This invention relates to power semiconductor devices, and more particularly, to devices and circuits including power switching devices.
Power devices are widely used to carry large currents and support high voltages. Modern power devices are generally fabricated from monocrystalline silicon semiconductor material. One type of power device is the thyristor. A thyristor is a bistable power semiconductor device that can be switched from a nonconducting “off” state to a conducting “on” state, or vice versa. Power semiconductor devices, such as thyristors, high-power bipolar junction transistors (“HPBJT”), or power metal oxide semiconductor field effect transistors (“MOSFET”), are semiconductor devices capable of controlling or passing large amounts of current and blocking high voltages.
Thyristors are generally known and conventionally have three terminals: an anode, a cathode, and a gate. A thyristor may be activated to conduct current between its anode and cathode terminals when a current pulse is received at its gate terminal. More particularly, a thyristor may be turned on by applying a short current pulse across the gate and the cathode. Once the thyristor turns on, the gate may lose its control to turn off the device. The turn off may be achieved by applying a reverse voltage across the anode and the cathode. A specially designed gate turn-off thyristor (“GTO”), however, is typically turned off by a reverse gate pulse. The GTO thyristors generally start conduction by some trigger input and then behave as diodes thereafter.
A thyristor is a highly rugged device in terms of transient currents, di/dt and dv/dt capability. The forward voltage (VF) drop in conventional silicon thyristors is about 1.5 V to 2 V, and for some higher power devices, about 3 V. Therefore, the thyristor can control or pass large amounts of current and effectively block high voltages (i.e., a voltage switch).
Two parameters of a thyristor are the built-in potential (which is a characteristic of the bandgap of the semiconductor material used to manufacture the thyristor) and the specific on-resistance (i.e., the electrical resistance across the anode and cathode of the device in the linear region when the device is turned on). The specific on-resistance for a thyristor is typically as small as possible so as to provide a large current per unit area for a given voltage applied to the thyristor. The lower the specific on-resistance, the lower the forward voltage (VF) drop is for a given current rating. The minimum VF for a given semiconductor material is its built-in potential (voltage).
Some conventional thyristors may be manufactured in silicon (Si) or gallium arsenide (GaAs), such as a silicon controlled rectifier (“SCR”). Thyristors formed in Si or GaAs, however, may have certain performance limitations resulting from the Si or GaAs material itself, such as the minority carrier lifetime and the thickness of the drift region. The largest contributory factor to specific on-resistance is the resistance of the thick low-doped drift region of the thyristor. In a majority carrier device, such as a MOSFET, the specific on-resistance is determined by the doping concentration and the thickness of the lightly doped drift layer. In a minority carrier (or bipolar) device, carriers, both electrons and holes, are injected into this drift layer, and substantially reduces the specific on-resistance. This effect is referred to as conductivity modulation. As the rated voltage of a thyristor increases, typically the thickness of the drift region increases and the doping of the drift region decreases. For effective conductivity modulation, a very long minority carrier lifetime is required. At the same time, the amount of carriers stored in the drift layer increases because the volume of the drift layer is increased. Therefore, the time required to remove access carriers in the drift layer, which determines the switching times and frequencies, may increase dramatically for devices with higher blocking voltage ratings.
Development efforts in power devices have included the use of silicon carbide (SiC) devices for power devices. Silicon carbide has a wide bandgap, a lower dielectric constant, a high breakdown field strength, a high thermal conductivity, and a high saturation electron drift velocity relative to silicon. These characteristics may allow silicon carbide power devices to operate at higher temperatures, higher power levels and with lower specific on-resistance and higher switching frequency than conventional silicon-based power devices. A theoretical analysis of the superiority of silicon carbide devices over silicon devices is found in a publication by Bhatnagar et al. entitled “Comparison of 6H-SiC, 3C-SiC and Si for Power Devices”, TREE Transactions on Electron Devices, Vol. 40, 1993, pp. 645-655.
According to some embodiments of the present invention, an electronic device includes a wide bandgap thyristor having an anode, a cathode, and a gate terminal, and a wide bandgap bipolar transistor having a base, a collector, and an emitter terminal. The emitter terminal of the bipolar transistor is coupled to the anode terminal of the thyristor. The bipolar transistor and the thyristor define a hybrid or monolithic wide bandgap bipolar power switching device. The wide bandgap bipolar power switching device is configured to switch between a nonconducting state and a conducting state that allows current flow between the collector terminal of the bipolar transistor and the cathode terminal of the thyristor responsive to application of a first control signal to the base terminal of the bipolar transistor and responsive to application of a second control signal to the gate terminal of the thyristor.
In some embodiments, the electronic device may further include a control circuit configured to generate the first and second control signals, supply the first control signal to the gate terminal of the thyristor, and supply the second control signal to the base terminal of the bipolar transistor to switch the bipolar power switching device to the conducting state such that a load current flows between the collector terminal of the bipolar transistor and the cathode terminal of the thyristor. The control circuit may be further configured to couple the gate terminal of the thyristor to the collector terminal of the bipolar transistor such that the load current is commutated to the gate terminal of the thyristor to switch the bipolar power switching device to the nonconducting state.
In some embodiments, the control circuit may include a first voltage source configured to generate the first control signal configured to switch the bipolar transistor to a conductive state, a second voltage source configured to generate the second control signal configured to switch the thyristor to a conductive state, a first switching element configured to couple the first voltage source to the base terminal of the bipolar transistor to supply the first control signal thereto, a second switching element configured to couple the second voltage source to the gate terminal of the thyristor to supply the second control signal thereto, and a third switching element configured to couple the gate terminal of the thyristor to the collector terminal of the bipolar transistor.
In some embodiments, the control circuit may include a first switching element coupled to the gate terminal of the thyristor, an inverting driver device configured to provide the first control signal to the base terminal of the bipolar transistor and configured to switch the first switching element to provide the second control signal to the gate terminal of the thyristor, a second switching element coupled between the gate terminal of the thyristor and the collector terminal of the bipolar transistor, and a noninverting driver device configured to switch the second switching element to couple the gate terminal of the thyristor to the collector terminal of the bipolar transistor.
In some embodiments, the first switching element may be a wide bandgap metal-oxide-semiconductor (MOS) transistor having a source/drain terminal coupled to the gate terminal of the thyristor and a gate terminal coupled to an output of the inverting driver device. The second switching element may be a wide bandgap commutating bipolar transistor having a collector terminal coupled to the collector terminal of the bipolar transistor, an emitter terminal coupled to the gate terminal of the thyristor, and a base terminal coupled to an output of the noninverting driver device.
In some embodiments, the control circuit may further include an optically triggered driver device configured to provide an output signal responsive to light applied thereto. The inverting driver device and the noninverting driver device may be coupled to an output of the optically triggered driver device. The inverting driver device may be configured to provide the first control signal to the base terminal of the bipolar transistor and may be configured to switch the MOS transistor to a conducting state to provide the second control signal to the gate terminal of the thyristor when light is applied to the optically triggered driver device. The noninverting driver device may be configured to switch the commutating bipolar transistor to a conducting state to couple the collector terminal of the first bipolar transistor to the gate terminal of the thyristor when light is not applied to the optically triggered driver device.
In some embodiments, the control circuit may further include a bypass stage coupled between the gate terminal of the thyristor and the collector terminal of the bipolar transistor. The bypass stage may be configured to conduct current therebetween to switch the bipolar power switching device to the nonconducting state when the current between the collector terminal of the bipolar transistor and the cathode terminal of the thyristor exceeds a predetermined level.
In some embodiments, the bypass stage may include a zener diode that is configured to conduct when the voltage drop between the collector of the bipolar transistor and the gate of the thyristor exceeds a breakdown voltage of the zener diode. In some embodiments, the bypass stage may include a plurality of power diodes connected in series between the gate terminal of the thyristor and the collector terminal of the bipolar transistor.
In some embodiments, the bypass stage may further include a commutating bipolar transistor having a collector terminal coupled to the collector terminal of the bipolar transistor, an emitter terminal coupled to the gate terminal of the thyristor, and a base terminal coupled to the zener diode. The commutating bipolar transistor may be configured to be switched to a conducting state responsive to conduction of the zener diode to provide the load current to the gate terminal of the thyristor and switch the bipolar power switching device to the nonconducting state.
In some embodiments, the bipolar transistor and the thyristor may be included in a common package. An on-resistance between the anode and cathode terminals of the thyristor may decrease as operating temperature of the thyristor increases. An on-resistance between the collector and emitter terminals of the bipolar transistor may increase as operating temperature of the bipolar transistor increases.
In some embodiments, the increase in the on-resistance of the bipolar transistor may be greater than the decrease in the electrical resistance of the thyristor as the respective operating temperatures increase. As such, an electrical resistance of the bipolar power switching device in the conducting state may increase as operating temperature of the bipolar power switching device increases.
In some embodiments, the increase in the on-resistance of the bipolar transistor may be substantially similar to the decrease in the electrical resistance of the thyristor as the respective operating temperatures increase. As such, an electrical resistance of the bipolar power switching device in the conducting state may not substantially change as operating temperature of the bipolar power switching device increases.
In some embodiments, the bipolar power switching device may be configured to provide current saturation capability when the bipolar transistor is operated in the active region.
In some embodiments, the bipolar transistor may be a silicon carbide bipolar junction transistor (BJT), and the thyristor may be a silicon carbide gate turn-off thyristor (GTO).
According to further embodiments of the present invention, a packaged bipolar power switching device includes a wide bandgap bipolar transistor having a base, a collector, and an emitter terminal, and a wide bandgap thyristor having an anode, a cathode, and a gate terminal. The anode terminal of the thyristor is coupled to the emitter terminal of the bipolar transistor. The collector terminal corresponds to a first main terminal of the bipolar power switching device, and the cathode terminal corresponds to a second main terminal of the bipolar power switching device. The bipolar power transistor is configured to switch between a nonconducting state and a conducting state that allows current flow between the first and second main terminals. The bipolar power transistor has a non-negative temperature coefficient, where an electrical resistance between the first and second main terminals does not decrease as operating temperature of the bipolar power switching device increases.
In some embodiments, an on-resistance between the anode and cathode terminals of the thyristor may decrease as an operating temperature of the thyristor increases. An on-resistance between the collector and emitter terminals of the bipolar transistor may increase as an operating temperature of the bipolar transistor increases.
In some embodiments, the increase in the on-resistance of the bipolar transistor may be greater than the decrease in the electrical resistance of the thyristor as the respective operating temperatures increase to provide a positive temperature coefficient where an electrical resistance between the first and second main terminals of the bipolar power switching device in the conducting state increases as operating temperature of the bipolar power switching device increases.
In some embodiments, the increase in the on-resistance of the bipolar transistor is substantially similar to the decrease in the electrical resistance of the thyristor as the respective operating temperatures increase to provide a near-zero temperature coefficient where an electrical resistance between the first and second main terminals of the bipolar power switching device in the conducting state does not substantially change as operating temperature of the bipolar power switching device increases.
According to still further embodiments of the present invention, a packaged bipolar turn-off thyristor device includes a wide bandgap gate turn-off thyristor (GTO) having an anode, a cathode, and a gate terminal, and a wide bandgap bipolar junction transistor (BJT) having a base, a collector, and an emitter terminal. The emitter terminal of the BJT is directly coupled to the anode terminal of the GTO. The bipolar power switching device is configured to switch between a nonconducting state and a conducting state that allows current flow between the collector of the BJT and the cathode of the GTO responsive to application of a first control signal to the base terminal of the BJT and responsive to application of a second control signal to the gate terminal of the GTO.
In some embodiments, an on-resistance between the anode and cathode terminals of the GTO may decrease as operating temperature of the GTO increases, and an on-resistance between the collector and emitter terminals of the BJT may increase as operating temperature of the BJT increases.
In some embodiments, the GTO may include a substrate of a first conductivity type having the cathode terminal thereon, a drift layer of a second conductivity type opposite to the first conductivity type on the substrate opposite the cathode terminal, a base layer of the first conductivity type on the drift layer and having the gate terminal thereon, and a first layer of the second conductivity type on the base layer and having the anode terminal thereon. The BJT may include a layer of the first conductivity type directly on the first layer of the second conductivity type and having the emitter terminal thereon, and a second layer of the second conductivity type on the layer of the first conductivity type. The second layer may include a highly doped first region of the first conductivity type therein having the collector terminal thereon, and a highly doped second region of the second conductivity type therein having the base terminal thereon.
In some embodiments, the first conductivity type may be n-type, and the second conductivity type may be p-type. The substrate and the layers thereon may be silicon carbide.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate certain embodiment(s) of the invention. In the drawings:
The invention is described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. It will be understood that when an element or layer is referred to as being “on”, “connected to” or “coupled to” another element or layer, it can be directly on, connected or coupled to the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element or layer, there are no intervening elements or layers present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Like numbers refer to like elements throughout.
It will be understood that although the terms first and second are used herein to describe various regions, layers and/or sections, these regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one region, layer or section from another region, layer or section. Thus, a first region, layer or section discussed below could be termed a second region, layer or section, and similarly, a second region, layer or section may be termed a first region, layer or section without departing from the scope of the present invention.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another elements as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in the Figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, can therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of this disclosure and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Referring now to the drawings,
As is known to those skilled in the art, a thyristor is a four-layer latching switching device having an anode and a cathode for current flow and a gate for switching the device from a blocking state to a conducting state, and vice versa. A control signal applied to the gate causes the device to “latch” into an “on” or conductive state, in which current can flow freely between the anode and cathode of the device. The device remains in the conductive state even after the control signal is removed. A second control signal, opposite in polarity to the first control signal, switches the device back into the “off” or blocking state. A specially designed gate turn-off thyristor (“GTO”), however, is typically turned off by a reverse gate pulse. The GTO thyristors generally start conduction by some trigger input and then behave as diodes thereafter. While certain wide bandgap thyristor designs are discussed in more detail below, the design of wide bandgap thyristors is generally known in the art. For example, U.S. Pat. No. 5,539,217 describes the design and manufacture of silicon carbide (SiC) thyristors. Such silicon carbide thyristors may exhibit improved power handling capabilities over similar silicon thyristors.
Some embodiments of the present invention may arise from realization that conventional thyristors may be difficult to implement in parallel due to differences in inherent on-resistances, especially as operating temperatures increase. In particular, some conventional SiC thyristors may have a negative temperature coefficient (NTC), where the on-resistance (and thus, the forward voltage drop VF) across the device may decrease as operating temperature increases. Such a negative temperature coefficient for the forward voltage drop may increase the conducting current, due to the increase in the junction temperature. This may lead to current concentration on one or more thyristors connected in parallel, which may result in terminal run-away.
Embodiments of present invention provide a bipolar power switching device including a wide bandgap thyristor and a wide bandgap bipolar transistor connected in series. Such wide bandgap devices include an active semiconductor layer of a wide bandgap material, such as silicon carbide (SiC), gallium nitride (GaN), and/or other Group-III nitride material. In particular, embodiments of the present invention provide a SiC thyristor having at least a SiC bipolar junction transistor (BJT) connected in series with the thyristor anode terminal. Such configuration, also referred to herein as a Bipolar Turn-Off thyristor (“BTO”), may provide enhanced operating characteristics as compared to conventional SiC thyristors.
In particular, bipolar power switching devices according to embodiments of the present invention can provide a near-zero temperature coefficient (e.g., such that the on-resistance across the device does not substantially change as operating temperature increases) or even a positive temperature coefficient (PTC) (e.g., such that the on-resistance across the device increases as operating temperature increases) for the forward voltage drop VF by connecting a wide bandgap BJT in series with a wide bandgap thyristor. For example, a SiC BJT, which has a positive temperature coefficient for the forward voltage drop, can be specifically chosen to reduce the negative temperature coefficient of an SiC thyristor, and may provide a near-zero or even slightly positive temperature coefficient across the main terminals of the BTO. More particularly, the SiC BJT may act like a resistor when it is operated in saturation region, and may provide a positive temperature coefficient for the forward voltage drop. Accordingly, bipolar power switching devices according to embodiments of the present invention can be more easily paralleled, as the forward voltage drop may increase with increasing temperature to promote more even current distribution in parallel connected devices.
In addition, bipolar power switching devices according to some embodiments of the present invention may provide current saturation capability when the SiC BJT operates in the active region. The current saturation capability can protect such devices from inrush current during turning-on, and/or current over shooting in the case of short-circuit failure. Bipolar power switching devices according to some embodiments of the present invention may also provide a negative temperature coefficient for the saturation current.
Bipolar power switching devices according to some embodiments of the present invention can also switch at relatively high speed. For example, a BTO according to some embodiments of the present invention can be turned off faster than conventional SiC thyristors, as the SiC BJT may be used to turn off the anode current of the SiC thyristor at a relatively high rate. Also, a bypass stage including a zener diode and/or several power diodes connected in series may be used to divert anode current to the thyristor gate terminal to turn off the thyristor. Bipolar power switching devices according to some embodiments of the present invention can also operate at relatively high temperatures, due to the absence of a gate dielectric film.
Application of respective control signals to the base 105b and the gate 110g terminals switches the BTO 100 from a nonconducting state (where current does not flow between the anode 100a and cathode 100b) to a conducting state (which allows current flow between the anode 100a and cathode 100c). More particularly, application of a control signal to the gate 110g causes the SiC GTO 110 to “latch” into a conductive or “on” state, which allows current flow between the anode 110a and cathode 110c. Likewise, application of a control signal to the base 105b causes the SiC BJT 105 to turn on, conducting current between the collector 105c and emitter 105e terminals. In particular, the control signal applied to the base 105b is sufficient to operate the BJT 105 in the saturation region, e.g., where changes in the base current IB have little effect on the collector current IC. As similar current levels may be provided to the base 105b and the gate 110g to activate the BJT 105 and the GTO 110 to a conducting state, respectively, a control circuit may be used to generate and supply the control signals to both the base 105b of the BJT 105 and the gate 110g of the GTO 110.
To turn on the BTO 100 to a conducting state, switches 301 and 303 are closed and switches 302 and 304 are open. Closing switch 301 connects the base 105b to the positive connection of V1310. Being an emitter follower (also referred to as a “common collector”), the base 105b of the SiC BJT 105 should be pulled above the collector potential to place the SiC BJT 105 in saturation. V1310 is used to provide this voltage, and has a voltage rating that is greater than the base-to-emitter voltage drop VBE of the SiC BJT 105. For example, in some embodiments, V1310 may be configured to provide a voltage of about 3V to about 3.5 V. V1310 is also configured to regulate the base current IB that is applied to the SiC BJT 105. Closing switch 303 connects the gate 110g of the SiC GTO 110 to the negative connection of V2320, which causes the SiC GTO 110 to transition from a blocking or nonconducting state to a conducting state. The voltage rating of V2320 is also set to a value somewhat higher than the forward voltage of the anode-to-gate junction of the SiC GTO 110. For example, in some embodiments, V2330 may be configured to provide a voltage of about 3V to about 3.5 V. V2320 is also configured to regulate the gate current IG that is applied to the SiC GTO 110. As such, when the BJT 105 and the GTO 110 are both switched to a conducting state, a load current may flow between the anode 100a and cathode 100c terminals of the BTO 100.
To turn off the BTO 100 to a blocking or nonconducting state, switches 301 and 303 are opened and switches 302 and 304 are closed. The opening of switch 301 and the closing of switch 302 tie the base 105b of the SiC BJT 105 to the negative terminal of V2320, thereby turning off the SiC BJT 105. The opening of switch 303 and the closing of switch 304 tie the gate 110g of the SiC GTO 110 to the anode 100a of the BTO 100. As a result, the load current is commutated from the BTO anode 100a to the GTO gate 110g. This causes the anode-to-gate junction of the SiC GTO 110 to be reverse biased, resulting in rapid turn-off of the SiC GTO 110.
Still referring to
Another example control circuit 400 according to some embodiments of the present invention is illustrated in
Operation of the example control circuit 400 of
Still referring to
The transition from the blocking state to the conducting state of the BTO 100 is as follows. When light is provided by the light source 401a to trigger the optically triggered driver 401 to provide the turn on signal, the output of inverting driver INV 402 swings to +V1′, and the output of non-inverting driver BUF 403 swings to −V2′. As a result, BJT Q2425 is turned off, and SiC BJT Q1105 and NMOS transistor 404 are turned on. With SiC BJT Q1105 in the conducting state, the anode 110a of SiC GTO 110 is strongly connected to the anode terminal 100a of the BTO 100. This causes current to flow from DC voltage source V2′ 420 through NMOS transistor 404, to resistor R1405, into the gate 110g of the SiC GTO 110, through the anode 110a of the SiC GTO 110, and back to DC voltage source V2′ 420. This action forward biases the gate 110g of the SiC GTO 110, with the gate current IG limited by the resistance of resistor R1405. This puts the BTO 100 in the conducting state, and a load current flows between the anode terminal 100a and the cathode terminal 100c. During this time, NMOS transistor 404 may be biased in such a way to limit its drain current to a level appropriate to drive the SiC GTO gate 110g.
Operation of the BTO 100 in the conducting state is as follows. The load current flows into the anode terminal 100a of the BTO 100, into the collector 105c and out of the emitter 105e of SiC BJT Q1105, into the anode 110a and out of the cathode 110c of the SiC GTO 110, and out of the cathode terminal 100c of the BTO 100. The SiC BJT Q1105 and the SiC GTO 110 are connected in series to decrease the anode-to-cathode voltage drop of the SiC GTO 110. In particular, the SiC BJT 105 has a positive temperature coefficient, where the collector-to-emitter voltage drop VCE increases with increases in operating temperature. As such, SiC BJT Q1105 in each packaged BTO 100 according to some embodiments of the present invention may be specifically selected based on its positive temperature coefficient for the forward voltage drop and based on the negative temperature coefficient of the SiC GTO 110 to reduce and/or effectively negate the negative temperature coefficient of the SiC GTO 110, and may even provide a positive temperature coefficient for the BTO 100 in some embodiments. The negative temperature coefficient of the SiC GTO 110 may make static current sharing difficult in parallel arrays of conventional SiC GTOs. Accordingly, by employing the SiC BJT Q1105 in series with the SiC GTO 110, the BTO 100 may have a non-negative (e.g., near-zero or even positive) temperature coefficient, which may promote more even current distribution and ease in paralleling BTOs according to some embodiments of the present invention.
The transition from the conducting state to the blocking state of the BTO 100 is as follows. When the light is not provided by the light source 401a to trigger the optically triggered driver 401, the output of inverting driver INV 402 driver swings to −V2′, and the output of non-inverting driver BUF 403 swings to +V1′. As a result, SiC BJT Q1105 and NMOS transistor 404 are turned off, and BJT Q2425 is turned on. With the SiC BJT Q1105 in a nonconducting state, the anode 110a of the SiC GTO 110 is disconnected from the anode terminal 100a of the BTO 100. With BJT Q2425 in a conducting state and NMOS transistor 404 in a nonconducting state, the gate 110g of the SiC GTO 110 is disconnected from the voltage source V2′ 420 and is connected to the anode terminal 100a of the BTO 100. Accordingly, the load current is commutated from the anode terminal 100a into the gate 110g of the SiC GTO 110, causing the SiC GTO 110 to be rapidly turned off.
Embodiments of the present invention as illustrated in
As discussed above with reference to
As shown in
Accordingly, the n-type region 64, the p-type layer 62, and the n-type layer 60 define the SiC BJT 105. The contact 105b on the p+ region 63 provides the base terminal of the BJT 105, the contact 100a/105c on the n+ region 64 provides the collector terminal of the BJT 105 (and the anode terminal of the BTO 100), and the contact 105e on the n-type layer 60 provides the emitter terminal of the BJT. Also, the p-type layer 58, the n-type base layer 56, the p-type drift layer 54, and the n-type layer 52 define the SiC GTO 110. The contact 110g on the n-type base layer 56 provides the gate terminal of the GTO 110, the contact 110a on the p-type layer 58 provides the anode terminal of the GTO 110, and the contact 100c/110c on the n-type layer 52 provides the cathode terminal of the GTO 110 (and the cathode terminal of the BTO 100). The n-type layer 60, which provides the BJT emitter, is directly on the p-type layer 58, which provides the GTO anode, such that the BJT 105 and the GTO 110 are connected in series.
Embodiments of the present invention as described above with reference to
While the above embodiments are described with reference to particular figures, it is to be understood that some embodiments of the present invention may include additional and/or intervening layers, structures, or elements, and/or particular layers, structures, or elements may be deleted. More generally, the foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. Therefore, it is to be understood that the foregoing is illustrative of the present invention and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the appended claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
The present invention was developed with Government support under Army Research Laboratory Contract No. W911NF-04-2-0022. The Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
3217176 | Chin | Nov 1965 | A |
3268776 | Reed | Aug 1966 | A |
3439189 | Petry | Apr 1969 | A |
3614474 | Hahn | Oct 1971 | A |
3629011 | Tohi et al. | Dec 1971 | A |
3906298 | Sylvan | Sep 1975 | A |
3924024 | Naber et al. | Dec 1975 | A |
4160920 | Courier de Mere | Jul 1979 | A |
4242690 | Temple | Dec 1980 | A |
4466172 | Batra | Aug 1984 | A |
4581542 | Steigerwald | Apr 1986 | A |
4644637 | Temple | Feb 1987 | A |
4663547 | Baliga et al. | May 1987 | A |
4811065 | Cogan | Mar 1989 | A |
4875083 | Palmour | Oct 1989 | A |
4927772 | Arthur et al. | May 1990 | A |
4945394 | Palmour et al. | Jul 1990 | A |
4946547 | Palmour et al. | Aug 1990 | A |
5011549 | Kong et al. | Apr 1991 | A |
5028977 | Kenneth et al. | Jul 1991 | A |
5032888 | Seki | Jul 1991 | A |
5111253 | Korman et al. | May 1992 | A |
5155289 | Bowles | Oct 1992 | A |
5170231 | Fujii et al. | Dec 1992 | A |
5170455 | Goossen et al. | Dec 1992 | A |
5184199 | Fujii et al. | Feb 1993 | A |
5192987 | Khan et al. | Mar 1993 | A |
5200022 | Kong et al. | Apr 1993 | A |
5210051 | Carter, Jr. | May 1993 | A |
5270554 | Palmour | Dec 1993 | A |
5292501 | Degenhardt et al. | Mar 1994 | A |
5296395 | Khan et al. | Mar 1994 | A |
5348895 | Smayling et al. | Sep 1994 | A |
5371383 | Miyata et al. | Dec 1994 | A |
5384270 | Ueno | Jan 1995 | A |
5385855 | Brown et al. | Jan 1995 | A |
RE34861 | Davis et al. | Feb 1995 | E |
5393993 | Edmond et al. | Feb 1995 | A |
5393999 | Malhi | Feb 1995 | A |
5396085 | Baliga | Mar 1995 | A |
5459107 | Palmour | Oct 1995 | A |
5468654 | Harada | Nov 1995 | A |
5479316 | Smrtic et al. | Dec 1995 | A |
5488236 | Baliga et al. | Jan 1996 | A |
5506421 | Palmour | Apr 1996 | A |
5510281 | Ghezzo et al. | Apr 1996 | A |
5510630 | Agarwal | Apr 1996 | A |
5523589 | Edmond et al. | Jun 1996 | A |
5539217 | Edmond et al. | Jul 1996 | A |
5545905 | Muraoka et al. | Aug 1996 | A |
5587870 | Anderson et al. | Dec 1996 | A |
5629531 | Palmour | May 1997 | A |
5710059 | Rottner | Jan 1998 | A |
5726463 | Brown et al. | Mar 1998 | A |
5726469 | Chen | Mar 1998 | A |
5734180 | Malhi | Mar 1998 | A |
5739564 | Kosa et al. | Apr 1998 | A |
5763905 | Harris | Jun 1998 | A |
5776837 | Palmour | Jul 1998 | A |
5804483 | Harris | Sep 1998 | A |
5814859 | Ghezzo et al. | Sep 1998 | A |
5831288 | Singh et al. | Nov 1998 | A |
5837572 | Gardner et al. | Nov 1998 | A |
5851908 | Harris et al. | Dec 1998 | A |
5877041 | Fuller | Mar 1999 | A |
5877045 | Kapoor | Mar 1999 | A |
5885870 | Maiti et al. | Mar 1999 | A |
5914500 | Bakowski et al. | Jun 1999 | A |
5917203 | Bhatnagar et al. | Jun 1999 | A |
5939763 | Hao et al. | Aug 1999 | A |
5960289 | Tsui et al. | Sep 1999 | A |
5969378 | Singh | Oct 1999 | A |
5972801 | Lipkin et al. | Oct 1999 | A |
5976936 | Miyajima et al. | Nov 1999 | A |
5977605 | Bakowsky et al. | Nov 1999 | A |
6020600 | Miyajima et al. | Feb 2000 | A |
6025233 | Terasawa | Feb 2000 | A |
6025608 | Harris et al. | Feb 2000 | A |
6028012 | Wang | Feb 2000 | A |
6040237 | Bakowski et al. | Mar 2000 | A |
6048766 | Gardner et al. | Apr 2000 | A |
6054352 | Ueno | Apr 2000 | A |
6054728 | Harada et al. | Apr 2000 | A |
6063698 | Tseng et al. | May 2000 | A |
6083814 | Nilsson | Jul 2000 | A |
6096607 | Ueno | Aug 2000 | A |
6100169 | Suvorov et al. | Aug 2000 | A |
6104043 | Hermansson et al. | Aug 2000 | A |
6107142 | Suvorov et al. | Aug 2000 | A |
6117735 | Ueno | Sep 2000 | A |
6121633 | Singh et al. | Sep 2000 | A |
6133587 | Takeuchi et al. | Oct 2000 | A |
6136727 | Ueno | Oct 2000 | A |
6136728 | Wang | Oct 2000 | A |
6165822 | Okuno et al. | Dec 2000 | A |
6180958 | Cooper, Jr. | Jan 2001 | B1 |
6190973 | Berg et al. | Feb 2001 | B1 |
6204135 | Peters et al. | Mar 2001 | B1 |
6204203 | Narwankar et al. | Mar 2001 | B1 |
6211035 | Moise et al. | Apr 2001 | B1 |
6218254 | Singh et al. | Apr 2001 | B1 |
6218680 | Carter, Jr. et al. | Apr 2001 | B1 |
6221700 | Okuno et al. | Apr 2001 | B1 |
6228720 | Kitabatake et al. | May 2001 | B1 |
6238967 | Shiho et al. | May 2001 | B1 |
6239463 | Williams et al. | May 2001 | B1 |
6239466 | Elasser et al. | May 2001 | B1 |
6246076 | Lipkin et al. | Jun 2001 | B1 |
6297100 | Kumar et al. | Oct 2001 | B1 |
6297172 | Kashiwagi | Oct 2001 | B1 |
6303508 | Alok | Oct 2001 | B1 |
6316791 | Schorner et al. | Nov 2001 | B1 |
6316793 | Sheppard et al. | Nov 2001 | B1 |
6329675 | Singh et al. | Dec 2001 | B2 |
6344663 | Slater, Jr. et al. | Feb 2002 | B1 |
6365932 | Kouno et al. | Apr 2002 | B1 |
6388271 | Mitlehner et al. | May 2002 | B1 |
6399996 | Chang et al. | Jun 2002 | B1 |
6420225 | Chang et al. | Jul 2002 | B1 |
6429041 | Ryu et al. | Aug 2002 | B1 |
6448160 | Chang et al. | Sep 2002 | B1 |
6455892 | Okuno et al. | Sep 2002 | B1 |
6475889 | Ring | Nov 2002 | B1 |
6515303 | Ring | Feb 2003 | B2 |
6524900 | Dahlqvist et al. | Feb 2003 | B2 |
6548333 | Smith | Apr 2003 | B2 |
6551865 | Kumar et al. | Apr 2003 | B2 |
6573534 | Kumar et al. | Jun 2003 | B1 |
6593620 | Hshieh et al. | Jul 2003 | B1 |
6610366 | Lipkin | Aug 2003 | B2 |
6627539 | Zhao et al. | Sep 2003 | B1 |
6649497 | Ring | Nov 2003 | B2 |
6653659 | Ryu et al. | Nov 2003 | B2 |
6696705 | Barthelmess et al. | Feb 2004 | B1 |
6703642 | Shah | Mar 2004 | B1 |
6743703 | Rodov et al. | Jun 2004 | B2 |
6861723 | Willmeroth | Mar 2005 | B2 |
6936850 | Friedrichs et al. | Aug 2005 | B2 |
6946739 | Ring | Sep 2005 | B2 |
6956238 | Ryu et al. | Oct 2005 | B2 |
6979863 | Ryu | Dec 2005 | B2 |
7026650 | Ryu et al. | Apr 2006 | B2 |
7074643 | Ryu | Jul 2006 | B2 |
7118970 | Das et al. | Oct 2006 | B2 |
7125786 | Ring et al. | Oct 2006 | B2 |
7253031 | Takahashi et al. | Aug 2007 | B2 |
7279115 | Sumakeris | Oct 2007 | B1 |
7304363 | Shah | Dec 2007 | B1 |
7365363 | Kojima et al. | Apr 2008 | B2 |
7381992 | Ryu | Jun 2008 | B2 |
7528040 | Das et al. | May 2009 | B2 |
7544963 | Saxler | Jun 2009 | B2 |
7548112 | Sheppard | Jun 2009 | B2 |
7649213 | Hatakeyama et al. | Jan 2010 | B2 |
20010055852 | Moise et al. | Dec 2001 | A1 |
20020030191 | Das et al. | Mar 2002 | A1 |
20020038891 | Ryu et al. | Apr 2002 | A1 |
20020047125 | Fukuda et al. | Apr 2002 | A1 |
20020072247 | Lipkin et al. | Jun 2002 | A1 |
20020102358 | Das et al. | Aug 2002 | A1 |
20020121641 | Alok et al. | Sep 2002 | A1 |
20020125482 | Friedrichs et al. | Sep 2002 | A1 |
20020125541 | Korec et al. | Sep 2002 | A1 |
20030025175 | Asano et al. | Feb 2003 | A1 |
20030107041 | Tanimoto et al. | Jun 2003 | A1 |
20030137010 | Friedrichs et al. | Jul 2003 | A1 |
20030178672 | Hatakeyama et al. | Sep 2003 | A1 |
20030201455 | Takahashi et al. | Oct 2003 | A1 |
20040016929 | Nakatsuka et al. | Jan 2004 | A1 |
20040082116 | Kub et al. | Apr 2004 | A1 |
20040183079 | Kaneko et al. | Sep 2004 | A1 |
20040211980 | Ryu | Oct 2004 | A1 |
20040212011 | Ryu | Oct 2004 | A1 |
20040256659 | Kim et al. | Dec 2004 | A1 |
20040259339 | Tanabe et al. | Dec 2004 | A1 |
20050012143 | Tanaka et al. | Jan 2005 | A1 |
20050104072 | Slater, Jr. et al. | May 2005 | A1 |
20050139936 | Li | Jun 2005 | A1 |
20050151138 | Slater, Jr. et al. | Jul 2005 | A1 |
20050181536 | Tsuji | Aug 2005 | A1 |
20050275055 | Parthasarathy et al. | Dec 2005 | A1 |
20060011128 | Ellison et al. | Jan 2006 | A1 |
20060060884 | Ohyanagi et al. | Mar 2006 | A1 |
20060086997 | Kanaya et al. | Apr 2006 | A1 |
20060211210 | Bhat et al. | Sep 2006 | A1 |
20060244010 | Saxler | Nov 2006 | A1 |
20060255423 | Ryu et al. | Nov 2006 | A1 |
20060261347 | Ryu et al. | Nov 2006 | A1 |
20060261876 | Agarwal et al. | Nov 2006 | A1 |
20060267021 | Rowland et al. | Nov 2006 | A1 |
20070066039 | Agarwal et al. | Mar 2007 | A1 |
20070120148 | Nogome | May 2007 | A1 |
20070164321 | Sheppard | Jul 2007 | A1 |
20070241427 | Mochizuki et al. | Oct 2007 | A1 |
20080001158 | Das et al. | Jan 2008 | A1 |
20080006848 | Chen et al. | Jan 2008 | A1 |
20080029838 | Zhang et al. | Feb 2008 | A1 |
20080105949 | Zhang et al. | May 2008 | A1 |
20080191304 | Zhang et al. | Aug 2008 | A1 |
20080230787 | Suziki et al. | Sep 2008 | A1 |
20080251793 | Mazzola et al. | Oct 2008 | A1 |
20080277669 | Okuno et al. | Nov 2008 | A1 |
20090121319 | Zhang et al. | May 2009 | A1 |
Number | Date | Country |
---|---|---|
39 42 640 | Aug 1990 | DE |
198 09 554 | Sep 1998 | DE |
198 32 329 | Feb 1999 | DE |
19900171 | Jul 1999 | DE |
10036208 | Feb 2002 | DE |
0 176 778 | Apr 1986 | EP |
0 372 412 | Jun 1990 | EP |
0 389 863 | Oct 1990 | EP |
0637069 | Feb 1995 | EP |
0735591 | Oct 1996 | EP |
0837508 | Apr 1998 | EP |
0 865 085 | Sep 1998 | EP |
1 058 317 | Dec 2000 | EP |
1 361 614 | Nov 2003 | EP |
1 460 681 | Sep 2004 | EP |
1 503 425 | Feb 2005 | EP |
1 693896 | Aug 2006 | EP |
1 806 787 | Jul 2007 | EP |
1 845 561 | Oct 2007 | EP |
2 015 364 | Jan 2009 | EP |
60-240158 | Nov 1985 | JP |
01117363 | May 1989 | JP |
03034466 | Feb 1991 | JP |
03157974 | Jul 1991 | JP |
3-225870 | Oct 1991 | JP |
08264766 | Oct 1996 | JP |
09205202 | Aug 1997 | JP |
11191559 | Jul 1999 | JP |
11238742 | Aug 1999 | JP |
11261061 | Sep 1999 | JP |
11266017 | Sep 1999 | JP |
11274487 | Oct 1999 | JP |
2000049167 | Feb 2000 | JP |
2000082812 | Mar 2000 | JP |
2000-252478 | Sep 2000 | JP |
02000252461 | Sep 2000 | JP |
2000106371 | Apr 2001 | JP |
2002-314099 | Oct 2002 | JP |
WO 9603774 | Feb 1996 | WO |
WO 9708754 | Mar 1997 | WO |
WO 9717730 | May 1997 | WO |
WO 9739485 | Oct 1997 | WO |
WO 9802916 | Jan 1998 | WO |
WO 9802924 | Jan 1998 | WO |
WO 9808259 | Feb 1998 | WO |
WO 9832178 | Jul 1998 | WO |
WO9963591 | Dec 1999 | WO |
WO 0013236 | Mar 2000 | WO |
WO 2004020706 | Mar 2001 | WO |
WO 0178134 | Oct 2001 | WO |
WO 2004079789 | Sep 2004 | WO |
WO 2005020308 | Mar 2005 | WO |
WO 2006135031 | Dec 2006 | WO |
WO 2007040710 | Apr 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100283529 A1 | Nov 2010 | US |