1) Field of the Invention
This invention relates generally to a technique to generate through-hole interconnection at the wafer level, suitable for implementing into 3-D packaging involving silicon-to-silicon stacking or in MEMS packaging involving silicon-to-silicon or silicon-to-glass stacking. The invention is a clean, simple, robust, high throughput, high flexibility, low cost wafer level processing technique. More specifically, the invention describes the technique and processes of forming multiples of through-silicon interconnections in a wafer using a mechanical forming technique.
(2) Description of the Related Art
The market demand for smaller, faster, and cheaper product has always been the main driving force behind higher density, higher speed, and more efficient packaging technologies. The drive for high density packaging has led naturally to 3-dimensional packaging which further offers the potential for reduced signal transmission length, a critical element for high speed performance, as well as a wafer level packaging process, a critical element to reduce manufacturing cost.
Three dimensional packaging may be achieved through (i) stacking of package onto package where interconnections are made between the packages using exterior routing; (ii) stacking of chip onto chip where interconnections are made between the chips using exterior routing—wire bond or flip chip; or (iii) stacking of chip-to-chip at wafer level where interconnections between the stacked chips are achieved using through-chip interconnection. The first two technologies require only a simple extension of the standard packaging technology, but offer little, if any, advantage in signal transmission speed and manufacturing cost. Through-chip interconnection not only offers the shortest possible signal path, but also provides a wafer-level packing process. This requires an enabling technology—through-silicon interconnection, which has been an area of active research and development due to its vast potential.
The common step in through-silicon interconnection technology is the generation of through-silicon holes, usually at the wafer level. The technology of depositing an interconnection into the through-hole via has been the main research and developmental focus. The most common technology for achieving through-silicon interconnection is electroplated through-via, with copper as the most common metal. This technology is discussed in the article “Wafer process and issues of through electrode in Si wafer using Cu damascene for three dimensional chip stacking,” by M. Hashino et al, Proc. Int. Interconnnect Technology, 2002, pp. 75-77, and in U.S. Patent publication 2004/0077154A1, and in U.S. Pat. Nos. 6,458,696 and 6,599,778. This technology offers the advantage of fine pitch through the use of front-end lithography and chemical-mechanical polishing processes. While this technology has found special applications in super fine pitch interconnection (<50 μm) between wafers, the expensive processes cannot be justified for interconnection that does not require such fine pitch. For this, alternative low cost technologies have been developed. The reported technologies usually involve the use of viscous conductive materials, usually solder, but may be conductive polymer or a mixture, which are either printed (as in U.S. patent application Ser. No. 10/746,199), vacuum drawn (as in “Filling the via hole of IC by VPES (vacuum printing encapsulating system) for stack chip”, by A. Okuno et al, ECTC, 2002, pp. 1444-1448), or jetted (as in U.S. Pat. No. 6,589,593) into the through-hole. Printing a consistent amount of solder or conductive paste into a through-hole of standard aspect ratio has not been easy. This has prompted the use of vacuum, aided with heat, to assist the flow of the molten solder into the via. But handling of molten solder at the wafer level can be messy and the risk of wafer contamination is high. Jetting a solid ball or molten drop of solder into the via offers a consistent means of deposition, but suffers from the obvious disadvantage of either slow through-put due to single deposition or expensive investment into multiple jetting heads.
U.S. Pat. No. 6,252,779 discloses a method for joining electronic devices such as integrated circuits to vias in a substrate. A solder ball attached to an electronic device is joined to a contact pad of a via by a low melting temperature solder into the via hole. The opening of the via is plugged using a solder ball or a compressed length of a wire material. However, the via's wall surface is covered by wettable metal and it is only applicable to organic substrates.
U.S. Pat. No. 5,915,756 provides a method of filling via holes between a lower conductive layer and an upper conductive layer whereby the hole is filled by the lower conductive layer. By optimizing conditions such as compressive stress and temperature during the deposition of the various layers, the method of this patent ensures that at a predefined temperature, compressive force on the lower conductive layer causes hillocks to form inside the via holes. This process requires precise manipulation of the via material itself to form the interconnects between the layers.
A principal object of the present invention is to provide an effective and very manufacturable method of fabricating a through-silicon interconnection.
Another object of the invention is to provide a process for fabricating a through-silicon interconnection of moderate pitch using compression techniques.
Yet another object is to provide a process for fabricating a through-silicon interconnection using conductive balls of deformable material.
A further object of the invention is to provide a method for fabricating a through-silicon interconnection using conductive balls of a hard material in combination with conductive balls of deformable material.
A still further object is to provide a method for forming stacked wafers.
In accordance with the objects of this invention, a method of fabricating a through-silicon interconnection is achieved. A wafer is provided having at least one through-hole therein. The through-hole is filled with one or more conductive balls. Thereafter, the wafer is compressed wherein the one or more conductive balls form a conductive plug in the through-hole.
Also in accordance with the objects of the invention, a method of forming a three-dimensional system is achieved. A first wafer and one or more second wafers are provided, each having at least one through-hole therein. The through-hole of each wafer is filled with one or more conductive balls. Thereafter, each of the wafers is compressed wherein the one or more conductive balls form a conductive plug in the through-hole of each of the wafers. Thereafter, the first wafer and one or more second wafers are joined.
Also in accordance with the objects of the invention, a mechanical compression device is achieved. The device comprises a top and a bottom compression platform and means for compressing a wafer between the top and bottom compression platforms wherein the top and bottom compression platforms are shaped to form a depression or a protrusion on a top or bottom of a conductive plug formed in a through-hole in the wafer.
In the accompanying drawings forming a material part of this description, there is shown:
FIGS. 5A1, 5A2, 5B1, and 5B2 illustrate in cross-sectional representation some combinations of conductive balls with different hardness in the present invention.
The present invention offers the method and processes of achieving a through-silicon interconnection of moderate pitch using compression techniques. Several inventive embodiments of the present invention are described below.
The method begins with a wafer that has been pre-processed with the designed quantity and position of through-holes of designed dimension, geometry, and with suitable treatment (such as a diffusion barrier, for example) on its wall. Each through-hole on the wafer is deposited with the designed diameter and quantity of conductive balls using the standard shake and drop technique. The conductive balls are then compressed, whereby they flatten and fill the through-hole, forming a conductive plug.
The wafer with conductive plugs may then be (i) stacked onto correspondingly plugged wafer/s, before being singulated into stacked chips, or (ii) cut into a carrier for mounting chips to become a sub-module, which is then stacked onto correspondingly plugged sub-module/s to form a 3-D system.
The current invention offers the following attractive features:
Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
A method and device to form a through-silicon plug for interconnection are provided. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be understood, however, by one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
The process sequence is depicted in
The through-hole on the wafer may be designed with suitable chamfering or other geometries that provide anchoring to the formed conductive plug. A typical design of a through-hole via for better anchoring of the formed plug 18 is depicted in
Next, as shown in
Referring now to
The size and geometry of the through-hole and the diameter and quantity of the conductive balls are so designed that the total volume of the conductive ball may be lesser, equal, or larger than that of the through-hole. Some designs of plug depression and protrusion are depicted in
The deposition and the flattening of the conductive balls may be performed in successive sequence so as to achieve the desired aspect ratio. In such case, the in-process formed plug shall come with a depression for receiving a new round of conductive balls.
A typical combination of conductive balls with different materials is depicted in
Post heating at a temperature below the melting temperature of any of the conductive materials may be applied to enhance diffusion bonding between the conductive balls and the wall of the through-hole; or in the case of a mechanically compressed stacked wafer, between the conductive plugs. Post heating may also be performed at a temperature above one or more of the melting temperatures of the conductive materials for maximum bonding.
The interconnection between wafers with leveled conductive plugs (as shown in
A typical combination of plug materials with different hardness (and softening temperature) for interconnection of stacked wafers is depicted in
Two flattening stages can be used to achieve the filled via as shown in
A successful prototype has been produced in a single trial using a blank wafer of thickness 300 μm with multiple through-holes of 300 μm and eutectic SnPb solder balls. Optical photographs show the conductive balls filling the via after the flattening process.
Voids may be present between the conductive balls and the walls of the through-hole. But this is not deemed to present any reliability problem since (i) the through-silicon plug is subjected to little stress due to thermal cycling and (ii) the conductive metal would be impermeable to the wafer, thus not subject to explosive vapor expansion at high temperature and (iii) the formed plug and the wall of the through-hole are under a high magnitude of residue compressive stress from the mechanical compression. This not only prevents “extraction” of the plug from the through-hole, but also prevents transmission of stress to the void. Successive sequences of ball deposition and compression are needed in order to achieve the desired volume of protrusion.
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/585,660, filed on Jul. 6, 2004, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60585660 | Jul 2004 | US |