Filippo et al. Sep 2014 A1
20140281971 Isbell, III et al. Sep 2014 A1
20140282161 Cash Sep 2014 A1
20140282278 Anderson et al. Sep 2014 A1
20140282470 Buga et al. Sep 2014 A1
20140282931 Protopapas Sep 2014 A1
20140292545 Nemoto Oct 2014 A1
20140292665 Lathrop et al. Oct 2014 A1
20140303899 Fung Oct 2014 A1
20140306799 Ricci Oct 2014 A1
20140306814 Ricci Oct 2014 A1
20140306817 Ricci Oct 2014 A1
20140306826 Ricci Oct 2014 A1
20140306833 Ricci Oct 2014 A1
20140306834 Ricci Oct 2014 A1
20140306835 Ricci Oct 2014 A1
20140307655 Ricci Oct 2014 A1
20140307724 Ricci Oct 2014 A1
20140308902 Ricci Oct 2014 A1
20140309789 Ricci Oct 2014 A1
20140309790 Ricci Oct 2014 A1
20140309804 Ricci Oct 2014 A1
20140309805 Ricci Oct 2014 A1
20140309806 Ricci Oct 2014 A1
20140309813 Ricci Oct 2014 A1
20140309814 Ricci et al. Oct 2014 A1
20140309815 Ricci et al. Oct 2014 A1
20140309838 Ricci Oct 2014 A1
20140309839 Ricci et al. Oct 2014 A1
20140309847 Ricci Oct 2014 A1
20140309849 Ricci Oct 2014 A1
20140309852 Ricci Oct 2014 A1
20140309853 Ricci Oct 2014 A1
20140309862 Ricci Oct 2014 A1
20140309863 Ricci Oct 2014 A1
20140309864 Ricci Oct 2014 A1
20140309865 Ricci Oct 2014 A1
20140309866 Ricci Oct 2014 A1
20140309867 Ricci Oct 2014 A1
20140309868 Ricci Oct 2014 A1
20140309869 Ricci Oct 2014 A1
20140309870 Ricci et al. Oct 2014 A1
20140309871 Ricci Oct 2014 A1
20140309872 Ricci Oct 2014 A1
20140309873 Ricci Oct 2014 A1
20140309874 Ricci Oct 2014 A1
20140309875 Ricci Oct 2014 A1
20140309876 Ricci Oct 2014 A1
20140309877 Ricci Oct 2014 A1
20140309878 Ricci Oct 2014 A1
20140309879 Ricci Oct 2014 A1
20140309880 Ricci Oct 2014 A1
20140309885 Ricci Oct 2014 A1
20140309886 Ricci Oct 2014 A1
20140309891 Ricci Oct 2014 A1
20140309892 Ricci Oct 2014 A1
20140309893 Ricci Oct 2014 A1
20140309913 Ricci et al. Oct 2014 A1
20140309919 Ricci Oct 2014 A1
20140309920 Ricci Oct 2014 A1
20140309921 Ricci et al. Oct 2014 A1
20140309922 Ricci Oct 2014 A1
20140309923 Ricci Oct 2014 A1
20140309927 Ricci Oct 2014 A1
20140309929 Ricci Oct 2014 A1
20140309930 Ricci Oct 2014 A1
20140309934 Ricci Oct 2014 A1
20140309935 Ricci Oct 2014 A1
20140309982 Ricci Oct 2014 A1
20140310031 Ricci Oct 2014 A1
20140310075 Ricci Oct 2014 A1
20140310103 Ricci Oct 2014 A1
20140310186 Ricci Oct 2014 A1
20140310277 Ricci Oct 2014 A1
20140310379 Ricci et al. Oct 2014 A1
20140310594 Ricci et al. Oct 2014 A1
20140310610 Ricci Oct 2014 A1
20140310702 Ricci et al. Oct 2014 A1
20140310739 Ricci et al. Oct 2014 A1
20140310788 Ricci Oct 2014 A1
20140322676 Raman Oct 2014 A1
20140347207 Zeng et al. Nov 2014 A1
20140347265 Allen et al. Nov 2014 A1
20150007155 Hoffman et al. Jan 2015 A1
20150012186 Horseman Jan 2015 A1
20150032366 Man et al. Jan 2015 A1
20150032670 Brazell Jan 2015 A1
20150057839 Chang et al. Feb 2015 A1
20150061895 Ricci Mar 2015 A1
20150066284 Yopp Mar 2015 A1
20150081133 Schulz Mar 2015 A1
20150081167 Pisz et al. Mar 2015 A1
20150088423 Tuukkanen Mar 2015 A1
20150088515 Beaumont et al. Mar 2015 A1
20150116200 Kurosawa et al. Apr 2015 A1
20150158499 Koravadi Jun 2015 A1
20150178034 Penilla et al. Jun 2015 A1
20150235480 Cudak et al. Aug 2015 A1
20150343918 Watanabe et al. Dec 2015 A1
20150345971 Meuleau et al. Dec 2015 A1
20160000929 Chun et al. Jan 2016 A1
20160003637 Andersen Jan 2016 A1
20160008985 Kim et al. Jan 2016 A1
20160009291 Pallett et al. Jan 2016 A1
20160009391 Friesel Jan 2016 A1
20160026182 Boroditsky et al. Jan 2016 A1
20160070527 Ricci Mar 2016 A1
20160086391 Ricci Mar 2016 A1
20160129908 Harda May 2016 A1
20160161272 Shigezumi et al. Jun 2016 A1
20160202074 Woodard et al. Jul 2016 A1
20160269456 Ricci Sep 2016 A1
20160269469 Ricci Sep 2016 A1
20160276854 Lian Sep 2016 A1
20160355192 James et al. Dec 2016 A1
20160368396 Konet et al. Dec 2016 A1
20160375788 Liu Dec 2016 A1
20170008523 Christensen et al. Jan 2017 A1
20170015288 Coelingh et al. Jan 2017 A1
20170021837 Ebina Jan 2017 A1
20170030728 Baglino et al. Feb 2017 A1
20170036673 Lee Feb 2017 A1
20170053538 Samarasekera et al. Feb 2017 A1
20170057507 Gordon et al. Mar 2017 A1
20170057542 Kim et al. Mar 2017 A1
20170076455 Newman et al. Mar 2017 A1
20170088117 Ogawa Mar 2017 A1
20170143246 Flickinger May 2017 A1
20170212515 Bertollini et al. Jul 2017 A1
20170242442 Minster Aug 2017 A1
20170267256 Minster et al. Sep 2017 A1
20170291615 Kusano et al. Oct 2017 A1
20170349045 McNew Dec 2017 A1
20170349185 McNew Dec 2017 A1
20170355377 Vijaya Kumar et al. Dec 2017 A1
20180052463 Mays Feb 2018 A1
20180082213 McCord Mar 2018 A1
20180109482 DeLuca et al. Apr 2018 A1
20180113450 Sherony Apr 2018 A1
20180118219 Hiei et al. May 2018 A1
20180151064 Xu et al. May 2018 A1
20180170382 Soliman et al. Jun 2018 A1
20180208209 Al-Dahle et al. Jul 2018 A1
20180293466 Viswanathan Oct 2018 A1
20190004526 Soliman Jan 2019 A1
20190017828 Harish et al. Jan 2019 A1
Foreign Referenced Citations (40)
Number Date Country
1417755 May 2003 CN
1847817 Oct 2006 CN
101303878 Nov 2008 CN
102467827 May 2012 CN
1223567 Jul 2002 EP
1484729 Dec 2004 EP
2192015 Jun 2010 EP
2004-284450 Oct 2004 JP
2006-0128484 Dec 2006 KR
WO 2007126204 Nov 2007 WO
WO 2012102879 Aug 2012 WO
WO 2013074866 May 2013 WO
WO 2013074867 May 2013 WO
WO 2013074868 May 2013 WO
WO 2013074897 May 2013 WO
WO 2013074899 May 2013 WO
WO 2013074901 May 2013 WO
WO 2013074919 May 2013 WO
WO 2013074981 May 2013 WO
WO 2013074983 May 2013 WO
WO 2013075005 May 2013 WO
WO 2013181310 Dec 2013 WO
WO 2014014862 Jan 2014 WO
WO 2014139821 Sep 2014 WO
WO 2014143563 Sep 2014 WO
WO 2014158667 Oct 2014 WO
WO 2014158672 Oct 2014 WO
WO 2014158766 Oct 2014 WO
WO 2014172312 Oct 2014 WO
WO 2014172313 Oct 2014 WO
WO 2014172316 Oct 2014 WO
WO 2014172320 Oct 2014 WO
WO 2014172322 Oct 2014 WO
WO 2014172323 Oct 2014 WO
WO 2014172327 Oct 2014 WO
WO 2016035268 Mar 2016 WO
WO 2016062730 Apr 2016 WO
WO 2016145073 Sep 2016 WO
WO 2016145100 Sep 2016 WO
WO 2017167790 Oct 2017 WO
Non-Patent Literature Citations (91)
Entry
Notice of Allowance for U.S. Appl. No. 15/634,197, dated Oct. 25, 2018, 8 pages.
U.S. Appl. No. 16/246,810, filed Jan. 14, 2019, Yalla et al.
Official Action for U.S. Appl. No. 15/395,924, dated Nov. 19, 2018, 13 pages.
Official Action for U.S. Appl. No. 15/407,066, dated Nov. 8, 2018, 9 pages.
Notice of Allowance for U.S. Appl. No. 15/408,143, dated Nov, 20, 2018, 8 pages.
Official Action for U.S. Appl. No. 15/665,644, dated Nov. 19, 2018, 32 pages.
Official Action for U.S. Appl. No. 15/408,143, dated Jun. 15, 2018, 9 pages.
Grana, et al., “A Fast Approach for Integrating ORB Descriptors in the Bag of Words Model,” Proceedings of SPIE—The International Society for Optical Engineering, Feb. 2013, vol. 8667, pp. 86670-866709, DOI: 10.1117/12.2008460, 9 pages.
Notice of Allowance for U.S. Appl. No. 15/395,924, dated Apr. 2, 2019, 11 pages
Official Action for U.S. Appl. No. 15/407,066, dated Mar. 12, 2019, 11 pages.
Final Action for U.S. Appl. No. 15/665,644, dated Apr. 4, 2019, 19 pages.
U.S. Appl. No. 15/395,924, filed Dec. 30, 2016, Singhal et al.
U.S. Appl. No. 15/395,952, filed Dec. 30, 2016, Singhal et al.
U.S. Appl. No. 15/407,066, filed Jan. 16, 2017, Yellambalase et al.
U.S. Appl. No. 15/408,143, filed Jan. 17, 2017, Xiao et al.
U.S. Appl. No. 15/634,197, filed Jun. 27, 2017, Singhal et al.
U.S. Appl. No. 15/665,644, filed Aug. 1, 2017, Singhal.
U.S. Appl. No. 15/848,851, filed Dec. 20, 2017, Cox et al.
U.S. Appl. No. 15/727,838, filed Oct. 9, 2017, Cox et al.
U.S. Appl. No. 15/786,373, filed Oct. 17, 2017, Guo et al.
U.S. Appl. No. 61/567,962, filed Dec. 7, 2011, Baarman et al.
“Carpool, HOV, Transit lanes,” WazeWiki, 2016, retrieved from https://wiki.waze.com/wiki/Carpool_HOV,_Transit_lanes, retrieved on Feb. 27, 2018, 3 pages.
“Managing Demand Through Travel Information Services,” U.S. Department of Transportation brochure, FHWA, retrieved from http://www.ops.fhwa.dot.gov/publications/manag_demand_tis/travelinfo.htm, retrieved on Feb. 28, 2018, 30 pages.
“Nexus 10 Guidebook for Android,” Google Inc., © 2012, Edition 1.2, 166 pages.
“ORB (Oriented FAST and Rotated BRIEF)”, Open CV 3.0.0-dev documentation, retrieved from https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_orb/py_orb.html, 2014, 3 pages.
“Self-Driving: Self-Driving Autonomous Cars,” available at http://www.automotivetechnologies.com/autonomous-self-driving-cars, accessed Dec. 2016, 9 pages.
“Softmax function,” Wikipedia, retrieved from https://en.wikipedia.org/wiki/Softmax_function, retrieved on Feb. 28, 2018, 4 pages.
Amor-Segan et al., “Towards the Self Healing Vehicle,” Automotive Electronics, Jun. 2007, 2007 3rd Institution of Engineering and Technology Conference, 7 pages.
Badino et al., “Real-Time Topometric Localization,” IEEE International Conference, Robotics and Automation, 2012, 8 pages.
Bennett, “Meet Samsung's Version of Apple AirPlay,” CNET.com, Oct. 10, 2012, 11 pages.
Brubaker et al., “Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, 8 pages.
Cairnie et al., “Using Finger-Pointing to Operate Secondary Controls in Automobiles.” Proceedings of the IEEE Intelligent Vehicles Symposium 2000, Oct. 3-5, 2000, 6 pages.
Cathy et al., “A prescription for transit arrival/departure prediction using automatic vehicle location data,” Transportation Research Part C, 2003, vol. 11, pp. 241-264.
Clark, “How Self-Driving Cars Work: The Nuts and Bolts Behind Google's Autonomous Car Program,” Feb. 21, 2015, available at http://www.makeuseof.com/tag/how-self-driving-cars-work-the-nuts-and-bolts-behind-googles-autonomous-car-program/, 9 pages.
Davies, “This NIO EP9 performance EV wants to be the Tesla of Supercars,” SlashGear, 2016, retrieved from https//www.slashgear.com/nextev-nio-ep9-car-tesla-of-performance-evs-21464829,96 pages.
Deaton et al., “How Driverless Cars Will Work,” Jul. 1, 2008, HowStuffWorks.com.<http://auto.howstuffworks.com/under-the-hood/trends-innovations/driverless-car.htm> Sep. 18, 2017, 10 pages.
Dellaert et al., “Monte Carlo Localization for Mobile Robots,” IEEE, Robotics and Automation, 1999 Proceedings, vol. 2, pp. 1322-1328.
Dumbaugh, “Safe Streets, Livable Streets: A Positive Approach to urban Roadside Design,” Ph.D. dissertation for School of Civil & Environ. Engr., Georgia Inst. of Technology, Dec. 2005, 235 pages.
Engel et al., “LSD-SLAM: Large-Scale Direct Monocular SLAM,” Springer, Cham., European Conference, Computer Vision, pp. 834-849, 16 pages.
Fei et al., “A QoS-aware Dynamic Bandwidth Allocation Algorithm for Relay Stations in IEEE 802.16j-based Vehicular Networks,” Proceedings of the 2010 IEEE Global Telecommunications Conference, Dec. 10, 2010, 6 pages.
Floros et al., “OpenStreetSLAM: Global Vehicle Localization Using OpenStreetMaps,” RWTH Aachen University, Computer Vision Group, 2013, 20 pages.
Galvez-Lopez et al., “Bags of Binary Words for Fast Place Recognition in Image Sequences,” IEEE Transactions on Robotics, 2012, vol. 28(5), pp. 1188-1197.
Ge et al., “Optimal Relay Selection in IEEE 802.16 Multihop Relay Vehicular Networks,” IEEE Transactions on Vehicular Technology, 2010, vol. 59(5), pp. 2198-2206.
Grauman et al., “Excerpt chapter from Synthesis lecture draft: Visual Recognition,” 2012, retrieved from http://www.cs.utexas.edu/˜grauman/courses/fall2009/papers/bag_of_visual_words.pdf. 8 pages.
Guizzo, “How Google's Self-Driving Car Works,” Oct. 18, 2011, available at https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works, 5 pages.
Haklay et al., “OpenStreetMap: User-Generated Street Maps,” IEEE Pervasive Computing, 2008, pp. 12-18.
Hays et al., “IM2GPS: estimating geographic information from a single image,” IEEE Conference, Computer Vision and Pattern Recognition, 2008, pp. 1-8.
Heer et al., “ALPHA: An Adaptive and Lightweight Protocol for Hop-by-hop Authentication,” Proceedings of CoNEXT 2008, Dec. 2008, pp. 1-12.
Jahnich et al., “Towards a Middleware Approach for a Self-Configurable Automotive Embedded System,” International Federation for Information Processing, 2008, pp. 55-65.
Kautonen, “NextEV unveils the NIO EP9 electric supercar in London,” Autoblog, 2016, retrieved from http://www.autoblog.com/2016/11/21/nextev-unveiles-the-nio-ep9-electric-supercar-in-london/, 3 pages.
Kneip et al., “Robust Real-Time Visual Odometry with a Single Camera and an IMU,” Proceedings of the British Machine Vision Conference, 2011, 11 pages.
Konolige et al., “Large-Scale Visual Odometry for Rough Terrain,” Robotics Research, 2010, pp. 201-212, 12 pages.
Levinson et al., “Map-Based Precision Vehicle Localization in Urban Environments,” Robotics: Science and Systems, 2007, vol. 4, 8 pages.
Ma et al., “Find your Way by Observing the Sun and Other Semantic Cues,” Computer Vision and Pattern Recognition, 2016, 12 pages.
Muja et al., “Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration,” VISAPP International Conference on Computer Vision Theory and Applications, 2009, vol. 1, pp. 331-340, 10 pages.
Mur-Artal et al., “ORB-SLAM: a Versatile and Accurate Monocular SLAM System,” IEEE Translations, Robotics, 2015, vol. 31(5), pp. 1147-1163.
Nister et al., “Visual odometry,” IEEE Computer Vision and Pattern Recognition, 2004, vol. 1, 35 pages.
Persson “Adaptive Middleware for Self-Configurable Embedded Real-Time Systems,” KTH Industrial Engineering and Management, 2009, 92 pages.
Raychaudhuri et al., “Emerging Wireless Technologies and the Future Mobile Internet,” p. 48, Cambridge Press, 2011, 3 pages.
Rublee et al., ORB: an efficient alternative to SIFT or SURF, In Computer Vision (ICCV), 2011 IEEE international conference on (pp. 2564-2571) retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.4395&rep=rep1&type=pdfs, 8 pages.
Ruchti et al., “Localization on openstreetmap data using a 3D Laser Scanner,” IEEE International Conference, Robotics and Automation, 2015, 6 pages.
Scaramuzza et al., “Visual Odometry[tutorial],” IEEE Robotics & Automation Magazine, 2011, vol. 18(4), pp. 80-92.
Stachniss, “Robot Mapping: Short Introduction to Particle Filters and Monte Carlo Localization,” Albert-Ludwigs-Universitat Freiburg, 2012, retrieved from http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/slam09-particle-filter-4.pdf, 9 pages.
Stephens, Leah, “How Driverless Cars Work,” Interesting Engineering, Apr. 28, 2016, available at https://interestingengineering.com/driverless-cars-work/, 7 pages.
Stoller, “Leader Election in Distributed Systems with Crash Failures,” Indiana University, 1997, pp. 1-15.
Strunk et al., “The Elements of Style,” 3d ed., Macmillan Publishing Co., 1979, 3 pages.
Suwatthikul, “Fault detection and diagnosis for in-vehicle networks,” Intech, 2010, pp. 283-286 [retrieved from: www.intechopen.com/books/fault-detection-and-diagnosis-for-in-vehicle-networks].
Thurn/Burgard/Fox, “Probabilistic Robotics,” The MIT Press, 2010, retrieved from http://robotics.usc.edu/˜gaurav/CS547/lecture6-2010-particle-filters.pdf, 51 pages.
Urmson et al., “Autonomous Driving in Urban Environments: Boss and the Urban Challenge,” Journal of Field Robotics, 2008, vol. 25(8), pp. 425-466.
Walter et al., “The smart car seat: personalized monitoring of vital signs in automotive applications.” Personal and Ubiquitous Computing, Oct. 2011, vol. 15, No. 7, pp. 707-715.
White, “NextEV's NIO IP9 is an incredible four-wheel-drive electric hypercar,” WIRED, 2016, retrieved from http://www.wired.co.uk/article/nextev-hypercar-nio-ep9, 6 pages.
Wolf et al., “Design, Implementation, and Evaluation of a Vehicular Hardware Security Module,” ICISC'11 Proceedings of the 14th Int'l Conf. Information Security & Cryptology, Springer-Verlag Berlin, Heidelberg, 2011, pp. 302-318.
Wu et al., “Where am I: Place instance and category recognition using spatial PACT,” IEEE Conference, Computer Vision and Pattern Recognition, 2008, 8 pages.
Zhang et al., “LOAM: Lidar Odometry and Mapping in Real-time,” Robotics Science and Systems, 2014, vol. 2, 9 pages.
Zhang et al., “Real-time Depth Enhanced Monocular Odometry.” IEEE/RSJ International Conference, Intelligent Robots and Systems, 2014, pp. 4973-4980.
Zhang et al., “Visual-lidar Odometry and Mapping: Low-drift, Robust, and Fast,” IEEE International Conference, Robotics and Automation, 2015, pp. 2174-2181.
Official Action for U.S. Appl. No. 15/395,924, dated Jan. 25, 2018, 10 pages.
Engel et al., “LSD-SLAM: Large-Scale Direct Monocular SLAM,” Springer, Cham., European Conference, 2014, Computer Vision, pp. 834-849, 16 pages.
Final Action for U.S. Appl. No. 15/395,924, dated Jul. 30, 2018, 14 pages.
Official Action for U.S. Appl. No. 15/395,952, dated Aug. 3, 2018, 11 pages.
Notice of Allowance for U.S. Appl. No. 15/407,066, dated Jul. 3, 2019, 5 pages.
Final Action for U.S. Appl. No. 15/395,952, dated Jul. 11, 2019, 14 pages.
Supplemental Notice of Allowance for U.S. Appl. No. 15/407,066, dated Sep. 10, 2019, 2 pages.
Official Action for U.S. Appl. No. 15/665,644, dated Jul, 25, 2019, 16 pages.
Official Action for U.S. Appl. No. 15/727,838, dated Aug. 15, 2019, 17 pages.
Official Action for U.S. Appl. No. 15/786,373, dated Jul, 11, 2019, 14 pages.
Official Action for U.S. Appl. No. 15/395,952, dated Jan. 13, 2020, 18 pages.
Final Action for U.S. Appl. No. 15/665,644, dated Dec. 31, 2019, 18 pages.
Official Action for U.S. Appl. No. 15/848,851, dated Dec. 12, 2019, 17 pages.
Final Action for U.S. Appl. No. 15/727,838, dated Jan. 13, 2020, 19 pages.
Notice of Allowance for U.S. Appl. No. 15/786,373, dated Dec. 27, 2019, 5 pages.
Related Publications (1)
Number Date Country
20190129431 A1 May 2019 US