Wafer carrier head assembly

Information

  • Patent Grant
  • 6666756
  • Patent Number
    6,666,756
  • Date Filed
    Friday, March 31, 2000
    24 years ago
  • Date Issued
    Tuesday, December 23, 2003
    21 years ago
Abstract
A wafer carrier head assembly for holding a wafer in chemical mechanical planarization applications is dis;losed that includes a downwardly protruding wafer retaining ring that moves independent of the wafer carrier head and retains an edge of the wafer on said polishing surface. An adjustable wafer holding mechanism that applies one of a uniform downward force and a uniform upward force to the wafer is also included. Application of the upward force allows the wafer holding mechanism to retain and transport the wafer to a polishing surface. Application of the downward force allows the wafer holding mechanism to retain the wafer on the polishing surface and allows the wafer to be uniformly polished. The wafer carrier head assembly herein disclosed is also configured to pivotally accommodate changes in parallelism between the wafer and the polishing surface when the wafer is being polished.
Description




FIELD OF THE INVENTION




The present invention relates to a carrier assembly for releasably holding a thin material. More particularly, the present invention relates to a wafer carrier assembly for use in chemical mechanical polishing/planarization of semiconductor wafers.




BACKGROUND




Semiconductor wafers are commonly constructed in layers, where a portion of a circuit is created on a first level and conductive vias are made to connect up to the next level of the circuit. After each layer of the circuit is etched on the wafer, an oxide layer is put down allowing the vias to pass through but covering the rest of the previous circuit level. Each layer of the circuit can create or add unevenness to the wafer that must be smoothed out before generating the next circuit layer.




Chemical mechanical planarization (CMP) techniques are used to planarize the raw wafer and each layer of circuitry added. Available CMP systems, commonly called wafer polishers, often use a rotating wafer carrier head that brings the wafer into contact with a polishing pad rotating in the plane of the wafer surface to be planarized. A chemical polishing agent or slurry containing microabrasives is applied to the polishing pad to polish the wafer. The wafer carrier head then presses the wafer against the rotating polishing pad and is rotated to polish and planarize the wafer. The mechanical force for polishing is derived from the rotating table speed and the downward force on the wafer carrier head. The chemical slurry is constantly transferred under the wafer carrier head. Rotation of the wafer carrier head helps in the slurry delivery as well in averaging the polishing rates across the substrate surface.




Another technique for performing CMP to obtain a more uniform polishing rate is the use of a linear polisher. Instead of a rotating pad, a moving belt is used to linearly move the pad across the wafer surface. The wafer is still rotated to average out the local variations. An example of a linear polisher is the TERES™ polisher available from Lam Research Corporation of Fremont, Calif.




With either type of polisher (linear or rotary), the wafer carrier head is an important component of the polishing tool. The wafer carrier head provides means for holding and supporting the wafer, rotating the wafer, and transmitting the polishing force to engage the wafer against the pad. The wafer carrier head is coupled to a rotating mechanism that also applies a pressure to the wafer so that the wafer can rotate while being pressed against a polishing surface.




In conventional wafer carrier head designs, it is customary to employ the use of a wafer mounting pad or carrier film that is adhesively bonded to a wafer mounting plate. This film serves to absorb or conform to surface irregularities on the back side of the wafer and, due to its high coefficient of friction, prevent the wafer from rotating inside the wafer carrier head as the wafer carrier head is being rotated during the polishing process. However, these designs also require that the film be replaced following a set number of polishing cycles.




In designs that employ a wafer mounting plate and a wafer mounting pad or film, the wafer is held by the wafer carrier head via a series of holes in the mounting pad. The holes allow passage of vacuum forces to the side of the wafer that is in contact with the mounting pad. However, this design has the disadvantage of drawing polishing slurry back through the holes and up into the vacuum lines, necessitating a flush system to periodically flush out the slurry.




Other designs employ the use of an inflatable elastomeric membrane to hold the wafer as it is being transferred to a polishing surface. Once the wafer carrier head is lowered to a polishing surface, the membrane inflates and applies a downward force onto the wafer so that the wafer contacts the polishing surface. These designs also employ a fixed non-adjustable retaining ring. The carrier head is lowered so that the retaining ring contacts the polishing surface. The retaining ring then prevents the wafer from slipping out from under the carrier head as the membrane is being inflated so that the wafer contacts the polishing surface. However, this design has the disadvantage of requiring precise timing between contacting the ring to the polishing surface and inflating the membrane. If the membrane inflates before the retaining ring contacts the polishing surface, the wafer may extend beyond the retaining ring. The wafer will then lose its peripheral containment and will slip out from under the carrier head when it reacts to the frictional forced introduced by contacting the moving polishing surface.




Edge exclusion is another disadvantage of wafer carrier head designs that employ an inflatable membrane. Edge exclusion categorically is a portion of the wafer edge that does not receive the same degree of polishing action as the balance of the wafer. The result is a reduction of usable area for product production.




Wafer carrier heads should be capable of gimballing in order to accommodate changes in parallelism between the carrier head and the polishing surface. Many wafer carrier heads gimbal through the use of a mechanical gimbal. However, mechanical gimbals have the disadvantage of causing a moment arm to form whose length is equal to the distance between the mechanical gimbal point and the polishing surface. This moment arm in turn aggravates a problem known as “dig in”, a problem common to carrier heads that gimbal. Dig in occurs when the wafer mounting surface digs into the leading edge of the wafer and causes a higher removal rate at the wafer edge than the remainder of the wafer. The moment arm associated with mechanical gimbals multiplies this tendency, and the resultant “dig in” is directly proportionate to the length of the moment arm.




BRIEF SUMMARY




To alleviate the disadvantages of the prior art, a carrier assembly for releasably holding a wafer is provided herein. According to a first aspect of the invention, the carrier assembly includes a primary housing having an adjustable retaining ring that protrudes downwardly from the primary housing. A secondary housing, fixed to the primary housing, has a wafer holding mechanism positioned in an area surrounding the circumference of the retaining ring. The retaining ring is movable with respect to the primary housing. The retaining ring moves independently of the wafer holding mechanism, and retains an edge of the wafer on the polishing surface when the wafer is lowered onto the polishing surface.




In another aspect of the invention the carrier assembly includes a primary housing. The primary housing has an adjustable wafer retaining mechanism that is configured to retain an edge of a wafer on a polishing surface when the wafer is being lowered onto the polishing surface. A secondary housing is fixed to the primary housing and has an adjustable wafer holding mechanism. The wafer holding mechanism is configured to apply one of a downward force and an upward force to the wafer to retain and transport the wafer to and from the polishing surface and to retain the wafer on the polishing surface. The wafer holding mechanism provides an adjustable and controllable downward force on the wafer so that the wafer is uniformly polished when the wafer holding mechanism is retaining the wafer on the polishing surface.




In another aspect of the invention the carrier assembly includes a primary housing having a vertically adjustable wafer retaining mechanism. The wafer retaining mechanism retains the edge of a wafer on a polishing surface when the wafer is being lowered onto the polishing surface. A secondary housing is fixed to the primary housing and has a vertically adjustable wafer holding mechanism that retains and transports a wafer to and from a polishing surface and retains the wafer on the polishing surface. The wafer retaining mechanism and the wafer holding mechanism are configured to pivotally accommodate changes in parallelism between the wafer and the polishing surface when the wafer is being polished by the polishing surface.




According to another aspect of the invention, a method for handling a wafer to be polished includes the steps of receiving the wafer at a wafer carrier head so that the wafer contacts the wafer carrier head. A uniform upward force is applied from the wafer carrier head to retain the wafer. The wafer carrier head is then transported to a polishing surface, and a protruding retaining mechanism is lowered from the wafer carrier head onto the polishing surface so that the retaining mechanism contacts the polishing surface. A uniform downward force is then applied onto the wafer. The wafer retaining mechanism is then raised, and the wafer is polished.











The foregoing and other features and advantages of the invention will become further apparent from the following detailed description of the presently preferred embodiments, read in conjunction with the accompanying drawings.




BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS





FIG. 1

is a perspective view of a preferred embodiment of the present invention;





FIG. 2

is a front sectional view of a preferred embodiment of

FIG. 1

showing a wafer being supported by the wafer handling mechanism below the wafer carrier head;





FIG. 3

is a front sectional view of a preferred embodiment of

FIG. 1

showing the wafer being supported by the wafer handling mechanism and contacting the wafer carrier head;





FIG. 4

is a front sectional view of a preferred embodiment of

FIG. 1

showing the wafer carrier head lowered onto a polishing surface;





FIG. 5

is a front sectional view of a preferred embodiment of

FIG. 1

showing a wafer being polished by the polishing surface and being retained by the wafer carrier head.











DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS





FIGS. 1 & 2

illustrate a preferred embodiment of the wafer carrier head


2


. A novel wafer carrier head


2


to perform chemical-mechanical polishing (CMP) on a wafer


4


that addresses the drawbacks of the prior art discussed above is described below. The wafer


4


has a downward side


6


having an outer part


8


and an upward side


10


having an outer part


12


that opposes the outer part


8


. As will be more fully described below, in order for the wafer


4


to be held on a polishing surface


18


, the outer parts


8


,


12


of the wafer


4


receive pressure from an inner bellows assembly


80


, as opposed to the remainder of the wafer


4


that does not receive pressure from the inner bellows assembly


80


. A wafer handling mechanism


16


, which may be any of a number of commercially available wafer handling robots or other mechanical device suitable for use in transporting wafers, will support the downward side


6


of the wafer


4


and bring it over to the wafer carrier head


2


. The wafer carrier head


2


will retrieve the wafer


4


from the wafer handling mechanism


16


via the upward side


10


and will transport the wafer


4


to a polishing surface


18


(FIG.


4


).




The wafer carrier head


2


will then lower the wafer


4


onto the polishing surface


18


so that the downward side


6


can be polished. Upon completion of the polishing, the wafer carrier head


2


will remove the wafer


4


from the polishing surface


18


and transport it to be unloaded. The wafer carrier head


2


will then release the polished wafer


4


back onto the wafer handling mechanism


16


. Further detail about the wafer carrier head


2


and its operation is given below. An example of a suitable wafer polisher, having a suitable wafer polishing surface, is the TERES™ CMP System available from Lam Research Corporation of Fremont, Calif.




Referring to

FIGS. 2 & 3

, an inner housing


22


having a downwardly facing wall


24


and an outer housing


20


are included. The outer housing


20


includes an outer housing flange


26


and the inner housing


22


includes a lower flange


28


and an upper flange


30


. Fasteners


32


, preferably bolts, hold the inner housing


22


, the outer housing


20


, and an outer bellows plate


34


stationary with respect to each other. The fasteners


32


also attach an inner bellows plate


36


to the outer bellows plate


34


. In the preferred embodiment there are at least eight fasteners


32


, but a different number of fasteners can be used in other configurations. Seals


38


are provided to seal the areas where the fasteners


32


enter the inner housing


22


, the outer housing


20


, the outer bellows plate


34


, and the inner bellows plate


36


. In a preferred embodiment the seals


38


used are o-rings.




The outer housing


20


also includes a receiving mechanism


40


, a cavity


42


, an outer port


44


, and an inner port


46


. The receiving mechanism


40


receives a connection mechanism


48


for attaching to a spindle (not shown). The spindle applies downward and rotational forces to the wafer carrier head


2


during operation. The spindle and wafer carrier head


2


releasably attach to one another with respective male and female tool changer mechanisms.




The cavity


42


is preferably a recess in the outer housing


20


that allows positive pressure and vacuum forces to pass through to the outer port


44


. The cavity


42


also provides space for the fasteners


32


that affix the inner bellows plate


36


to the outer bellows plate


34


.




The inner port


46


and the outer port


44


each receive positive pressure and vacuum forces. Preferably, the positive pressure and vacuum forces are pneumatic. The inner port


46


and the outer port


44


operate independently of each other. One port can receive a positive pressure and at the same time a vacuum can be applied to the other port. The positive pressure and vacuum forces are both variable and may be provided by any of a number of pressure or vacuum generating devices.




An outer bellows assembly


52


is attached to the outer port


44


and receives the positive pressure and vacuum from the outer port


44


. Preferably, the outer bellows assembly


52


is made up of a small bellows


51


and a large bellows


53


that are concentric with each other. Small bellows


51


and large bellows


53


are each made by welding together formed rings


55


until the length desired for the small bellows


51


and large bellows


53


is achieved. An upper portion


57


of small bellows


51


and an upper portion


54


of large bellows


53


are fixed to outer bellows plate


34


by being welded to outer bellows plate


34


. Similarly, a bottom portion


59


of small bellows


51


and a bottom portion


58


of large bellows


53


are fixed to a lower ring


56


by being welded to lower ring


56


. The outer bellows assembly


52


is preferably flexible and vertically extends and contracts in a direction substantially perpendicular to the upward side


10


of the wafer


4


when the positive pressure and vacuum, respectively, are applied to the outer port


44


.




The lower ring


56


moves in a substantially vertical direction with the outer bellows assembly


52


when the outer bellows assembly


52


is extending and contracting. A lower ring flange


60


is included with the lower ring


56


and enters into and out of contact with the outer housing flange


26


. In a preferred embodiment, the outer housing flange


26


limits the vertical distance that the outer bellows assembly


52


can extend. When the lower ring flange


60


, which along with the lower ring


56


moves with the outer bellows assembly


52


, comes into contact with the outer housing flange


26


the outer bellows assembly


52


cannot extend any further.




A wafer retaining ring


62


is attached to the lower ring


56


and protrudes from the lower ring


56


in a downward direction substantially perpendicular to the upward side


10


of the wafer


4


. The retaining ring


62


is preferably made from a plastic material and prevents the wafer


4


from separating from the wafer carrier head


2


as it is being lowered to contact the polishing surface


18


. The initial amount that the retaining ring


62


protrudes downwardly from the lower ring


56


is adjustable. In one embodiment, shims


64


may be placed between the lower ring


56


and the retaining ring


62


until the desired amount of protrusion is attained. Preferably, the shims are constructed from a Mylar material. The retaining ring


62


moves with the outer bellows assembly


52


and the lower ring


56


, and the outer housing flange


26


and lower ring flange


60


also limit the vertical distance the retaining ring


62


can travel.




An inner port chamber


66


is preferably connected to, and in fluid communication with, the inner port


46


and receives the positive pressure and vacuum forces from the inner port


46


. The inner port chamber


66


includes a top member


68


, side members


70


, and a bottom member


72


. The inner port


46


is preferably in communication with the inner port chamber


66


via a passage


74


defined by the top member


68


of the inner port chamber


66


. In a preferred embodiment, a side passage


76


extends from the side member


70


and at least two lower passages


78


extend from the bottom member


72


, though in other embodiments a different number of side passages


76


and lower passages


78


can also be used.




The side passage


76


connects the inner port chamber


66


to an inner bellows assembly


80


and allows the positive pressure or vacuum forces to travel from the inner port chamber


66


to the inner bellows assembly


80


. In a preferred embodiment, the inner bellows assembly


80


is oriented and substantially perpendicular to plane of the wafer


4


. The inner bellows assembly


80


is made by welding together formed rings


55


until the length desired for the inner bellows assembly


80


is achieved. An upper end


82


of the inner bellows assembly


80


is welded to the inner bellows plate


36


and a bottom portion


86


of the inner bellows assembly


80


is welded to an inner ring


84


. The inner bellows assembly


80


is flexible, and vertically extends and contracts in a direction substantially perpendicular to the upward side


10


of the wafer


4


when the positive pressure and vacuum, respectively, travel from the inner port


46


and through the inner port chamber


66


and side passage


76


.




The inner ring


84


preferably includes a downwardly facing bottom surface


87


and an inner ring flange


88


. The inner ring


84


extends and contracts with the inner bellows assembly


80


. In a preferred embodiment, the upper flange


30


and lower flange


28


limit the vertical distance that the inner bellows assembly


80


and the inner ring


84


can extend or contract. When the inner ring flange


88


comes into contact with the lower flange


28


, the inner bellows assembly


80


and inner ring


84


cannot extend any further. Likewise, when the inner ring flange


88


comes into contact with the upper flange


30


, the inner bellows assembly


80


and inner ring


84


cannot contract any further.




Alternatives to the interaction between the inner ring flange


88


and the upper flange


30


and the lower flange


28


discussed above are also contemplated. For example, the inner housing


22


can include an inner housing flange and the inner ring


84


can have an upper flange and a lower flange. Contact by the upper flange on the lower ring with the inner housing flange would limit the distance the inner ring


84


and inner bellows assembly


80


could vertically extend. Likewise, contact by the lower flange on the lower ring with the inner housing flange would limit the distance the inner ring


84


and inner bellows assembly


80


could vertically contract. In other embodiments, the flanges could be discontinuous or staggered around the circumference of inner ring


84


and inner housing


22


.




The lower passages


78


of the inner port chamber


66


allow the positive pressure and vacuum forces from the inner port


46


to be applied to a membrane


90


and a gap


92


. The membrane


90


includes a top face


94


having an outer side


96


and a bottom face


98


having an outer side


100


that opposes the outer side


96


. The outer side


96


of the top face


94


is attached to and covers the downwardly facing bottom surface


87


of the inner ring


84


. In a preferred embodiment, the outer side


96


is adhesively bonded to the bottom surface


87


of the inner ring


84


and extends and contracts with the inner ring


84


and inner bellows assembly


80


. The membrane is preferably elastomeric and deformable. The gap


92


is formed between the top face


94


of the membrane and the downwardly facing wall


24


of the inner housing


22


when the membrane


90


is in a non-deformed state. The gap


92


is eliminated when the vacuum force is applied to the inner port


46


and the top face


94


of the membrane


90


seals up against the downwardly facing wall


24


of the inner housing


22


.




The operation of the wafer carrier head


2


embodiments set forth above is now described. To first load a wafer


4


onto the wafer carrier head


2


the wafer handling mechanism


16


, supporting the downward side


6


of the wafer


4


, transports the wafer


4


and aligns it with the inside diameter of the retaining ring


62


. A positive pressure is applied to the outer bellows assembly


52


and causes the outer bellows assembly


52


to extend until the lower ring flange


60


on the lower ring


56


contacts the outer housing flange


26


. No positive pressure or vacuum is applied from the inner port


46


to the inner bellows assembly


80


.




With the positive pressure still applied to the outer bellows assembly


52


, the wafer handling mechanism


16


raises the wafer


4


upward until the upward side


10


of the wafer


4


contacts the membrane


90


. The wafer handling mechanism


16


pushes the wafer


4


in an upwardly direction until the inner ring flange


88


contacts the upper flange


30


on the inner housing


22


. The upward force exerted by the wafer handling mechanism


16


against the wafer


4


results in a sealing action between the outer part


12


of the upward side


10


of the wafer


4


and the outer side


100


of the bottom face


98


of the membrane


90


.




While the positive pressure is still being applied to the outer bellows assembly


52


and with the wafer handling mechanism


16


exerting an upward force, a vacuum is introduced at the inner port


46


. The vacuum enters the inner port chamber


66


and, via the lower passages


78


, travels into the gap


92


. The vacuum causes the inner bellows assembly


80


to contract and exerts an upward force on the inner ring


84


. This causes the inner ring flange


88


to maintain contact with the upper flange


30


on the inner housing


22


.




As shown in

FIG. 4

, the vacuum in the gap


92


(

FIG. 3

) deforms the membrane


90


and draws it up and against the downwardly facing wall


24


of the inner housing


22


, eliminating the gap


92


. Since the outer part


12


of the wafer


4


is sealed against the membrane


90


, a secondary vacuum


102


results between the remainder of the membrane


90


and the remainder of the wafer


4


, holding the wafer


4


in place. The wafer handling mechanism


16


is then removed and the wafer carrier head


2


is moved to a polishing area and is positioned above the polishing surface


18


.




The wafer carrier head


2


is lowered to a pre-determined position that brings the retaining ring


62


into contact with the polishing surface


18


. With the retaining ring


62


bearing against the polishing surface


18


, the vacuum is removed and a positive pressure is instead applied to the inner bellows assembly


80


. As shown in

FIG. 5

, the inner bellows assembly


80


extends and causes the upper flange


30


and inner ring flange


88


to come out of contact with each other. The positive pressure eliminates the secondary vacuum


102


and causes the membrane


90


to return to its non-deformed state. The upward side


10


of the wafer


4


is no longer in contact with the downwardly facing wall


24


. The wafer


4


is moved in a downwardly direction until the downward side


6


contacts the polishing surface


18


. The positive pressure causes the membrane


90


to exert a uniform downward force onto the wafer


4


.




Once the positive pressure causes the downward side


6


of the wafer to contact the polishing surface


18


, the positive pressure is relieved from the outer bellows assembly


52


and a vacuum is instead applied. The outer housing flange


26


and the lower ring flange


60


come out of contact with each other and the retaining ring


62


is raised so that the downward side


6


of the wafer


4


protrudes downwardly past the retaining ring


62


.




The amount the downward side


6


of the wafer protrudes past the retaining ring


64


is also known as wafer reveal. The maximum amount of wafer reveal is preferably defined by the amount the downward side


6


of the wafer


4


protrudes past the retaining ring


62


when the retaining ring


62


is in the fully raised position, i.e., when the outer bellows assembly


52


is fully contracted. Placing shims


64


such as Mylar shims above the retaining ring


62


will vary the maximum amount of wafer reveal. Applying positive pressure and/or vacuum forces to the outer bellows assembly


52


during the polishing process changes the position of the retaining ring


62


, which in turn allows the amount of wafer reveal to be variable.




By applying a positive pressure to inner bellows assembly


80


, a uniform downward force is applied to the entire wafer


4


during the polishing cycle because the mean diameter of the inner bellows assembly


80


is substantially the same as the diameter of the wafer


4


. The mean diameter of the inner bellows assembly


80


is the average between the outer diameter of the inner bellows assembly


80


and the inner diameter of inner bellows assembly


80


, and the mean diameter is the effective area on which the positive pressure acts. The bottom surface


87


of the inner ring


84


, with the outer side


96


of the membrane


90


covering it, applies the same downward force to the outer part


12


of the upward side


10


of the wafer


4


as is applied to the balance of the wafer


4


by the balance of the membrane


90


. Because the same downward force is applied to the entire wafer


4


, a uniform polishing action is applied to the entire downward side


6


of the wafer


4


.




During the polishing cycle the wafer carrier head


2


is capable of gimballing. Because of their flexible nature, the inner bellows assembly


80


and the outer bellows assembly


52


can accommodate changes in parallelism between the wafer carrier head


2


and the polishing surface


18


. The distance between the upper flange


30


and the inner ring flange


88


during the polishing cycle and the distance between the outer housing flange


26


and the lower ring flange


60


during the polishing cycle define the wafer carrier head gimbal allowance.




Referring to

FIG. 5

, once the polishing cycle is completed, the wafer unload sequence begins. A vacuum is introduced to the inner port


46


. The vacuum is introduced into the inner port chamber


66


and via the lower passages


78


travels into the gap


92


. The vacuum causes the inner bellows assembly


80


to contract and exerts an upward force on the inner ring


84


. As shown in

FIG. 4

, this causes the inner ring flange


88


to contact the upper flange


30


on the inner housing


22


. The vacuum in the gap


92


deforms the membrane


90


and draws it up and against the downwardly facing wall


24


of the inner housing, thus eliminating the gap


92


.




Since the outer part


12


of the wafer


4


is sealed against the membrane


90


, the secondary vacuum


102


results between the remainder of the membrane


90


and the remainder of the wafer


4


, holding the wafer


4


in place. The secondary vacuum


102


draws up the wafer


4


so that the retaining ring


62


protrudes downwardly past the wafer


4


. The wafer carrier head


2


is then transported to an unload station.




As shown in

FIG. 3

, the wafer handling mechanism


16


is brought up adjacent to the retaining ring


62


and is raised to contact and apply an upward force to the wafer


4


. A positive pressure is then introduced at the inner port


46


and into the inner port chamber


66


. Via the side passage


76


, the positive pressure travels into the inner bellows assembly


80


. The positive pressure also travels through the lower passages


78


and eliminates the secondary vacuum


102


. The upward force applied by the wafer handling mechanism prevents the membrane


90


from returning to its non-deformed state.




Referring to

FIG. 2

, the wafer handling mechanism


16


is lowered away from the wafer


4


. As the wafer handling mechanism


16


is lowered, the now unrestrained membrane


90


is able to return to its non-deformed state and expels the wafer


4


from the wafer carrier head


2


and onto the wafer handling mechanism


16


. The wafer carrier head


2


is now ready to repeat the above-described method to accept a new wafer for polishing.




The advantages of the above-described embodiments of the invention are numerous. For example, having a uniform downward force applied to the entire wafer


4


minimizes the problem of edge exclusion. Edge exclusion occurs when the outer part


8


of the wafer


4


does not receive the same degree of polishing action as the balance of the wafer


4


. The result is a reduction of usable area for production that is made available. The wafer carrier head herein described minimizes edge exclusion by applying the same down force to the outer part


8


of the wafer


4


as is being applied to the remainder of the wafer


4


.




Another advantage is the elimination of polishing slurry entering into the lower passages


78


of the carrier head


4


. Because the membrane


90


seals the lower passages


78


from the slurry, the slurry is unable to enter into the wafer carrier head


2


.




Employing an adjustable wafer retaining ring


62


also minimizes the chances of having the wafer


4


slip out from under the wafer carrier head


2


. The retaining ring


62


is adjusted by applying positive pressure and vacuum forces to the outer bellows assembly


52


. Adjusting the amount the retaining ring


62


protrudes from the lower ring


56


prevents the wafer


4


from extending beyond the retaining ring


62


when the inner bellows assembly


80


is applying a positive pressure to the wafer


4


to lower it onto the polishing surface


18


. By employing an adjustable wafer retaining ring, the timing between lowering the retaining ring


62


to the polishing surface


18


and applying pressure at the inner bellows assembly


80


to the membrane


90


to lower the wafer


4


onto the polishing surface


18


is not critical.




Another advantage of the present embodiments is the elimination of a mechanical gimbal point, which in turn will eliminate any resultant moment arm because the effective gimbal point will be located at the wafer


4


. Eliminating the moment arm will reduce the amount the carrier head


2


will tend to dig into the outer part


12


of the wafer


4


. This problem is common to wafer carrier heads


2


and causes a higher rate of wafer removal to occur at the outer part


8


of the wafer


4


than the remainder of the wafer


4


. The amount the carrier head


2


digs into the wafer


4


is directly proportionate to the length of the moment arm. The present embodiments minimize this amount because the lack of a mechanical gimbal point means that there is no moment arm associated with the present invention.




The embodiments of the wafer carrier head herein described also employ components made up of high-strength plastics. In preferred embodiments of the invention, the outer housing, inner housing, inner housing chamber and the retaining ring can be made from high-strength plastics. This provides the added advantage of reducing the overall weight of the wafer carrier head.




The embodiments of the invention disclosed herein are presently considered to be preferred, various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is indicated in the appended claims, and all changes that come within the meaning and range of equivalents are intended to be embraced therein.



Claims
  • 1. A wafer carrier head comprising:a primary housing having an adjustable retaining ring, said retaining ring protruding downwardly from said primary housing; a secondary housing fixed to said primary housing having a wafer holding mechanism positioned in an area surrounding the circumference of said retaining ring, said wafer holding mechanism including a flexible membrane configured to hold a wafer, a seal defined by a downwardly facing outer edge of said membrane and a corresponding outer edge of said wafer, wherein said wafer holding mechanism retains and transports said wafer through the exclusive application of retaining forces on an upper surface of said wafer and retains a downwardly facing surface of said wafer on said polishing surface through the application of pressure forces, said seal and one of said retaining forces being configured to create a secondary retaining force between a remainder of said membrane and a remainder of an upper surface of said wafer not in contact with each other; and wherein said retaining ring is movable with respect to said primary housing, and movable independent of said wafer holding mechanism, and retains an edge of said wafer on a polishing surface when said wafer is lowered onto said polishing surface.
  • 2. The wafer carrier head of claim 1, wherein said retaining ring is upwardly and downwardly moveable and adjustable through the application of a pressure.
  • 3. The wafer carrier head of claim 2, wherein an initial position of said retaining ring is adjustable through placement of at least one shim between said primary housing and said wafer retaining ring.
  • 4. The wafer carrier head of claim 2, wherein said retaining ring comprises a plastic material.
  • 5. The wafer carrier head of claim 2, wherein said pressure is applied to said retaining ring through a primary bellows assembly attached to said retaining ring.
  • 6. The wafer carrier head of claim 5, wherein said primary bellows assembly comprises metal.
  • 7. The wafer carrier head of claim 6, wherein said primary bellows assembly further comprises welded metal.
  • 8. The wafer carrier head of claim 1, wherein said pressure forces and said retaining forces are adjustable.
  • 9. The wafer carrier head of claim 1, wherein said primary housing further comprises at least one primary housing stop and said retaining ring mechanism has at least one retaining ring stop, said primary housing stop and said retaining ring stop entering into and out of contact with each other to limit vertical motion of said retaining ring.
  • 10. A wafer carrier head comprising:a primary housing having an adjustable wafer retaining mechanism configured to retain an outer edge of a wafer on a polishing surface when said wafer is being lowered onto said polishing surface; a secondary housing fixed to said primary housing, said secondary housing having an adjustable wafer holding mechanism configured to apply one of a downward force and an upward force to an upper surface of said wafer and to retain and transport said wafer to and from said polishing surface and to retain said wafer on said polishing surface, said wafer holding mechanism including a flexible membrane to hold said wafer, and a seal defined by a downwardly facing outer edge of said membrane and a corresponding outer edge of said wafer; wherein said wafer holding mechanism retains and transports said wafer through the exclusive application of retaining forces and wherein said seal and said upward force cause a secondary upward force to be applied between a remainder of said membrane and a corresponding remainder of an upper surface of said wafer.
  • 11. The wafer carrier head of claim 10, wherein said wafer holding mechanism further comprises a bellows assembly having a downwardly facing surface attached to an inner ring, said inner ring in contact with an upwardly facing outer edge of said membrane, said bellows assembly providing one of said downward force and said upward force onto said seal, and a chamber defined by an interior surface of said secondary housing, said chamber providing said downward force to said remainder of said membrane and said corresponding remainder of said wafer, and said upward force to said remainder of said membrane, said bellows assembly and said chamber together providing said uniform downward force to said membrane and said wafer.
  • 12. The wafer carrier head of claim 11 wherein said chamber communicates said downward force and said upward force to said bellows assembly and to said remainder of said membrane.
  • 13. The wafer carrier head of claim 12 wherein said bellows assembly comprises metal.
  • 14. The wafer carrier head of claim 13, said bellows assembly further comprises welded metal.
  • 15. The wafer holding mechanism of claim 11, wherein one of said housing and said bellows assembly further comprises at least one first stop and the other of said secondary housing and said secondary bellows assembly further comprises at least two second stops, said first stop entering into and out of contact with one of said second stops to limit motion of said wafer holding mechanism in one direction and the other of said second stops to limit motion of said wafer holding mechanism in an opposite direction.
  • 16. The wafer holding mechanism of claim 15 wherein said secondary housing includes said first stop and said bellows assembly includes said secondary stops.
  • 17. The wafer holding mechanism of claim 15 wherein said bellows assembly includes said first stop and said secondary housing includes said secondary stops.
  • 18. The wafer carrier head of claim 10, wherein said downward force applied by said wafer holding mechanism on said wafer is adjustable and controllable, and whereby said wafer is uniformly polished when said wafer holding mechanism is retaining said wafer on said polishing surface.
  • 19. A wafer carrier head comprising:a primary housing having a vertically adjustable wafer retaining mechanism to retain an outer edge of a wafer on a polishing surface when said wafer is being lowered onto said polishing surface, said wafer retaining mechanism including a flexible primary bellows assembly; a secondary housing fixed to said primary housing having a vertically adjustable wafer holding mechanism to retain and transport a wafer to and from a polishing surface and to retain said wafer on said polishing surface, said wafer retaining mechanism including a flexible secondary bellows assembly; wherein said primary bellows assembly and said secondary bellows assembly together allow said wafer carrier head to pivot, and wherein said wafer retaining mechanism and said wafer holding mechanism are configured to pivotally accommodate changes in parallelism between said wafer and said polishing surface when said wafer is being polished by said polishing surface.
  • 20. The wafer carrier head of claim 19, wherein said primary housing further comprises at least one primary housing stop and said wafer retaining mechanism comprises at least one wafer retaining stop, said primary housing stop and said wafer retaining stop positioned to enter into and out of contact with each other to limit motion of said wafer retaining mechanism, and wherein said secondary housing further comprises at least one secondary housing stop and said wafer holding mechanism has at least one holding mechanism stop, said secondary housing stop and said wafer retaining stop positioned to enter into and out of contact with each other to limit motion of said wafer holding mechanism.
  • 21. The wafer carrying head of claim 20, wherein an amount said wafer carrier head can pivot is limited by a distance between said primary housing stop and said wafer retaining stop and by a distance between said secondary housing stop and said holding mechanism stop.
US Referenced Citations (91)
Number Name Date Kind
2606405 Ohl Aug 1952 A
3579916 Boettcher May 1971 A
3631634 Weber Jan 1972 A
3691694 Goetz et al. Sep 1972 A
3708921 Cronkhite et al. Jan 1973 A
3731435 Boettcher et al. May 1973 A
3747282 Katzke Jul 1973 A
3833230 Noll Sep 1974 A
3886693 Tajnafol et al. Jun 1975 A
3888053 White et al. Jun 1975 A
3924361 White et al. Dec 1975 A
3986433 Walsh et al. Oct 1976 A
4009539 Day Mar 1977 A
4020600 Day May 1977 A
4098031 Hartman Jul 1978 A
4132037 Bonora Jan 1979 A
4141180 Gill, Jr. et al. Feb 1979 A
4193226 Gill, Jr. et al. Mar 1980 A
4194324 Bonora et al. Mar 1980 A
4256535 Banks Mar 1981 A
4270316 Kramer et al. Jun 1981 A
4283242 Regler et al. Aug 1981 A
4313284 Walsh Feb 1982 A
4316757 Walsh Feb 1982 A
4373991 Banks Feb 1983 A
4450652 Walsh May 1984 A
4459785 Zimmer Jul 1984 A
4502252 Iwabuchi Mar 1985 A
4512113 Budinger Apr 1985 A
4519168 Cesna May 1985 A
4680893 Cronkhite et al. Jul 1987 A
4693036 Mori Sep 1987 A
4711610 Riehl Dec 1987 A
4753049 Mori Jun 1988 A
4811522 Gill, Jr. Mar 1989 A
4897966 Takahashi Feb 1990 A
4918869 Kitta Apr 1990 A
4918870 Torbert et al. Apr 1990 A
4944119 Gill, Jr. et al. Jul 1990 A
5035087 Nishiguchi et al. Jul 1991 A
5036630 Kaanta et al. Aug 1991 A
5081795 Tanaka et al. Jan 1992 A
5095661 Gill, Jr. et al. Mar 1992 A
5121572 Hilscher Jun 1992 A
5193316 Olmstead Mar 1993 A
5205082 Shendon et al. Apr 1993 A
5230184 Bukhman Jul 1993 A
5238354 Volovich Aug 1993 A
5257478 Hyde et al. Nov 1993 A
5297361 Baldy et al. Mar 1994 A
5329732 Karlsrud et al. Jul 1994 A
5335453 Baldy et al. Aug 1994 A
5361545 Nakamura Nov 1994 A
5377451 Leoni et al. Jan 1995 A
5398459 Okumura et al. Mar 1995 A
5404678 Hasegawa Apr 1995 A
5421769 Schultz et al. Jun 1995 A
5423558 Koeth et al. Jun 1995 A
5423716 Strasbaugh Jun 1995 A
5441444 Nakajima Aug 1995 A
5443416 Volodarsky Aug 1995 A
5449316 Strasbaugh Sep 1995 A
5476414 Hirose et al. Dec 1995 A
5486129 Sandhu et al. Jan 1996 A
5507614 Leonov et al. Apr 1996 A
5527209 Volodarsky et al. Jun 1996 A
5558568 Talieh et al. Sep 1996 A
5562524 Gill, Jr. Oct 1996 A
5567199 Huber et al. Oct 1996 A
5571044 Bolandi et al. Nov 1996 A
5575706 Tsai et al. Nov 1996 A
5575707 Talieh et al. Nov 1996 A
5582534 Shendon et al. Dec 1996 A
5584746 Tanaka et al. Dec 1996 A
5584751 Kobayashi et al. Dec 1996 A
5593344 Weldon et al. Jan 1997 A
5607341 Leach Mar 1997 A
5624299 Shendon Apr 1997 A
5635083 Breivogel et al. Jun 1997 A
5681215 Sherwood et al. Oct 1997 A
5692947 Talieh et al. Dec 1997 A
5716258 Metcalf Feb 1998 A
5762544 Zuniga et al. Jun 1998 A
5803799 Volodarsky et al. Sep 1998 A
5857899 Volodarsky et al. Jan 1999 A
5951373 Shendon et al. Sep 1999 A
5993302 Chen et al. Nov 1999 A
6024630 Shendon et al. Feb 2000 A
6089961 Cesna et al. Jul 2000 A
6206768 Quek Mar 2001 B1
6244946 Volodarsky Jun 2001 B1
Foreign Referenced Citations (11)
Number Date Country
0 284 343 Sep 1988 EP
0 362 811 Apr 1990 EP
0 589 433 Mar 1994 EP
0 747 167 Dec 1996 EP
0 768 148 Apr 1997 EP
0 841 123 May 1998 EP
55-157473 Dec 1980 JP
59-187456 Oct 1984 JP
63200965 Aug 1988 JP
63251166 Oct 1988 JP
6-91522 Oct 1994 JP
Non-Patent Literature Citations (8)
Entry
Copy of International Search Report for PCT/US01/09878 dated Sep. 20, 2001.
Copy of co-pending U.S. application Ser. No. 09/475,543 filed Dec. 30, 1999.
Copy of claims for co-pending U.S. application Ser. No. 09/672,605 filed Sep. 29, 2000.
Copy of claims for co-pending U.S. application Ser. No. 09/843,323 filed Apr. 25, 2001.
Copy of claims for co-pending U.S. application Ser. No. 09/745,653 filed Dec. 21, 2000.
Abstract for DE 2442081 A., Two Disc Lapping Machine, Mar. 18, 1975.
Abstract, Hause, Jr. R. et al.: Lapping Machine With Soft Carriers; Jul. 1980.
U.S. application Ser. No. 09/475,543, Young et al., filed Dec. 30, 1999.