Information
-
Patent Grant
-
6280306
-
Patent Number
6,280,306
-
Date Filed
Friday, February 4, 200025 years ago
-
Date Issued
Tuesday, August 28, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Eley; Timothy V.
- Nguyen; Dung Van
Agents
- Oblon, Spivak, McClelland, Maier & Neustadt, P.C.
-
CPC
-
US Classifications
Field of Search
US
- 451 41
- 451 285
- 451 286
- 451 287
- 451 288
- 451 289
- 451 388
- 451 398
-
International Classifications
-
Abstract
The invention provides a wafer polishing apparatus and a wafer manufacturing method which can improve uniformity in polishing wafer surfaces. A wafer holding head comprises a head body; a diaphragm stretched inside the head body; a carrier fixed to the diaphragm to be displaceable in the direction of a head axis while holding the wafer; a retainer ring disposed around the carrier in concentric relation and fixed to the diaphragm to be displaceable in the direction of the head axis; and a thin plate disposed so as to project from the head body along a surface of the diaphragm. With the provision of the thin plate, an excessive pressing force acting upon the retainer ring from the diaphragm is suppressed, and the wafer surface can be prevented from being excessively polished at an outer peripheral edge.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a wafer polishing apparatus and a wafer manufacturing method which are employed in a semiconductor production process for polishing surfaces of semiconductor wafers.
2. Description of the Related Art
Recently, with finer patterns resulting from an increased packing density of semiconductor devices, it has become more important to polish surfaces of semiconductor wafers as flat as possible during a production process so that, in particular, fine patterns of a multilayered structure can be easily and reliably formed. Under such situations, an attention has been focused on the chemical mechanical polishing (CMP) process which can provide a higher degree of flatness in polishing surface films.
The CMP process means a process for polishing and planarizing wafer surfaces in a chemical and mechanical manner with, e.g., a alkaline solution using SiO
2
as an abrasive, a neutral solution using SeO
2
, or an acidic solution using Al
2
O
3
. One example of wafer polishing apparatuses for implementing the CMP process is shown, by way of example, in FIG.
11
.
Referring to
FIG. 11
, a wafer polishing apparatus
100
comprises a wafer holding head
101
for holding a wafer W to be polished, and a polishing pad
102
bonded to an overall upper surface of a platen
103
in the form of a disk. The wafer holding head
101
is provided in plural number and is mounted to the underside of a carousel
104
which serves as a head driving mechanism. Each wafer holding head
101
is rotatably supported by a spindle
111
and is rotated on the polishing pad
102
in planetary fashion. Incidentally, the center position of the platen
103
and the center about which the wafer holding heads
101
revolve may be offset from each other.
The platen
103
is horizontally arranged at the center of a base
105
and is rotatable about its axis by a platen driving mechanism provided within the base
105
. Posts
107
are provided aside the base
105
, and an upper mount plate
109
for supporting a carousel driving mechanism
110
is disposed between the posts
107
. The carousel driving mechanism
110
has a function of rotating the carousel
104
, provided below the mechanism
110
, about its axis.
Abutment members
112
are disposed on the base
105
to project upward from the base
105
, and spacing adjusting mechanisms
113
are provided on respective upper ends of the abutment members
112
. Above the abutment members
112
, engagement members
114
are disposed in one-to-one relation. The engagement members
114
are fixed to the upper mount plate
109
and are projected downward from it. The abutment members
112
and the engagement members
114
are brought into contact with each other while the spacing adjusting mechanisms
113
are operated to adjust a distance between the wafer holding heads
101
and the polishing pad
102
to a proper one. The wafers W held on the wafer holding heads
101
are thereby brought into contact with the surface of the polishing pad
102
. The carousel
104
and the platen
103
are then rotated to polish the wafers W.
As shown in
FIG. 12
, the wafer holding heads
101
each comprise a head body
121
made up of a top plate
121
a and a tubular peripheral wall
121
b
fixed to an outer periphery of the top plate
121
a
; a diaphragm
122
made of an elastic material such as rubber and stretched inside the head body
121
; a disk-shaped carrier
123
fixed to a lower surface of the diaphragm
122
; an annular retainer ring
124
disposed between an outer periphery of the carrier
123
and the peripheral wall
121
b
in concentric relation with small gaps left relative to them; and a pressure regulating mechanism
125
for regulating a pressure in a fluid chamber
126
defined between the head body
121
and the diaphragm
122
.
The diaphragm
122
is held between the peripheral wall
121
b
and a diaphragm fixing ring
127
, and it is fixed to the head body
121
by screws
127
a
tightened into the peripheral wall
121
b
from above the diaphragm fixing ring
127
.
The carrier
123
is disposed on the lower side of the diaphragm
122
, and a carrier fixing ring
128
is disposed on the upper side of the diaphragm
122
with the diaphragm
122
held between the carrier
123
and the carrier fixing ring
128
. The carrier
123
is fixed to the diaphragm
122
by screws
128
a
tightened into the carrier
123
from above the carrier fixing ring
128
.
The retainer ring
124
in the annular form is fitted to a circular groove defined between the peripheral wall
121
b and the outer periphery of the carrier
123
such that the retainer ring
124
is positioned in concentric relation to the peripheral wall
121
b
and the carrier
123
while small gaps are left relative to both an inner surface of the peripheral wall
121
b
and an outer peripheral surface of the carrier
123
. Further, a retainer-ring fixing ring
129
is disposed on the upper side of the diaphragm
122
with the diaphragm
122
held between the retainer ring
124
and the retainer-ring fixing ring
129
. The retainer ring
124
is fixed to the diaphragm
122
by screws
129
a
tightened into the retainer ring
124
from above the retainer-ring fixing ring
129
. The retainer ring
124
is of a two-piece structure comprising a metal-made upper portion into which the screws
129
a
are tightened, and a resin-made lower portion which is brought into contact with the polishing pad
102
.
The wafer W is polished by the polishing apparatus including the above-described wafer holding head as follows. First, the wafer W is stuck to a wafer attraction sheet S, which is disposed on the underside of the carrier
123
, so as to locate in imbedded fashion within the retainer ring
124
. Then, the surface of the wafer W exposed to face downward is brought into contact with the polishing pad
102
bonded to the upper surface of the platen
103
, and is polished under rotation of the wafer holding head while a slurry containing a polishing abrasive is supplied.
In the above operation, the carrier
123
and the retainer ring
124
are supported by a floating structure such that they can independently displace in the vertical direction with elastic deformation of the diaphragm
122
. Therefore, pressing forces of the carrier
123
and the retainer ring
124
against the polishing pad
102
vary depending on the pressure in the fluid chamber
126
which is regulated by the pressure regulating mechanism
125
.
A lower end of the retainer ring
124
projects downward of the carrier
123
and holds an outer periphery of the wafer W stuck to the lower surface of the carrier
123
. This arrangement is intended not only to prevent the wafer W from dislodging from the carrier
123
during the polishing process, but also to prevent such a phenomenon that an outer peripheral area of the wafer W is polished in a larger amount than a central area thereof, by surrounding the wafer W with the retainer ring
124
and positioning a lower end surface of the retainer ring
124
at the same level as the lower surface (polished surface) of the wafer W.
In the above-described wafer polishing apparatus
100
in which the wafers W are polished by the polishing pad
102
with rotations of the wafer holding heads
101
and the platen
103
, uniform polishing of the wafers W is achieved by satisfying such a condition that a relative speed, at which the polished surface of the wafer W and the polishing pad
102
rotate while contacting with each other, is uniform in a plane (hereinafter referred to as an “in-plane speed uniform condition). Assuming that the angular speed of the wafer holding head
101
is Rh, the angular speed of the platen
103
is Rp, and the angular speed of the carousel
104
is Rc, the in-plane speed uniform condition is expressed by the following relation and is satisfied when the following relation holds:
Rp=Rh+Rc (1)
By polishing the wafer W under the above condition, the wafer W is uniformly polished when an apparatus has an ideal construction. Also, under the above condition, both the wafer W and the wafer holding head
101
are not subjected to rotating forces. Accordingly, no torsion in the rotating direction occurs in the diaphragm which is one component of the head.
Depending on polishing environment such as accuracy of parts constituting the apparatus and in assembly of the parts or a material of the polishing pad
102
, however, the polishing pad
102
is locally raised (hereinafter referred to as “waving deformation”) in a portion T inward of the position at which the polishing pad
102
contacts the retainer ring
124
, as shown in
FIG. 13
, and the wafer W is often not uniformly polished even under the in-plane speed uniform condition. The raised portion T of the polishing pad
102
polishes excessively an outer peripheral edge G of the wafer W, and raises a problem of impairing uniformity in polishing of the wafer W surface.
Conversely, depending on polishing environment, a central area of the wafer W is sometimes preferentially polished. In such a case, it is also attempted to polish the wafer W under a condition where the in-plane speed is not uniform. The condition where the in-plane speed is not uniform means such a speed condition that the above relation (1) does not hold. In general, if the in-plane speed is not uniform, an outer peripheral area of the wafer W tends to be preferentially polished. Making the in-plane speed not uniform is therefore effective when a polishing state of the wafer W under the in-plane speed uniform condition provides a lower polishing rate in the outer peripheral area of the wafer W than that in the central area thereof, i.e., when the central area of the wafer W tends to be preferentially polished.
As a result of polishing of the wafer W under the in-plane speed non-uniform condition based on the above consideration, however, a conventional head has not developed such a tendency that the outer peripheral area of the wafer W is preferentially polished. This is attributable to the fact that the diaphragm is twisted due to rotating forces generated at the non-uniform in-plane speed, and the polishing becomes unstable. Also, in a transition stage where the rotations of the respective components does not yet reach steady states in an initial period of the polishing, the in-plane speed non-uniform condition occurs necessarily and the polishing becomes unstable during the transition stage.
SUMMARY OF THE INVENTION
In view of the state of art set forth above, an object of the present invention is to provide a wafer polishing apparatus and a wafer manufacturing method which can improve uniformity in polishing wafer surfaces.
To achieve the above object, the present invention provides a wafer polishing apparatus comprising a platen including a polishing pad bonded to a surface thereof, and a wafer holding head for holding a wafer to be polished and bringing one surface of the wafer into contact with the polishing pad, thereby polishing the wafer by rotating the wafer holding head and the platen separately, the wafer holding head comprising a head body made up of a top plate and a tubular peripheral wall provided under an outer periphery of the top plate; a diaphragm stretched inside the head body perpendicularly to a head axis; a pressure regulating mechanism for regulating a pressure of a fluid filled in a fluid chamber defined between the diaphragm and the head body; a carrier fixed to the diaphragm to be displaceable in the direction of the head axis together with the diaphragm, and holding the other surface of the wafer to be polished; a retainer ring disposed between an inner surface of the peripheral wall and an outer peripheral surface of the carrier in concentric relation, and fixed to the diaphragm to be displaceable in the direction of the head axis together with the diaphragm, the retainer ring being brought into contact with the polishing pad during polishing; an annular thin plate disposed in contact with at least part of the diaphragm; and a first fixing device (a diaphragm fixing ring and screws) for fixing the thin plate to the head body while the thin plate is projected from the head body along a surface of the diaphragm.
With the present invention, since the thin plate is disposed in contact with part of the diaphragm, deformation of the diaphragm in the axial (vertical) direction can be restricted. Therefore, a pressing force acting upon the retainer ring from the diaphragm can be reduced. A reduction of the pressing force acting upon the retainer ring enables a pressing force acting upon the polishing pad from the retainer ring to be reduced. As a result, when the polishing pad is made of a soft material and is apt to cause waving deformation, for example, the waving deformation can be prevented by providing the thin plate on the head body, and the wafer surface can be prevented from being excessively polished at an outer peripheral edge.
Preferably, the thin plate is fixing by a second fixing device (a carrier fixing ring and screws) and a third fixing device (a retainer-ring fixing ring and screws) respectively to the carrier and the retainer ring with the diaphragm held therebetween. With this feature, torsion of the diaphragm in the rotating direction of the head can be suppressed while deformation of the diaphragm in the vertical direction is restricted. Consequently, the wafer surface is uniformly polished.
Preferably, a plurality of holes are formed in the thin plate in an annular pattern as a whole, each of the holes extending from the center side in a thin-plate plane outward in the rotating direction of the head. With this feature, connecting portions between adjacent holes are flexed. Therefore, the thin plate is elastically deformable and the diaphragm is kept free to elastically expand and contract. As a result, displacements (floating) of the carrier and the retainer ring in the axial direction can be maintained to such an extent as not causing the waving deformation. Also, torsion acting upon the diaphragm in the rotating direction is reduced in a state where the wafer held on the wafer holding head is rotated while contacting the polishing pad. As a result, the wafer can be polished into a uniform surface.
Preferably, the holes are formed radially inward and outward of the third fixing device in an annular pattern as a whole on each side. With this feature, elastic deformation of the thin plate is stabilized. Therefore, elastic expansion and contraction of the diaphragm is surely maintained, and displacements of the carrier and the retainer ring in the axial direction can be maintained to such an extent as not causing the waving deformation. Also, torsion acting upon the diaphragm in the rotating direction is reduced in a state where the wafer held on the wafer holding head is rotated while contacting the polishing pad. As a result, stable polishing of the wafer can be achieved.
Preferably, the holes formed radially inward of the third fixing device are positioned above a gap between the carrier and the retainer ring, and the holes formed radially outward of the third fixing device are positioned above a gap between the retainer ring and the peripheral wall of the head body. With this feature, elastic deformation of the thin plate in areas including the holes and thereabout is maintained with stability.
Preferably, the holes are formed to have a width in the rotating direction of the head greater than a width of a connecting portion between adjacent two of the holes. With this feature, the connecting portion is easier to flex. Therefore, elastic expansion and contraction of the diaphragm is more easily maintained, and the wafer can be polished into a uniform surface under a satisfactory floating effect developed.
Preferably, the diaphragm and the thin plate are fixed to each other with a spacer interposed therebetween. With this feature, the diaphragm and the thin plate are coupled in a stabler manner, and the thin plate can be kept from deforming when it is fixed to the diaphragm.
In addition, the present invention provides a wafer manufacturing method comprising the steps of holding a wafer to be polished on a wafer holding head installed in the wafer polishing apparatus according to any one of the above-described features, and polishing the wafer while the wafer is pressed against a polishing pad, thereby manufacturing a polished wafer. With the method, the wafer is polished under a condition of suppressing both the waving deformation and the torsion acting upon the diaphragm in the rotating direction. As a result, the polished surface of the wafer can be finished uniform.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a side sectional view of a wafer holding head, showing a first embodiment of a wafer polishing apparatus of the present invention;
FIG. 2
is an enlarged view of principal part about a retainer ring shown in
FIG. 1
;
FIGS. 3A and 3B
are enlarged views for explaining states of displacement of the retainer ring;
FIG. 4
is a side sectional view of a wafer holding head, showing a second embodiment of the wafer polishing apparatus of the present invention;
FIG. 5
is an enlarged view of principal part about a thin plate shown in
FIG. 4
;
FIG. 6
is a plan view for explaining one embodiment of the thin plate;
FIG. 7
is a plan view for explaining another embodiment of the thin plate;
FIGS. 8A and 8B
are graphs for explaining results obtained when polishing a wafer with a wafer holding head for a wafer polishing apparatus according to the related art;
FIGS. 9A and 9B
are graphs for explaining results obtained when polishing a wafer with the wafer holding head for the wafer polishing apparatus according to the present invention;
FIGS. 10A and 10B
graphs for explaining results of wafer polishing obtained when the wafer holding head for the wafer polishing apparatus according to the present invention is applied to a practical example for which effective application of the present invention is expected;
FIG. 11
is a schematic view for explaining the entirety of a typical wafer polishing apparatus;
FIG. 12
is a side sectional view of a conventional wafer holding head; and
FIG. 13
is an illustration for explaining a problem in the conventional wafer holding head.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereinbelow, a wafer polishing apparatus and a wafer manufacturing method according to a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1
is a side sectional view of a wafer holding head, showing the first embodiment of the wafer polishing apparatus of the present invention.
FIG. 2
is an enlarged view of principal part about a retainer ring.
An illustrated wafer holding head H
1
is mounted to, for example, the carousel
104
shown in FIG.
11
.
Referring to
FIGS. 1 and 2
, the wafer holding head Hi comprise a head body
1
made up of a top plate la and a tubular peripheral wall
1
b
; a diaphragm
2
stretched inside the head body
1
perpendicularly to a head axis L; a carrier
3
fixed to a lower surface of the diaphragm
2
and being able to hold a wafer W to be polished on the underside thereof; and a retainer ring
4
disposed between an outer periphery of the carrier
3
and the peripheral wall
1
b
in concentric relation to the peripheral wall
1
b.
Further, a fluid chamber
15
is defined between the head body
1
and the diaphragm
2
, and a pressure regulating mechanism
5
is connected to the fluid chamber
15
. The pressure regulating mechanism
5
supplies pressurized air (fluid) to the fluid chamber
15
for regulating the pressure in the fluid chamber
15
, thereby deforming the diaphragm
2
in the direction of the head axis L.
The head body
1
is made up of the top plate
1
a
in the form of a disk and the tubular peripheral wall
1
b
disposed under an outer periphery of the top plate la so as to extend downward therefrom. A recess
1
c
having a circular opening is formed in a lower surface of the top plate
1
a
. The top plate
1
a
is coaxially fixed to a shaft
6
which is coupled to the carousel
104
, and a flow passage
6
a
communicating with the pressure regulating mechanism
5
is formed to extend through the shaft
6
. A step portion
1
d
is formed at a lower end of the peripheral wall
1
b
to project radially inward throughout its circumference, and an annular ledge portion
1
e
is formed below the step portion
1
d
to project radially inward from it.
The diaphragm
2
is in the form of a disk made of an elastic material such as fiber-reinforced rubber, and is placed on the step portion
1
d
of the peripheral wall
1
b
. The diaphragm
2
is held between the step portion
1
d
and a diaphragm fixing ring
7
, and is fixed to the head body
1
by screws
7
a
tightened into the step portion
1
d
from above the diaphragm fixing ring
7
. In a fixed state, the diaphragm
2
is stretched so as to cover or close the recess
1
c.
The carrier
3
is in the form of a disk having a certain thickness and made of a high-rigidity material such as a ceramic. The carrier
3
is disposed in contact with the lower surface of the diaphragm
2
in concentric relation to the head body
1
. A carrier fixing ring
8
is disposed on the upper side of the diaphragm
2
with the diaphragm
2
held between the carrier
3
and the carrier fixing ring
8
. The carrier
3
is fixed to the diaphragm
2
by screws
8
a
tightened into the carrier
3
from above the carrier fixing ring
8
. A wafer attraction sheet S is bonded to a lower surface of the carrier
3
for attracting and holding the wafer W to be polished. The wafer attraction sheet S is made of a material having a water absorbing property, such as unwoven cloth, and attracts the wafer with surface tension developed when it absorbs water.
As shown in
FIG. 2
, the retainer ring
4
is fitted to a circular groove defined between the annular peripheral wall
1
b
and the outer periphery of the carrier
3
such that the retainer ring
4
is positioned in concentric relation to the peripheral wall
1
b
and the carrier
3
while small gaps are left relative to both an inner surface of the peripheral wall
1
b
and an outer peripheral surface of the carrier
3
. Further, a retainer-ring fixing ring
9
is disposed on the upper side of the diaphragm
2
with the diaphragm
2
held between the retainer ring
4
and the retainer-ring fixing ring
9
. The retainer ring
4
is fixed to the diaphragm
2
by screws
9
a
tightened into the retainer ring
4
from above the retainer-ring fixing ring
9
.
The retainer ring
4
is of a two-piece structure comprising a metal-made upper portion into which the screws
9
a
are tightened, and a resin-made lower portion which is brought into contact with a polishing pad
102
. The retainer ring
4
has an upper end surface
4
a
for holding the diaphragm
2
between itself and the retainer-ring fixing ring
9
, and has a lower end surface
4
b
brought into contact with the polishing pad
102
. Both the upper and lower end surfaces
4
a
,
4
b
are formed to be flat perpendicularly to the head axis L in a state where the retainer ring
4
is attached to the wafer holding head H
1
.
An annular thin plate (spacer)
10
is disposed in concentric relation to the peripheral wall
1
b
, and is interposed between the step portion
1
d
formed at the lower end of the peripheral wall
1
b
and the diaphragm
2
placed on the step portion
1
d
. The thin plate
10
is fixedly screwed in place together with the diaphragm
2
. An inner peripheral edge of the thin plate
10
projects radially inward of the step portion
1
d
of the peripheral wall
1
b
along the lower surface of the diaphragm
2
to form a flange portion
10
a
. Thus, the diaphragm
2
has a deformable area smaller than that in the case of the thin plate
10
not being interposed.
Also, between the retainer ring
4
and the diaphragm
2
, an annular thin plate
11
is interposed in concentric relation to the peripheral wall
1
b
and is fixedly screwed to the diaphragm
2
together with the retainer ring
4
. Further, between the carrier
3
and the diaphragm
2
, a disk-shaped thin plate
12
is interposed in concentric relation to the peripheral wall
1
b
and is fixedly screwed to the diaphragm
2
together with the carrier
3
.
The thin plates
11
,
12
serve to compensate for a difference in set level between the retainer ring
4
and the carrier
3
which occurs due to the provision of the thin plate
10
. If thicknesses of the retainer ring
4
and the carrier
3
are increased in amount corresponding to the thickness of the thin plate
10
beforehand, the thin plates
11
,
12
can be dispensed with.
In manufacturing of wafers, the wafer W is polished by the polishing apparatus including the above-described wafer holding head H
1
as follows. First, the wafer W is stuck to the wafer attraction sheet S so as to locate in imbedded fashion within the retainer ring
4
. Then, the surface of the wafer W exposed to face downward is brought into contact with the polishing pad
102
bonded to the upper surface of a platen
103
, and is polished under rotation of the wafer holding head H
1
while a slurry containing a polishing abrasive is supplied. A material of the polishing pad
102
may be any of the materials that have been conventionally used for polishing wafers. Examples of usable materials include a velours type pad formed by impregnating a soft resin such as a polyurethane resin in unwoven cloth made of polyester or the like; a suede type pad formed by coating a foamed resin layer made of foamed polyurethane, for example, on a base material comprising unwoven cloth made of polyester or the like; and a foamed resin sheet made of independently foamed polyurethane or the like.
In the above operation, since the carrier
3
and the retainer ring
4
are supported by a floating structure, they are independently displaced in the vertical direction with elastic deformation of the diaphragm
2
and are pressed toward the polishing pad
102
. Pressing forces acting upon the carrier
3
and the retainer ring
4
are proportional to a pressure bearing area of the diaphragm
2
which is elastically deformed with the fluid pressure. However, the diaphragm
2
is elastically deformable in an area stretched inside the head body
1
, and pressure bearing areas of the carrier
3
and the retainer ring
4
are distributed in accordance with respective areas of their portions fixed to the diaphragm
2
.
More specifically, it is here assumed that the distance from the head axis L to the step portion
1
d
is X, the distance from the head axis L to the gap between the carrier
3
and the retainer ring
4
is Y, and the pressure in the fluid chamber
15
is P. Where the spacer
10
is not interposed as shown in
FIG. 3A
, the pressure bearing area of the diaphragm
2
which takes part in developing a force acting to press the retainer ring
4
downward with the pressure P is given by a portion contained in an area width x - Y.
On the other hand, where the spacer
10
is interposed as shown in
FIG. 3B
, the pressure bearing area of the diaphragm
2
which takes part in developing a force acting to press the retainer ring
4
downward with the pressure P is given by a portion contained in an area width (X−K)−Y on an assumption that the width by which the flange portion
10
a
projects radially inward from the step portion
1
d
is K. Accordingly, it is understood that the provision of the spacer
10
reduces the pressure bearing area of the diaphragm
2
, which takes part in developing a force acting to press the retainer ring
4
downward, by an amount corresponding to the projection width K of the flange portion
10
a.
Because the levels of the retainer ring
4
and the step portion
1
d
are usually adjusted so as to position the retainer ring
4
at a lower level and a downward pressing force is imposed on the diaphragm
2
at all times, the above-mentioned effect of reducing the relevant pressure bearing area just by restricting downward deformation of the diaphragm
2
can be obtained. In addition, by placing another thin plate, which has the same projection width as that of the lower thin plate
10
, on the upper side of the diaphragm
2
and restricting deformation of the diaphragm
2
in both the up and down directions, the effect of reducing the force pressing the retainer ring
4
downward can be obtained with stability even when the diaphragm
2
is accidentally displaced upward.
Thus, the provision of the thin plate
10
makes it possible to reduce only the pressure bearing area of the diaphragm
2
associated with the retainer ring
4
and to reduce the pressing force acting only from the retainer ring
4
to the polishing pad
102
while the pressure bearing area of the diaphragm
2
associated with the carrier
3
is kept unchanged. As a result, the polishing pad
102
can be prevented from causing waving deformation, and the wafer W can be prevented from being excessively polished at its outer peripheral edge.
Moreover, by preparing several types of thin plates
10
having different projection widths K and selectively employing a suitable one of the thin plates
10
depending on the material of the polishing pad
102
and other conditions, versatility of the wafer holding head H
1
can be improved.
Next, a wafer polishing apparatus and a wafer manufacturing method according to a second embodiment of the present invention will be described with reference to
FIGS. 4
,
5
and
6
.
FIG. 4
is a side sectional view of a wafer holding head H
2
, showing the second embodiment of the wafer polishing apparatus of the present invention.
FIG. 5
is an enlarged view of principal part about a thin plate, and
FIG. 6
is a plan view for explaining one embodiment of the thin plate.
Referring to
FIGS. 4 and 5
, the wafer holding head H
2
comprises a head body
22
made up of a top plate
23
and a tubular peripheral wall
24
; a diaphragm
25
made of an elastic material and stretched inside the head body
22
; a disk-shaped carrier
26
fixed to a lower surface of the diaphragm
25
; an annular retainer ring
27
disposed between an inner surface of the peripheral wall
24
and an outer peripheral surface of the carrier
26
in concentric relation; and an annular thin plate
20
disposed on the upper side of the diaphragm
25
.
The top plate
23
is coaxially fixed to a shaft
29
which is coupled to a carousel, and a flow passage
29
a
is formed to extend through the shaft
29
in the vertical direction. A male threaded portion
28
is formed on an outer circumferential surface of the shaft
29
. A step portion
24
a
is formed at a lower end of the peripheral wall
24
to project radially inward throughout its circumference, and an annular ledge portion
30
is formed below the step portion
24
a
to project radially inward from it.
The diaphragm
25
is in the form of a disk or annular plate made of an elastic material such as fiber-reinforced rubber. A fluid chamber
34
is defined above the diaphragm
25
and is communicated with the flow passage
29
a
formed to extend through the shaft
29
. By supplying air or any other suitable fluid to an inner space of the fluid chamber
34
from a pressure regulating mechanism
40
via the flow passage
29
a
, the pressure in the fluid chamber
34
is regulated.
As with the first embodiment, the carrier
26
is in the form of a disk having a certain thickness and made of a high-rigidity material such as a ceramic. A wafer attraction sheet S is bonded to a lower surface of the carrier
26
for attracting and holding a wafer W to be polished. Further, the annular retainer ring
27
is disposed between the inner surface of the peripheral wall
24
and the outer peripheral surface of the carrier
26
such that the retainer ring
27
is positioned in concentric relation to the peripheral wall
24
and the carrier
26
while small gaps are left relative to both the inner surface of the peripheral wall
24
and the outer peripheral surface of the carrier
26
. The retainer ring
27
has an upper end surface and a lower end surface formed to be flat.
The thin plate
20
disposed on the upper side of the diaphragm
25
is made of a rigid material such as stainless steel, for example, and has an annular shape. An inner peripheral portion of the thin plate
20
is fixed to the carrier
26
by a carrier fixing ring
32
and screws
32
a
, which serve as fixing means, with the diaphragm
25
held between the thin plate
20
and the carrier
26
. In addition, a carrier spacer
41
a
is interposed between the diaphragm
25
and the thin plate
20
to prevent deformation of the thin plate
20
which could occur when the thin plate
20
is directly attached to the upper surface of the diaphragm
25
.
Likewise, a radial intermediate portion of the thin plate
20
is fixed the retainer ring
27
by a retainer-ring fixing ring
33
and screws
33
a
, which serve as fixing means, with the diaphragm
25
held between the thin plate
20
and the retainer ring
27
. Also, an outer peripheral portion of the thin plate
20
is fixed to the step portion
24
a
on the inner surface of the peripheral wall
24
by a diaphragm fixing ring
31
and screws
31
a
, which serve as fixing means, with the diaphragm
25
held between the thin plate
20
and the step portion
24
a
. In addition, a retainer ring spacer
41
b
and a head body spacer
41
c
are interposed respectively between the diaphragm
25
and the radial intermediate portion and the outer peripheral portion of the thin plate
20
at which the thin plate
20
is fixed respectively by the retainer ring fixing screws
33
a
and the diaphragm fixing screws
31
a
, thereby preventing deformation of the thin plate
20
which could occur when the thin plate
20
is directly attached to the upper surface of the diaphragm
25
.
An annular step portion
51
is formed at an upper end of the carrier fixing ring
32
, and is positioned to be engageable with a step portion
38
a
formed at a lower end of a stopper bolt
38
which is vertically inserted downward from above the top plate
23
and fixed in place by a nut
39
and a spacer
39
a
. Therefore, even when the diaphragm
25
is flexed downward due to the dead weight of the carrier
26
and the pressure in the fluid chamber
34
upon the wafer holding head H
2
being elevated by, e.g., a hoisting and lowering mechanism, the diaphragm
25
is avoided from undergoing excessive forces because of engagement between the step portion
51
and the step portion
38
a.
A step portion
27
a
is formed on an outer peripheral surface of the retainer ring
27
and is positioned to be engageable with the ledge portion
30
. Therefore, even when the diaphragm
25
is locally flexed downward due to the dead weight of retainer ring
27
and the pressure in the fluid chamber
34
upon the wafer holding head H
2
being elevated by the hoisting and lowering mechanism, the diaphragm
25
is avoided from undergoing excessive forces because of engagement between the step portion
27
a
and the ledge portion
30
.
Moreover, the carrier
26
and the retainer ring
27
are each supported by a floating structure such that they are independently movable in the direction of the head axis L with elastic deformation of the diaphragm
25
.
As shown in
FIG. 6
, the thin plate
20
is in the annular form, and has a plurality of holes
42
which are formed in an annual pattern as a whole, each of the holes
42
extending from the center side in a thin-plate plane outward in the rotating direction of the thin plate
20
(or the wafer holding head H
2
). The holes
42
comprise inner holes
42
a
formed in an annual pattern as a whole to position radially inward of holes
33
b
for the retainer-ring fixing screws
33
a
by which the thin plate
20
is fixed to the retainer ring
27
, i.e., to position between holes
33
b
for the retainer-ring fixing screws
33
a
and holes
32
b
for the carrier fixing screws
32
a
; and outer holes
42
b
formed in an annual pattern as a whole to position radially outward of the holes
33
b
for the retainer-ring fixing screws
33
a
, i.e., to position between the holes
33
b
for the retainer-ring fixing screws
33
a
and holes
31
b
for the diaphragm fixing screws
31
a.
Further, the inner holes
42
a
are positioned substantially above a gap
52
a
, shown in
FIG. 5
, between the carrier
26
and the retainer ring
27
, whereas the outer holes
42
b
are positioned substantially above a gap
52
b
, shown in
FIG. 5
, between the retainer ring
27
and the peripheral wall
24
.
The inner holes
42
a
each have substantially a rectangular shape being elongate in the rotating direction of the wafer holding head H
2
indicated by an arrow y
1
. Also, the inner holes
42
a
are formed with equal angular intervals such that a connecting portion
43
a
between the adjacent holes
42
a
has a width smaller than a width h
1
of each hole
42
a
in the rotating direction.
On the other hand, the outer holes
42
b
each have substantially a slender triangular shape being elongate in the rotating direction of the wafer holding head H
2
indicated by the arrow y
1
. One end of the triangular shape corresponding to the apex is positioned on the radially inner side, and the other end of the triangular shape corresponding to the base is positioned on the radially outer side. Also, the outer holes
42
b
are formed with equal angular intervals such that a connecting portion
43
b
between the adjacent holes
42
b
has a width smaller than a width h
2
of each hole
42
b
in the rotating direction.
The wafer holding head H
2
having the above-described construction is coupled to the carousel by screwing the male threaded portion
28
to the spindle
29
. The wafer W is polished by using the wafer holding head H
2
as follows. First, the wafer W is stuck to the wafer attraction sheet S bonded to the lower surface of the carrier
26
. Then, the surface of the wafer W exposed to face downward is brought into contact with the polishing pad
102
bonded to the upper surface of a platen
103
while the wafer w is retained at its outer periphery by the retainer ring
27
.
Subsequently, air or any other suitable fluid is supplied to the flow passage
29
a
from a pressure regulating mechanism
40
. The supplied fluid flows into the fluid chamber
34
to regulate the pressure in the fluid chamber
34
. The carrier
26
and the retainer ring
27
are supported on the diaphragm
25
with a floating structure such that they are independently displaced in the vertical direction. Pressing forces acting against the polishing pad
102
from the carrier
26
and the retainer ring
27
can be adjusted depending on the pressure in the fluid chamber
34
.
In the above operation, since the thin plate
20
has the inner holes
42
a
and the outer holes
42
b
which are arranged in an annular pattern as a whole and are positioned respectively above the gap
52
a between the carrier
26
and the retainer ring
27
and above the gap
52
b
between the retainer ring
27
and the peripheral wall
24
of the head body
22
, the thin plate
20
is elastically deformable in the direction of the head axis L. Hence, flexing of the carrier
26
and the retainer ring
27
fixed to the diaphragm
25
in the direction of the head axis L, i.e., a floating effect given to by them, is not impeded.
Further, since the inner holes
42
a
and the outer holes
42
b
are formed to have the widths h
1
, h
2
in the rotating direction greater than the widths of the connecting portions
43
a
,
43
b
between the respective adjacent holes, elastic deformation of the thin plate
20
in the direction of the head axis L can be more easily realized. Therefore, a stable floating effect can be provided to each of the carrier
26
and the retainer ring
27
.
Then, the platen
103
is rotated and the wafer holding head H
2
is rotated in planetary fashion while the pressing forces imposed against the polishing pad
102
from the carrier
26
and the retainer ring
27
are adjusted. At the same time, a polishing abrasive is supplied from a polishing abrasive supply means (not shown) is supplied to the surface of the polishing pad
102
and to the polished surface of the wafer W, thereby polishing the wafer W.
When the wafer W is polished on condition that the in-plane speed is not uniform, a speed difference between the polished wafer W and the polishing pad
102
is not constant in the wafer plane, i.e., the plane in which the wafer W is located. Therefore, rotating forces are imposed on not only the carrier
26
holding the wafer W, but also the retainer ring
27
. Correspondingly, the diaphragm
25
is twisted relative to the head body
22
, but the torsion acting upon the diaphragm
25
is reduced by the presence of the thin plate
20
which is fixed to the carrier
26
, the retainer ring
27
and the peripheral wall
24
of the head body
22
.
In addition, since the inner holes
42
a
and the outer holes
42
b
are formed to be elongate outward from the center side in the rotating direction of the wafer holding head H
2
, the torsion acting upon the diaphragm
25
can be surely suppressed even when the wafer holding head H
2
is forced to rotate.
Thus, with this embodiment, the annular thin plate
20
is disposed on the upper surface of the diaphragm
25
, and the thin plate
20
is fixed to the carrier
26
, the retainer ring
27
and the peripheral wall
24
of the head body
22
. Accordingly, the torsion acting upon the diaphragm
25
in the rotating direction is suppressed by the thin plate
20
and the wafer W is polished with stability.
Since the holes
42
are formed in the thin plate
20
in an annular pattern as a whole so as to provide a bridging structure, the thin plate
20
is elastically deformable in the direction of the head axis L. Therefore, the carrier
26
and the retainer ring
27
fixed to the diaphragm
25
are allowed to flex in the direction of the head axis L.
On the other hand, during rotation of the wafer holding head H
2
, the torsion acting upon the diaphragm
25
in the rotating direction is reduced and stable polishing of the wafer W can be achieved.
Further, since the inner holes
42
a
and the outer holes
42
b
are formed to have the widths h
1
, h
2
in the rotating direction greater than the widths of the connecting portions
43
a
,
43
b
between the respective adjacent holes, elastic deformation of the thin plate
20
in the direction of the head axis L can be more easily realized. In other words, by increasing an area occupied by the holes
42
with respect to the overall area of the thin plate
20
to such an extent that the effect of suppressing torsion of the diaphragm
25
is not impaired, the floating effect of the carrier
26
and the retainer ring
27
both fixed to the diaphragm
25
can be developed with stability, and highly accurate polishing of the wafer W can be achieved.
The holes
42
in the thin plate
20
may be formed as shown in FIG.
7
. More specifically, in a thin plate
20
′ shown in
FIG. 7
, inner holes
42
c
and outer holes
42
d
have widths h
3
, h
4
in the rotating direction greater than the widths h
1
, h
2
of the inner and outer holes
42
a
,
42
b
in the thin plate
20
shown in FIG.
6
. Further, the inner and outer holes
42
c
,
42
d
are formed to extend radially outward from the center side of the thin plate
20
′ in the rotating direction of the wafer holding head H
2
(indicated by an arrow y
2
). In other words, the holes
42
c
,
42
d
are each substantially in the form of a parallelogram with short sides spaced from each other in the rotating direction of the wafer holding head H
2
. Moreover, the inner and outer holes
42
c
,
42
d
are formed to have the widths h
3
, h
4
in the rotating direction greater than the widths of connecting portions
43
c
,
43
d
between the respective adjacent holes.
Thus, a similar advantage as described above can also be obtained even when the number and size of the holes formed in the thin plate are changed.
It is to be noted that the wafer W may be polished while measuring polishing resistance by a sensor, such as a strain gauge, attached to the thin plate
20
(
20
′).
Next, a description will be made of the fact that the wafer polishing apparatus of the present invention enables preferential polishing of an outer peripheral area of the wafer under the in-plane non-uniform condition, which has not been realized in the related art, with reference to
FIG. 8
,
9
and
10
. In each of graphs shown in
FIG. 8
,
9
and
10
, the vertical axis represents a polishing rate of the wafer W, and the horizontal axis represents a distance from the center of the wafer W.
Also, a conventional wafer holding head means a wafer holding head having the same construction as the wafer holding head H
2
according to the present invention except for the thin plate
20
.
FIGS. 8A and 8B
show experimental results obtained when polishing the wafer W with the conventional wafer holding head. Under the in-plane speed uniform condition, as shown in
FIG. 8A
, the wafer W can be uniformly polished. When polishing the wafer W under the in-plane speed non-uniform condition, it is expected based on the consideration that only an outer peripheral area of the wafer W is preferentially polished. In practice, however, the wafer W is overly polished in both an outer peripheral area and a central area thereof as shown in
FIG. 8B
, and a desired polished surface cannot be obtained.
FIGS. 9A and 9B
show experimental results obtained when polishing the wafer W with the wafer holding head (torque shim head) including the thin plate
20
mounted in place. Under the in-plane speed uniform condition, as shown in
FIG. 9A
, the wafer W can be uniformly polished in conformity with theory as with the case of employing the wafer holding head not provided with the thin plate
20
. Further, when polishing the wafer W under the in-plane speed non-uniform condition with the thin sheet
20
mounted in place, it has proved as shown in
FIG. 9B
that only the outer peripheral area of the wafer W is preferentially polished as expected based on the consideration. This means that torsion of the diaphragm is suppressed by the provision of the thin plate
20
and hence polishing has been stabilized.
As a practical example of application,
FIGS. 10A and 10B
show experimental results obtained when employing the wafer holding head H
2
for the wafer polishing apparatus according to the present invention in the case where the polishing rate in the outer peripheral area of the wafer W is lower than that in the central area thereof even under the in-plane speed uniform condition due to influences imposed from components of the apparatus.
FIG. 10A
shows a result of polishing obtained when the wafer W is polished under the in-plane speed non-uniform condition by using the wafer holding head H
2
with the thin sheet
20
mounted in place. It is found from
FIG. 10A
that the polishing rate in the outer peripheral area of the wafer W is lower than that in the central area thereof. On the other hand, when polishing the wafer W under the in-plane speed non-uniform condition, the wafer W is polished substantially uniformly and a desired polished surface can be achieved, as shown
FIG. 10B
, because the outer peripheral area of the wafer W is preferentially polished.
As is apparent from the above description, such a tendency that the outer peripheral area of the wafer W is preferentially polished when polishing the wafer W under the in-plane speed non-uniform condition, which tendency has not been realized in the related art, can be realized by providing the thin plate
20
on the upper surface of the diaphragm
25
of the wafer holding head so that torsion of the diaphragm is reduced. Accordingly, even in the case of employing an apparatus having such a tendency that the central area of the wafer W is preferentially polished even under the in-plane speed uniform condition, a desired uniformly polished surface can be achieved by operating the apparatus under the in-plane speed non-uniform condition.
The wafer polishing apparatus and the wafer manufacturing method of the present invention can provide the following advantages.
According to the present invention, since the thin plate is disposed in contact with part of the diaphragm, deformation of the diaphragm in the axial (vertical) direction can be restricted. Therefore, a pressing force acting upon the retainer ring from the diaphragm can be reduced. A reduction of the pressing force acting upon the retainer ring enables a pressing force acting upon the polishing pad from the retainer ring to be reduced. As a result, when the polishing pad is made of a soft material and is apt to cause waving deformation, for example, the waving deformation can be prevented by providing the thin plate on the head body, and the wafer surface can be prevented from being excessively polished at an outer peripheral edge.
Since the thin plate is fixing by the fixing means (i.e., a second fixing device and a third fixing device) respectively to the carrier and the retainer ring with the diaphragm held therebetween, torsion of the diaphragm in the rotating direction of the head can be suppressed while deformation of the diaphragm in the vertical direction is restricted. Consequently, the wafer surface is uniformly polished.
A plurality of holes are formed in the thin plate in an annular pattern as a whole, each of the holes extending from the center side in a thin-plate plane outward in the rotating direction of the head, so that connecting portions between adjacent holes are flexed. Therefore, the thin plate is elastically deformable and elastic expansion and contraction of the diaphragm is maintained. As a result, displacements (floating) of the carrier and the retainer ring in the axial direction can be maintained to such an extent as not causing the waving deformation. Also, torsion acting upon the diaphragm in the rotating direction is reduced in a state where the wafer held on the wafer holding head is rotated while contacting the polishing pad. As a result, the wafer can be polished into a uniform surface.
Since the holes are formed radially inward and outward of the third fixing device in an annular pattern as a whole on each side, elastic deformation of the thin plate is stabilized. Therefore, elastic expansion and contraction of the diaphragm is surely maintained, and displacements of the carrier and the retainer ring in the axial direction can be maintained to such an extent as not causing the waving deformation. Also, torsion acting upon the diaphragm in the rotating direction is reduced in a state where the wafer held on the wafer holding head is rotated while contacting the polishing pad. As a result, stable polishing of the wafer can be achieved.
The holes formed radially inward of the third fixing device are positioned above a gap between the carrier and the retainer ring, and the holes formed radially outward of the third fixing device are positioned above a gap between the retainer ring and the peripheral wall of the head body. Therefore, elastic deformation of the thin plate in areas including the holes and thereabout is maintained with stability.
Since the holes are formed to have a width in the rotating direction of the head greater than a width of a connecting portion between adjacent two of the holes, the connecting portion is easier to flex. Therefore, elastic expansion and contraction of the diaphragm is more easily maintained, and the wafer can be polished into a uniform surface under a satisfactory floating effect developed.
Since the diaphragm and the thin plate are fixed to each other with a spacer interposed therebetween, the diaphragm and the thin plate are coupled in a stabler manner, and the thin plate can be kept from deforming when it is fixed to the diaphragm.
Claims
- 1. A wafer polishing apparatus having a platen including a polishing pad bonded to a surface thereof, and a wafer holding head both for holding a wafer to be polished and for bringing a first surface of said wafer into contact with said polishing pad to polish said wafer by separately rotating said wafer holding head and said platen, said wafer holding head comprising:a head body made up of a top plate and a tubular peripheral wall provided under an outer periphery of said top plate; a diaphragm stretched inside said head body, wherein said diaphragm is perpendicular to a head axis; a pressure regulating mechanism for regulating a pressure of a fluid in a fluid chamber, wherein said fluid chamber is located between said diaphragm and said head body; a carrier fixed to said diaphragm, wherein together said carrier and said diaphragm are displaceable in a direction of said head axis, and wherein said carrier holds a second surface of said wafer to be polished; a retainer ring disposed between an inner surface of said tubular peripheral wall and an outer peripheral surface of said carrier in concentric relation, wherein said retainer ring is fixed to said diaphragm and together said retainer ring and said diaphragm are displaceable in said direction of said head axis so that said retainer ring is brought into contact with said polishing pad during polishing of said wafer; an annular thin plate disposed in contact with at least part of said diaphragm; and a fixing device for fixing said annular thin plate to said head body, wherein said annular thin plate extends from said head body along a surface of said diaphragm.
- 2. The wafer polishing apparatus according to claim 1, further comprising second and third fixing devices for fixing said annular thin plate to said carrier and said retainer ring, respectively, with said diaphragm being held therebetween.
- 3. The wafer polishing apparatus according to claim 2, wherein a plurality of holes are formed in said annular thin plate to form an annular pattern as a whole, each hole of said plurality of holes extending outwardly from a first side near a center of a plane through a central longitudinal axis of said annular thin plate in a direction of rotation of said wafer holding head.
- 4. The wafer polishing apparatus according to claim 3, wherein each hole of said plurality of holes is formed radially inwardly and outwardly with respect to said third fixing device in said annular pattern on said first side and a second side.
- 5. The wafer polishing apparatus according to claim 4, wherein each hole of said plurality of holes, which is formed radially inwardly with respect to said third fixing device, is positioned above a gap between said carrier and said retainer ring, and wherein each hole of said plurality of holes, which is formed radially outwardly with respect to said third fixing device, is positioned above a gap between said retainer ring and said tubular peripheral wall of said head body.
- 6. The wafer polishing apparatus according to claim 5, wherein each hole of said plurality of holes is formed to have a width in said direction of rotation of said water holding head greater than a width of a connecting portion between first and second adjacent holes of said plurality of holes.
- 7. The wafer polishing apparatus according to claim 6, wherein said diaphragm and said annular thin plate are fixed to each other with a spacer interposed therebetween.
- 8. A wafer manufacturing method comprising the steps of;holding a wafer to be polished on a wafer holding head, wherein said wafer holding head is installed in a wafer polishing apparatus having a platen including a polishing pad bonded to a surface thereof, and a wafer holding head both for holding said wafer to be polished and for bringing a first surface of said wafer into contact with said polishing pad to polish said wafer by separately rotating said wafer holding head and said platen, wherein said wafer holding head includes: a head body made up of a top plate and a tubular peripheral wall provided under an outer periphery of said top plate; a diaphragm stretched inside said head body, wherein said diaphragm is perpendicular to a head axis; a pressure regulating mechanism for regulating a pressure of a fluid in a fluid chamber, wherein said fluid chamber is located between said diaphragm and said head body; a carrier fixed to said diaphragm, wherein together said carrier and said diaphragm are displaceable in a direction of said head axis, and wherein said carrier holds a second surface of said wafer to be polished; a retainer ring disposed between an inner surface of said tubular peripheral wall and an outer peripheral surface of said carrier in concentric relation, wherein said retainer ring is fixed to said diaphragm and together said retainer ring and said diaphragm are displaceable in said direction of said head axis so that said retainer ring is brought into contact with said polishing pad during polishing of said wafer; an annular thin plate disposed in contact with at least part of said diaphragm; and a fixing device for fixing said annular thin plate to said head body, wherein said annular thin plate extends from said head body along a surface of said diaphragm; and polishing said wafer while said wafer is pressed against said polishing pad to form a polished wafer.
Priority Claims (2)
Number |
Date |
Country |
Kind |
11-029389 |
Feb 1999 |
JP |
|
11-158802 |
Jun 1999 |
JP |
|
US Referenced Citations (3)
Number |
Name |
Date |
Kind |
5205082 |
Shendon et al. |
Apr 1993 |
|
5584751 |
Kobayashi et al. |
Dec 1996 |
|
5803799 |
Volodarsky et al. |
Sep 1999 |
|