Wafer carrier for reducing contamination from carbon particles and outgassing

Abstract
A wafer carrier for carrying solar cell wafers during a deposition process is described. The carrier is coated with pyrolytic carbon, silicon carbide, or a ceramic material, and is adapted to receive and support the wafers.
Description
BACKGROUND

Field


This disclosure is generally related to the design of wafer carriers used in the fabrication of semiconductor devices. More specifically, this disclosure is related to wafer carriers used for large-scale manufacturing of solar cells.


Related Art


Crystalline-silicon based solar cells have been shown to have superb energy conversion efficiency. While device design and fabrication techniques continue to mature, and with the price of crystalline silicon becoming progressively lower, solar panels are being offered at historical low prices. In addition, with newly available financing plans and government subsidies, customers, both residential and commercial, now have unprecedented incentives to install solar panels. As a result, the solar market is expected to experience double-digit growth for many years to come.


Most of the current solar cell manufacturing facilities, however, are insufficiently equipped for large-scale production. The emerging solar market demands factories that can produce hundreds of megawatts, if not gigawatts, of solar cells per year. The design, size, and throughput of present facilities are not intended for such high-volume manufacturing. Hence, various new designs in the manufacturing process are needed.


SUMMARY

One embodiment of the present invention provides a wafer carrier for carrying solar cell wafers during a deposition process. The carrier is coated with pyrolytic carbon, silicon carbide, or a ceramic material, and is adapted to receive and support the wafers.


In a variation on this embodiment, the carrier comprises graphite or carbon fiber composite.


In a variation on this embodiment, the carrier is coated with pyrolytic carbon layer with a thickness between 10 and 50 micrometers.


In a variation on this embodiment, the pocket is configured to retain a wafer supported by the carrier that is a 5-inch by 5-inch square, a 6-inch by 6-inch square, a 5-inch by 5-inch pseudo-square, or a 6-inch by 6-inch pseudo-square.


In a variation on this embodiment, the carrier includes one or more pockets for retaining the wafers. The bottom of a respective pocket is partially carved out. The uncarved portion of the bottom has a flat top surface to support a wafer.


In a variation on this embodiment, the bottom of a respective pocket comprises a number of flat-top ridges or pillars for supporting a wafer.


In a variation on this embodiment, edges around and within a respective pocket are rounded.


In a variation on this embodiment, a respective pocket includes a sloped ramp along the pocket's rim, thereby facilitating wafer loading.


In a variation on this embodiment, the carrier includes an interlocking mechanism on at least one edge, thereby facilitating interlocking with a second carrier to form a wafer carrier system.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows a diagram illustrating the electroluminescence image of a Si-based solar cell that was fabricated by being placed directly on a conventional graphite carrier during PECVD.



FIG. 2 shows a diagram illustrating the electroluminescence image of a Si-based solar cell fabricated by a PECVD process that involves non-direct contact between the wafer and a graphite carrier according to one embodiment of the present invention.



FIG. 3 shows a diagram illustrating the normalized maximum power output of solar cells that are fabricated under two different conditions according to one embodiment of the present invention.



FIG. 4 shows a diagram illustrating the measured minority carrier lifetimes (MCLs) for solar cells that are fabricated using different carriers, according to one embodiment of the present invention.



FIG. 5 shows a diagram illustrating an exemplary wafer carrier, according to an embodiment of the present invention.



FIG. 6 shows a diagram illustrating a cross-sectional view of an exemplary wafer carrier, according to an embodiment of the present invention.



FIG. 7 shows a diagram illustrating a wafer pocket with a ridged bottom according to an embodiment of the present invention.



FIG. 8 shows an exemplary cross section of a ridged-bottom wafer pocket, according to one embodiment of the present invention.



FIG. 9 shows a diagram illustrating such a configuration, according to an embodiment of the present invention.



FIG. 10 shows a top view of an exemplary wafer carrier with wafer-supporting pillars, according to one embodiment of the present invention.



FIG. 11 shows a top view of an exemplary wafer carrier with a grid-like wafer-support structure on the bottom, according to one embodiment of the present invention.



FIG. 12 shows four examples of wafer pocket design, according to embodiments of the present invention.



FIG. 13A shows a corner of such an exemplary wafer carrier, according to an embodiment of the present invention.



FIG. 13B shows the cross section of such an exemplary wafer pocket, according to one embodiment of the present invention.



FIG. 14 shows a top view of a wafer carrier formed by multiple modules, according to one embodiment of the present invention.



FIG. 15 shows a cross-sectional view of two interlocked wafer pocket modules, according to one embodiment of the present invention.



FIG. 16 shows a cross-sectional view of two interlocked wafer pocket modules retained in place by a protrusion on a metal frame, according to one embodiment of the present invention.



FIG. 17 shows a top view of four interlocked wafer pocket modules retained by elongated protrusion ridges on a supporting rigid frame, according to one embodiment of the present invention.



FIG. 18 shows a top view of four interlocked wafer pocket modules retained by spherical protrusions on a supporting rigid frame, according to one embodiment of the present invention.



FIG. 19 presents a diagram illustrating an exemplary chemical vapor deposition (CVD) tool used for solar cell fabrication, according to an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


Embodiments of the present invention solve the problem of carrying a large number of wafers in a deposition chamber with reduced contamination from carbon particles and outgas sing by using a graphite or carbon fiber composite (CFC) wafer carrier coated with a low-porosity material, such as pyrolytic carbon or silicon carbide, which is resistant to abrasion and particle generation. Furthermore, to reduce the contact surface area between the wafer and the carrier, the bottom of the wafer-holding pockets in the carrier can have a non-flat surface or a partially carved-out structure.


The fabrication of solar cells often involves multiple chemical or physical vapor deposition (CVD or PVD) steps. During a large-scale CVD process, a number of Si wafers are placed in a wafer carrier and then loaded into the reaction chamber. A common material of wafer carrier is graphite, due to its high thermal conductivity and low mass density. However, graphite wafer carriers often generate carbon particles from physical contact and abrasion, which can contaminate the wafer surface. As described in more detail in later sections, coating the graphite or CFC wafer carrier with a low porosity material such as pyrolytic carbon or silicon carbide can substantially seal the pores on the carrier surface to reduce generation of carbon particles and outgas sing from the wafer-carrier material. Moreover, such coating prevents direct contact between the Si wafer and the graphite or CFC, which often causes carbon particles to escape from the carrier surface and attach to the wafer. To further reduce possible contamination, the bottom of the wafer-holding pockets can be a non-flat surface (such as one with a plurality of ridges) or a partially carved-out structure. This unique pocket design reduces direct contact between the wafer and the carrier while providing sufficient thermal and electrical conductivity.


CVD Wafer Carrier in Large-Scale Solar Cell Fabrication


A typical high-volume solar cell production line often includes one or more CVD tools, such as a plasma-enhanced CVD (PECVD) tool, which can batch-process Si wafers. During a typical PECVD process, multiple wafers are placed on a wafer carrier and loaded into the PECVD chamber for material deposition. The wafer carrier is exposed to a plasma-rich environment and subject to elevated temperatures. For example, a typical SiO2 deposition process may require the wafer to reach a temperature between 150° C. and 300° C. In a conventional fabrication process, the wafers can be directly placed on and heated by a steel plate in the chamber. When wafer carriers are used for batch processing, the heat needs to be transferred to the wafers from the steel plate via the wafer carrier. Hence, a wafer carrier with sufficient thermal conductivity is desirable. Moreover, for high-volume production, the wafer carrier often has a large physical dimension to accommodate a large number of Si wafers. It is therefore desirable to use a low-density material to form the wafer carrier. Ideally, the wafer carrier should also have high purity and be resistance to process reagent.


Graphite based material, due to its high thermal conductivity and low mass density, is a desirable material for wafer carriers. There are, however, certain drawbacks in using graphite carriers in PECVD tools. For instance, when a graphite wafer carrier is in contact with other mechanical parts, such as when the carrier is fed into the chamber, fine carbon particles may escape from the surface of the carrier. These carbon particles can be deposited onto the front and back surfaces of the Si wafer.



FIG. 1 shows a diagram illustrating the electroluminescence image of a Si-based solar cell fabricated by a PECVD process using a conventional graphite wafer carrier. From FIG. 1, one can see that a number of black spots appear on the surface of the wafer. These black spots are caused by the surface contamination, such as carbon particles, during the PECVD process. Surface contamination can significantly impair product yield, because these black spots on the solar cell surface can lead to junction leakage, which in turn results in degraded performance of the solar cell. Note that the carbon particles can attach to the solar cell surface when the solar cell is in direct contact with the graphite carrier.


One way to reduce wafer surface contamination is to prevent direct contact between the wafer and the wafer carrier. FIG. 2 shows a diagram illustrating the electroluminescence image of a Si-based solar cell fabricated by a PECVD process that involves non-direct contact between the wafer and a graphite carrier according to one embodiment of the present invention. In this example, without direct contact with the graphite carrier, the surface of the fabricated solar cell is much cleaner compared with the solar cell surface shown in FIG. 1. To avoid direct contact, tone can insert a “dummy” Si wafer between the Si wafer under processing and the graphite carrier. However, inserting an additional Si wafer can be cumbersome, and under certain circumstances, this “dummy” wafer itself can be a source of contamination.


To reduce the graphite-carrier-induced contamination, in some embodiments, the surface of the graphite wafer carrier is coated with a layer of low-porosity material that is less prone to abrasion and particle generation. In general, the porosity of graphite is approximately 15% or greater, and the porosity of CFC can range from 0.03% to 5% or higher. Ideally, the porosity of the coating material is lower than the porosity of the underlying material of the wafer carrier. For example, the porosity of the coating materials can be less than 10%, preferably 1-5%, and more preferably 0-0.1%. Such coating materials include, but are not limited to, pyrolytic carbon, silicon carbide, and ceramic materials. Pyrolytic carbon can be formed by crystallizing graphite under high temperature or by using a CVD process. In some embodiments, the thickness of the coating layer can be between 1 and 100 micrometers, preferably between 10 and 50 micrometers. Pyrolytic carbon coating might be more desirable due to its thermal coefficient being close to that of graphite or CFC. Such coating can effectively prevent direct contact between the Si wafer under process and the graphite material of the carrier, resulting in reduced carbon particle contamination and hence better product yield.



FIG. 3 shows a diagram illustrating the normalized maximum power output of solar cells that are fabricated under two different conditions. The left portion of FIG. 3 shows the measured normalized maximum output power (Pmax) of a number of solar cells fabricated with direct contact between the solar cells and the graphite carrier during the PECVD process. The right portion of FIG. 3 shows the measured normalized Pmax of a number of solar cells fabricated without direct contact between the solar cells and the graphite carrier. As shown in FIG. 3, the normalized Pmax is approximately 0.07 W higher for solar cells fabricated without direct contact between the solar cells and the graphite carrier.


Similar to graphite, carbon fiber composite (CFC) material, which has high strength and low density (between 1.5 and 1.8 g/cm3), can also be used for wafer carriers. However, when used in a PECVD tool, CFC carriers face the problem of outgas sing. Due to the CFC's inherent fiber structure, a CFC wafer carrier may include an undesirable number of pores, which are harmful to the deposited films. The existence of these pores can result in environmental contaminants, such as NOx, SOx, etc., being absorbed into the CFC carrier, which can then lead to outgas sing during the PECVD process. In general, outgas sing is an undesirable effect during material deposition, because it not only contaminants the chamber and thus the wafers, but also causes bubbles in the deposited film. These bubbles can weaken the bonding between the current film and any subsequently deposited films. Coating the CFC carrier with pyrolytic carbon, silicon carbide, or other ceramic materials can effectively seal many pores that may exist on the surface of the CFC carrier, thus reducing outgas sing during the PECVD process.


When coated with pyrolytic carbon or SiC, CFC wafer carriers and graphite carriers can provide similar performance in terms of quality of the fabricated solar cells. FIG. 4 shows a diagram illustrating the measured minority carrier lifetimes (MCLs) for solar cells that are fabricated using different carriers, according to one embodiment of the present invention. In this example, under two different temperature settings, the normalized MCLs for solar cells that are fabricated using coated CFC carrier and pyrolytic-carbon-coated graphite carrier (POR) are similar.


In addition to porosity, other important properties of the coating material include its stiffness and hardness. Compared with other coating materials, pyrolytic carbon has a relatively low Young's modulus, which is approximately 39 Giga-Pascal (GPa). Meanwhile, the Young's modulus of crystalline Si (c-Si) is between 130 and 185 GPa. The relatively low Young's modulus of the pyrolytic carbon coating ensures that wafer carriers with such a coating will not cause damage to the Si wafers during the loading and unloading process. Note that the Young's modulus of SiC is approximately 450 GPa, which is much higher than that of c-Si. Therefore, pyrolytic carbon coating is in general preferred over SiC coating.



FIG. 5 shows a diagram illustrating an exemplary wafer carrier, according to an embodiment of the present invention. In FIG. 5, wafer carrier 500 includes rectangular plate 502 and a number of pockets, such as pockets 504 and 506, located on plate 502. The size of plate 502 can vary depending on the size of the deposition tool. In some embodiments, plate 502 can include 12 pockets arranged in a 3-by-4 array, thus being capable of accommodating 12 wafers. For a CVD tool with a larger chamber, plate 502 can be larger to accommodate more wafers. Large-scale batch processing is preferred in solar cell fabrications due to the reduced cost. In some embodiments, plate 502 can include up to 72 or more pockets, which may be arranged in a 6-by-12 array, as shown in FIG. 5. Although FIG. 5 shows a rectangular wafer carrier, in practice, the wafer carrier may take any shape, such as circular, oval, square, etc.


In some embodiments, plate 502 is made of graphite, and the entire surface of plate 502 is coated with a layer of pyrolytic carbon or SiC. In further embodiments, the thickness of the pyrolytic carbon or SiC coating is between 1 and 100 micrometers, preferably between 10 and 50 micrometers. The pyrolytic carbon coating on the graphite plate not only suppresses formation of carbon particles but also prevents direct contact between the Si wafers under processing and the graphite surface. As shown in FIG. 3, elimination of the Si-graphite direct contact can improve the maximum power output of the fabricated solar cells.


In some embodiments, plate 502 is made of CFC. The surface of the CFC plate is coated with pyrolytic carbon or SiC, which can effectively seal at least a portion of the pores on the surface of the CFC plate, thus reducing outgas sing from the wafer carrier.



FIG. 6 shows a diagram illustrating a cross-sectional view of an exemplary wafer carrier, according to an embodiment of the present invention. Wafer carrier plate 600 includes a number of wafer pockets, such as pocket 602. The wafer pockets are indented regions that can confine a wafer, such as c-Si substrate 604 located within pocket 602. The depth of the pockets can be between 0.1 and 1 millimeter, making them suitable for containing substrates of various thicknesses, which can range from tens to hundreds of micrometers. The size and shape of the pockets can also vary based on application, i.e., the size and shape of wafers that are under process. In some embodiments, the pockets are designed to accommodate wafers of various sizes and shapes, including but not limited to: 5-inch by 5-inch pseudo-square (square with rounded corners), 6-inch by 6-inch pseudo-square, 5-inch by 5-inch square, and 6-inch by 6-inch square. Note that to accommodate wafers of a certain shape and size, the pockets can have a similar shape and a slightly larger size. Part of the bottom surface of the pockets to be in contact with the wafer can be configured to accommodate a fat wafer, or can have a contour shape to accommodate possible wafer warping.


Although the wafer carrier is coated with a low-porosity material, any contact between the wafer and wafer carrier may still result in possible contamination. Therefore, it is preferable to limit the area of contact between the wafers and the wafer carrier. In some embodiments, the bottom of the wafer pockets can be a non-flat surface or a partially carved-out structure. For example, the bottom surface of a wafer pocket can include a number of parallel ridges. The bottom of a wafer pocket can also be configured to have a mesh or honeycomb structure, such that the wafer contact area is reduced. On the other hand, it is desirable to retain sufficient wafer contact area to ensure good electrical and thermal conductivity between the wafer and the carrier. In some embodiments, the total wafer contact area can be between 10 and 50% of the size of the wafers.



FIG. 7 shows a diagram illustrating a wafer pocket with a ridged bottom according to an embodiment of the present invention. In this example, the bottom surface of pocket 702 includes a number of ridges, such as ridges 706 and 708. The wafer contact area is now limited to the total top surface area of the ridges. For example, in FIG. 7, instead of being in contact with the entire bottom surface of pocket 702, wafer 704 is only in contact with the top surface of the ridges, such as ridges 706 and 708. In some embodiments, the total top surface area of the ridges is between 10 and 50% of the size of the wafer.


In FIG. 7, the ridges have a cross section that is square or rectangular. In general, the cross section of the ridges may have different shapes, such as a partial sphere or a trapezoid. FIG. 8 shows an exemplary cross section of a ridged-bottom wafer pocket, according to one embodiment of the present invention. In this example, wafer 802 is supported by a number of ridges. Each ridge, such as ridge 804, has a cross section that is substantially a trapezoid, which helps increase the rigidity of the wafer carrier. Furthermore, the sloped sides of each ridge (compared with vertical side wall of square or rectangular shaped ridges) may facilitate more effective coating of the wafer carrier with pyrolytic carbon or SiC. For example, if the coating is done by deposition, a sloped surface could be more susceptible to deposited material than a vertical side wall.


In some embodiments, the corners on the wafer carrier that can potentially be in direct contact with the wafer or any mechanical part can be rounded to reduce the probability of particles being released from such contact. As shown in FIG. 8, the top surface of ridge 804 can have rounded edges. In one embodiment, the radius of a rounded edge is at least 0.1 mm, preferably greater than 0.5 mm, and more preferably greater than 1 mm.


In further embodiments, the rim of a wafer pocket can have a sloped ramp to “guide” the wafer when the wafer is loaded into the pocket. FIG. 9 shows a diagram illustrating such a configuration, according to an embodiment of the present invention. In this example, wafer pocket 902 includes a sloped ramp 904 along its rim. Sloped ramp 904 guides wafer 906 to a desired position where it can be in contact with the top surface of the ridges. In addition, the edge where sloped ramp 904 joins the top surface of wafer pocket 902 is rounded to reduce possible particle release due to contact with sharp edges.


In addition to ridges, there are a variety of ways to pattern the bottom of a wafer pocket to reduce the contact area with a wafer. Such patterns of contact areas include, but are not limited to: circle, grid, mesh, hexagon, etc. FIG. 10 shows a top view of an exemplary wafer carrier with wafer-supporting pillars, according to one embodiment of the present invention. In this example, wafer carrier 1002 includes a number of wafer pockets, such as wafer pocket 1004. On the bottom of wafer pocket 1004 there are a number of support pillars, such as support pillar 1006. Each pillar has a flat top surface. Ideally, all the top surfaces of the pillars are in the same plane to ensure good contact with the wafer for thermal and electrical conductivity.



FIG. 11 shows a top view of an exemplary wafer carrier with a grid-like wafer-support structure on the bottom, according to one embodiment of the present invention. In this example, wafer carrier 1102 includes a number of wafer pockets, such as wafer pocket 1104. The bottom of wafer pocket 1104 includes a grid structure, which protrudes from the bottom surface to support the wafer. The top surface of the support structure, which is illustrated in FIG. 11 with a cross hatch pattern, presents a grid pattern. This grid structure can improve the rigidity of wafer carrier 1102 because of the increased number of vertical walls within the wafer pockets.


Note that a variety of patterns can be used to configure the bottom of a wafer pocket. FIG. 12 shows four examples of wafer pocket design, according to embodiments of the present invention. In these examples, the cross hatch patterned or gray areas are the flat top surfaces of the wafer pocket bottom, which support the wafer. In general, the bottom of a wafer pocket can have a number of recesses or protrusions with different patterns. A particular design may depend on the desired wafer contact area, structural rigidity, and weight.


It is possible to reduce the total surface area of the wafer carrier by using a partially carved-out structure as a wafer pocket. FIG. 13A shows a corner of such an exemplary wafer carrier, according to an embodiment of the present invention. In this example, wafer carrier 1302 includes a wafer pocket 1304, which has a grid wafer-support structure 1308. Note that grid wafer-structure 1308 does not have a bottom. Compared with the grid structure illustrated in FIG. 11, which has a continuous bottom, grid wafer-support structure 1308 reduces the material on the bottom of wafer pocket 1304, which reduces the total surface area of wafer carrier 1302, resulting in less potential particle contamination to the wafer. Furthermore, this carved-out structure can reduce the weight of wafer carrier 1302 without significant compromise on the rigidity of wafer carrier 1302. Note that in this example wafer pocket 1304 also has a sloped ramp 1306 along its rim, the presence of which facilitates more precise placement of the wafer in wafer pocket 1304.


In some embodiments, a wafer pocket can have most of its bottom part carved out, wherein the wafer is supported by the inner rim of the pocket. FIG. 13B shows the cross section of such an exemplary wafer pocket, according to one embodiment of the present invention. In this example, wafer pocket 1312 includes supporting rim 1314 and sloped ramp 1316. Wafer pocket does not have bottom, and the wafer is supported by supporting rim 1314, which provides a support platform along the inner rim of wafer pocket 1312. When wafer 1318 is loaded into wafer pocket 1312, wafer 1318 is guided by sloped ramp 1316, and rests upon supporting rim 1314.


In the example described above, each wafer carrier is coated with pyrolytic carbon, SiC, or a ceramic material. The coating covers every part of the wafer carrier, including the inner side walls of each wafer pocket and the wafer-supporting structure within a wafer pocket.


With the technological advances in wafer manufacturing it is expected that wafer sizes will continue to grow. As a result, it is expected that the dimension of wafer carriers would continue to grow. However, a wafer carrier made of carbon-based material cannot grow infinitely due to limitations in the graphite or CFC production process. To overcome this limitation, a wafer pocket can be made into an individual module, which is effectively an individual wafer carrier that can carry one wafer. Multiple such modules can be mechanically coupled together to form a larger wafer carrier.



FIG. 14 shows a top view of a wafer carrier formed by multiple modules, according to one embodiment of the present invention. In this example, a number of modules, such as module 1402, are mechanically coupled together to form a large wafer carrier. Each module includes one wafer pocket, which has a ridged bottom as illustrated in FIG. 7. A respective module has an interlocking mechanism on each of its four edges, which allows the module to be mechanically interlocked with a neighboring module. In some embodiments, the entire wafer carrier can be optionally placed on frame 1404 made of a rigid material (such as stainless steel, titanium, or non-metallic material). The use of frame 1404 can overcome the lack of rigidity caused by the mechanical coupling between the modules. Note that the use of smaller wafer pocket modules can also save the cost of manufacturing a large, monocoque wafer carrier, because the unit cost of a single-wafer module is often cheaper than the per-pocket cost of a large, monocoque carrier. Furthermore, instead of a single wafer pocket, a wafer pocket module may include a plurality of wafer pocket.



FIG. 15 shows a cross-sectional view of two interlocked wafer pocket modules, according to one embodiment of the present invention. In this example, modules 1502 and 1504 each have a ridged bottom to support wafers 1503 and 1505, respectively. Module 1502 has edge locking mechanism 1510, and module 1504 has edge locking mechanism 1508. To form a large wafer carrier, edge locking mechanisms 1510 and 1508 are mechanically coupled together. Furthermore, the entire wafer carrier system, which is formed by these interlocking modules, is placed on stainless steel frame 1512. Stainless steel frame 1512 provides the physical support for the entire wafer carrier, and prevents the interlocking mechanisms from being subject to excessive amount of mechanical stress when the wafer carrier is moved.


In some embodiments, the rigid frame that supports the entire wafer carrier can have protrusions on its bottom to facilitate placing and retaining the wafer pocket modules. FIG. 16 shows a cross-sectional view of two interlocked wafer pocket modules retained in place by a protrusion on a metal frame, according to one embodiment of the present invention. In this example, interlocked wafer pocket modules 1604 and 1606 are placed on stainless steel frame 1602. Both modules 1604 and 1606 have a recess at the location where these two modules are coupled together. Ideally, this recess matches protrusion 1608 on frame 1602. The presence of protrusion 1608 prevents wafer pocket modules 1604 and 1606 from being displaced.


Note that protrusion 1608 can be an elongated ridge along the joining seam of two interlocked modules, or can be a partial sphere at the joining point of four interlocked modules. FIG. 17 shows a top view of four interlocked wafer pocket modules retained by elongated protrusion ridges on a supporting rigid frame, according to one embodiment of the present invention. In this example, longitudinal protrusion ridge 1704 placed between columns of interlocked modules prevents the modules from being displaced in the left-right direction. Latitudinal protrusion ridge 1702 placed between rows of interlocked modules prevents the modules from being displaced in the up-down direction. FIG. 18 shows a top view of four interlocked wafer pocket modules retained by spherical protrusions on a supporting rigid frame, according to one embodiment of the present invention. In this example, spherical protrusion 1802 is placed at the location where four interlocked wafer pocket modules join. Such a protrusion is present at each of such joining locations. These protrusions can jointly prevent the interlocked modules from moving in any direction. Note that in one embodiment the recess at each corner of a wafer pocket module can be a portion of a sphere (e.g., a quarter of a semi-sphere), such that when four modules are interlocked together their respective recesses jointly form a half sphere, which can match the half-sphere protrusion on the underlying rigid frame.



FIG. 19 presents a diagram illustrating an exemplary chemical vapor deposition (CVD) tool used for solar cell fabrication, according to an embodiment of the present invention. In FIG. 19, CVD tool 1900 includes chamber 1902, top gas delivery system 1904, optional bottom gas exhaust system 1906, and wafer carrier 1908.


Chamber 1902 holds the reaction gases. The top gas delivery system 1904 and bottom gas exhaust system 1906 can deliver reaction gases into chamber 1902 and output exhaust gases from chamber 1902. The arrows show the direction of the gas flow. To ensure a uniform deposition across the wafer surface, sub-gas lines with individual flow control can be used for gas delivery. Detailed descriptions of a uniform gas delivery system can be found in U.S. patent application Ser. No. 12/952,127, entitled “Multi-Channel Gas-Delivery System,” by inventors Yan Rozenzon, Robert T. Trujillo, and Steven C. Beese, filed Nov. 22, 2010, the disclosure of which is incorporated herein by reference in its entirety.


Wafer carrier 1908 is positioned inside chamber 1902. In some embodiments, wafer carrier 1908 is oriented horizontally in such a way that the to-be-deposited wafer surface is facing the incoming gas flow. In some embodiments, wafer carrier 1908 is made of graphite or CFC with its surface coated with a layer of pyrolytic carbon or SiC. In further embodiments, the thickness of the coating is between 10 and 50 micrometers. As shown in FIG. 19, wafer carrier 1908 includes a number of pockets for holding wafers. To minimize contact between wafer carrier 1908 and the wafers, in some embodiments, the bottom of the pockets can be a non-flat surface or a partially carved-out structure. Furthermore, wafer carrier 1908 can be configured based on any of the embodiments described above.


The foregoing descriptions of various embodiments have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention.

Claims
  • 1. An apparatus for carrying one or more wafers, the apparatus comprising: a carrier coated with a pyrolytic carbon layer:wherein the carrier comprises a number of pockets configured to accommodate the wafers, wherein a respective pocket has a ridged bottom comprising a number of ridges, wherein a top edge of a respective ridge is rounded, and wherein a radius of the rounded top edge is at least 0.1 mm;wherein the pyrolytic carbon layer has a porosity between 0 and 0.1%;wherein at least one edge of the carrier comprises an L-shaped interlocking mechanism that has a horizontal portion and a vertical portion; andwherein the L-shaped interlocking mechanism is configured to interlock with a corresponding L-shaped interlocking mechanism of an adjacent carrier, thereby facilitating an interlocked joint between the carrier and the adjacent carrier to prevent relative lateral shifts between the carrier and the adjacent carrier.
  • 2. The apparatus of claim 1, wherein the carrier comprises graphite or carbon fiber composite.
  • 3. The apparatus of claim 1, wherein the pyrolytic carbon layer has a thickness between 10 and 50 micrometers.
  • 4. The apparatus of claim 1, wherein the carrier is adapted to accommodate the wafers of a size and shape of: a 5-inch by 5-inch square;a 6-inch by 6-inch square;a 5-inch by 5-inch pseudo-square; ora 6-inch by 6-inch pseudo-square.
  • 5. The apparatus of claim 1, wherein edges around and within the respective pocket are rounded.
  • 6. The apparatus of claim 1, wherein the respective pocket comprises a sloped ramp along the pocket's rim, thereby facilitating wafer loading.
  • 7. A semiconductor deposition tool, comprising: a deposition chamber; anda carrier coated with a pyrolytic carbon layer:wherein the carrier comprises a number of pockets configured to accommodate the wafers, wherein a respective pocket has a ridged bottom comprising a number of ridges, wherein a top edge of a respective ridge is rounded, and wherein a radius of the rounded top edge is at least 0.1 mm;wherein the pyrolytic carbon layer has a porosity between 0 and 0.1%;wherein at least one edge of the carrier comprises an L-shaped interlocking mechanism that has a horizontal portion and a vertical portion; andwherein the L-shaped interlocking mechanism is configured to interlock with a corresponding L-shaped interlocking mechanism of an adjacent carrier, thereby facilitating an interlocked joint between the carrier and the adjacent carrier to prevent relative lateral shifts between the carrier and the adjacent carrier.
  • 8. The deposition tool of claim 7, wherein the carrier comprises graphite or carbon fiber composite.
  • 9. The deposition tool of claim 7, wherein the pyrolytic carbon layer has a thickness between 10 and 50 micrometers.
  • 10. The deposition tool of claim 7, wherein is the carrier is adapted to accommodate the wafers of a size and shape of: a 5-inch by 5-inch square;a 6-inch by 6-inch square;a 5-inch by 5-inch pseudo-square; ora 6-inch by 6-inch pseudo-square.
  • 11. The deposition tool of claim 7, wherein edges around and within the respective pocket are rounded.
  • 12. The deposition tool of claim 7, wherein the respective pocket comprises a sloped ramp along the pocket's rim, thereby facilitating wafer loading.
RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 62/020,957, entitled “Method and System for Preventing Formation of Carbon Particles or Outgas sing from CVD Carrier by Pyrolytic Carbon Coating,” by inventors Yongkee Chae, Jiunn Benjamin Heng, Jianming Fu, and Zheng Xu, filed 3 Jul. 2014.

US Referenced Citations (475)
Number Name Date Kind
819360 Mayer Mar 1902 A
2626907 Melvin De Groote Jan 1953 A
2938938 Dickson May 1960 A
3094439 Mann Jun 1963 A
3116171 Nielson Dec 1963 A
3459597 Baron Aug 1969 A
3676179 Bokros Jul 1972 A
3961997 Chu Jun 1976 A
3969163 Wakefield Jul 1976 A
4015280 Matsushita Mar 1977 A
4082568 Lindmayer Apr 1978 A
4124410 Kotval Nov 1978 A
4124455 Lindmayer Nov 1978 A
4193975 Kotval Mar 1980 A
4200621 Liaw Apr 1980 A
4213798 Williams Jul 1980 A
4228315 Napoli Oct 1980 A
4251285 Yoldas Feb 1981 A
4284490 Weber Aug 1981 A
4315096 Tyan Feb 1982 A
4336648 Pschunder Jun 1982 A
4342044 Ovshinsky Jul 1982 A
4431858 Gonzalez Feb 1984 A
4514579 Hanak Apr 1985 A
4540843 Gochermann Sep 1985 A
4567642 Dilts Feb 1986 A
4571448 Barnett Feb 1986 A
4577051 Hartman Mar 1986 A
4586988 Nath May 1986 A
4589191 Green May 1986 A
4612409 Hamakawa Sep 1986 A
4617421 Nath Oct 1986 A
4633033 Nath Dec 1986 A
4652693 Bar-On Mar 1987 A
4657060 Kaucic Apr 1987 A
4667060 Spitzer May 1987 A
4670096 Schwirtlich Jun 1987 A
4694115 Lillington Sep 1987 A
4729970 Nath Mar 1988 A
4753683 Ellion Jun 1988 A
4771017 Tobin Sep 1988 A
4784702 Henri Nov 1988 A
4877460 Flodl Oct 1989 A
4933061 Kulkarni Jun 1990 A
4968384 Asano Nov 1990 A
5053355 von Campe Oct 1991 A
5057163 Barnett Oct 1991 A
5075763 Spitzer Dec 1991 A
5084107 Deguchi Jan 1992 A
5118361 Fraas Jun 1992 A
5131933 Floedl Jul 1992 A
5155051 Noguchi Oct 1992 A
5178685 Borenstein Jan 1993 A
5181968 Nath Jan 1993 A
5213628 Noguchi May 1993 A
5217539 Fraas Jun 1993 A
5279682 Wald Jan 1994 A
5286306 Menezes Feb 1994 A
5364518 Hartig Nov 1994 A
5401331 Ciszek Mar 1995 A
5455430 Noguchi Oct 1995 A
5461002 Safir Oct 1995 A
5563092 Ohmi Oct 1996 A
5576241 Sakai Nov 1996 A
5627081 Tsuo May 1997 A
5676766 Probst Oct 1997 A
5681402 Ichinose Oct 1997 A
5698451 Hanoka Dec 1997 A
5705828 Noguchi Jan 1998 A
5726065 Szlufcik Mar 1998 A
5808315 Murakami Sep 1998 A
5814195 Lehan Sep 1998 A
5903382 Tench May 1999 A
5935345 Kuznicki Aug 1999 A
5942048 Fujisaki Aug 1999 A
6017581 Hooker Jan 2000 A
6034322 Pollard Mar 2000 A
6091019 Sakata Jul 2000 A
6140570 Kariya Oct 2000 A
6232545 Samaras May 2001 B1
6303853 Fraas Oct 2001 B1
6333457 Mulligan Dec 2001 B1
6408786 Kennedy Jun 2002 B1
6410843 Kishi Jun 2002 B1
6441297 Keller Aug 2002 B1
6468828 Glatfelter Oct 2002 B1
6488824 Hollars Dec 2002 B1
6538193 Fraas Mar 2003 B1
6552414 Horzel Apr 2003 B1
6586270 Tsuzuki Jul 2003 B2
6620645 Chandra Sep 2003 B2
6672018 Shingleton Jan 2004 B2
6683360 Dierickx Jan 2004 B1
6736948 Barrett May 2004 B2
6761771 Satoh Jul 2004 B2
6803513 Beernink Oct 2004 B2
6841051 Crowley Jan 2005 B2
6917755 Nguyen Jul 2005 B2
7030413 Nakamura Apr 2006 B2
7128975 Inomata Oct 2006 B2
7164150 Terakawa Jan 2007 B2
7328534 Dinwoodie Feb 2008 B2
7388146 Fraas Jun 2008 B2
7399385 German Jul 2008 B2
7534632 Hu May 2009 B2
7635810 Luch Dec 2009 B2
7737357 Cousins Jun 2010 B2
7749883 Meeus Jul 2010 B2
7769887 Bhattacharyya Aug 2010 B1
7772484 Li Aug 2010 B2
7777128 Montello Aug 2010 B2
7825329 Basol Nov 2010 B2
7829781 Montello Nov 2010 B2
7829785 Basol Nov 2010 B2
7872192 Fraas Jan 2011 B1
7905995 German Mar 2011 B2
7977220 Sanjurjo Jul 2011 B2
8070925 Hoffman Dec 2011 B2
8115093 Gui Feb 2012 B2
8119901 Jang Feb 2012 B2
8152536 Scherer Apr 2012 B2
8168880 Jacobs May 2012 B2
8182662 Crowley May 2012 B2
8196360 Metten Jun 2012 B2
8209920 Krause Jul 2012 B2
8222513 Luch Jul 2012 B2
8222516 Cousins Jul 2012 B2
8258050 Cho Sep 2012 B2
8343795 Luo Jan 2013 B2
8569096 Babayan Oct 2013 B1
8586857 Everson Nov 2013 B2
8671630 Lena Mar 2014 B2
8686283 Heng Apr 2014 B2
8815631 Cousins Aug 2014 B2
9029181 Rhodes May 2015 B2
9147788 DeGroot Sep 2015 B2
9287431 Mascarenhas Mar 2016 B2
9761744 Wang Sep 2017 B2
20010008143 Sasaoka Jul 2001 A1
20010023702 Nakagawa Sep 2001 A1
20020015881 Nakamura Feb 2002 A1
20020072207 Andoh Jun 2002 A1
20020086456 Cunningham Jul 2002 A1
20020176404 Girard Nov 2002 A1
20020189939 German Dec 2002 A1
20030000568 Gonsiorawski Jan 2003 A1
20030000571 Wakuda Jan 2003 A1
20030034062 Stern Feb 2003 A1
20030042516 Forbes Mar 2003 A1
20030070705 Hayden Apr 2003 A1
20030097447 Johnston May 2003 A1
20030116185 Oswald Jun 2003 A1
20030118865 Marks Jun 2003 A1
20030121228 Stoehr Jul 2003 A1
20030136440 Machida Jul 2003 A1
20030168578 Taguchi Sep 2003 A1
20030183270 Falk Oct 2003 A1
20030201007 Fraas Oct 2003 A1
20040035458 Beernink Feb 2004 A1
20040065363 Fetzer Apr 2004 A1
20040094196 Shaheen May 2004 A1
20040103937 Bilyalov Jun 2004 A1
20040112419 Boulanger Jun 2004 A1
20040112426 Hagino Jun 2004 A1
20040123897 Ojima Jul 2004 A1
20040126213 Pelzmann Jul 2004 A1
20040135979 Hazelton Jul 2004 A1
20040152326 Inomata Aug 2004 A1
20040185683 Nakamura Sep 2004 A1
20040200520 Mulligan Oct 2004 A1
20050009319 Abe Jan 2005 A1
20050012095 Niira Jan 2005 A1
20050022746 Lampe Feb 2005 A1
20050022861 Rose Feb 2005 A1
20050061665 Pavani Mar 2005 A1
20050062041 Terakawa Mar 2005 A1
20050064247 Sane Mar 2005 A1
20050074954 Yamanaka Apr 2005 A1
20050109388 Murakami May 2005 A1
20050126622 Mukai Jun 2005 A1
20050133084 Joge Jun 2005 A1
20050178662 Wurczinger Aug 2005 A1
20050189015 Rohatgi Sep 2005 A1
20050199279 Yoshimine Sep 2005 A1
20050252544 Rohatgi Nov 2005 A1
20050257823 Zwanenburg Nov 2005 A1
20050263178 Montello Dec 2005 A1
20050268963 Jordan Dec 2005 A1
20060012000 Estes Jan 2006 A1
20060060238 Hacke Mar 2006 A1
20060060791 Hazelton Mar 2006 A1
20060130891 Carlson Jun 2006 A1
20060154389 Doan Jul 2006 A1
20060213548 Bachrach Sep 2006 A1
20060231803 Wang Oct 2006 A1
20060255340 Manivannan Nov 2006 A1
20060260673 Takeyama Nov 2006 A1
20060272698 Durvasula Dec 2006 A1
20060283496 Okamoto Dec 2006 A1
20060283499 Terakawa Dec 2006 A1
20070023081 Johnson Feb 2007 A1
20070023082 Manivannan Feb 2007 A1
20070029186 Krasnov Feb 2007 A1
20070108437 Tavkhelidze May 2007 A1
20070110975 Schneweis May 2007 A1
20070132034 Curello Jun 2007 A1
20070137699 Manivannan Jun 2007 A1
20070148336 Bachrach Jun 2007 A1
20070186853 Gurary Aug 2007 A1
20070186968 Nakauchi Aug 2007 A1
20070186970 Takahashi Aug 2007 A1
20070187652 Konno Aug 2007 A1
20070202029 Burns Aug 2007 A1
20070235077 Nagata Oct 2007 A1
20070235829 Levine Oct 2007 A1
20070256728 Cousins Nov 2007 A1
20070274504 Maes Nov 2007 A1
20070283996 Hachtmann Dec 2007 A1
20070283997 Hachtmann Dec 2007 A1
20080000522 Johnson Jan 2008 A1
20080011350 Luch Jan 2008 A1
20080035489 Allardyce Feb 2008 A1
20080041436 Lau Feb 2008 A1
20080041437 Yamaguchi Feb 2008 A1
20080047602 Krasnov Feb 2008 A1
20080047604 Korevaar Feb 2008 A1
20080053519 Pearce Mar 2008 A1
20080061293 Ribeyron Mar 2008 A1
20080092942 Kinsey Apr 2008 A1
20080092947 Lopatin Apr 2008 A1
20080121272 Besser May 2008 A1
20080121276 Lopatin May 2008 A1
20080121932 Ranade May 2008 A1
20080128013 Lopatin Jun 2008 A1
20080128017 Ford Jun 2008 A1
20080149161 Nishida Jun 2008 A1
20080149163 Gangemi Jun 2008 A1
20080156370 Abdallah Jul 2008 A1
20080173347 Korevaar Jul 2008 A1
20080173350 Choi Jul 2008 A1
20080178928 Warfield Jul 2008 A1
20080196757 Yoshimine Aug 2008 A1
20080202577 Hieslmair Aug 2008 A1
20080202582 Noda Aug 2008 A1
20080216891 Harkness Sep 2008 A1
20080223439 Deng Sep 2008 A1
20080230122 Terakawa Sep 2008 A1
20080251114 Tanaka Oct 2008 A1
20080251117 Schubert Oct 2008 A1
20080264477 Moslehi Oct 2008 A1
20080276983 Drake Nov 2008 A1
20080283115 Fukawa Nov 2008 A1
20080302030 Stancel Dec 2008 A1
20080303503 Wolfs Dec 2008 A1
20080308145 Krasnov Dec 2008 A1
20090007965 Rohatgi Jan 2009 A1
20090014055 Beck Jan 2009 A1
20090056805 Barnett Mar 2009 A1
20090065043 Hadorn Mar 2009 A1
20090078318 Meyers Mar 2009 A1
20090084439 Lu Apr 2009 A1
20090101872 Young Apr 2009 A1
20090120492 Sinha May 2009 A1
20090139512 Lima Jun 2009 A1
20090151771 Kothari Jun 2009 A1
20090151783 Lu Jun 2009 A1
20090155028 Boguslayskiy Jun 2009 A1
20090160259 Ravindranath Jun 2009 A1
20090188561 Aiken Jul 2009 A1
20090194233 Tamura Aug 2009 A1
20090211627 Meier Aug 2009 A1
20090221111 Frolov Sep 2009 A1
20090229660 Takizawa Sep 2009 A1
20090229854 Fredenberg Sep 2009 A1
20090239331 Xu Sep 2009 A1
20090250108 Zhou Oct 2009 A1
20090255574 Yu Oct 2009 A1
20090272419 Sakamoto Nov 2009 A1
20090283138 Lin Nov 2009 A1
20090283145 Kim Nov 2009 A1
20090293948 Tucci Dec 2009 A1
20090301549 Moslehi Dec 2009 A1
20090308439 Adibi Dec 2009 A1
20090317934 Scherff Dec 2009 A1
20090320897 Shimomura Dec 2009 A1
20100006145 Lee Jan 2010 A1
20100015756 Weidman Jan 2010 A1
20100043863 Wudu Feb 2010 A1
20100065111 Fu Mar 2010 A1
20100068890 Stockum Mar 2010 A1
20100084009 Carlson Apr 2010 A1
20100087031 Veschetti Apr 2010 A1
20100108134 Ravi May 2010 A1
20100116325 Nikoonahad May 2010 A1
20100124619 Xu May 2010 A1
20100131108 Meyer May 2010 A1
20100132774 Borden Jun 2010 A1
20100132792 Kim Jun 2010 A1
20100147364 Gonzalez Jun 2010 A1
20100154869 Oh Jun 2010 A1
20100169478 Saha Jul 2010 A1
20100175743 Gonzalez Jul 2010 A1
20100186802 Borden Jul 2010 A1
20100193014 Johnson Aug 2010 A1
20100218799 Stefani Sep 2010 A1
20100224230 Luch Sep 2010 A1
20100229914 Adriani Sep 2010 A1
20100236612 Khajehoddin Sep 2010 A1
20100240172 Rana Sep 2010 A1
20100243021 Lee Sep 2010 A1
20100243059 Okaniwa Sep 2010 A1
20100269904 Cousins Oct 2010 A1
20100279492 Yang Nov 2010 A1
20100282293 Meyer Nov 2010 A1
20100295091 Strzegowski Nov 2010 A1
20100300506 Heng Dec 2010 A1
20100300507 Heng Dec 2010 A1
20100300525 Lim Dec 2010 A1
20100313877 Bellman Dec 2010 A1
20100326518 Juso Dec 2010 A1
20110005569 Sauar Jan 2011 A1
20110005920 Ivanov Jan 2011 A1
20110023958 Masson Feb 2011 A1
20110030777 Lim Feb 2011 A1
20110048491 Taira Mar 2011 A1
20110056545 Ji Mar 2011 A1
20110073175 Hilali Mar 2011 A1
20110088762 Singh Apr 2011 A1
20110089079 Lo Apr 2011 A1
20110120518 Rust May 2011 A1
20110146759 Lee Jun 2011 A1
20110146781 Laudisio Jun 2011 A1
20110156188 Tu Jun 2011 A1
20110168250 Lin Jul 2011 A1
20110168261 Welser Jul 2011 A1
20110174374 Harder Jul 2011 A1
20110177648 Tanner Jul 2011 A1
20110186112 Aernouts Aug 2011 A1
20110220182 Lin Sep 2011 A1
20110245957 Porthouse Oct 2011 A1
20110259419 Hagemann Oct 2011 A1
20110272012 Heng Nov 2011 A1
20110277688 Trujillo Nov 2011 A1
20110277816 Xu Nov 2011 A1
20110277825 Fu et al. Nov 2011 A1
20110284064 Engelhart Nov 2011 A1
20110297224 Miyamoto Dec 2011 A1
20110297227 Pysch Dec 2011 A1
20110300661 Pearce Dec 2011 A1
20110308573 Jaus Dec 2011 A1
20120000502 Wiedeman Jan 2012 A1
20120012153 Azechi Jan 2012 A1
20120012174 Wu Jan 2012 A1
20120028461 Ritchie Feb 2012 A1
20120031480 Tisler Feb 2012 A1
20120040487 Asthana Feb 2012 A1
20120042925 Pfennig Feb 2012 A1
20120060911 Fu Mar 2012 A1
20120073975 Ganti Mar 2012 A1
20120080083 Liang Apr 2012 A1
20120085384 Beitel Apr 2012 A1
20120122262 Kang May 2012 A1
20120125391 Pinarbasi May 2012 A1
20120145233 Syn Jun 2012 A1
20120152349 Cao Jun 2012 A1
20120152752 Keigler Jun 2012 A1
20120167986 Meakin Jul 2012 A1
20120180851 Nagel Jul 2012 A1
20120192932 Wu Aug 2012 A1
20120199184 Nie Aug 2012 A1
20120240995 Coakley Sep 2012 A1
20120248497 Zhou Oct 2012 A1
20120279443 Kornmeyer Nov 2012 A1
20120279548 Munch Nov 2012 A1
20120285517 Souza Nov 2012 A1
20120305060 Fu et al. Dec 2012 A1
20120318319 Pinarbasi Dec 2012 A1
20120318340 Heng Dec 2012 A1
20120319253 Mizuno Dec 2012 A1
20120325282 Snow Dec 2012 A1
20130000705 Shappir Jan 2013 A1
20130014802 Zimmerman Jan 2013 A1
20130019919 Hoang Jan 2013 A1
20130056051 Jin Mar 2013 A1
20130096710 Pinarbasi Apr 2013 A1
20130112239 Liptac May 2013 A1
20130130430 Moslehi May 2013 A1
20130139878 Bhatnagar Jun 2013 A1
20130152996 DeGroot Jun 2013 A1
20130160826 Beckerman Jun 2013 A1
20130174897 You Jul 2013 A1
20130199608 Emeraud Aug 2013 A1
20130206213 He Aug 2013 A1
20130206219 Kurtin Aug 2013 A1
20130206221 Gannon Aug 2013 A1
20130213469 Kramer Aug 2013 A1
20130220401 Scheulov Aug 2013 A1
20130228221 Moslehi Sep 2013 A1
20130239891 Sonoda Sep 2013 A1
20130247955 Baba Sep 2013 A1
20130269771 Cheun Oct 2013 A1
20130291743 Endo Nov 2013 A1
20130306128 Kannou Nov 2013 A1
20140000682 Zhao Jan 2014 A1
20140053899 Haag Feb 2014 A1
20140060621 Clark Mar 2014 A1
20140066265 Oliver Mar 2014 A1
20140096823 Fu Apr 2014 A1
20140102524 Xie Apr 2014 A1
20140120699 Hua May 2014 A1
20140124013 Morad May 2014 A1
20140124014 Morad May 2014 A1
20140154836 Kim Jun 2014 A1
20140196768 Heng Jul 2014 A1
20140242746 Albadri Aug 2014 A1
20140261624 Cruz-Campa Sep 2014 A1
20140261654 Babayan Sep 2014 A1
20140261661 Babayan Sep 2014 A1
20140262793 Babayan Sep 2014 A1
20140273338 Kumar Sep 2014 A1
20140284750 Yu Sep 2014 A1
20140299187 Chang Oct 2014 A1
20140318611 Moslehi Oct 2014 A1
20140345674 Yang Nov 2014 A1
20140349441 Fu Nov 2014 A1
20140352777 Hachtmann Dec 2014 A1
20150007879 Kwon Jan 2015 A1
20150020877 Moslehi Jan 2015 A1
20150075599 Yu Mar 2015 A1
20150090314 Yang Apr 2015 A1
20150096613 Tjahjono Apr 2015 A1
20150114444 Lentine Apr 2015 A1
20150129024 Brainard May 2015 A1
20150144180 Baccini May 2015 A1
20150171230 Kapur Jun 2015 A1
20150207011 Garnett Jul 2015 A1
20150214409 Pfeiffer Jul 2015 A1
20150236177 Fu Aug 2015 A1
20150270410 Heng Sep 2015 A1
20150280641 Garg Oct 2015 A1
20150325731 Namjoshi Nov 2015 A1
20150333199 Kim Nov 2015 A1
20150340531 Hayashi Nov 2015 A1
20150349145 Morad Dec 2015 A1
20150349153 Morad Dec 2015 A1
20150349161 Morad Dec 2015 A1
20150349162 Morad Dec 2015 A1
20150349167 Morad Dec 2015 A1
20150349168 Morad Dec 2015 A1
20150349169 Morad Dec 2015 A1
20150349170 Morad Dec 2015 A1
20150349171 Morad Dec 2015 A1
20150349172 Morad Dec 2015 A1
20150349173 Morad Dec 2015 A1
20150349174 Morad Dec 2015 A1
20150349175 Morad Dec 2015 A1
20150349176 Morad Dec 2015 A1
20150349190 Morad Dec 2015 A1
20150349193 Morad Dec 2015 A1
20150349701 Morad Dec 2015 A1
20150349702 Morad Dec 2015 A1
20150349703 Morad Dec 2015 A1
20160163888 Reddy Jun 2016 A1
20160190354 Agrawal Jun 2016 A1
20160204289 Tao Jul 2016 A1
20160233353 Tamura Aug 2016 A1
20160268963 Tsai Sep 2016 A1
20160322513 Martin Nov 2016 A1
20160329443 Wang Nov 2016 A1
20170084766 Yang Mar 2017 A1
20170162722 Fu Jun 2017 A1
20170222082 Lin Aug 2017 A1
20170288081 Babayan Oct 2017 A1
20170373204 Corneille Dec 2017 A1
20180122964 Adachi May 2018 A1
Foreign Referenced Citations (89)
Number Date Country
1253381 May 2000 CN
1416179 Oct 2001 CN
101233620 Jul 2008 CN
101553933 Oct 2009 CN
100580957 Jan 2010 CN
101305454 May 2010 CN
102088040 Jun 2011 CN
102263157 Nov 2011 CN
104205347 Dec 2014 CN
104409402 Mar 2015 CN
4030713 Apr 1992 DE
102006009194 Aug 2007 DE
202007002897 Aug 2008 DE
102008045522 Mar 2010 DE
102010061317 Jun 2012 DE
10201201051 Nov 2013 DE
102012010151 Nov 2013 DE
1770791 Apr 2007 EP
1806684 Aug 2007 EP
2071635 Jun 2009 EP
2113946 Nov 2009 EP
2362430 Aug 2011 EP
2385561 Nov 2011 EP
2385561 Nov 2011 EP
2387079 Nov 2011 EP
2479796 Jul 2012 EP
2626907 Aug 2013 EP
2479796 Jul 2015 EP
2626907 Aug 2015 EP
5789269 Jun 1982 JP
S7089269 Jun 1982 JP
H04245683 Sep 1992 JP
06196766 Jul 1994 JP
H07249788 Sep 1995 JP
10004204 Jan 1998 JP
H1131834 Feb 1999 JP
2000164902 Jun 2000 JP
2002057357 Feb 2002 JP
2005159312 Jun 2005 JP
2006523025 Oct 2006 JP
2006324504 Nov 2006 JP
2007123792 May 2007 JP
2008135655 Jun 2008 JP
2009054748 Mar 2009 JP
2009177225 Aug 2009 JP
2011181966 Sep 2011 JP
2012119393 Jun 2012 JP
2013526045 Jun 2013 JP
2013161855 Aug 2013 JP
2013536512 Sep 2013 JP
2013537000 Sep 2013 JP
2013219378 Oct 2013 JP
2013233553 Nov 2013 JP
2013239694 Nov 2013 JP
2013247231 Dec 2013 JP
20050122721 Dec 2005 KR
20060003277 Jan 2006 KR
20090011519 Feb 2009 KR
1991017839 Nov 1991 WO
9120097 Dec 1991 WO
2003083953 Oct 2003 WO
2006097189 Sep 2006 WO
2008089657 Jul 2008 WO
2009094578 Jul 2009 WO
2009150654 Dec 2009 WO
2009150654 Dec 2009 WO
2010070015 Jun 2010 WO
2010075606 Jul 2010 WO
2010075606 Jul 2010 WO
2010104726 Sep 2010 WO
2010123974 Oct 2010 WO
2010123974 Oct 2010 WO
2011005447 Jan 2011 WO
2011005447 Jan 2011 WO
2011008881 Jan 2011 WO
2011008881 Jan 2011 WO
2011053006 May 2011 WO
2011123646 Oct 2011 WO
2013020590 Feb 2013 WO
2013020590 Feb 2013 WO
2010085949 Mar 2013 WO
2013046351 Apr 2013 WO
2014066265 May 2014 WO
2014074826 Jul 2014 WO
2014110520 Jul 2014 WO
2014117138 Jul 2014 WO
2015183827 Dec 2015 WO
2015195283 Dec 2015 WO
2016090332 Jun 2016 WO
Non-Patent Literature Citations (39)
Entry
Parthavi, “Doping by Diffusion and Implantation”, <http://www.leb.eei.uni-erlangen.de/winterakademie/2010/report/course03/pdf/0306.pdf>.
Weiss, “Development of different copper seed layers with respect to the copper electroplating process,” Microelectronic Engineering 50 (2000) 443-440, Mar. 15, 2000.
Tomasi, “Back-contacted Silicon Heterojunction Solar Cells With Efficiency>21%” 2014 IEEE.
Hornbachner et al., “Cambered Photovoltaic Module and Method for its Manufacture” Jun. 17, 2009.
Machine translation of JP 10004204 A, Shindou et al.
Jianhua Zhao et al. “24% Efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research”.
“Nonequilibrium boron doping effects in low-temperature epitaxial silicon” Meyerson et al., Appl. Phys. Lett. 50 (2), p. 113 (1987).
“Doping Diffusion and Implantation” Parthavi, <http://www.leb.eei.uni-erlangen.de/winterakademie/2010/report/content/course03/pdf/0306.pdf>.
WP Leroy et al., “In Search for the Limits of Rotating Cylindrical Magnetron Sputtering”, Magnetron, ION Processing and ARC Technologies European Conference, Jun. 18, 2010, pp. 1-32.
Beaucarne G et al: ‘Epitaxial thin-film Si solar cells’ Thin Solid Films, Elsevier-Sequoia S.A. Lausanne, CH LNKD—DOI:10.1016/J.TSF.2005.12.003, vol. 511-512, Jul. 26, 2006 (Jul. 26, 2006), pp. 533-542, XP025007243 ISSN: 0040-6090 [retrieved on Jul. 26, 2006].
Chabal, Yves J. et al., ‘Silicon Surface and Interface Issues for Nanoelectronics,’ The Electrochemical Society Interface, Spring 2005, pp. 31-33.
Collins English Dictionary (Convex. (2000). In Collins English Dictionary. http://search.credoreference.com/content/entry/hcengdict/convex/0 on Oct. 18, 2014).
Cui, ‘Chapter 7 Dopant diffusion’, publically available as early as Nov. 4, 2010 at <https://web.archive.org/web/20101104143332/http://ece.uwaterloo.ca/˜bcui/content/NE/%020343/Chapter/%207%20Dopant%20 diffusion%20_%20I.pptx> and converted to PDF.
Davies, P.C.W., ‘Quantum tunneling time,’ Am. J. Phys. 73, Jan. 2005, pp. 23-27.
Dosaj V D et al: ‘Single Crystal Silicon Ingot Pulled From Chemically-Upgraded Metallurgical-Grade Silicon’ Conference Record of the IEEE Photovoltaic Specialists Conference, May 6, 1975 (May 6, 1975), pp. 275-279, XP001050345.
Green, Martin A. et al., ‘High-Efficiency Silicon Solar Cells,’ IEEE Transactions on Electron Devices, vol. ED-31, No. 5, May 1984, pp. 679-683.
Hamm, Gary, Wei, Lingyum, Jacques, Dave, Development of a Plated Nickel Seed Layer for Front Side Metallization of Silicon Solar Cells, EU PVSEC Proceedings, Presented Sep. 2009.
JCS Pires, J Otubo, AFB Braga, PR Mei; The purification of metallurgical grade silicon by electron beam melting, J of Mats Process Tech 169 (2005) 16-20.
Khattak, C. P. et al., “Refining Molten Metallurgical Grade Silicon for use as Feedstock for Photovoltaic Applications”, 16th E.C. Photovoltaic Solar Energy Conference, May 1-5, 2000, pp. 1282-1283.
Merriam-Webster online dictionary—“mesh”. (accessed Oct. 8, 2012).
Mueller, Thomas, et al. “Application of wide-band gap hydrogenated amorphous silicon oxide layers to heterojunction solar cells for high quality passivation.” Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE. IEEE, 2008.
Mueller, Thomas, et al. “High quality passivation for heteroj unction solar cells by hydrogenated amorphous silicon suboxide films.” Applied Physics Letters 92.3 (2008): 033504-033504.
Munzer, K.A. “High Throughput Industrial In-Line Boron BSF Diffusion” Jun. 2005. 20th European Photovoltaic Solar Energy Conference, pp. 777-780.
National Weather Service Weather Forecast Office (“Why Do We have Seasons?” http://www.crh.noaa.gov/lmk/?n=seasons Accessed Oct. 18, 2014).
O'Mara, W.C.; Herring, R.B.; Hunt L.P. (1990). Handbook of Semiconductor Silicon Technology. William Andrew Publishing/Noyes. pp. 275-293.
Roedern, B. von, et al., ‘Why is the Open-Circuit Voltage of Crystalline Si Solar Cells so Critically Dependent on Emitter-and Base-Doping?’ Presented at the 9th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Breckenridge, CO, Aug. 9-11, 1999.
Stangl et al., Amorphous/Crystalline Silicon heterojunction solar cells—a simulation study; 17th European Photovoltaic Conference, Munich, Oct. 2001.
Warabisako T et al: ‘Efficient Solar Cells From Metallurgical-Grade Silicon’ Japanese Journal of Applied Physics, Japan Society of Applied Physics, JP, vol. 19, No. Suppl. 19-01, Jan. 1, 1980 (Jan. 1, 1980), pp. 539-544, XP008036363 ISSN: 0021-4922.
Yao Wen-Jie et al: ‘Interdisciplinary Physics and Related Areas of Science and Technology;The p recombination layer in tunnel junctions for micromorph tandem solar cells’, Chinese Physics B, Chinese Physics B, Bristol GB, vol. 20, No. 7, Jul. 26, 2011 (Jul. 26, 2011), p. 78402, XP02020739, ISSN: 1674-1056, DOI: 10.1088/1674-1056/20/7/078402.
Cui, ‘Chapter 7 Dopant diffusion’, publically available as early as Nov. 4, 2010 at <https://web.archive.org/web/20101104143332/http://ece.uwaterloo.ca/˜bcui/content/NE/%20343/Chapter/%207%20Dopant%20 diffusion%20_%20I.pptx> and converted to PDF.
Yao Wen-Jie et al: ‘Interdisciplinary Physics and Related Areas of Science and Technology; The p recombination layer in tunnel junctions for micromorph tandem solar cells’, Chinese Physics B, Chinese Physics B, Bristol GB, vol. 20, No. 7, Jul. 26, 2011 (Jul. 26, 2011), p. 78402, XP020207379, ISSN: 1674-1056, DOI: 10.1088/1674-1056/20/7/078402.
Cui, et al., Advanced Materials, 2001, col. 13, pp. 1476-1480 (Year:2001).
Electrically Conductive Foil Tape for Bus Bar Components in Photovoltaic Modules, Adhesives Research, http://www.adhesivesresearch.com/electrically-conductive-foil-tape-for-bus-bar-components-in-photovoltaic-modules/, accessed Oct. 12, 2017.
Geissbuhler et al., Silicon Heterojunction solar Cells with Copper-Plated Grid Electrodes: Status and Comparison with Silver Thick-Film Techniques, IEEE Journal of Photovoltaics, vol. 4, No. 4, Jul. 2014.
Kanani, Nasser. Electroplating: Basic Principles, Processes and Practice, Chapter 8—“Coating Thickness and its Measurement,” 2004, pp. 247-291.
P. Borden et al. “Polysilicon Tunnel Junctions as Alternates to Diffused Junctions” Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Sep. 1, 2008-Sep. 5, 2008, pp. 1149-1152.
L. Korte et al. “Overview on a-Se:H/c heterojunction solar cells—physics and technology”, Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Sep. 3, 2007-Sep. 7, 2007, pp. 859-865.
Meyerson et al. “Nonequilibrium boron doping effects in low-temperature epitaxial silicon”, Appl. Phys. Lett. 50 (2), p. 113 (1987).
Li, “Surface and Bulk Passsivation of Multicrystalline Silicon Solar Cells by Silicon Nitride (H) Layer: Modeling and Experiments”, Ph.D. dissertation, N.J. Inst. of Tech., Jan 2009.
Related Publications (1)
Number Date Country
20160002774 A1 Jan 2016 US
Provisional Applications (1)
Number Date Country
62020957 Jul 2014 US