1. Field of the Invention
The present invention relates to a micro electromechanical system (MEMS) microphone, and particularly to a wafer level package of MEMS microphone and a manufacturing method thereof.
2. Description of the Related Art
Micro electromechanical system (MEMS) technique has established a whole new technical field and industry. The MEMS technique has been widely used in a variety of microelectronic devices that have electronic and mechanical properties, for example, pressure sensors, accelerators and micro-microphones. Since the MEMS microphone has the advantages of light, small and high signal quality, it gradually becomes the mainly stream of micro microphone.
In the process of fabricating the conventional package 100 of MEMS microphone, a ratio of the package cost of the package process to the total production cost of the conventional package 100 of MEMS microphone is a percentage of 75%. Furthermore, a big package stress will be generated in the package process. Therefore, what is needed is a new package of MEMS microphone to overcome the above disadvantages and to reduce the production cost of the MEMS microphone.
The present invention provides a wafer level package of MEMS microphone so as to reduce the production cost.
The present invention also provides a manufacturing method for wafer level package of MEMS microphone so as to reduce the production cost.
To achieve the above-mentioned advantages, the present invention provides a wafer level package of MEMS microphone. The wafer level package of MEMS microphone includes a substrate, a number of dielectric layers, a MEMS diaphragm, a number of supporting rings and a protective layer. The dielectric layers are stacked on the substrate. The MEMS diaphragm is disposed between two adjacent dielectric layers of the dielectric layers. A first chamber is formed between the MEMS diaphragm and the substrate. The supporting rings are respectively disposed in some of the dielectric layers and are stacked with each other. An inner diameter of the lower supporting ring is greater than that of the upper supporting ring, and the upmost supporting ring is located in the upmost dielectric layer. The protective layer is disposed on the upmost supporting ring and covers the MEMS diaphragm. A second chamber is formed between the MEMS diaphragm and the protective layer. The protective layer defines a number of first through holes for exposing the MEMS diaphragm therefrom.
In one embodiment provided by the present invention, material of the supporting rings includes metal.
In one embodiment provided by the present invention, material of the protective layer is selected from a group consisting of plastic, dielectric material and metal.
In one embodiment provided by the present invention, the wafer level package of MEMS microphone further includes an electrode layer disposed either in the substrate or on the substrate. The electrode layer defines a number of second through holes corresponding to the MEMS diaphragm. The substrate defines a hollow region corresponding to the MEMS diaphragm.
In one embodiment provided by the present invention, the wafer level package of MEMS microphone further includes a guard ring. The guard ring is located in some of the dielectric layers under the MEMS diaphragm and surrounds the first chamber.
In one embodiment provided by the present invention, material of the guard ring includes metal.
In one embodiment provided by the present invention, the undermost supporting ring and the MEMS diaphragm are respectively coupled to the guard ring.
In one embodiment provided by the present invention, the wafer level package of MEMS microphone further includes a metal oxide semiconductor (MOS) component, a number of conductive wires arranged in different layers and a number of via plugs. The MOS component is disposed on the substrate and covered by the dielectric layers. The conductive wires, the via plugs and the dielectric layers form an interconnect structure electrically connecting to the MOS component. The dielectric layers and the conductive wires are stacked alternately. The via plugs are formed in the dielectric layers. Each via plug electrically connects to the two adjacent conductive wires corresponding thereto.
To achieve the above-mentioned advantages, the present invention provides a manufacturing method for wafer level package of MEMS microphone. The manufacturing method includes following processes. A number of dielectric layers are formed on a substrate in sequence, a MEMS diaphragm is formed between two adjacent dielectric layers of the dielectric layers, and a number of supporting rings are formed in some of the dielectric layers respectively. The supporting rings are stacked with each other. The upmost supporting ring is located in the upmost dielectric layer. An inner diameter of the lower supporting ring is greater than that of the upper supporting ring. Subsequently, a protective layer is formed on the upmost supporting ring to cover the MEMS diaphragm. The protective layer defines a number of first through holes. Afterwards, a first chamber is formed between the MEMS diaphragm and the substrate, and a second chamber is formed between the MEMS diaphragm and the protective layer.
In one embodiment provided by the present invention, before the dielectric layers are formed in sequence, an electrode layer is formed either in the substrate or on the substrate.
In one embodiment provided by the present invention, the process of forming the first chamber includes the steps of removing a portion of the substrate under the MEMS diaphragm to form a hollow region so as to expose the electrode layer, forming a number of second through holes in the electrode layer, and etching portions of the dielectric layers between the MEMS diaphragm and the electrode layer through the second through holes so as to form the first chamber.
In one embodiment provided by the present invention, material of the supporting rings includes metal.
In one embodiment provided by the present invention, material of the protective layer is selected from a group consisting of plastic, dielectric material and metal.
In one embodiment provided by the present invention, during forming the dielectric layers a guard ring is formed, and the undermost supporting ring is located on the guard ring and coupled to the guard ring.
In one embodiment provided by the present invention, before the dielectric layers are formed, a metal oxide semiconductor component is formed on the substrate, and then the dielectric layers are formed to cover the metal oxide semiconductor component.
In one embodiment provided by the present invention, during forming the dielectric layers a number of conductive wires and a number of via plugs are formed. The conductive wires, the via plugs and the dielectric layers form an interconnect structure electrically connecting to the metal oxide semiconductor component. The dielectric layers and the conductive wires are stacked alternately. The via plugs are formed in the dielectric layers. Each via plug electrically connects to the two adjacent conductive wires corresponding thereto.
In the wafer level package of MEMS microphone and the manufacturing method of wafer level package of MEMS microphone, the protective layer formed on the supporting ring is used to cover the MEMS diaphragm. Thus, the conventional package process using the metal cover is not need, thereby reducing the production cost of the MEMS microphone.
These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
Material of the supporting rings 240 is, for example, metal. In the present embodiment, before the dielectric layers 222 are formed in sequence, an electrode layer 250 can be formed either in the substrate (not shown) or on the substrate 210, and then the dielectric layers 222 are formed to cover the electrode layer 250. Additionally, during forming the dielectric layer 222, a guard ring 260 can be formed in some of dielectric layers 222. The undermost supporting ring 240 may be located on the guard ring 260 and coupled to the guard ring 260. The guard ring 260 is composed of stacked metal layers. Material of the metal layers can be tungsten, aluminum, copper, titanium, titanium nitride, tantalum, tantalum nitride or any combination of other metal. Additionally, before the dielectric layers 222 are formed, a metal oxide semiconductor component 270 can be formed on the substrate 210, and then the dielectric layers 222 are formed to cover the metal oxide semiconductor component 270. Furthermore, during forming the dielectric layers 222, a number of conductive wires 224 and a number of via plugs 226 can be formed. The conductive wires 224, the via plugs 226 and the dielectric layers 222 form an interconnect structure 220. The interconnect structure 220 electrically connects to the metal oxide semiconductor component 270. The dielectric layers 222 and the conductive wires 224 are stacked alternately. The via plugs 226 are formed in the dielectric layers 222 and each via plug 226 electrically connects to the two adjacent conductive wires 224 corresponding thereto. The interconnect structure 220 shown in the
Subsequently, referring to
Afterwards, referring to
In the present embodiment, the portion of the substrate 210 under the MEMS diaphragm 230 may be removed using a dry etching method (e.g., deep reactive ion etching, DRIE). After the portion of the substrate 210 under the MEMS diaphragm 230 is removed, the portions of the dielectric layers 222 under the MEMS diaphragm 230 and above the MEMS diaphragm 230 are removed by hydrogen fluoride through the second through holes 252. Hydrogen fluoride can be either in a vapor status or in a liquid status. Thus, the first chamber 202 is formed between the MEMS diaphragm 230 and the electrode layer 250 and the second chamber 204 is formed between the MEMS diaphragm 230 and the protective layer 280. The first chamber 202 and the second chamber can respectively serve as a vibrating chamber. It is noted that the guard ring 260 can be used for avoiding over etching while the portion of the dielectric layers 222 under the MEMS diaphragm 230 is etched by the hydrogen fluoride. Thus, a logic circuit region 208 for disposing the metal oxide semiconductor component 270 thereon will not be damaged.
Further referring to
The wafer level package 200 of MEMS microphone can further include the electrode layer 250 disposed either on the substrate 210 or in the substrate 210. The electrode layer 250 defines the second through holes 252 corresponding to the MEMS diaphragm 230. The substrate 210 defines the hollow region 212 corresponding to the MEMS diaphragm 230. Additionally, the wafer level package 200 of MEMS microphone can further include the guard ring 260. The guard ring 260 is located in some of the dielectric layers 222 under the MEMS diaphragm 230 and surrounds the first chamber 202. The undermost supporting ring 240 and the MEMS diaphragm 230 are respectively coupled to the guard ring 260.
The wafer level package 200 of MEMS microphone can further include the metal oxide semiconductor component 270, the conductive wires 224 arranged in different layers and the via plugs 226. The metal oxide semiconductor component 270 is disposed on the substrate 210 and covered by the dielectric layers 222. The dielectric layers 222 and the conductive wires 224 are stacked alternately. The via plugs 226 are formed in the dielectric layers 222. Each via plug 226 electrically connects to the two adjacent conductive wires 224 corresponding thereto. The conductive wires 224, the via plugs 226 and the dielectric layers 222 form the interconnect structure 220. The interconnect structure 220 electrically connects to the metal oxide semiconductor component 270.
In other words, in the present embodiment, the wafer level package 200 of MEMS microphone includes a logic circuit region 208 and a MEMS region 206. The MEMS region 206 electrically connects to the logic circuit region 208 through the conductive wire 224 (shown as a dotted line) of the interconnect structure 220. In the present embodiment, a sound signal passes through the first through holes 282 in the protective layer 280 and applies a pressure onto the MEMS diaphragm 230 so that the MEMS diaphragm 230 is vibrated. A capacitance value between an electrode layer (not shown) of the MEMS diaphragm 230 and the electrode layer 250 will be changed due to the vibration of the MEMS diaphragm 230. The capacitance value then is transmitted to the metal oxide semiconductor component 270 through the interconnect structure 220 so as to calculate the received sound signal.
In the wafer level package 200 of MEMS microphone and the manufacturing method thereof, the protective layer 280 formed on the supporting ring 240 is used to cover the MEMS diaphragm 230. Thus, the conventional package process using the metal cover is not need. Therefore, the wafer level package 200 of MEMS microphone has a low production cost. In addition, the wafer level package 200 of the MEMS microphone will not be damaged by the stress in the conventional package process.
The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein, including configurations ways of the recessed portions and materials and/or designs of the attaching structures. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.
Number | Name | Date | Kind |
---|---|---|---|
4453045 | Bruna | Jun 1984 | A |
5323035 | Leedy | Jun 1994 | A |
5485304 | Kaeriyama | Jan 1996 | A |
5573679 | Mitchell et al. | Nov 1996 | A |
5998859 | Griswold et al. | Dec 1999 | A |
6121688 | Akagawa | Sep 2000 | A |
6350668 | Chakravorty | Feb 2002 | B1 |
6535460 | Loeppert et al. | Mar 2003 | B2 |
6635509 | Ouellet | Oct 2003 | B1 |
6657832 | Williams et al. | Dec 2003 | B2 |
6677225 | Ellis et al. | Jan 2004 | B1 |
6713314 | Wong et al. | Mar 2004 | B2 |
6852616 | Sahara et al. | Feb 2005 | B2 |
6936524 | Zhu et al. | Aug 2005 | B2 |
7056759 | Przybyla et al. | Jun 2006 | B2 |
7132307 | Wang et al. | Nov 2006 | B2 |
7138694 | Nunan et al. | Nov 2006 | B2 |
7152481 | Wang | Dec 2006 | B2 |
7193292 | Liaw | Mar 2007 | B2 |
7202101 | Gabriel et al. | Apr 2007 | B2 |
7288424 | Hunter et al. | Oct 2007 | B2 |
7329933 | Zhe et al. | Feb 2008 | B2 |
7348646 | Barzen et al. | Mar 2008 | B2 |
7449356 | Weigold | Nov 2008 | B2 |
7449366 | Lee et al. | Nov 2008 | B2 |
7536769 | Pedersen | May 2009 | B2 |
7538401 | Eriksen et al. | May 2009 | B2 |
7566940 | Sasagawa et al. | Jul 2009 | B2 |
7572660 | Benzel et al. | Aug 2009 | B2 |
7642575 | Wong et al. | Jan 2010 | B2 |
7670861 | Hanaoka et al. | Mar 2010 | B2 |
7795063 | Hsieh et al. | Sep 2010 | B2 |
7804969 | Wang et al. | Sep 2010 | B2 |
7805821 | Suzuki | Oct 2010 | B2 |
7820469 | Leedy | Oct 2010 | B2 |
7821085 | Suzuki et al. | Oct 2010 | B2 |
7829366 | Miller et al. | Nov 2010 | B2 |
7851247 | Shih | Dec 2010 | B2 |
7851925 | Theuss et al. | Dec 2010 | B2 |
7853027 | Yamaoka et al. | Dec 2010 | B2 |
7856804 | Laming et al. | Dec 2010 | B2 |
7875485 | Sasagawa et al. | Jan 2011 | B2 |
7880367 | Nakatani | Feb 2011 | B2 |
7884431 | Watanabe et al. | Feb 2011 | B2 |
7885423 | Weigold | Feb 2011 | B2 |
7906841 | Jeong et al. | Mar 2011 | B2 |
7912235 | Chen | Mar 2011 | B2 |
7923790 | Quevy et al. | Apr 2011 | B1 |
7936031 | Sampsell et al. | May 2011 | B2 |
7936894 | Zurek | May 2011 | B2 |
7951636 | Lee et al. | May 2011 | B2 |
7989906 | McAlexander, III | Aug 2011 | B2 |
8004053 | Miyagi et al. | Aug 2011 | B2 |
8033838 | Eldridge et al. | Oct 2011 | B2 |
8035176 | Jung et al. | Oct 2011 | B2 |
8063458 | Loeffler et al. | Nov 2011 | B2 |
8067811 | Yamaoka et al. | Nov 2011 | B2 |
8071413 | Wang | Dec 2011 | B2 |
8093119 | Hsieh et al. | Jan 2012 | B2 |
8120125 | Sasagawa et al. | Feb 2012 | B2 |
8144899 | Song et al. | Mar 2012 | B2 |
8155355 | Ogura et al. | Apr 2012 | B2 |
8173471 | Hsieh et al. | May 2012 | B2 |
20010026951 | Vergani et al. | Oct 2001 | A1 |
20020000649 | Tilmans et al. | Jan 2002 | A1 |
20020024136 | Grigg | Feb 2002 | A1 |
20020067663 | Loeppert et al. | Jun 2002 | A1 |
20030007034 | Horvath et al. | Jan 2003 | A1 |
20030053233 | Felton | Mar 2003 | A1 |
20030133588 | Pedersen | Jul 2003 | A1 |
20030139030 | Grigg | Jul 2003 | A1 |
20040106221 | Hunter et al. | Jun 2004 | A1 |
20050101047 | Freeman et al. | May 2005 | A1 |
20050156314 | Grigg | Jul 2005 | A1 |
20050227411 | Grigg | Oct 2005 | A1 |
20060071324 | Lu et al. | Apr 2006 | A1 |
20060093171 | Zhe et al. | May 2006 | A1 |
20060105543 | Xiao et al. | May 2006 | A1 |
20060203325 | Faase et al. | Sep 2006 | A1 |
20060210106 | Pedersen | Sep 2006 | A1 |
20060233400 | Ohbayashi et al. | Oct 2006 | A1 |
20070121972 | Suzuki et al. | May 2007 | A1 |
20070201710 | Suzuki et al. | Aug 2007 | A1 |
20080083960 | Chen et al. | Apr 2008 | A1 |
20080087971 | Nakatani | Apr 2008 | A1 |
20080185669 | Kok et al. | Aug 2008 | A1 |
20080233737 | Liu | Sep 2008 | A1 |
20080247572 | Langereis et al. | Oct 2008 | A1 |
20080267431 | Leidl et al. | Oct 2008 | A1 |
20080283943 | Dekker et al. | Nov 2008 | A1 |
20090026561 | Reichenbach et al. | Jan 2009 | A1 |
20090041270 | Schrank et al. | Feb 2009 | A1 |
20090047479 | Nakatani et al. | Feb 2009 | A1 |
20090050989 | Nakatani | Feb 2009 | A1 |
20090136064 | Suzuki et al. | May 2009 | A1 |
20090180655 | Tien et al. | Jul 2009 | A1 |
20090273043 | Lee et al. | Nov 2009 | A1 |
20100044147 | Wang | Feb 2010 | A1 |
20100065930 | Nakatani | Mar 2010 | A1 |
20100067728 | Chen | Mar 2010 | A1 |
20100072561 | Lee et al. | Mar 2010 | A1 |
20100074458 | Lan et al. | Mar 2010 | A1 |
20100084723 | Chen et al. | Apr 2010 | A1 |
20100111344 | Sun et al. | May 2010 | A1 |
20100164025 | Yang | Jul 2010 | A1 |
20100193886 | Nakatani et al. | Aug 2010 | A1 |
20100207217 | Zuniga-Ortiz et al. | Aug 2010 | A1 |
20100213568 | Hsu et al. | Aug 2010 | A1 |
20100277229 | Lee et al. | Nov 2010 | A1 |
20100308450 | Verjus et al. | Dec 2010 | A1 |
20100330722 | Hsieh et al. | Dec 2010 | A1 |
20110057288 | Tan et al. | Mar 2011 | A1 |
20110068374 | Tan et al. | Mar 2011 | A1 |
20110079903 | Liu | Apr 2011 | A1 |
20110084344 | Huang et al. | Apr 2011 | A1 |
20110084394 | Wu et al. | Apr 2011 | A1 |
20110123043 | Felberer et al. | May 2011 | A1 |
20110131794 | Chen | Jun 2011 | A1 |
20110180943 | Claes et al. | Jul 2011 | A1 |
20110189804 | Huang et al. | Aug 2011 | A1 |
20110205197 | Sampsell et al. | Aug 2011 | A1 |
20110215672 | Yamaoka et al. | Sep 2011 | A1 |
20110227177 | Nakatani et al. | Sep 2011 | A1 |
20110300659 | Hsieh et al. | Dec 2011 | A1 |
20120043629 | Minervini | Feb 2012 | A1 |
20120090398 | Lee et al. | Apr 2012 | A1 |
20120091546 | Langereis et al. | Apr 2012 | A1 |
20120098076 | Lee et al. | Apr 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20110248364 A1 | Oct 2011 | US |