Wafer probe

Information

  • Patent Grant
  • 7233160
  • Patent Number
    7,233,160
  • Date Filed
    Monday, November 19, 2001
    23 years ago
  • Date Issued
    Tuesday, June 19, 2007
    17 years ago
Abstract
The present invention relates to a probe for testing of integrated circuits or other microelectronic devices.
Description
BACKGROUND OF THE INVENTION

The present invention relates to a probe for testing of integrated circuits or other microelectronic devices.


One type of probe utilizes a spaced-apart array of slender needles to contact pads on a device under test (DUT). A signal is provided to the DUT, and the voltages and/or currents at the selected nodes are routed to measurement equipment. A problem encountered with such measurement systems, particularly at high frequencies, is that the close proximity between the needle tips creates inductance that can interfere with accurate measurements. Though this inductance can be reduced by limiting the isolated portion of the probe tips to the region immediately surrounding the DUT, practical considerations make such a design difficult.


Probe structures have been developed to compensate for the inductance at the probe tips. One such design is exemplified by Lockwood et al., U.S. Pat. No. 4,697,143. Lockwood et al. disclose a ground-signal-ground arrangement of strip like conductive traces formed on the underside of an alumina substrate so as to create coplanar transmission lines. These coplanar transmission lines extend from the pads of the DUT at one end to a coaxial cable at the other end. The associated pair of ground traces on each coplanar transmission line is connected to the outer conductor of the coaxial cable and the interposed signal trace is connected to the inner conductor. Areas of wear-resistant conductive material are provided to reliably establish an electrical connection with the respective pads of the DUT. Layers of ferrite-containing microwave absorbing material are mounted about the substrate to absorb spurious microwave energy over a major portion of the length of each ground-signal-ground trace pattern. In accordance with this type of construction, a high frequency impedance (e.g., 50 ohms) can be presented at the probe tips to the device under test. Thus broadband signals of eighteen gigahertz or less can travel with little loss across the coplanar transmission lines formed by each ground-signal-ground trace pattern.


The probing system of Lockwood et al., however, is insufficient to effectively probe non-planar surfaces. Such surfaces might result, for example, if the pads of the DUT differ in height, if a loose metallic particle of minute dimension adheres electrostatically to the surface of one of the pads of the DUT so as to form a non-planar surface irregularity, or when the plane of the DUT is inadvertently tilted slightly with respect to the plane of the coplanar tips of the probing assembly. Further, proper alignment between the needles and the DUT requires careful placement of each needle, a time consuming process.


The alignment limitation between the needles was addressed by Godshalk, U.S. Pat. No. 5,506,515. Godshalk discloses a ground-signal-ground finger arrangement attached to a coaxial cable, as in Lockwood. The fingers, however, are originally formed in one piece, joined together by a carrier tab at the contact ends. Once the fingers are attached to the coaxial cable, the carrier tab is severed and the contact fingers appropriately shaped for contact with the DUT. Godshalk discloses that the relative position of each finger is held in alignment first by the carrying tab, and then by the coaxial cable. Unfortunately, Godshalk's design is limited in that the close placement of a coaxial cable to the finely spaced geometry of the DUT places a limit on the number of coaxial cables, and hence contact fingers, that may be used effectively in the probe. Further, a probe having multiple adjacent coaxial cables, each of which has different flexibilities, may lead to insufficient contact with some of the nodes on the DUT.


Another class of probes that provide clean power to circuits at low impedance are generally referred to as power bypass probes. Another configuration that has been developed to counteract the inductance at the tips of a probe assembly is a power bypass quadrant. The power bypass quadrant minimizes such inductance by providing integrated capacitors or resistor-capacitor networks within the probe.


Strid, U.S. Pat. No. 4,764,723, discloses a power bypass quadrant probe that utilizes an array of ceramic fingers coated with a thin gold or polyimide film to make contact with the DUT. The test signals are routed through a power bypass structure consisting of an RC network. Because of the small geometries near the DUT, the capacitors are located far away from the probe tip, which potentially decreases performance. In addition, the ceramic contact fingers tend to break during probing, particularly when the probe overshoots the contact pads. Further, probing pads that are not coplanar is exceedingly difficult because the ceramic contacting fingers lack flexibility.


Boll et al., U.S. Pat. No. 5,373,231 disclose a probe that includes an array of blades to contact the pads of a DUT. The array of blades extend from a transmission line network traced on a circuit board. An RC network is provided on the circuit board to provide the requisite power bypass, and in some instances, flexible capacitors are located close to, or between the contact blades. Because of the limited geometries near the DUT, the capacitance of the capacitors interconnected between the blades are small, and alone are insufficient to adequately eliminate circuit inductance. Accordingly, a second bank of capacitors with larger values are located away from the probe tip where space is available. Probes utilizing flexible capacitors between the closely spaced blades of the probe have proven to be of limited mechanical durability.


What is desired, therefore, is a configurable, multi-contact probe for high frequency testing of integrated circuits or other microelectronic devices that reduces the inductance at the probe tip to levels acceptable for measurement over a wide range of frequencies. The probe should be sufficiently durable and flexible to reliably and repeatedly probe substantially non-planar devices over time. It is further desired that the probe be easily aligned with the contact points on the device to be tested and that the probe be capable of simultaneously probing a number of such contact points.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a top view of an exemplary embodiment of the probe head of the present invention.



FIG. 2 shows a bottom view, at an enlarged scale, of the probe head of FIG. 1.



FIG. 3 shows an enlarged view of the probe tips attached to a common carrying tab of the probe head of FIG. 1.



FIG. 4A shows a schematic of the electrical trace patterns of the top face of the exemplary probe head of FIG. 1 including a power bypass feature.



FIG. 4B shows a schematic of the electrical trace patterns of the bottom face of the exemplary probe head of FIG. 1 including a power bypass feature.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIGS. 1 and 2 illustrate an exemplary wafer probe 10. The wafer probe 10 includes an integrated tip assembly 12 mounted to a circuit board 14. The integrated tip assembly 12 comprises a plurality of contact fingers 16 extending from the circuit board 14 in a radially inward direction so as to match the compact geometry of the device under test (not shown). The distal end portion 17 of each contact finger is shaped to provide a reliable electrical connection with an associated pad on a device under test. The circuit board 14 has electrical traces that route signals from the contact fingers 16 through a resistor-capacitor (RC) network 20 to pin connectors 22. Measurement cables (not shown) may be electrically connected to the pin connectors.


The wafer probe 10 is designed to be mounted on a support through a three hole mounting frame 24 of a wafer probe station so as to be in a suitable position for probing a device under test, such as an individual component on a semiconductor wafer. In this type of application, the wafer is typically supported under vacuum pressure on the upper surface of a chuck that is part of the same probing station. Ordinarily an X-Y-Z positioning mechanism is provided, such as a micrometer knob assembly, to effect movement between the supporting member and the chuck so that the tip assembly of the wafer probe can be brought into pressing engagement with the contact pads of the device under test.


Referring to FIG. 3, the integrated tip assembly 12 is fashioned as a unitary device with the individual contact fingers 16 connected by a common carrying tab 26 at the probing end. Each individual contact finger 16 is positioned so that, after the integrated tip assembly 12 is attached the circuit board 14, the common carrying tab 26 may be severed, leaving the distal end 18 of each contact finger in the appropriate position for probing the contact pads of the device under test.


The spacing of the contact fingers 16 at their respective distal ends 18 is selected to match the geometry of the DUT pads. Use of an integrated tip assembly 12 advantageously serves to maintain this proper spacing while the contact fingers 16 are attached to their respective connections to the circuit board 14. Typically, contact fingers or needles are attached to a circuit board by being held flush to their respective traces and soldered into the appropriate position and pitch. During this process, lateral forces tend to displace the distal ends of the contact fingers, making it difficult to maintain the proper spatial relationship between the contact fingers to match that of the pads of the DUT. Use of a carrying tab 26, however, maintains the proper transverse spacing of the distal ends 18 of the contact fingers 16 by counteracting any lateral forces encountered in the attachment process.


In addition, the probe 16 described herein achieves an improved spatial transformation between the compact geometry of the microelectronic device being probed and the dispersed geometry of the testing equipment and, if provided, any power bypass circuitry. This improved spatial characteristic stands in contrast to earlier design, in which signals were routed through a coaxial cable. A coaxial cable, having simply an inner and an outer conductor, limits the number of attached contact fingers to three, arranged in a ground-signal-ground arrangement. Accordingly, any common carrying tab used to hold the contact fingers in position during their attachment to a coaxial cable also is limited to a maximum of three contact fingers.


Oftentimes, however, the DUT has more than three pads to be tested. In such a case, configuring the probe requires the use of multiple coaxial cables arranged in an adjacent relationship to each other, usually an awkward process given the limited space available near the probe tips. Use of multiple coaxial cables is also problematical in that different cables have differing flexibility, making it difficult to line up all the cables in a single plane and leading to uneven probe forces when the contact fingers are pressed to their respective pads. Moreover, the used of multiple coaxial cables and multiple carrying tabs necessitates the careful and time consuming adjustment of the relative position between the sets of contact fingers to the geometry of the pads of the DUT. In another design, the use of multiple coaxial cables and a single carrying tab necessitates the careful and time consuming adjustment of the relative position of the coaxial cables.


Use of a circuit board 14, however, addresses each of these drawbacks. Because the circuit board 14 can include separate traces for each of the contact pads of the DUT to which the probe will be engaged during testing, the common carrying tab 26 depicted in FIG. 3 may include four or more contact fingers 16, maintaining all of their respective distal ends in their proper position until each finger 16 is rigidly attached to the circuit board 14. The circuit board 14 provides a controlled and uniform flexure, assuring not only a uniform amount of overtravel when the fingers 16 make contact with the pads of the DUT, but also a mechanism by which the stress in the contact fingers 16 may be relieved by the uniform flexibility of the circuit board 14. This flexibility may even be controlled by the selection of material for the circuit board 14.



FIG. 3 shows an example of an integrated tip assembly having the common carrying tab 26 still attached. The fingers 16 are generally of rectangular cross section and are preferably composed of the same material, where the material is selected from those metals that are capable of high resiliency to enable the fingers to probe a device having associated contact surfaces that are in non-planar arrangement. In the preferred embodiment, the fingers are formed of beryllium-copper (BeCu) which has been gold plated in order to reduce resistive losses. This material is particularly suited for the probing of contact pads that are formed of gold, since BeCu is substantially harder than gold. This, in turn, results in minimal wear and a long, maintenance free period of operation of the probe.


If the pads of the device are formed of aluminum instead of gold, it is preferable to use a harder material for the fingers 16, such as tungsten. Here again, the finger material selected is substantially harder than the contact pad material in order to ensure minimal wearing of the fingers 16. If tungsten fingers are used, it is preferable that they also be gold plated to reduce resistive losses. Use of materials such as BeCu and tungsten allows repeated use of the probe while avoiding the fragility encountered through the use of the ceramic contact fingers described earlier. It should also be noted that other potential materials may be used, in addition to BeCu or tungsten. In addition, a number of other potential techniques exist to connect the contact fingers with the circuit board besides soldering, including epoxy and the like.


The contact fingers 16 are fabricated as a single, integrated unit attached to a common carrying tab 26 at the distal (tip) ends 18. The distal end 18 has a shape that provides a geometrical fanning of the contacts from the very small pitch (center-to center contact spacing) at the distal ends 18 up to the larger geometry of the traces 40 on the circuit board 14.


In accordance with one preferred assembly method, to prepare for connection of the respective contact fingers to the circuit board, solder paste is evenly applied to the exposed traces on the circuit board. The fingers are then held just above their corresponding traces, then lowered until they press against the solder paste in an appropriate position. When the solder is melted, preferably by heating elements arranged above and below the connection region a solder fillet is desirably formed between each finger and its corresponding circuit board trace.


Preferably, while heating the solder, the fingers are held at a slight downward incline relative to the distal ends so that during cooling, each finger assumes a planar relationship with the circuit board 14. During this connection process, it will be noted that the proper transverse spacing is maintained between the respective fingers by the common carrier tab since any forces that would tend to laterally displace the fingers are negated by the common carrier tab 26 that holds the contact fingers at their respective distal ends. 18


After the fingers 16 are attached to the circuit board 14, the common carrier tab 26 is severed as it is no longer needed because proper finger alignment is maintained by the circuit board 14. The fingers 16 are preferably shaped using grinding and lapping processes to create a flat contact area whose leading edge is visible when viewed from directly above.


Referring to FIG. 1 and FIGS. 4A and 4B, the circuit board electrical traces 40 provide continued geometrical fanning to even larger dimensions, ultimately leading to one or more connectors such as the set of pins shown in FIG. 1, typically of a much larger physical scale. The circuit board 14 may have a ground plane (not shown) providing reduced ground inductance and controlled impedance of the signal traces 40—usually 50 ohms for use with standard test equipment. Use of a circuit board 14 also allows for the optional use of very small dimension Surface Mount Technology (SMT) components that can be placed at an intermediate level of geometric scaling.


As shown in FIG. 1 and FIG. 2, the structure is compatible with a power bypass architecture that can be mounted on the surface of the circuit board 14. In the preferred embodiment both surfaces of the circuit board are used to provide the power bypass feature in order to utilize the additional space.


To illustrate how such a power bypass structure may be incorporated, FIGS. 1 and 2 depict a power bypass architecture spread over both surfaces of the circuit board 14. It should be noted, however, that it is entirely feasible to provide a complete power bypass structure using only one surface of the circuit board if so desired. In this illustration, the four contact fingers 50, 52, 54, 56 are arranged in an adjacent relationship, alternating between power and ground contacts. On the bottom surface of the circuit board, depicted FIG. 2, a high frequency metal-insulator-metal (MIM) capacitor is attached between the adjacent power and ground transmission lines formed by respected pairs of contact fingers.


While the MIM capacitor has very low inductive parasitics and a very high self-resonant frequency it does not have very much capacitance. This limits its ability to provide power bypass at lower frequencies. Accordingly, a relatively larger sized and valued SMT capacitor, though still of very small physically dimension, is placed further up the board where there is sufficient space. A small value SMT resistor is used in series with this capacitor to “de-Q” or spoil the parallel resonance that can occur between the MIM capacitor and the inductance of the line length running to the SMT capacitor.


Referring specifically to FIGS. 4A and 4B, the circuit board is designed to allow customization of the function, i.e. ground, signal, power, etc., of each electrical contact of the probe. Initially, each of the fingers is connected to a via to the ground plane, to an SMT component and eventually to the connector. Programming a ground contact requires simply leaving the connection to the ground intact, while for all other functions this small circuit board trace is cut away, with a sharp blade or a laser for instance. When programming a bypassed power line the connection to the SMT component is left intact while the short circuit trace to the ground is cut.


Referring again to FIG. 1, the probe design preferably includes an inclined circuit board 14 relative to the device under test. A major portion of the fingers 16 are likewise preferably aligned with the plane of the circuit board 14 with the distal ends 18 being shaped for appropriate probing of the device under test. This inclined design permits the circuit board 14 to be spaced apart from the device under test during testing, while simultaneously permitting the fingers 16 to be short, which minimizes inductance to increase performance. Otherwise, the fingers would need to be mounted in an inclined manner with respect to the circuit board, which in many cases, would require longer fingers for effective probing.

Claims
  • 1. A probe comprising: (a) a substantially rigid support base;(b) a substantially and uniformly flexible circuit board attached and inclined with respect to said support base, wherein said circuit board includes a resistor-capacitor network comprising a first set of capacitors connected between adjacent power and ground transmission lines, and a second set of capacitors are not adjacent said power and ground transmission lines connected respectively to said first set of capacitors;(c) an integrated tip assembly comprising a plurality of contact fingers supported by and extending from said circuit board, wherein said contact fingers are interconnected with said circuit board and are arranged as a unity assembly, wherein said plurality of contact fingers are maintained in a predetermined alignment when attached to said support by a tab proximate the ends of said plurality of contact fingers.
  • 2. The probe of claim 1 wherein a plurality of said contact fingers extend in a radially outward direction from said base.
  • 3. The probe of claim 2 wherein the arrangement of said contact fingers match the geometry of e contacting pads on a device under test.
  • 4. The probe of claim 1 wherein said unitary assembly includes a tab proximate the ends of said plurality of contact fingers that maintains said contact fingers in said predetermined alignment.
  • 5. The probe of claim 4 wherein said tab is removed prior to probing with said contact fingers.
  • 6. The probe of claim 1 wherein said circuit board includes a respective trace for each of said contact fingers.
  • 7. The probe of claim 6 wherein said respective traces are electrically interconnected to a connector suitable to interconnect to test equipment.
  • 8. The probe of claim 5 wherein said removal of said tab leaves the ends of each of said plurality of contact fingers in a predetermined position.
  • 9. The probe of claim 1 wherein said plurality of contact fingers is greater than three.
Parent Case Info

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/251,186, filed on Dec. 4, 2000.

US Referenced Citations (694)
Number Name Date Kind
491783 Moyer Feb 1893 A
2389668 Johnson Nov 1945 A
2545258 Cailloux Mar 1951 A
2762234 Dodd Sep 1952 A
2901696 Möllfors Aug 1959 A
2921276 Fubini Jan 1960 A
3218584 Ayer Nov 1965 A
3262593 Hainer Jul 1966 A
3396598 Grispo Aug 1968 A
3401126 Miller et al. Sep 1968 A
3609539 Gunthert Sep 1968 A
3429040 Miller Feb 1969 A
3445770 Harmon May 1969 A
3561280 MacPhee et al. Feb 1971 A
3573617 Randolph et al. Apr 1971 A
3596228 Reed et al. Jul 1971 A
3611199 Safran Oct 1971 A
3619780 Hocks Nov 1971 A
3622915 Davo Nov 1971 A
3634807 Grobe et al. Jan 1972 A
3648169 Wiesler Mar 1972 A
3654585 Wickersham Apr 1972 A
3622318 Decuyper May 1972 A
3680037 Nellis et al. Jul 1972 A
3686624 Napoli et al. Aug 1972 A
3700998 Lee et al. Oct 1972 A
3705379 Bogar Dec 1972 A
3725829 Brown Apr 1973 A
3740900 Youmans et al. Jun 1973 A
3766470 Hay et al. Oct 1973 A
3806801 Bove Apr 1974 A
3810016 Chayka et al. May 1974 A
3829076 Sofy Aug 1974 A
3833852 Schoch Sep 1974 A
3839672 Anderson Oct 1974 A
3849728 Evans Nov 1974 A
3862790 Davies et al. Jan 1975 A
3867698 Beltz et al. Feb 1975 A
3930809 Evans Jan 1976 A
3936743 Roch Feb 1976 A
3952156 Lahr Apr 1976 A
3971610 Buchoff et al. Jul 1976 A
3992073 Buchoff et al. Nov 1976 A
4001685 Roch Jan 1977 A
4008900 Khoshaba Feb 1977 A
4009456 Hopfer Feb 1977 A
4027935 Byrnes et al. Jun 1977 A
4035723 Kvaternik Jul 1977 A
4038599 Bove et al. Jul 1977 A
4038894 Knibbe et al. Aug 1977 A
4049252 Bell Sep 1977 A
4063195 Abrams et al. Dec 1977 A
4066943 Roch Jan 1978 A
4074201 Lennon Feb 1978 A
4116523 Coberly et al. Sep 1978 A
4123706 Roch Oct 1978 A
4124787 Aamoth et al. Nov 1978 A
4151465 Lenz Apr 1979 A
4161692 Tarzwell Jul 1979 A
4177421 Thornburg Dec 1979 A
4184133 Gehle Jan 1980 A
4184729 Parks et al. Jan 1980 A
4216467 Colston Aug 1980 A
4225819 Grau et al. Sep 1980 A
4232398 Gould et al. Nov 1980 A
4251772 Worsham et al. Feb 1981 A
4280112 Eisenhart Jul 1981 A
4284033 del Rio Aug 1981 A
4287473 Sawyer Sep 1981 A
4302146 Finlayson et al. Nov 1981 A
4306235 Christmann Dec 1981 A
4312117 Robillard et al. Jan 1982 A
4340860 Teeple, Jr. Jul 1982 A
4346355 Tsukii Aug 1982 A
4375631 Goldberg Mar 1983 A
4520314 Asch et al. May 1985 A
4541222 Joly Sep 1985 A
4563640 Hasegawa Jan 1986 A
4593243 Lao et al. Jun 1986 A
4641659 Sepponen Feb 1987 A
4646005 Ryan Feb 1987 A
4649339 Grangroth et al. Mar 1987 A
4652082 Warner Mar 1987 A
4663840 Ubbens et al. May 1987 A
4669805 Kosugi et al. Jun 1987 A
4673839 Veenendaal Jun 1987 A
4684883 Ackerman et al. Aug 1987 A
4684884 Soderlund Aug 1987 A
4685150 Maier Aug 1987 A
4696544 Costella Sep 1987 A
4697143 Lockwood et al. Sep 1987 A
4705447 Smith Nov 1987 A
4706050 Andrews Nov 1987 A
4707657 Boegh-Petersen Nov 1987 A
4714873 McPherson et al. Dec 1987 A
4727319 Shahriary Feb 1988 A
4727391 Tajima et al. Feb 1988 A
4727637 Buckwitz et al. Mar 1988 A
4734641 Byrd, Jr. et al. Mar 1988 A
4739259 Hadwin et al. Apr 1988 A
4740764 Gerlack Apr 1988 A
4746857 Sakai et al. May 1988 A
4749942 Sang et al. Jun 1988 A
4755742 Mallory et al. Jul 1988 A
4755872 Esrig et al. Jul 1988 A
4757255 Margozzi Jul 1988 A
4764723 Strid Aug 1988 A
4772846 Reeds Sep 1988 A
4780670 Cherry Oct 1988 A
4783625 Harry et al. Nov 1988 A
4788851 Brault Dec 1988 A
4791363 Logan Dec 1988 A
4793814 Zifcak et al. Dec 1988 A
4795962 Yanagawa et al. Jan 1989 A
4805627 Klingenbeck et al. Feb 1989 A
4810981 Herstein Mar 1989 A
4818059 Kakii et al. Apr 1989 A
4827211 Strid et al. May 1989 A
4835495 Simonutti May 1989 A
4837507 Hechtman Jun 1989 A
4849689 Gleason et al. Jul 1989 A
4853624 Rabjohn Aug 1989 A
4853627 Gleason et al. Aug 1989 A
4858160 Strid et al. Aug 1989 A
4864227 Sato Sep 1989 A
4871964 Boll et al. Oct 1989 A
4888550 Reid Dec 1989 A
4891584 Kamieniecki et al. Jan 1990 A
4893914 Hancock et al. Jan 1990 A
4894612 Drake et al. Jan 1990 A
4899126 Yamada Feb 1990 A
4899998 Teramachi Feb 1990 A
4901012 Gloanec et al. Feb 1990 A
4904933 Snyder et al. Feb 1990 A
4906920 Huff et al. Mar 1990 A
4908570 Gupta et al. Mar 1990 A
4912399 Greub et al. Mar 1990 A
4916002 Carver Apr 1990 A
4918373 Newberg Apr 1990 A
4918383 Huff et al. Apr 1990 A
4922186 Tsuchiya et al. May 1990 A
4922912 Watanabe May 1990 A
4926172 Gorsek May 1990 A
4970386 Buck Nov 1990 A
4972073 Lessing Nov 1990 A
4975638 Evans et al. Dec 1990 A
4980637 Huff et al. Dec 1990 A
4983910 Majidi-Ahy et al. Jan 1991 A
4987100 McBride et al. Jan 1991 A
4988062 London Jan 1991 A
4991290 MacKay Feb 1991 A
4998062 Ikeda Mar 1991 A
4998063 Miller Mar 1991 A
5001423 Abrami et al. Mar 1991 A
5003253 Majidi-Ahy et al. Mar 1991 A
5020219 Leedy Jun 1991 A
5021186 Ota et al. Jun 1991 A
5030907 Yih et al. Jul 1991 A
5045781 Gleason et al. Sep 1991 A
5059898 Barsotti et al. Oct 1991 A
5061192 Chapin et al. Oct 1991 A
5062628 Heyn et al. Nov 1991 A
5089774 Nakano Feb 1992 A
5091692 Ohno et al. Feb 1992 A
5097101 Trobough Mar 1992 A
5097207 Blanz Mar 1992 A
5101453 Rumbaugh Mar 1992 A
5116180 Fung et al. May 1992 A
5126286 Chance Jun 1992 A
5126696 Grote et al. Jun 1992 A
5133119 Afshari et al. Jul 1992 A
5134365 Okubo et al. Jul 1992 A
5136237 Smith et al. Aug 1992 A
5138289 McGrath Aug 1992 A
5145552 Yoshizawa et al. Sep 1992 A
5148131 Amboss et al. Sep 1992 A
5159264 Anderson Oct 1992 A
5159267 Anderson Oct 1992 A
5159752 Mahant-Shetti et al. Nov 1992 A
5172050 Swapp Dec 1992 A
5172051 Zamborelli Dec 1992 A
5177438 Littlebury et al. Jan 1993 A
5180977 Huff Jan 1993 A
5202558 Barker Apr 1993 A
5202648 McCandless Apr 1993 A
5207585 Byrnes et al. May 1993 A
5225037 Elder et al. Jul 1993 A
5232789 Platz et al. Aug 1993 A
5233197 Bowman et al. Aug 1993 A
5266963 Carter Nov 1993 A
5267088 Nomura Nov 1993 A
5270664 McMurtry et al. Dec 1993 A
5274336 Crook et al. Dec 1993 A
5289117 Van Loan et al. Feb 1994 A
5293175 Hemmie et al. Mar 1994 A
5298972 Heffner Mar 1994 A
5313157 Pasiecznik, Jr. May 1994 A
5315237 Iwakura et al. May 1994 A
5316435 Mozingo May 1994 A
5317656 Moslehi et al. May 1994 A
5321352 Takebuchi Jun 1994 A
5321453 Mori et al. Jun 1994 A
5326412 Schreiber et al. Jul 1994 A
5334931 Clarke et al. Aug 1994 A
5335079 Yuen et al. Aug 1994 A
5347204 Gregory et al. Sep 1994 A
5360312 Mozingo Nov 1994 A
5361049 Rubin et al. Nov 1994 A
5367165 Toda et al. Nov 1994 A
5371654 Beaman et al. Dec 1994 A
5373231 Boll et al. Dec 1994 A
5376790 Linker et al. Dec 1994 A
5383787 Switky et al. Jan 1995 A
5389885 Swart Feb 1995 A
5395353 Scribner Mar 1995 A
5404111 Mori et al. Apr 1995 A
5408189 Swart et al. Apr 1995 A
5412330 Ravel et al. May 1995 A
5412866 Woith et al. May 1995 A
5414565 Sullivan et al. May 1995 A
5430813 Anderson et al. Jul 1995 A
5441690 Ayala-Esquilin et al. Aug 1995 A
5453404 Leedy Sep 1995 A
5463324 Wardwell et al. Oct 1995 A
5467024 Swapp Nov 1995 A
5475316 Hurley et al. Dec 1995 A
5476211 Khandros Dec 1995 A
5479108 Cheng Dec 1995 A
5479109 Lau et al. Dec 1995 A
5481196 Nosov Jan 1996 A
5481936 Yanagisawa Jan 1996 A
5487999 Farnworth Jan 1996 A
5493236 Ishii et al. Feb 1996 A
5505150 James et al. Apr 1996 A
5506515 Godshalk et al. Apr 1996 A
5507652 Wardwell Apr 1996 A
5517126 Yamaguchi May 1996 A
5521518 Higgins May 1996 A
5521522 Abe et al. May 1996 A
5523694 Cole, Jr. Jun 1996 A
5527372 Voisine et al. Jun 1996 A
5530372 Lee et al. Jun 1996 A
5531022 Beaman et al. Jul 1996 A
5532608 Behfar-Rad et al. Jul 1996 A
5550481 Holmes et al. Aug 1996 A
5565788 Burr et al. Oct 1996 A
5571324 Sago et al. Nov 1996 A
5578932 Adamian Nov 1996 A
5584120 Roberts Dec 1996 A
5589781 Higgins et al. Dec 1996 A
5594358 Ishikawa et al. Jan 1997 A
5601740 Eldridge et al. Feb 1997 A
5610529 Schwindt Mar 1997 A
5611008 Yap Mar 1997 A
5612816 Strahle et al. Mar 1997 A
5617035 Swapp Apr 1997 A
5621333 Long et al. Apr 1997 A
5621400 Corbi Apr 1997 A
5623213 Liu et al. Apr 1997 A
5623214 Pasiecznik, Jr. Apr 1997 A
5627473 Takani May 1997 A
5633780 Cronin May 1997 A
5635846 Beaman et al. Jun 1997 A
5642298 Mallory et al. Jun 1997 A
5644248 Fujimoto Jul 1997 A
5656942 Watts et al. Aug 1997 A
5659421 Rahmel et al. Aug 1997 A
5666063 Abercrombie et al. Sep 1997 A
5669316 Faz et al. Sep 1997 A
5670888 Cheng Sep 1997 A
5675499 Lee et al. Oct 1997 A
5676360 Boucher et al. Oct 1997 A
5685232 Inoue Nov 1997 A
5686317 Akram et al. Nov 1997 A
5688618 Hulderman et al. Nov 1997 A
5700844 Hedrick et al. Dec 1997 A
5704355 Bridges Jan 1998 A
5715819 Svenson et al. Feb 1998 A
5720098 Kister Feb 1998 A
5723347 Kirano et al. Mar 1998 A
5726211 Hedrick et al. Mar 1998 A
5728091 Payne et al. Mar 1998 A
5729150 Schwindt Mar 1998 A
5731920 Katsuragawa Mar 1998 A
5742174 Kister et al. Apr 1998 A
5748506 Bockelman May 1998 A
5756021 Hedrick et al. May 1998 A
5756908 Knollmeyer et al. May 1998 A
5767690 Fujimoto Jun 1998 A
5772451 Dozier, II et al. Jun 1998 A
5773780 Eldridge et al. Jun 1998 A
5777485 Tanaka et al. Jul 1998 A
5785538 Beaman et al. Jul 1998 A
5794133 Kashima Aug 1998 A
5803607 Jones et al. Sep 1998 A
5804483 Nakajima et al. Sep 1998 A
5804607 Hedrick et al. Sep 1998 A
5804982 Lo et al. Sep 1998 A
5806181 Khandros et al. Sep 1998 A
5810607 Shih et al. Sep 1998 A
5811751 Leong et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5813847 Eroglu et al. Sep 1998 A
5814847 Shihadeh et al. Sep 1998 A
5820014 Dozier, II et al. Oct 1998 A
5821763 Beaman et al. Oct 1998 A
5829128 Eldridge et al. Nov 1998 A
5829437 Bridges Nov 1998 A
5831442 Heigl Nov 1998 A
5832601 Eldridge et al. Nov 1998 A
5838160 Beaman et al. Nov 1998 A
5841288 Meaney et al. Nov 1998 A
5841342 Hegmann et al. Nov 1998 A
5852871 Khandros Dec 1998 A
5864946 Eldridge et al. Feb 1999 A
5869974 Akram et al. Feb 1999 A
5876082 Kempf et al. Mar 1999 A
5878486 Eldridge et al. Mar 1999 A
5883522 O'Boyle Mar 1999 A
5884398 Eldridge et al. Mar 1999 A
5892539 Colvin Apr 1999 A
5896038 Budnaitis et al. Apr 1999 A
5897289 Yarush et al. Apr 1999 A
5900737 Graham et al. May 1999 A
5900738 Khandros et al. May 1999 A
5905421 Oldfield May 1999 A
5912046 Eldridge et al. Jun 1999 A
5914613 Gleason et al. Jun 1999 A
5914614 Beaman et al. Jun 1999 A
5917707 Khandros et al. Jun 1999 A
5923180 Botka et al. Jul 1999 A
5926029 Ference et al. Jul 1999 A
5926951 Khandros et al. Jul 1999 A
5944093 Viswanath Aug 1999 A
5945836 Sayre et al. Aug 1999 A
5959461 Brown et al. Sep 1999 A
5963364 Leong et al. Oct 1999 A
5970429 Martin Oct 1999 A
5973504 Chong Oct 1999 A
5974662 Eldridge et al. Nov 1999 A
5982166 Mautz Nov 1999 A
5983493 Eldridge et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
5998228 Eldridge et al. Dec 1999 A
5998864 Khandros et al. Dec 1999 A
5999268 Yonezawa et al. Dec 1999 A
6002426 Back et al. Dec 1999 A
6006002 Motoki et al. Dec 1999 A
6023103 Chang et al. Feb 2000 A
6029344 Khandros et al. Feb 2000 A
6031384 Streib et al. Feb 2000 A
6032356 Eldridge et al. Mar 2000 A
6033935 Dozier, II et al. Mar 2000 A
6034533 Tervo et al. Mar 2000 A
6040739 Wedeen et al. Mar 2000 A
6042712 Mathieu Mar 2000 A
6043563 Eldridge et al. Mar 2000 A
6046599 Long et al. Apr 2000 A
6049216 Yang et al. Apr 2000 A
6049976 Khandros Apr 2000 A
6050829 Eldridge et al. Apr 2000 A
6052653 Mazur et al. Apr 2000 A
6054651 Fogel et al. Apr 2000 A
6059982 Palagonia et al. May 2000 A
6060888 Blackham et al. May 2000 A
6061589 Bridges et al. May 2000 A
6062879 Beaman et al. May 2000 A
6064213 Khandros et al. May 2000 A
6064217 Smith May 2000 A
6064218 Godfrey et al. May 2000 A
6071009 Clyne Jun 2000 A
6078183 Cole, Jr. Jun 2000 A
6078500 Beaman et al. Jun 2000 A
6090261 Mathieu Jul 2000 A
6091256 Long et al. Jul 2000 A
6096561 Kaplan et al. Aug 2000 A
6104201 Beaman et al. Aug 2000 A
6104206 Verkuil Aug 2000 A
6110823 Eldridge et al. Aug 2000 A
6114864 Soejima et al. Sep 2000 A
6118287 Boll et al. Sep 2000 A
6118894 Schwartz et al. Sep 2000 A
6124725 Sato Sep 2000 A
6127831 Khoury et al. Oct 2000 A
6130536 Powell et al. Oct 2000 A
6150186 Chen et al. Nov 2000 A
6168974 Chang et al. Jan 2001 B1
6169410 Grace et al. Jan 2001 B1
6172337 Johnsgard et al. Jan 2001 B1
6174744 Watanabe et al. Jan 2001 B1
6175228 Zamborelli et al. Jan 2001 B1
6181144 Hembree et al. Jan 2001 B1
6181149 Godfrey et al. Jan 2001 B1
6181416 Falk Jan 2001 B1
6184053 Eldridge et al. Feb 2001 B1
6184587 Khandros et al. Feb 2001 B1
6191596 Abiko Feb 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208225 Miller Mar 2001 B1
6211663 Moulthrop et al. Apr 2001 B1
6215196 Eldridge et al. Apr 2001 B1
6215295 Smith, III Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218910 Miller Apr 2001 B1
6222031 Wakabayashi et al. Apr 2001 B1
6222970 Wach et al. Apr 2001 B1
6229327 Boll et al. May 2001 B1
6232149 Dozier, II et al. May 2001 B1
6232787 Lo et al. May 2001 B1
6232789 Schwindt May 2001 B1
6233613 Walker et al. May 2001 B1
6242803 Khandros et al. Jun 2001 B1
6246247 Eldridge et al. Jun 2001 B1
6255126 Mathieu et al. Jul 2001 B1
6256882 Gleason et al. Jul 2001 B1
6257565 Avneri et al. Jul 2001 B1
6268015 Mathieu et al. Jul 2001 B1
6268016 Bhatt et al. Jul 2001 B1
6271673 Furuta et al. Aug 2001 B1
6274823 Khandros et al. Aug 2001 B1
6275043 Muhlberger et al. Aug 2001 B1
6275738 Kasevich et al. Aug 2001 B1
6278051 Peabody Aug 2001 B1
6281691 Matsunaga et al. Aug 2001 B1
6286208 Shih et al. Sep 2001 B1
6295729 Beaman et al. Oct 2001 B1
6300775 Peach et al. Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6307161 Grube et al. Oct 2001 B1
6307363 Anderson Oct 2001 B1
6307672 DeNure Oct 2001 B1
6310483 Taura et al. Oct 2001 B1
6320372 Keller Nov 2001 B1
6320396 Nikawa Nov 2001 B1
6327034 Hoover et al. Dec 2001 B1
6329827 Beaman et al. Dec 2001 B1
6330164 Khandros et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6339338 Eldridge et al. Jan 2002 B1
6340895 Uher et al. Jan 2002 B1
6351885 Suzuki et al. Mar 2002 B2
6352454 Kim et al. Mar 2002 B1
6384614 Hager et al. May 2002 B1
6384615 Schwindt May 2002 B2
6396296 Tarter et al. May 2002 B1
6396298 Young et al. May 2002 B1
6400168 Matsunaga et al. Jun 2002 B2
6404213 Noda Jun 2002 B2
6407562 Whiteman Jun 2002 B1
6415858 Getchel et al. Jul 2002 B1
6429029 Eldridge et al. Aug 2002 B1
6441315 Eldridge et al. Aug 2002 B1
6442831 Khandros et al. Sep 2002 B1
6448788 Meaney et al. Sep 2002 B1
6448865 Miller Sep 2002 B1
6452406 Beaman et al. Sep 2002 B1
6452411 Miller et al. Sep 2002 B1
6456099 Eldridge et al. Sep 2002 B1
6456103 Eldridge et al. Sep 2002 B1
6459343 Miller Oct 2002 B1
6459739 Vitenberg Oct 2002 B1
6468098 Eldridge Oct 2002 B1
6475822 Eldridge Nov 2002 B2
6476333 Khandros et al. Nov 2002 B1
6476630 Whitten et al. Nov 2002 B1
6479308 Eldridge Nov 2002 B1
6480978 Roy et al. Nov 2002 B1
6481939 Gillespie et al. Nov 2002 B1
6482013 Eldridge et al. Nov 2002 B2
6483327 Bruce et al. Nov 2002 B1
6488405 Eppes et al. Dec 2002 B1
6490471 Svenson et al. Dec 2002 B2
6491968 Mathieu et al. Dec 2002 B1
6496024 Schwindt Dec 2002 B2
6499121 Roy et al. Dec 2002 B1
6501343 Miller Dec 2002 B2
6509751 Mathieu et al. Jan 2003 B1
6520778 Eldridge et al. Feb 2003 B1
6525555 Khandros et al. Feb 2003 B1
6526655 Beaman et al. Mar 2003 B2
6528984 Beaman et al. Mar 2003 B2
6528993 Shin et al. Mar 2003 B1
6529844 Kapetanic et al. Mar 2003 B1
6534856 Dozier, II et al. Mar 2003 B1
6538214 Khandros Mar 2003 B2
6538538 Hreish et al. Mar 2003 B2
6539531 Miller et al. Mar 2003 B2
6549022 Cole, Jr. et al. Apr 2003 B1
6549106 Martin Apr 2003 B2
6551884 Masuoka Apr 2003 B2
6559671 Miller et al. May 2003 B2
6572608 Lee et al. Jun 2003 B1
6573702 Marcuse et al. Jun 2003 B2
6597187 Eldridge et al. Jul 2003 B2
6603323 Miller et al. Aug 2003 B1
6603324 Eldridge et al. Aug 2003 B2
6605941 Abe Aug 2003 B2
6605951 Cowan Aug 2003 B1
6606014 Miller Aug 2003 B2
6606575 Miller Aug 2003 B2
6608494 Bruce et al. Aug 2003 B1
6611417 Chen Aug 2003 B2
6615485 Eldridge et al. Sep 2003 B2
6616966 Mathieu et al. Sep 2003 B2
6617866 Ickes Sep 2003 B1
6621082 Morita et al. Sep 2003 B2
6621260 Eldridge et al. Sep 2003 B2
6622103 Miller Sep 2003 B1
6624648 Eldridge et al. Sep 2003 B2
6627483 Ondricek et al. Sep 2003 B2
6627980 Eldridge Sep 2003 B2
6628503 Sogard Sep 2003 B2
6633174 Satya et al. Oct 2003 B1
6640415 Eslamy et al. Nov 2003 B2
6640432 Mathieu et al. Nov 2003 B1
6642625 Dozier, II et al. Nov 2003 B2
6643597 Dunsmore Nov 2003 B1
6644982 Ondricek et al. Nov 2003 B1
6646520 Miller Nov 2003 B2
6655023 Eldridge et al. Dec 2003 B1
6657455 Eldridge et al. Dec 2003 B2
6661316 Hreish et al. Dec 2003 B2
6664628 Khandros et al. Dec 2003 B2
6669489 Dozier, II et al. Dec 2003 B1
6672875 Mathieu et al. Jan 2004 B1
6677744 Long Jan 2004 B1
6678850 Roy et al. Jan 2004 B2
6678876 Stevens et al. Jan 2004 B2
6680659 Miller Jan 2004 B2
6685817 Mathieu Feb 2004 B1
6686754 Miller Feb 2004 B2
6690185 Khandros et al. Feb 2004 B1
6701612 Khandros et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6710265 Hill et al. Mar 2004 B2
6710798 Hershel et al. Mar 2004 B1
6713374 Eldridge et al. Mar 2004 B2
6714828 Eldridge et al. Mar 2004 B2
6717426 Iwasaki Apr 2004 B2
6720501 Henson Apr 2004 B1
6722032 Beaman et al. Apr 2004 B2
6724205 Hayden et al. Apr 2004 B1
6724928 Davis Apr 2004 B1
6727579 Eldridge et al. Apr 2004 B1
6727580 Eldridge et al. Apr 2004 B1
6727716 Sharif Apr 2004 B1
6729019 Grube et al. May 2004 B2
6734687 Ishitani et al. May 2004 B1
6741085 Khandros et al. May 2004 B1
6741092 Eldridge et al. May 2004 B2
6744268 Hollman Jun 2004 B2
6753679 Kwong et al. Jun 2004 B1
6759311 Eldridge et al. Jul 2004 B2
6764869 Eldridge Jul 2004 B2
6771806 Satya et al. Aug 2004 B1
6777319 Grube et al. Aug 2004 B2
6778406 Eldridge et al. Aug 2004 B2
6780001 Eldridge et al. Aug 2004 B2
6784674 Miller Aug 2004 B2
6784677 Miller Aug 2004 B2
6784679 Sweet et al. Aug 2004 B2
6788093 Aitren et al. Sep 2004 B2
6788094 Khandros et al. Sep 2004 B2
6791176 Mathieu et al. Sep 2004 B2
6798225 Miller Sep 2004 B2
6798226 Altmann et al. Sep 2004 B2
6806724 Hayden et al. Oct 2004 B2
6807734 Eldridge et al. Oct 2004 B2
6811406 Grube Nov 2004 B2
6812691 Miller Nov 2004 B2
6815963 Gleason et al. Nov 2004 B2
6816031 Miller Nov 2004 B1
6816840 Goodwin, III Nov 2004 B1
6817052 Grube Nov 2004 B2
6818840 Khandros Nov 2004 B2
6822529 Miller Nov 2004 B2
6825052 Eldridge et al. Nov 2004 B2
6825422 Eldridge et al. Nov 2004 B2
6827582 Mathieu et al. Dec 2004 B2
6835898 Eldridge et al. Dec 2004 B2
6836962 Khandros et al. Jan 2005 B2
6838885 Kamitani Jan 2005 B2
6838893 Khandros, Jr. et al. Jan 2005 B2
6839964 Henson Jan 2005 B2
6845491 Miller et al. Jan 2005 B2
6850082 Schwindt Feb 2005 B2
6856150 Sporck et al. Feb 2005 B2
6862727 Stevens Mar 2005 B2
6864105 Grube et al. Mar 2005 B2
6864694 McTigue Mar 2005 B2
6870381 Grube Mar 2005 B2
6882239 Miller Apr 2005 B2
6882546 Miller Apr 2005 B2
6887723 Ondricek et al. May 2005 B1
6888362 Eldridge et al. May 2005 B2
6891385 Miller May 2005 B2
6900647 Yoshida et al. May 2005 B2
6900652 Mazur May 2005 B2
6900653 Yu et al. May 2005 B2
6902416 Feldman Jun 2005 B2
6902941 Sun Jun 2005 B2
6903563 Yoshida et al. Jun 2005 B2
6906506 Reano et al. Jun 2005 B1
6906539 Wilson et al. Jun 2005 B2
6906542 Sakagawa et al. Jun 2005 B2
6906543 Lou et al. Jun 2005 B2
6907149 Slater Jun 2005 B2
6908364 Back et al. Jun 2005 B2
6909297 Ji et al. Jun 2005 B2
6909300 Lu et al. Jun 2005 B2
6909983 Sutherland Jun 2005 B2
6910268 Miller Jun 2005 B2
6911814 Miller et al. Jun 2005 B2
6911826 Plotnikov et al. Jun 2005 B2
6911834 Mitchell et al. Jun 2005 B2
6911835 Chraft et al. Jun 2005 B2
6912468 Marin et al. Jun 2005 B2
6913468 Dozier, II et al. Jul 2005 B2
6914427 Gifford et al. Jul 2005 B2
6914430 Hasegawa et al. Jul 2005 B2
6917195 Hollman Jul 2005 B2
6917210 Miller Jul 2005 B2
6917211 Yoshida et al. Jul 2005 B2
6917525 Mok et al. Jul 2005 B2
6919732 Yoshida et al. Jul 2005 B2
6922069 Jun Jul 2005 B2
6924653 Schaeffer et al. Aug 2005 B2
6924655 Kirby Aug 2005 B2
6927078 Saijyo et al. Aug 2005 B2
6927079 Fyfield Aug 2005 B1
6927586 Thiessen Aug 2005 B2
6927587 Yoshioka Aug 2005 B2
6927598 Lee et al. Aug 2005 B2
6930498 Tervo et al. Aug 2005 B2
6933713 Cannon Aug 2005 B2
6933717 Dogaru et al. Aug 2005 B1
6933725 Lim et al. Aug 2005 B2
6933736 Kobayashi et al. Aug 2005 B2
6933737 Sugawara Aug 2005 B2
6937020 Munson et al. Aug 2005 B2
6937037 Eldridge et al. Aug 2005 B2
6937040 Maeda et al. Aug 2005 B2
6937042 Yoshida et al. Aug 2005 B2
6937045 Sinclair Aug 2005 B2
6940264 Ryken, Jr. et al. Sep 2005 B2
6940283 McQueeney Sep 2005 B2
6943563 Martens Sep 2005 B2
6943571 Worledge Sep 2005 B2
6943574 Altmann et al. Sep 2005 B2
6944380 Hideo et al. Sep 2005 B1
6946375 Hattori et al. Sep 2005 B2
6946860 Cheng et al. Sep 2005 B2
6948391 Brassell et al. Sep 2005 B2
6948981 Pade Sep 2005 B2
20010002794 Draving et al. Jun 2001 A1
20010009061 Gleason et al. Jul 2001 A1
20010024116 Draving Sep 2001 A1
20010030549 Gleason et al. Oct 2001 A1
20020005728 Babson et al. Jan 2002 A1
20020008533 Ito et al. Jan 2002 A1
20020009377 Shafer Jan 2002 A1
20020009378 Obara Jan 2002 A1
20020011859 Smith et al. Jan 2002 A1
20020011863 Takahashi et al. Jan 2002 A1
20020070745 Johnson et al. Jun 2002 A1
20020079911 Schwindt et al. Jun 2002 A1
20020118034 Laureanti Aug 2002 A1
20020180466 Hiramatsu et al. Dec 2002 A1
20030010877 Landreville et al. Jan 2003 A1
20030030822 Finarov Feb 2003 A1
20030088180 Van Veen et al. May 2003 A1
20030139662 Seidman Jul 2003 A1
20030139790 Ingle te al. Jul 2003 A1
20030184332 Tomimatsu et al. Oct 2003 A1
20040021475 Ito et al. Feb 2004 A1
20040061514 Schwindt et al. Apr 2004 A1
20040066181 Theis Apr 2004 A1
20040095145 Boudiaf et al. May 2004 A1
20040095641 Russum et al. May 2004 A1
20040100276 Fanton May 2004 A1
20040100297 Tanioka et al. May 2004 A1
20040113640 Cooper et al. Jun 2004 A1
20040134899 Hiramatsu et al. Jul 2004 A1
20040162689 Jamneala et al. Aug 2004 A1
20040193382 Adamian et al. Sep 2004 A1
20040199350 Blackham et al. Oct 2004 A1
20040201388 Barr Oct 2004 A1
20040207072 Hiramatsu et al. Oct 2004 A1
20040207424 Hollman Oct 2004 A1
20040246004 Heuermann Dec 2004 A1
20040251922 Martens et al. Dec 2004 A1
20050030047 Adamian Feb 2005 A1
20050062533 Vice Mar 2005 A1
Foreign Referenced Citations (74)
Number Date Country
2951072 Jul 1981 DE
3426565 Jan 1986 DE
3637549 May 1988 DE
288234 Mar 1991 DE
4223658 Jan 1993 DE
9313420 Oct 1993 DE
19542955 May 1997 DE
19618717 Jan 1998 DE
19749687 May 1998 DE
29809568 Oct 1998 DE
20220754 May 2004 DE
0230766 Dec 1985 EP
0195520 Sep 1986 EP
0230348 Jul 1987 EP
0259163 Mar 1988 EP
0259183 Mar 1988 EP
0259942 Mar 1988 EP
0261986 Mar 1988 EP
00270422 Jun 1988 EP
0 259 183 Sep 1988 EP
0333521 Sep 1989 EP
0460911 Dec 1991 EP
0846476 Jun 1998 EP
0945736 Sep 1999 EP
579665 Aug 1946 GB
2014315 Aug 1979 GB
2179458 Mar 1987 GB
52-19046 Feb 1977 JP
53037077 Apr 1978 JP
55115383 Sep 1980 JP
5691503 Jul 1981 JP
56088333 Jul 1981 JP
57075480 May 1982 JP
57163035 Oct 1982 JP
57171805 Oct 1982 JP
58-130602 Aug 1983 JP
59 4189 Jan 1984 JP
594189 Jan 1984 JP
60-5462 Apr 1984 JP
605462 Apr 1984 JP
61142802 Jun 1986 JP
62098634 May 1987 JP
62107937 May 1987 JP
01209380 Aug 1987 JP
62239050 Oct 1987 JP
62295374 Dec 1987 JP
1-209380 Aug 1989 JP
2124469 May 1990 JP
02124469 May 1990 JP
02135804 May 1990 JP
3196206 Aug 1991 JP
03228348 Oct 1991 JP
04130639 May 1992 JP
04159043 Jun 1992 JP
04206930 Jul 1992 JP
05082631 Apr 1993 JP
5157790 Jun 1993 JP
5166893 Jul 1993 JP
6154238 Jun 1994 JP
7005078 Jan 1995 JP
7012871 Jan 1995 JP
8035987 Feb 1996 JP
08330401 Dec 1996 JP
09127432 May 1997 JP
10116866 May 1998 JP
11004001 Jan 1999 JP
11023975 Jan 1999 JP
2002243502 Aug 2002 JP
1195402 Nov 1985 SU
1327023 Jul 1987 SU
WO198000101 Jan 1980 WO
WO199410554 May 1994 WO
WO199807040 Feb 1998 WO
WO200107207 Feb 2001 WO
Related Publications (1)
Number Date Country
20020075019 A1 Jun 2002 US
Provisional Applications (1)
Number Date Country
60251186 Dec 2000 US