Wireless IC device

Information

  • Patent Grant
  • 8944335
  • Patent Number
    8,944,335
  • Date Filed
    Thursday, January 10, 2013
    12 years ago
  • Date Issued
    Tuesday, February 3, 2015
    10 years ago
Abstract
A wireless IC device that improves radiation gain without increasing substrate size and easily adjusts impedance, includes a multilayer substrate including laminated base layers. On a side of an upper or first main surface of the multilayer substrate, a wireless IC element is arranged to process a high-frequency signal. On a side of a lower or second main surface of the multilayer substrate, a first radiator is provided and is coupled to the wireless IC element via a feeding circuit including first interlayer conductors. On the side of the first main surface, a second radiator is provided and is coupled to the first radiator via second interlayer conductors.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a wireless IC device, particularly to a wireless IC device preferably for use in an RFID (Radio Frequency Identification) system.


2. Description of the Related Art


In recent years, as an article information management system, an RFID system that has been in practical use performs non-contact communication using an electromagnetic field and transmits predetermined information between a reader-writer which generates an induced magnetic field and an RFID tag attached to an article. This RFID tag includes a wireless IC chip which stores predetermined information and processes a predetermined high-frequency signal and an antenna (radiator) which transmits and receives a high-frequency signal.


The RFID system is in some cases used in information management of a printed wiring board included in various electronic devices. As this type of printed wiring board, those described in Japanese Unexamined Patent Application Publication No. 11-515094 and Japanese Unexamined Patent Application Publication No. 2009-153166 are known.


In the printed wiring board described in Japanese Unexamined Patent Application Publication No. 11-515094, an RFID element which processes a radio signal is mounted on a surface of a multilayer substrate, and an antenna pattern serving as a radiating element is formed on the surface and in internal layers. In this printed wiring board, the size of the antenna pattern needs to be increased to improve the gain of the antenna. The increase in size of the antenna pattern, however, causes an increase in size of the printed wiring board itself.


Meanwhile, the printed wiring board described in Japanese Unexamined Patent Application Publication No. 2009-153166 uses a loop-shaped electrode to cause an electrode functioning as a ground of the printed wiring board to also function as a radiating element. It is therefore possible to improve the gain without causing an increase in size of the printed wiring board. Generally, however, various mounted components, such as a semiconductor IC chip and a chip capacitor, are mounted on a surface layer of the printed wiring board. Due to the influence of these mounted components, therefore, particularly a radiation gain toward the surface layer fails to be sufficiently obtained in some cases.


SUMMARY OF THE INVENTION

In view of the above, preferred embodiments of the present invention provide a wireless IC device that improves radiation gain without increasing substrate size and also enables easily adjustment of impedance.


A wireless IC device according to a preferred embodiment of the present invention includes a substrate including a first main surface and a second main surface facing the first main surface; a wireless IC element provided on the side of the first main surface and configured to process a high-frequency signal; a first radiator provided on the side of the second main surface and coupled to the wireless IC element via a feeding circuit including first interlayer conductors; and a second radiator provided on the side of the first main surface and coupled to the first radiator via second interlayer conductors.


In the wireless IC device according to a preferred embodiment of the present invention, the wireless IC element is coupled to the first radiator via the feeding circuit including the first interlayer conductors, and is coupled to the second radiator via the first radiator and the second interlayer conductors. Therefore, high-frequency energy is efficiently supplied from the wireless IC element to the first and second radiators, and the gain of a high-frequency signal radiated from the first and second radiators is increased. Further, the first radiator is provided on the side of the second main surface of the substrate, and the second radiator is provided on the side of the first main surface of the substrate. Even if a surface layer of the wireless IC device includes components mounted thereon, therefore, it is possible to significantly reduce and prevent a reduction in radiation gain toward the surface layer, and the radiation gain is consequently improved. Particularly, the wireless IC element is preferably provided on the side of the first main surface of the substrate, and is coupled to the first radiator disposed on the second main surface. It is therefore possible to provide a relatively large area for arranging the feeding circuit, which is preferably located between the wireless IC element and the first radiator, without an increase in substrate area, and to achieve high impedance. Accordingly, it is easy to adjust the impedance of the feeding circuit.


Further, since the area in which the feeding circuit is provided is relatively large, it is possible, in a case in which the feeding circuit has a loop shape, to increase a magnetic flux passing through a loop, and the radiation gain is improved. Further, if the first interlayer conductors, the first radiator, the second interlayer conductors, and the second radiator are loop-shaped, a magnetic flux also passes through a loop defined by these conductors, and the radiation gain is further improved.


According to a preferred embodiment of the present invention, a wireless IC device that improves the radiation gain without increasing substrate size and that easily adjusts the impedance is obtainable, and is favorably usable in an RFID system.


The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an exploded perspective view illustrating a wireless IC device according to a first preferred embodiment of the present invention.



FIG. 2 is a plan view illustrating the wireless IC device according to the first preferred embodiment of the present invention.



FIGS. 3A and 3B illustrate the wireless IC device according to the first preferred embodiment of the present invention, wherein FIG. 3A is a cross-sectional view along an X-X line in FIG. 2, and FIG. 3B is a cross-sectional view along a Y-Y line in FIG. 2.



FIG. 4 is a perspective view illustrating a coupled state in the wireless IC device according to the first preferred embodiment of the present invention.



FIG. 5 is a perspective view illustrating a wireless IC chip that defines a wireless IC element.



FIG. 6 is a perspective view illustrating a state in which the wireless IC chip is mounted on a feeding circuit substrate to define a wireless IC element.



FIG. 7 is an equivalent circuit diagram illustrating an example of a feeding circuit.



FIG. 8 is a plan view illustrating a laminated structure of the feeding circuit substrate.



FIG. 9 is an exploded perspective view illustrating a wireless IC device according to a second preferred embodiment of the present invention.



FIG. 10 is an exploded perspective view illustrating a wireless IC device according to a third preferred embodiment of the present invention.



FIG. 11 is an exploded perspective view illustrating a wireless IC device according to a fourth preferred embodiment of the present invention.



FIGS. 12A and 12B illustrate a wireless IC device according to a fifth preferred embodiment of the present invention, wherein FIG. 12A is an exploded perspective view and



FIG. 12B is a plan view.



FIG. 13 is an exploded perspective view illustrating a wireless IC device according to a sixth preferred embodiment of the present invention.



FIG. 14 is an exploded perspective view illustrating a wireless IC device according to a seventh preferred embodiment of the present invention.



FIG. 15 is an exploded perspective view illustrating a wireless IC device according to an eighth preferred embodiment of the present invention.



FIG. 16 is an explanatory diagram illustrating a coupling relationship of radiators in the wireless IC device according to the eighth preferred embodiment of the present invention.



FIG. 17 is a perspective view illustrating a state in which various electronic components are mounted on the wireless IC device according to the eighth preferred embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of a wireless IC device according to the present invention will be described below with reference to the accompanying drawings. In the drawings, common components or elements will be designated by the same reference signs, and redundant description will be omitted.


First Preferred Embodiment


As illustrated in FIGS. 1 and 2, a wireless IC device 1A according to a first preferred embodiment of the present invention includes a multilayer substrate including base layers 11a, 11b, 11c, and 11d laminated on each other. The upper surface and the lower surface of the multilayer substrate will be referred to as the first main surface and the second main surface, respectively. On the side of the first main surface of the multilayer substrate, a wireless IC element 50 is provided and is arranged to process a high-frequency signal. On the side of the second main surface, a first radiator 41 is provided which is coupled to the wireless IC element 50 via a feeding circuit 20 including first interlayer conductors 31a and 31b. Further, on the side of the first main surface, a second radiator 42 is provided and is coupled to the first radiator 41 via second interlayer conductors 32a and 32b.


The wireless IC element 50, which processes a high-frequency signal, will be described in detail below with reference to FIGS. 5 to 8. The first and second radiators 41 and 42 preferably function as antennas, as described below, but may function as ground electrodes of electronic components mounted on the multilayer substrate (see FIG. 17), for example.


The base layers 11a to 11d are preferably made of a well-known glass epoxy material, for example. On one side portion of the base layer 11a, feeding conductors 21a and 21b are arranged with respective first ends thereof electrically connected to not-illustrated first and second terminal electrodes of the wireless IC element 50. That is, the respective first ends of the feeding conductors 21a and 21b preferably function as feeding terminals. The first radiator 41 is arranged over substantially the entire surface of the base layer 11d, and preferably is direct-current-coupled by the first interlayer conductors (via-hole conductors) 31a and 31b passing through the base layers 11b and 11c to realize DC paths.


As illustrated in a cross-sectional view in FIG. 3A, the feeding conductors 21a and 21b, the first interlayer conductors 31a and 31b, and one side portion of the first radiator 41 define the loop-shaped feeding circuit 20. Further, the second radiator 42 preferably is loop-shaped in a plan view over substantially the entire surface of the remaining area of the base layer 11a excluding the area provided with the feeding conductors 21a and 21b. The second radiator 42 preferably is direct-current-coupled by the second interlayer conductors (via-hole conductors) 32a and 32b passing through the base layers 11b and 11c in another side portion of the multilayer substrate.


As illustrated in FIG. 4, the loop-shaped feeding circuit 20 preferably is direct-current-coupled (DC-coupled) and electromagnetic field coupled (M1) to the first radiator 41. Further, the loop-shaped feeding circuit 20 preferably is also electromagnetic field coupled (M2) to the second radiator 42 in an area in which the feeding circuit 20 and the second radiator are proximate to each other. Herein, electromagnetic field coupling includes an electric field coupling and/or a magnetic field coupling. With the loop-shaped feeding circuit 20 and the first radiator 41 electrically connected (direct-current-coupled), it is possible to improve the transmission efficiency of the high-frequency signal.


As illustrated in FIG. 3B, in a cross-sectional view of the wireless IC device 1A along a Y-Y line, the first interlayer conductor 31b (31a), the first radiator 41, the second interlayer conductor 32b (32a), and the second radiator 42 also define a loop-shaped conductor pattern.


In the wireless IC device 1A having the above-described configuration, the loop-shaped feeding circuit 20 is coupled to the first and second radiators 41 and 42. Accordingly, a high-frequency signal radiated from a reader-writer of an RFID system and received by the first and second radiators 41 and 42 is supplied to the wireless IC element 50 via the feeding circuit 20, and the wireless IC element 50 operates. Meanwhile, a response signal from the wireless IC element 50 is transmitted to the first and second radiators 41 and 42 via the feeding circuit 20, and is radiated to the reader-writer.


More specifically, the feeding circuit 20 and the first radiator 41 preferably are direct-current-coupled and electromagnetic field coupled (M1) in one side region of the first radiator 41. Further, the second radiator 42 preferably is direct-current-coupled to the first radiator 41 via the second interlayer conductors 32a and 32b, and is electromagnetic field coupled (M2) to the feeding circuit 20. That is, high-frequency power supplied from the wireless IC element 50 is supplied to the first radiator 41 via the feeding circuit 20 in direct current form and through an electromagnetic field. The high-frequency power is supplied in direct current form to the second radiator 42 via the feeding circuit 20, the first radiator 41, and the second interlayer conductors 32a and 32b, and is also supplied to the second radiator 42 via the feeding circuit 20 through an electromagnetic field. Therefore, high-frequency energy is efficiently supplied from the wireless IC element 50 to the first and second radiators 41 and 42, and the gain of the high-frequency signal radiated from the first and second radiators 41 and 42 is increased.


Further, in the wireless IC device 1A, preferably, the first radiator 41 is provided on the side of the second main surface of the multilayer substrate, and the second radiator 42 is provided on the side of the first main surface of the multilayer substrate. Even if a surface layer of the wireless IC device 1A is mounted with a mounted component, therefore, it is possible to significantly reduce and prevent a reduction in radiation gain toward the surface layer, and the radiation gain is consequently improved. Particularly, the wireless IC element 50 preferably is provided on the side of the first main surface of the multilayer substrate, and is coupled to the first radiator disposed on the side of the second main surface. It is therefore possible to provide a relatively large area to arrange the feeding circuit 20, which is preferably located between the wireless IC element 50 and the first radiator 41, without an increase in substrate area, and to achieve high impedance. Accordingly, it is easy to adjust the impedance of the feeding circuit 20.


Further, since the area in which the feeding circuit 20 is arranged is relatively large, it is possible, in a case in which the feeding circuit 20 is loop-shaped, to increase a magnetic flux passing through a loop, and the radiation gain is improved. Further, with the first interlayer conductors 31a and 31b, the first radiator 41, the second interlayer conductors 32a and 32b, and the second radiator 42 being arranged in a loop shape (see FIG. 3B), a magnetic flux also passes through a loop defined by these conductors, and the radiation gain is further improved. Particularly, with the second radiator 42 arranged into a loop shape in a plan view, a magnetic field is also easily provided via the loop-shaped pattern, and the radiation gain is improved.


The feeding circuit 20 preferably functions as an impedance matching circuit by coupling the wireless IC element 50 and the first radiator 41, and preferably functions as an impedance matching circuit by coupling the wireless IC element 50 and the second radiator 42. The feeding circuit 20 is capable of matching impedances in accordance with the adjustment of the electrical length thereof and the width of the feeding conductors 21a and 21b.


Particularly, the loop-shaped feeding circuit 20 includes a loop surface arranged substantially perpendicular to the first radiator 41 and the second radiator 42. It is therefore possible to dispose the feeding circuit 20 without increasing the area of the multilayer substrate, and to couple the loop-shaped feeding circuit 20 to the first radiator 41 and the second radiator 42 with a high degree of coupling.


In the first preferred embodiment of the present invention, the wireless IC element 50 is not required to be provided on the first main surface of the multilayer substrate, and may be provided to an internal layer of the multilayer substrate, as long as the wireless IC element 50 is located closer to the first main surface than the first radiator 41 is. Similarly, the first radiator 41 is not required to be provided to the second main surface of the multilayer substrate, and may be provided to an internal layer of the multilayer substrate, as long as the first radiator 41 is located closer to the second main surface than the wireless IC element 50 is. That is, in the first preferred embodiment, the first radiator 41 is provided on the inner side of the base layer 11d. Further, the second radiator 42 is not required to be provided to the first main surface of the multilayer substrate, and may be provided to an internal layer of the multilayer substrate. That is, it suffices if the second radiator 42 is provided closer to the first main surface than the first radiator 41 is.


Further, a ground electrode provided on the side of the second main surface of the wireless IC device 1A may be used as the first radiator 41, and a ground electrode provided on the side of the first main surface of the wireless IC device 1A may be used as the second radiator 42, for example. With this configuration, there is no need to separately form the radiators 41 and 42.


The wireless IC element 50 may be a wireless IC chip 51 which processes a high-frequency signal, as illustrated in FIG. 5, or may be formed by the wireless IC chip 51 and a feeding circuit substrate 65 including a resonant circuit having a predetermined resonant frequency, as illustrated in FIG. 6, for example.


The wireless IC chip 51 illustrated in FIG. 5 preferably includes a clock circuit, a logic circuit, a memory circuit, and so forth, and stores necessary information. The wireless IC chip 51 includes a rear surface provided with input-output terminal electrodes 52 and mounting terminal electrodes 53. The input-output terminal electrodes 52 correspond to the first and second terminal electrodes described in the first preferred embodiment, and are electrically connected to the feeding conductors 21a and 21b via metal bumps or other suitable connection elements. As the material of the metal bumps, Au, solder, or other suitable material may preferably be used.


As illustrated in FIG. 6, in a case where the wireless IC chip 51 and the feeding circuit substrate 65 define the wireless IC element 50, the feeding circuit substrate 65 may be provided with various feeding circuits (including a resonant circuit/matching circuit). For example, as illustrated as an equivalent circuit in FIG. 7, the feeding circuits may include a feeding circuit 66 which includes inductance elements L1 and L2 having mutually different inductance values and magnetically coupled in mutually opposite phases (indicated as mutual inductance M). The feeding circuit 66 has a predetermined resonant frequency, and performs impedance matching between the impedance of the wireless IC chip 51 and the impedance of each of the first and second radiators 41 and 42. The wireless IC chip and the feeding circuit 66 may be electrically connected (direct-current-connected), or may be coupled via an electromagnetic field, for example.


The feeding circuit 66 transmits a high-frequency signal having a predetermined frequency and emitted from the wireless IC chip 51 to the first and second radiators 41 and 42 via the feeding circuit 20, and supplies a high-frequency signal received by the first and second radiators 41 and 42 to the wireless IC chip 51 via the feeding circuit 20. Since the feeding circuit 66 has a predetermined resonant frequency, the impedance matching with the first and second radiators 41 and 42 is easily performed, and it is possible to reduce the electrical length of the feeding circuit 20. Further, the degree of dependence of communication characteristics on the material, size, and so forth of the first and second radiators 41 and 42 is reduced.


Subsequently, a configuration of the feeding circuit substrate 65 will be described. As illustrated in FIGS. 5 and 6, the input-output terminal electrodes 52 and the mounting terminal electrodes 53 of the wireless IC chip 51 are connected via metal bumps or the like to feeding terminal electrodes 142a and 142b and mounting terminal electrodes 143a and 143b, respectively, which are provided on the feeding circuit substrate 65.


As illustrated in FIG. 8, the feeding circuit substrate includes ceramic sheets 141a to 141h made of a dielectric material or a magnetic material and subjected to lamination, pressure-bonding, and firing. However, insulating layers defining the feeding circuit substrate 65 are not limited to the ceramic sheets, and may be resin sheets made of a thermosetting resin or a thermoplastic resin, such as a liquid crystal polymer, for example. The sheet 141a defining the uppermost layer is provided with the feeding terminal electrodes 142a and 142b, the mounting terminal electrodes 143a and 143b, and via-hole conductors 144a, 144b, 145a, and 145b. Each of the sheets 141b to 141h defining the second to eighth layers is provided with wiring electrodes 146a and 146b defining the inductance elements L1 and L2, and is provided, as necessary, with via-hole conductors 147a, 147b, 148a, and 148b.


With the above-described sheets 141a to 141h laminated, the inductance element L1 is provided with the wiring electrode 146a helically connected by the via-hole conductor 147a, and the inductance element L2 is provided with the wiring electrode 146b helically connected by the via-hole conductor 147b. Further, line capacitance is provided between the wiring electrodes 146a and 146b.


An end portion 146a-1 of the wiring electrode 146a on the sheet 141b is connected to the feeding terminal electrode 142a via the via-hole conductor 145a, and an end portion 146a-2 of the wiring electrode 146a on the sheet 141h is connected to the feeding terminal electrode 142b via the via-hole conductors 148a and 145b. An end portion 146b-1 of the wiring electrode 146b on the sheet 141b is connected to the feeding terminal electrode 142b via the via-hole conductor 144b, and an end portion 146b-2 of the wiring electrode 146b on the sheet 141h is connected to the feeding terminal electrode 142a via the via-hole conductors 148b and 144a.


In the above-described feeding circuit 66, the inductance elements L1 and L2 are wound in opposite directions, and thus magnetic fields generated in the inductance elements L1 and L2 are offset. Since the magnetic fields are offset, the wiring electrodes 146a and 146b need to be extended by a certain length to obtain a desired inductance value. Accordingly, the Q value is reduced, and therefore the sharpness of a resonance characteristic is lost, and the bandwidth is increased near the resonant frequency.


In a plan perspective view of the feeding circuit substrate 65, the inductance elements L1 and L2 are provided at laterally different positions. Further, the magnetic fields generated in the inductance elements L1 and L2 have opposite directions. When the feeding circuit 66 is coupled to the feeding circuit 20, therefore, currents in opposite directions are excited in the feeding circuit 20, and it is possible to generate currents in the first and second radiators 41 and 42, and to operate the first and second radiators 41 and 42 as antennas with a potential difference due to the currents.


With the feeding circuit substrate 65 including the resonant/matching circuit built therein, it is possible to prevent a change in characteristics due to the influence of an external article, and to prevent degradation of the communication quality. Further, if the wireless IC chip 51 defining the wireless IC element 50 is disposed toward the center in the thickness direction of the feeding circuit substrate 65, it is possible to prevent the wireless IC chip 51 from being destroyed, and to improve the mechanical strength of the wireless IC element 50.


Second Preferred Embodiment


As illustrated in FIG. 9, in a wireless IC device IB according to a second preferred embodiment of the present invention, the first radiator 41 is provided on the base layer 11d, and the second radiator 42 is provided on the base layer 11b. Further, a third radiator 43 is provided on the base layer 11c. Each of the radiators 41, 42, and 43 preferably is loop-shaped in a plan view. The configuration of the feeding circuit 20 is preferably the same as that of the first preferred embodiment, for example. The radiators 41, 42, and 43 are direct-current-coupled by the second interlayer conductors 32a and 32b in respective other side portions thereof.


The operational or functional effect of the wireless IC device 1B according to the second preferred embodiment of the present invention is basically similar to that of the first preferred embodiment of the present invention. With each of the radiators 41, 42, and 43 arranged into a loop shape in a plan view, a magnetic field is also generated along the inside of a loop-shaped pattern, and the radiation gain is further improved.


Third Preferred Embodiment


As illustrated in FIG. 10, in a wireless IC device 1C according to a third preferred embodiment of the present invention, the second radiator 42 is solidly provided in a large area on the base layer 11b, and this second radiator 42 and the first radiator 41 are direct-current-coupled by a multitude of second interlayer conductors 32a, 32b, and 32c. The third preferred embodiment of the present invention is similar to the first preferred embodiment of the present invention in the other configurations, and is also basically similar to the first preferred embodiment of the present invention in the operational or functional effect.


Particularly, if the second radiator 42 is solidly provided and connected to the first radiator 41 by the plurality of second interlayer conductors 32a, 32b, and 32c, as in the present third preferred embodiment of the present invention, the grounding function is reinforced. Further, in a side view, the first and second radiators 41 and 42 are configured to define a loop-shaped pattern with the second interlayer conductors 32a, 32b, and 32c. Therefore, a magnetic field is easily generated, and the radiation gain is improved.


Fourth Preferred Embodiment


As illustrated in FIG. 11, in a wireless IC device 1D according to a fourth preferred embodiment of the present invention, a slit 42a is formed in a portion of the loop-shaped second radiator 42 provided on the base layer 11b, preferably a portion spaced away from the feeding circuit 20.


The fourth preferred embodiment of the present invention is similar to the first preferred embodiment of the present invention in the other configurations, and is also basically similar to the first preferred embodiment of the present invention in the operational or functional effect. Particularly, with the slit 42a located in the second radiator 42, an induced current flows around the slit 42a, and thus the current path of the second radiator 42 is practically extended. In other words, it is possible to reduce the size of the second radiator 42. The first radiator 41 may also be provided with a slit.


Fifth Preferred Embodiment


As illustrated in FIG. 12A, in a wireless IC device IE according to a fifth preferred embodiment of the present invention, the second radiator 42 is provided on the base layer 11a to be adjacent to the feeding conductors 21a and 21b defining the feeding circuit 20, and the first radiator 41 is provided on the base layer 11c laminated via the base layer 11b. The first radiator 41 preferably is substantially T-shaped, and is formed in a solid state.


Respective end portions of the feeding conductors 21a and 21b are direct-current-coupled to opposite side portions of one end of the first radiator 41 via the first interlayer conductors 31a and 31b passing through the base layer 11b. The second radiator 42 defines a loop shape including the slit 42a, and portions of the second radiator 42 facing the slit 42a are direct-current-coupled to other end portions of the first radiator 41 via the second interlayer conductors 32a and 32b passing through the base layer 11b.


The operational or functional effects of the fifth preferred embodiment of the present invention are basically similar to that of the first and fourth preferred embodiments of the present invention. Particularly, due to the provision of regions C in which the first and second radiators 41 and 42 do not overlap each other in a plan view, as illustrated in FIG. 12B, a magnetic flux defined by the second radiator 42 is less likely to be blocked by the first radiator 41, and the radiation characteristic of the second radiator 42 is improved. That is, the radiation gain toward the first main surface (the upper surface of the wireless IC device 1E) is increased.


Sixth Preferred Embodiment


As illustrated in FIG. 13, a wireless IC device 1F according to a sixth preferred embodiment of the present invention includes a feeding conductor 22 preferably located on the base layer 11d at the same position as the position of the feeding conductors 21a and 21b in a plan view. This feeding conductor 22 is connected to the feeding conductors 21a and 21b via the first interlayer conductors 31a and 31b. The first radiator 41 is provided on the base layer 11d to be proximate to the feeding conductor 22. Further, the second radiator 42 is provided on the base layer 11b, and is connected to the first radiator 41 via the second interlayer conductors 32a and 32b.


In the present sixth preferred embodiment of the present invention, the feeding circuit 20 includes the feeding conductors 21a, 21b, and 22 and the first interlayer conductors 31a and 31b, and is coupled to the first radiator 41 only by electromagnetic field coupling (M1). The operational or functional effects of the sixth preferred embodiment of the present invention are basically similar to that of the first preferred embodiment of the present invention. In the sixth preferred embodiment of the present invention, the first and second radiators 41 and 42 are coupled to the feeding circuit 20 preferably only by electromagnetic field coupling M1 and electromagnetic field coupling M2, respectively, and are not direct-current-connected to the feeding circuit 20. Even if a surge voltage is applied to the first and second radiators 41 and 42, therefore, it is possible to prevent the surge voltage from being applied to the wireless IC element 50.


Seventh Preferred Embodiment


As illustrated in FIG. 14, in a wireless IC device 1G according to a seventh preferred embodiment of the present invention, the second radiator 42 is preferably disposed on another side of the base layer 11a away from the feeding conductors 21a and 21b. The seventh preferred embodiment of the present invention is similar to the first preferred embodiment of the present invention in the other configurations. The second radiator 42 is coupled to the feeding circuit 20 via the second interlayer conductors 32a and 32b and the first radiator 41, and produces operational or functional effects similar to that of the first preferred embodiment of the present invention.


Eighth Preferred Embodiment


A wireless IC device 1H according to an eighth preferred embodiment of the present invention includes a parent substrate 35 and a child substrate 1′ mounted on the parent substrate 35. The child substrate 1′ is the same as the wireless IC device 1A according to the first preferred embodiment of the present invention, and may be one of the wireless IC devices 1B to 1G described as the other preferred embodiment examples. The parent substrate 35 is a multilayer substrate that is preferably formed by lamination of base layers 36a and 36b, in which a radiator 37 is located on the base layer 36b and a plurality of terminal electrodes 38 are located on the base layer 36a. The base layers 36a and 36b are made of a material similar to that of the base layers 11a to 11d. The radiator 37 functions as an antenna element, as described below, and may function as a ground electrode of electronic components mounted on the parent substrate 35 and the child substrate 1′ (see FIG. 17).


As illustrated in FIG. 16, a plurality of terminal electrodes 25 are located on the lower surface of the child substrate 1′, and are electrically connected to the first radiator 41 via interlayer conductors (via-hole conductors) 26. The terminal electrodes 38 located on the parent substrate 35 are electrically connected to the radiator 37 via interlayer conductors (via-hole conductors) 39. Further, the child substrate 1′ includes the terminal electrodes 25 electrically connected to and fixed on the terminal electrodes 38 by joining members 27, such as solder or conductive pins.


The radiator 37 preferably is electromagnetic field coupled (M3) to the loop-shaped feeding circuit 20, and preferably is direct-current-coupled to the first radiator 41. The operation of the child substrate 1′ is as described in the first preferred embodiment of the present invention. A high-frequency signal is transmitted between the first radiator 41 and the radiator 37. In the eighth preferred embodiment of the present invention, in addition to the first and second radiators 41 and 42, the radiator 37 of the parent substrate 35 also functions as an antenna element. Therefore, the overall area of the radiators is increased, and the radiation gain is improved. Further, the single wireless IC element 50 is capable of managing both the information of the child substrate 1′ and the information of the parent substrate 35, and the wireless IC device 50 is not required to be provided in plurality. Further, it is possible to efficiently transmit and radiate the heat of the child substrate 1′ having a small area to the parent substrate 35 having a large area via the interlayer conductors 26 and the joining members 27 such as solder.


The first radiator 41 and the radiator 37 of the parent substrate are not necessarily required to be direct-current-coupled, and may be electromagnetic field coupled mainly via capacitance C, for example.


The wireless IC device 1H preferably includes various electronic components mounted thereon, and is built in an electronic device, such as a computer. Such an example is illustrated in FIG. 17. The parent substrate 35 includes a multitude of components, such as IC circuit components 45 and chip-type electronic components 46, mounted thereon. Further, the child substrate 1′ also includes an IC circuit component 47 mounted thereon.


Other Preferred Embodiments


The wireless IC device according to the present invention is not limited to the preferred embodiments described above, and may be variously modified within the scope of the present invention. For example, the first main surface of the multilayer substrate may include a cavity, and the wireless IC element may be housed in the cavity, partially or completely, for example.


As described above, preferred embodiments of the present invention are superior in improving the radiation gain without increasing substrate size and easily adjusting the impedance.


While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.

Claims
  • 1. A wireless IC device comprising: a substrate including a first main surface and a second main surface facing the first main surface;a wireless IC element provided on a side of the first main surface and arranged to process a high-frequency signal;a first radiator including first and second ends, provided on a side of the second main surface, and coupled to the wireless IC element via a feeding circuit including a first interlayer conductor; anda second radiator including first and second ends, provided on the side of the first main surface, and coupled to the first radiator via a second interlayer conductor; whereinthe wireless IC element is connected to the first end of the first radiator;the first end of the second radiator is connected to the second end of the first radiator; andthe second end of the second radiator is not connected to the wireless IC element such that the second radiator is open.
  • 2. The wireless IC device described in claim 1, wherein the feeding circuit is loop-shaped, and the loop-shaped feeding circuit is coupled to the first radiator via a direct current or via an electromagnetic field.
  • 3. The wireless IC device described in claim 2, wherein the loop-shaped feeding circuit is coupled to the second radiator via an electromagnetic field.
  • 4. The wireless IC device described in claim 2, wherein the loop-shaped feeding circuit includes a loop surface that is perpendicular or substantially perpendicular to the first radiator and the second radiator.
  • 5. The wireless IC device described in claim 2, wherein the substrate is a child substrate mounted on a parent substrate, and the parent substrate is provided with an additional radiator coupled to the loop-shaped feeding circuit via an electromagnetic field.
  • 6. The wireless IC device described in claim 1, wherein at least one of the first radiator and the second radiator is loop-shaped.
  • 7. The wireless IC device described in claim 6, wherein at least one of the first radiator and the second radiator includes a portion including a slit.
  • 8. The wireless IC device described in claim 1, wherein the first radiator has a solid configuration, and the second radiator is configured in a loop shape, and an area inside a loop of the second radiator includes a region in which the first radiator and the second radiator do not overlap each other in a plan view.
  • 9. The wireless IC device described in claim 1, wherein a first ground electrode provided on the side of the second main surface of the substrate defines the first radiator, and a second ground electrode provided on the side of the first main surface of the substrate defines the second radiator.
  • 10. The wireless IC device described in claim 1, wherein the wireless IC element is a wireless IC chip arranged to process a high-frequency signal.
  • 11. The wireless IC device described in claim 1, wherein the wireless IC element includes a wireless IC chip arranged to process a high-frequency signal and a feeding circuit substrate which includes a feeding circuit having a predetermined resonant frequency.
  • 12. The wireless IC device described in claim 1, wherein the first and second radiators define antennas or ground electrodes of electronic components.
  • 13. The wireless IC device described in claim 1, wherein the substrate is a multilayer substrate including base layers laminated on each other;the first radiator is provided on a first of the base layers;the second radiator is provided on a second of the base layers;a third radiator is provided on a third of the base layers;the first, second and third radiators are loop-shaped and direct-current-coupled to each other.
  • 14. The wireless IC device described in claim 1, wherein the second radiator has a solid configuration, and the second radiator and the first radiator are direct-current-coupled by a plurality of the second interlayer conductors.
  • 15. The wireless IC device described in claim 1, wherein the second radiator is loop-shaped and includes a slit provided in a portion spaced away from the feeding circuit.
  • 16. The wireless IC device described in claim 1, wherein the substrate is a multilayer substrate including base layers laminated on each other; the first radiator is provided on a first of the base layers;the second radiator is provided on a second of the base layers located adjacent to feeding conductors of the feeding circuit;a third of the base layers is laminated between the first of the base layers and the second of the base layers;end portions of the feeding conductors are direct-current-coupled to opposite side portions of first end portions of the first radiator via the first interlayer conductor; andthe second radiator is loop-shaped and includes a slit, and portions of the second radiator facing the slit are direct-current-coupled to second end portions of the first radiator via the second interlayer conductor.
  • 17. The wireless IC device described in claim 1, wherein the feeding circuit includes the first interlayer conductor and first, second and third feeding conductors located adjacent to each other in plan view and connected to each other via the first interlayer conductor; andthe feeding circuit is coupled to the first radiator only by electromagnetic field coupling.
  • 18. The wireless IC device described in claim 1, wherein the second radiator is spaced away from first and second feeding conductors of the feeding circuit and the second radiator is coupled to the feeding circuit via the second interlayer conductor and the first radiator.
  • 19. The wireless IC device described in claim 1, wherein the first main surface of the substrate includes a cavity, and the wireless IC element is located in the cavity partially or completely.
  • 20. A radio frequency identification system comprising the wireless IC device according to claim 1.
Priority Claims (1)
Number Date Country Kind
2010-220973 Sep 2010 JP national
US Referenced Citations (152)
Number Name Date Kind
3364564 Kurtz et al. Jan 1968 A
4794397 Ohe et al. Dec 1988 A
5232765 Yano et al. Aug 1993 A
5253969 Richert Oct 1993 A
5337063 Takahira Aug 1994 A
5374937 Tsunekawa et al. Dec 1994 A
5399060 Richert Mar 1995 A
5491483 D'Hont Feb 1996 A
5528222 Moskowitz et al. Jun 1996 A
5757074 Matloubian et al. May 1998 A
5854480 Noto Dec 1998 A
5903239 Takahashi et al. May 1999 A
5936150 Kobrin et al. Aug 1999 A
5955723 Reiner Sep 1999 A
5995006 Walsh Nov 1999 A
6104311 Lastinger Aug 2000 A
6107920 Eberhardt et al. Aug 2000 A
6172608 Cole Jan 2001 B1
6181287 Beigel Jan 2001 B1
6190942 Wilm et al. Feb 2001 B1
6243045 Ishibashi Jun 2001 B1
6249258 Bloch et al. Jun 2001 B1
6259369 Monico Jul 2001 B1
6271803 Watanabe et al. Aug 2001 B1
6335686 Goff et al. Jan 2002 B1
6362784 Kane et al. Mar 2002 B1
6367143 Sugimura Apr 2002 B1
6378774 Emori et al. Apr 2002 B1
6406990 Kawai Jun 2002 B1
6448874 Shiino et al. Sep 2002 B1
6452563 Porte Sep 2002 B1
6462716 Kushihi Oct 2002 B1
6542050 Arai et al. Apr 2003 B1
6600459 Yokoshima et al. Jul 2003 B2
6634564 Kuramochi Oct 2003 B2
6664645 Kawai Dec 2003 B2
6763254 Nishikawa Jul 2004 B2
6812707 Yonezawa et al. Nov 2004 B2
6828881 Mizutani et al. Dec 2004 B2
6837438 Takasugi et al. Jan 2005 B1
6861731 Buijsman et al. Mar 2005 B2
6927738 Senba et al. Aug 2005 B2
6956481 Cole Oct 2005 B1
6963729 Uozumi Nov 2005 B2
7088249 Senba et al. Aug 2006 B2
7088307 Imaizumi Aug 2006 B2
7112952 Arai et al. Sep 2006 B2
7119693 Devilbiss Oct 2006 B1
7129834 Naruse et al. Oct 2006 B2
7248221 Kai et al. Jul 2007 B2
7250910 Yoshikawa et al. Jul 2007 B2
7276929 Arai et al. Oct 2007 B2
7317396 Ujino Jan 2008 B2
7405664 Sakama et al. Jul 2008 B2
20010011012 Hino et al. Aug 2001 A1
20020011967 Goff et al. Jan 2002 A1
20020015002 Yasukawa et al. Feb 2002 A1
20020044092 Kushihi Apr 2002 A1
20020067316 Yokoshima et al. Jun 2002 A1
20020093457 Hamada et al. Jul 2002 A1
20030006901 Kim et al. Jan 2003 A1
20030020661 Sato Jan 2003 A1
20030045324 Nagumo et al. Mar 2003 A1
20030169153 Muller Sep 2003 A1
20040001027 Killen et al. Jan 2004 A1
20040026519 Usami et al. Feb 2004 A1
20040056823 Zuk et al. Mar 2004 A1
20040066617 Hirabayashi et al. Apr 2004 A1
20040217915 Imaizumi Nov 2004 A1
20040219956 Iwai et al. Nov 2004 A1
20040227673 Iwai et al. Nov 2004 A1
20040252064 Yuanzhu Dec 2004 A1
20050001031 Akiho et al. Jan 2005 A1
20050092836 Kudo May 2005 A1
20050099337 Takei et al. May 2005 A1
20050125093 Kikuchi et al. Jun 2005 A1
20050134460 Usami Jun 2005 A1
20050134506 Egbert Jun 2005 A1
20050138798 Sakama et al. Jun 2005 A1
20050140512 Sakama et al. Jun 2005 A1
20050232412 Ichihara et al. Oct 2005 A1
20050236623 Takechi et al. Oct 2005 A1
20050275539 Sakama et al. Dec 2005 A1
20060001138 Sakama et al. Jan 2006 A1
20060032926 Baba et al. Feb 2006 A1
20060044192 Egbert Mar 2006 A1
20060055531 Cook et al. Mar 2006 A1
20060055601 Kameda et al. Mar 2006 A1
20060071084 Detig et al. Apr 2006 A1
20060109185 Iwai et al. May 2006 A1
20060145872 Tanaka et al. Jul 2006 A1
20060158380 Son et al. Jul 2006 A1
20060170606 Yamagajo et al. Aug 2006 A1
20060214801 Murofushi et al. Sep 2006 A1
20060220871 Baba et al. Oct 2006 A1
20060244568 Tong et al. Nov 2006 A1
20060244676 Uesaka Nov 2006 A1
20060267138 Kobayashi Nov 2006 A1
20070004028 Lair et al. Jan 2007 A1
20070018893 Kai et al. Jan 2007 A1
20070040028 Kawamata Feb 2007 A1
20070052613 Gallschuetz et al. Mar 2007 A1
20070057854 Oodachi et al. Mar 2007 A1
20070069037 Kawai Mar 2007 A1
20070132591 Khatri Jun 2007 A1
20070164414 Dokai et al. Jul 2007 A1
20070200782 Hayama et al. Aug 2007 A1
20070229276 Yamagajo et al. Oct 2007 A1
20070247387 Kubo et al. Oct 2007 A1
20070252700 Ishihara et al. Nov 2007 A1
20070252703 Kato et al. Nov 2007 A1
20070252763 Martin Nov 2007 A1
20070285335 Bungo et al. Dec 2007 A1
20070290326 Yang et al. Dec 2007 A1
20070290928 Chang et al. Dec 2007 A1
20080024156 Arai et al. Jan 2008 A1
20080068132 Kayanakis et al. Mar 2008 A1
20080070003 Nakatani et al. Mar 2008 A1
20080087990 Kato et al. Apr 2008 A1
20080129606 Yanagisawa et al. Jun 2008 A1
20080143630 Kato et al. Jun 2008 A1
20080149731 Arai et al. Jun 2008 A1
20080169905 Slatter Jul 2008 A1
20080184281 Ashizaki et al. Jul 2008 A1
20080272885 Atherton Nov 2008 A1
20090002130 Kato Jan 2009 A1
20090002229 Noro et al. Jan 2009 A1
20090009007 Kato et al. Jan 2009 A1
20090021352 Kataya et al. Jan 2009 A1
20090021446 Kataya et al. Jan 2009 A1
20090065594 Kato et al. Mar 2009 A1
20090096696 Joyce, Jr. et al. Apr 2009 A1
20090109034 Chen et al. Apr 2009 A1
20090109102 Dokai et al. Apr 2009 A1
20090140947 Sasagawa et al. Jun 2009 A1
20090160719 Kato et al. Jun 2009 A1
20090201116 Orihara Aug 2009 A1
20090224061 Kato et al. Sep 2009 A1
20090231106 Okamura Sep 2009 A1
20090262041 Ikemoto et al. Oct 2009 A1
20090266900 Ikemoto et al. Oct 2009 A1
20090278687 Kato Nov 2009 A1
20090284220 Toncich et al. Nov 2009 A1
20090321527 Kato et al. Dec 2009 A1
20100103058 Kato et al. Apr 2010 A1
20100182210 Ryou et al. Jul 2010 A1
20100283694 Kato Nov 2010 A1
20100308118 Kataya et al. Dec 2010 A1
20110031320 Kato et al. Feb 2011 A1
20110063184 Furumura et al. Mar 2011 A1
20110186641 Kato et al. Aug 2011 A1
20110253795 Kato Oct 2011 A1
Foreign Referenced Citations (503)
Number Date Country
2 279 176 Jul 1998 CA
10 2006 057 369 Jun 2008 DE
0 694 874 Jan 1996 EP
0 848 448 Jun 1998 EP
0 948 083 Oct 1999 EP
0 977 145 Feb 2000 EP
1 010 543 Jun 2000 EP
1 085 480 Mar 2001 EP
1 160 915 Dec 2001 EP
1 170 795 Jan 2002 EP
1 193 793 Apr 2002 EP
1 227 540 Jul 2002 EP
1 280 232 Jan 2003 EP
1 280 350 Jan 2003 EP
1 343 223 Sep 2003 EP
1 357 511 Oct 2003 EP
1 547 753 Jun 2005 EP
1 548 872 Jun 2005 EP
1 626 364 Feb 2006 EP
1 701 296 Sep 2006 EP
1 703 589 Sep 2006 EP
1 742 296 Jan 2007 EP
1 744 398 Jan 2007 EP
1 840 802 Oct 2007 EP
1 841 005 Oct 2007 EP
1 865 574 Dec 2007 EP
1 887 652 Feb 2008 EP
1 976 056 Oct 2008 EP
1 988 491 Nov 2008 EP
1 988 601 Nov 2008 EP
1 993 170 Nov 2008 EP
2 009 738 Dec 2008 EP
2 012 258 Jan 2009 EP
2 096 709 Sep 2009 EP
2 148 449 Jan 2010 EP
2 166 617 Mar 2010 EP
2 251 934 Nov 2010 EP
2 256 861 Dec 2010 EP
2 330 684 Jun 2011 EP
2 305 075 Mar 1997 GB
2461443 Jan 2010 GB
50-143451 Nov 1975 JP
61-284102 Dec 1986 JP
62-127140 Aug 1987 JP
01-212035 Aug 1989 JP
02-164105 Jun 1990 JP
02-256208 Oct 1990 JP
3-171385 Jul 1991 JP
03-503467 Aug 1991 JP
03-262313 Nov 1991 JP
04-150011 May 1992 JP
04-167500 Jun 1992 JP
04-096814 Aug 1992 JP
04-101168 Sep 1992 JP
04-134807 Dec 1992 JP
05-226926 Sep 1993 JP
05-327331 Dec 1993 JP
6-53733 Feb 1994 JP
06-077729 Mar 1994 JP
06-029215 Apr 1994 JP
06-177635 Jun 1994 JP
6-260949 Sep 1994 JP
07-183836 Jul 1995 JP
08-055725 Feb 1996 JP
08-056113 Feb 1996 JP
8-87580 Apr 1996 JP
08-088586 Apr 1996 JP
08-88586 Apr 1996 JP
08-176421 Jul 1996 JP
08-180160 Jul 1996 JP
08-279027 Oct 1996 JP
08-307126 Nov 1996 JP
08-330372 Dec 1996 JP
09-014150 Jan 1997 JP
09-035025 Feb 1997 JP
09-093029 Apr 1997 JP
9-93029 Apr 1997 JP
09-245381 Sep 1997 JP
09-252217 Sep 1997 JP
09-270623 Oct 1997 JP
09-284038 Oct 1997 JP
09-294374 Nov 1997 JP
9-512367 Dec 1997 JP
10-69533 Mar 1998 JP
10-069533 Mar 1998 JP
10-505466 May 1998 JP
10-171954 Jun 1998 JP
10-173427 Jun 1998 JP
10-193849 Jul 1998 JP
10-193851 Jul 1998 JP
10-242742 Sep 1998 JP
10-293828 Nov 1998 JP
10-334203 Dec 1998 JP
11-025244 Jan 1999 JP
11-039441 Feb 1999 JP
11-075329 Mar 1999 JP
11-085937 Mar 1999 JP
11-88241 Mar 1999 JP
11-102424 Apr 1999 JP
11-103209 Apr 1999 JP
11-149536 Jun 1999 JP
11-149537 Jun 1999 JP
11-149538 Jun 1999 JP
11-175678 Jul 1999 JP
11-219420 Aug 1999 JP
11-220319 Aug 1999 JP
11-282993 Oct 1999 JP
11-328352 Nov 1999 JP
11-331014 Nov 1999 JP
11-346114 Dec 1999 JP
11-515094 Dec 1999 JP
2000-21128 Jan 2000 JP
2000-021639 Jan 2000 JP
2000-022421 Jan 2000 JP
2000-059260 Feb 2000 JP
2000-085283 Mar 2000 JP
2000-090207 Mar 2000 JP
2000-132643 May 2000 JP
2000-137778 May 2000 JP
2000-137779 May 2000 JP
2000-137785 May 2000 JP
2000-148948 May 2000 JP
2000-172812 Jun 2000 JP
2000-209013 Jul 2000 JP
2000-222540 Aug 2000 JP
2000-510271 Aug 2000 JP
2000-242754 Sep 2000 JP
2000-243797 Sep 2000 JP
2000-251049 Sep 2000 JP
2000-261230 Sep 2000 JP
2000-276569 Oct 2000 JP
2000-286634 Oct 2000 JP
2000-286760 Oct 2000 JP
2000-311226 Nov 2000 JP
2000-321984 Nov 2000 JP
2000-349680 Dec 2000 JP
2001-10264 Jan 2001 JP
2001-028036 Jan 2001 JP
2001-043340 Feb 2001 JP
3075400 Feb 2001 JP
2001-66990 Mar 2001 JP
2001-76111 Mar 2001 JP
2001-084463 Mar 2001 JP
2001-101369 Apr 2001 JP
2001-505682 Apr 2001 JP
2001-168628 Jun 2001 JP
2001-188890 Jul 2001 JP
2001-209767 Aug 2001 JP
2001-240046 Sep 2001 JP
2001-240217 Sep 2001 JP
2001-256457 Sep 2001 JP
2001-257292 Sep 2001 JP
2001-514777 Sep 2001 JP
2001-291181 Oct 2001 JP
2001-319380 Nov 2001 JP
2001-331976 Nov 2001 JP
2001-332923 Nov 2001 JP
2001-339226 Dec 2001 JP
2001-344574 Dec 2001 JP
2001-351083 Dec 2001 JP
2001-351084 Dec 2001 JP
2001-352176 Dec 2001 JP
2001-358527 Dec 2001 JP
2002-024776 Jan 2002 JP
2002-026513 Jan 2002 JP
2002-32731 Jan 2002 JP
2002-042076 Feb 2002 JP
2002-042083 Feb 2002 JP
2002-063557 Feb 2002 JP
2002-505645 Feb 2002 JP
2002-076750 Mar 2002 JP
2002-76750 Mar 2002 JP
2002-111363 Apr 2002 JP
2002-150245 May 2002 JP
2002-157564 May 2002 JP
2002-158529 May 2002 JP
2002-175508 Jun 2002 JP
2002-175920 Jun 2002 JP
2002-183676 Jun 2002 JP
2002-183690 Jun 2002 JP
2002-185358 Jun 2002 JP
2002-204117 Jul 2002 JP
2002-521757 Jul 2002 JP
2002-522849 Jul 2002 JP
2002-222398 Aug 2002 JP
2002-230128 Aug 2002 JP
2002-232221 Aug 2002 JP
2002-246828 Aug 2002 JP
2002-252117 Sep 2002 JP
2002-259934 Sep 2002 JP
2002-280821 Sep 2002 JP
2002-298109 Oct 2002 JP
2002-308437 Oct 2002 JP
2002-319008 Oct 2002 JP
2002-319009 Oct 2002 JP
2002-319812 Oct 2002 JP
2002-362613 Dec 2002 JP
2002-366917 Dec 2002 JP
2002-373029 Dec 2002 JP
2002-373323 Dec 2002 JP
2002-374139 Dec 2002 JP
2003-006599 Jan 2003 JP
2003-016412 Jan 2003 JP
2003-022912 Jan 2003 JP
2003-026177 Jan 2003 JP
2003-030612 Jan 2003 JP
2003-037861 Feb 2003 JP
2003-44789 Feb 2003 JP
2003-046318 Feb 2003 JP
2003-58840 Feb 2003 JP
2003-067711 Mar 2003 JP
2003-069335 Mar 2003 JP
2003-076947 Mar 2003 JP
2003-76963 Mar 2003 JP
2003-78333 Mar 2003 JP
2003-078336 Mar 2003 JP
2003-085501 Mar 2003 JP
2003-085520 Mar 2003 JP
2003-87008 Mar 2003 JP
2003-87044 Mar 2003 JP
2003-099184 Apr 2003 JP
2003-099720 Apr 2003 JP
2003-099721 Apr 2003 JP
2003-110344 Apr 2003 JP
2003-132330 May 2003 JP
2003-134007 May 2003 JP
2003-155062 May 2003 JP
2003-158414 May 2003 JP
2003-168760 Jun 2003 JP
2003-179565 Jun 2003 JP
2003-187207 Jul 2003 JP
2003-187211 Jul 2003 JP
2003-188338 Jul 2003 JP
2003-188620 Jul 2003 JP
2003-198230 Jul 2003 JP
2003-209421 Jul 2003 JP
2003-216919 Jul 2003 JP
2003-218624 Jul 2003 JP
2003-233780 Aug 2003 JP
2003-242471 Aug 2003 JP
2003-243918 Aug 2003 JP
2003-249813 Sep 2003 JP
2003-529163 Sep 2003 JP
2003-288560 Oct 2003 JP
2003-309418 Oct 2003 JP
2003-317060 Nov 2003 JP
2003-331246 Nov 2003 JP
2003-332820 Nov 2003 JP
2003-536302 Dec 2003 JP
2004-040597 Feb 2004 JP
2004-505481 Feb 2004 JP
2004-082775 Mar 2004 JP
2004-88218 Mar 2004 JP
2004-93693 Mar 2004 JP
2004-096566 Mar 2004 JP
2004-096618 Mar 2004 JP
2004-126750 Apr 2004 JP
2004-127230 Apr 2004 JP
2004-140513 May 2004 JP
2004-145449 May 2004 JP
2004-163134 Jun 2004 JP
2004-213582 Jul 2004 JP
2004-519916 Jul 2004 JP
2004-234595 Aug 2004 JP
2004-253858 Sep 2004 JP
2004-527864 Sep 2004 JP
2004-280390 Oct 2004 JP
2004-282403 Oct 2004 JP
2004-287767 Oct 2004 JP
2004-295297 Oct 2004 JP
2004-297249 Oct 2004 JP
2004-297681 Oct 2004 JP
2004-304370 Oct 2004 JP
2004-319848 Nov 2004 JP
2004-326380 Nov 2004 JP
2004-334268 Nov 2004 JP
2004-336250 Nov 2004 JP
2004-343000 Dec 2004 JP
2004-362190 Dec 2004 JP
2004-362341 Dec 2004 JP
2004-362602 Dec 2004 JP
2005-5866 Jan 2005 JP
2005-18156 Jan 2005 JP
2005-033461 Feb 2005 JP
2005-064799 Mar 2005 JP
2005-124061 May 2005 JP
2005-128592 May 2005 JP
2005-129019 May 2005 JP
2005-134942 May 2005 JP
2005-135132 May 2005 JP
2005-136528 May 2005 JP
2005-137032 May 2005 JP
3653099 May 2005 JP
2005-165839 Jun 2005 JP
2005-167327 Jun 2005 JP
2005-167813 Jun 2005 JP
2005-190417 Jul 2005 JP
2005-191705 Jul 2005 JP
2005-192124 Jul 2005 JP
2005-204038 Jul 2005 JP
2005-210223 Aug 2005 JP
2005-210676 Aug 2005 JP
2005-210680 Aug 2005 JP
2005-217822 Aug 2005 JP
2005-229474 Aug 2005 JP
2005-236339 Sep 2005 JP
2005-244778 Sep 2005 JP
2005-252853 Sep 2005 JP
2005-275870 Oct 2005 JP
2005-277579 Oct 2005 JP
2005-284352 Oct 2005 JP
2005-284455 Oct 2005 JP
2005-293537 Oct 2005 JP
2005-295135 Oct 2005 JP
2005-306696 Nov 2005 JP
2005-311205 Nov 2005 JP
2005-321305 Nov 2005 JP
2005-322119 Nov 2005 JP
2005-335755 Dec 2005 JP
2005-340759 Dec 2005 JP
2005-345802 Dec 2005 JP
2005-346820 Dec 2005 JP
2005-352858 Dec 2005 JP
2006-13976 Jan 2006 JP
2006-013976 Jan 2006 JP
2006-025390 Jan 2006 JP
2006-031766 Feb 2006 JP
2006-033312 Feb 2006 JP
2006-39902 Feb 2006 JP
2006-039947 Feb 2006 JP
2006-42059 Feb 2006 JP
2006-42097 Feb 2006 JP
2006-050200 Feb 2006 JP
2006-053833 Feb 2006 JP
2006-67479 Mar 2006 JP
2006-72706 Mar 2006 JP
2006-074348 Mar 2006 JP
2006-80367 Mar 2006 JP
2006-92630 Apr 2006 JP
2006-102953 Apr 2006 JP
2006-107296 Apr 2006 JP
2006-513594 Apr 2006 JP
2006-148462 Jun 2006 JP
2006-148518 Jun 2006 JP
2006-151402 Jun 2006 JP
2006-174151 Jun 2006 JP
2006-195795 Jul 2006 JP
2006-203187 Aug 2006 JP
2006-203852 Aug 2006 JP
2006-217000 Aug 2006 JP
2006-232292 Sep 2006 JP
2006-237674 Sep 2006 JP
2006-238282 Sep 2006 JP
2006-246372 Sep 2006 JP
2006-270212 Oct 2006 JP
2006-270681 Oct 2006 JP
2006-270766 Oct 2006 JP
2006-285911 Oct 2006 JP
2006-287659 Oct 2006 JP
2006-295879 Oct 2006 JP
2006-302219 Nov 2006 JP
2006-309401 Nov 2006 JP
2006-311239 Nov 2006 JP
2006-323481 Nov 2006 JP
2006-339964 Dec 2006 JP
2007-007888 Jan 2007 JP
2007-13120 Jan 2007 JP
2007-013120 Jan 2007 JP
2007-18067 Jan 2007 JP
2007-019905 Jan 2007 JP
2007-28002 Feb 2007 JP
2007-040702 Feb 2007 JP
2007-043535 Feb 2007 JP
2007-048126 Feb 2007 JP
2007-65822 Mar 2007 JP
2007-79687 Mar 2007 JP
2007-81712 Mar 2007 JP
2007-096655 Apr 2007 JP
2007-096768 Apr 2007 JP
2007-102348 Apr 2007 JP
2007-116347 May 2007 JP
2007-122542 May 2007 JP
2007-149757 Jun 2007 JP
2007-150642 Jun 2007 JP
2007-150868 Jun 2007 JP
2007-159083 Jun 2007 JP
2007-159129 Jun 2007 JP
2007-166133 Jun 2007 JP
3975918 Jun 2007 JP
2007-172369 Jul 2007 JP
2007-172527 Jul 2007 JP
2007-524942 Aug 2007 JP
2007-228254 Sep 2007 JP
2007-228325 Sep 2007 JP
2007-233597 Sep 2007 JP
2007-241789 Sep 2007 JP
2007-266999 Oct 2007 JP
2007-272264 Oct 2007 JP
2007-287128 Nov 2007 JP
2007-295177 Nov 2007 JP
2007-295557 Nov 2007 JP
2007-312350 Nov 2007 JP
2007-324865 Dec 2007 JP
2008-033716 Feb 2008 JP
2008-042910 Feb 2008 JP
2008-72243 Mar 2008 JP
2008-083867 Apr 2008 JP
2008-092131 Apr 2008 JP
2008-097426 Apr 2008 JP
2008-098993 Apr 2008 JP
4069958 Apr 2008 JP
2008-103691 May 2008 JP
2008-107947 May 2008 JP
2008-513888 May 2008 JP
2008-148345 Jun 2008 JP
2008-519347 Jun 2008 JP
2008-160821 Jul 2008 JP
2008-160874 Jul 2008 JP
2008-167190 Jul 2008 JP
2008-197714 Aug 2008 JP
2008-535372 Aug 2008 JP
2008-207875 Sep 2008 JP
2008-211572 Sep 2008 JP
2008-217406 Sep 2008 JP
2008-226099 Sep 2008 JP
2008-252517 Oct 2008 JP
2008-288915 Nov 2008 JP
2008-294491 Dec 2008 JP
2009-017284 Jan 2009 JP
2009-021970 Jan 2009 JP
2009-25870 Feb 2009 JP
2009-27291 Feb 2009 JP
2009-027291 Feb 2009 JP
2009-037413 Feb 2009 JP
2009-044647 Feb 2009 JP
2009-044715 Feb 2009 JP
3148168 Feb 2009 JP
2009-065426 Mar 2009 JP
2009-110144 May 2009 JP
2009-111986 May 2009 JP
2009-135166 Jun 2009 JP
2009-153166 Jul 2009 JP
2009-182630 Aug 2009 JP
2009-213169 Sep 2009 JP
2009-260758 Nov 2009 JP
2009-284182 Dec 2009 JP
2010-009196 Jan 2010 JP
2010-050844 Mar 2010 JP
2010-081571 Apr 2010 JP
4609604 Jan 2011 JP
9100176 Mar 1992 NL
9100347 Mar 1992 NL
9833142 Jul 1998 WO
9967754 Dec 1999 WO
0010122 Feb 2000 WO
0195242 Dec 2001 WO
0248980 Jun 2002 WO
02061675 Aug 2002 WO
02097723 Dec 2002 WO
03079305 Sep 2003 WO
2004036772 Apr 2004 WO
2004070879 Aug 2004 WO
2004072892 Aug 2004 WO
2005073937 Aug 2005 WO
2005091434 Sep 2005 WO
2005115849 Dec 2005 WO
2006045682 May 2006 WO
2006048663 May 2006 WO
2006049068 May 2006 WO
2006114821 Nov 2006 WO
2007083574 Jul 2007 WO
2007083575 Jul 2007 WO
2007086130 Aug 2007 WO
2007094494 Aug 2007 WO
2007097385 Aug 2007 WO
2007102360 Sep 2007 WO
2007105348 Sep 2007 WO
2007119310 Oct 2007 WO
2007125683 Nov 2007 WO
2007132094 Nov 2007 WO
2007138857 Dec 2007 WO
2008007606 Jan 2008 WO
2008081699 Jul 2008 WO
2008126458 Oct 2008 WO
2008133018 Nov 2008 WO
2008140037 Nov 2008 WO
2008142957 Nov 2008 WO
2009008296 Jan 2009 WO
2009011144 Jan 2009 WO
2009011154 Jan 2009 WO
2009011376 Jan 2009 WO
2009011400 Jan 2009 WO
2009011423 Jan 2009 WO
2009048767 Apr 2009 WO
2009081719 Jul 2009 WO
2009110381 Sep 2009 WO
2009119548 Oct 2009 WO
2009128437 Oct 2009 WO
2009140220 Nov 2009 WO
2009142114 Nov 2009 WO
2010026939 Mar 2010 WO
2010050361 May 2010 WO
2010079830 Jul 2010 WO
Non-Patent Literature Citations (180)
Entry
Official Communication issued in International Patent Application No. PCT/JP2010/066291, mailed on Dec. 28, 2010.
Ikemoto: “Communication Terminal and Information Processing System”; U.S. Appl. No. 13/432,002, filed Mar. 28, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/070767, mailed on Feb. 22, 2011.
Ieki et al.: “Transceiver and Radio Frequency Identification Tag Reader”; U.S. Appl. No. 13/437,978, filed Apr. 3, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/065431, mailed on Oct. 18, 2011.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 13/470,486, filed May 14, 2012.
Kato: “Wireless IC Device”; U.S. Appl. No. 12/789,610, filed May 28, 2010.
Kato: “Antenna and RFID Device”; U.S. Appl. No. 13/472,520, filed May 16, 2012.
Kato et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/540,694, filed Jul. 3, 2012.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/567,108, filed Aug. 6, 2012.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/567,109, filed Aug. 6, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/052594, mailed on May 17, 2011.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 13/585,866, filed Aug. 15, 2012.
Kato et al.: “Radio Communication Device and Radio Communication Terminal”; U.S. Appl. No. 13/600,256, filed Aug. 31, 2012.
Murayama et al.: “Wireless Communication Module and Wireless Communication Device”; U.S. Appl. No. 13/598,872, filed Aug. 30, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/069689, mailed on Oct. 4, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-552116, mailed on Apr. 17, 2012.
Tsubaki et al.: “RFID Module and RFID Device”; U.S. Appl. No. 13/603,627, filed Sep. 5, 2012.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/604,807, filed Sep. 6, 2012.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/604,801, filed Sep. 6, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/053656, mailed on May 17, 2011.
Official communication issued in Japanese Application No. 2007-531524, mailed on Sep. 11, 2007.
Official communication issued in Japanese Application No. 2007-531525, mailed on Sep. 25, 2007.
Official communication issued in Japanese Application No. 2007-531524, mailed on Dec. 12, 2007.
Official communication issued in European Application No. 07706650.4, mailed on Nov. 24, 2008.
Mukku-Sha, “Musen IC Tagu Katsuyo-no Subete” “(All About Wireless IC Tags”), RFID, pp. 112-126.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 11/624,382, filed Jan. 18, 2007.
Dokai et al.: “Wireless IC Device, and Component for Wireless IC Device”; U.S. Appl. No. 11/930,818, filed Oct. 31, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/042,399, filed Mar. 5, 2008.
Official communication issued in related U.S. Appl. No. 12/042,399; mailed on Aug. 25, 2008.
Official Communication issued in International Patent Application No. PCT/JP2009/066336, mailed on Dec. 22, 2009.
Official Communication issued in corresponding Japanese Patent Application No. 2010-509439, mailed on Jul. 6, 2010.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Mar. 29, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2009-525327, drafted on Sep. 22, 2010.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Aug. 2, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032312, mailed on Aug. 2, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Aug. 23, 2011.
Kato et al.: “Wireless IC Device Component and Wireless IC Device”; U.S. Appl. No. 13/241,823, filed Sep. 23, 2011.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/272,365, filed Oct. 13, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/056812, mailed on Jul. 13, 2010.
Dokai et al.: “Optical Disc”; U.S. Appl. No. 13/295,153, filed Nov. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/057668, mailed on Aug. 17, 2010.
Osamura et al.: “Radio Frequency IC Device and Method of Manufacturing the Same”; U.S. Appl. No. 13/308,575, filed Dec. 1, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/069417, mailed on Dec. 7, 2010.
Kato: “Wireless IC Device and Coupling Method for Power Feeding Circuit and Radiation Plate”; U.S. Appl. No. 13/325,273, filed Dec. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2011/068110, mailed on Sep. 20, 2011.
Dokai et al.: “Antenna and Wireless Communication Device”; U.S. Appl. No. 13/613,021, filed Sep. 13, 2012.
Takeoka et al.: “Printed Wiring Board and Wireless Communication System”, U.S. Appl. No. 13/616,140, filed Sep. 14, 2012.
Dokai: “Wireless IC Device, Wireless IC Module and Method of Manufacturing Wireless IC Module”; U.S. Appl. No. 13/688,287, filed Nov. 29, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/067127, mailed on Oct. 18, 2011.
Kato et al.: “Wireless Communication Device and Metal Article”; U.S. Appl. No. 13/691,996, filed Dec. 3, 2012.
Yosui: “Antenna Apparatus and Communication Terminal Instrument”; U.S. Appl. No. 13/706,409, filed Dec. 6, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/071795, mailed on Dec. 27, 2011.
English translation of NL9100176, published on Mar. 2, 1992.
English translation of NL9100347, published on Mar. 2, 1992.
Kato et al.: “Antenna”; U.S. Appl. No. 11/928,502, filed Oct. 30, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/211,117, filed Sep. 16, 2008.
Kato et al.: “Antenna”; U.S. Appl. No. 11/688,290, filed Mar. 20, 2007.
Kato et al.: “Electromagnetic-Coupling-Module-Attached Article”; U.S. Appl. No. 11/740,509, filed Apr. 26, 2007.
Kato et al.: “Product Including Power Supply Circuit Board”; U.S. Appl. No. 12/234,949, filed Sep. 22, 2008.
Kato et al.: “Data Coupler”; U.S. Appl. No. 12/252,475, filed Oct. 16, 2008.
Kato et al.; “Information Terminal Device”; U.S. Appl. No. 12/267,666, filed Nov. 10, 2008.
Kato et al.: “Wireless IC Device and Wireless IC Device Composite Component”; U.S. Appl. No. 12/276,444, filed Nov. 24, 2008.
Dokai et al.: “Optical Disc”; U.S. Appl. No. 12/326,916, filed Dec. 3, 2008.
Dokai et al.: “System for Inspecting Electromagnetic Coupling Modules and Radio IC Devices and Method for Manufacturing Electromagnetic Coupling Modules and Radio IC Devices Using the System”; U.S. Appl. No. 12/274,400, filed Nov. 20, 2008.
Kato: “Wireless IC Device”; U.S. Appl. No. 11/964,185, filed Dec. 26, 2007.
Kato et al.: “Radio Frequency IC Device”; U.S. Appl. No. 12/336,629, filed Dec. 17, 2008.
Kato et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 12/339,198, filed Dec. 19, 2008.
Ikemoto et al.: “Wireless IC Device”; U.S. Appl. No. 11/851,651, filed Sep. 7, 2007.
Kataya et al.: “Wireless IC Device and Electronic Device”; U.S. Appl. No. 11/851,661, filed Sep. 7, 2007.
Dokai et al.: “Antenna and Radio IC Device”; U.S. Appl. No. 12/350,307, filed Jan. 8, 2009.
Official Communication issued in International Patent Application No. PCT/JP2010/053496, mailed on Jun. 1, 2010.
Ikemoto: “Wireless IC Tag, Reader-Writer, and Information Processing System”; U.S. Appl. No. 13/329,354, filed Dec. 19, 2011.
Kato et al.: “Antenna and Antenna Module”; U.S. Appl. No. 13/334,462, filed Dec. 22, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/069418, mailed on Feb. 8, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/063082, mailed on Nov. 16, 2010.
Ikemoto: “Communication Terminal and Information Processing System”; U.S. Appl. No. 13/412,772, filed Mar. 6, 2012.
“Antenna Engineering Handbook”, The Institute of Electronics and Communication Engineers, Mar. 5, 1999, pp. 20-21.
Official Communication issued in International Patent Application No. PCT/JP2010/066714, mailed on Dec. 14, 2010.
Nomura et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/419,454, filed Mar. 14, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/070607, mailed on Feb. 15, 2011.
ITO: “Wireless IC Device and Method of Detecting Environmental State Using the Device”; U.S. Appl. No. 13/421,889, filed Mar. 16, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/053654, mailed on Mar. 29, 2011.
Kato et al.: “Antenna Device and Mobile Communication Terminal”; U.S. Appl. No. 13/425,505, filed Mar. 21, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/069416, mailed on Feb. 8, 2011.
Kato et al.: “Wireless Communication Device and Metal Article”; U.S. Appl. No. 13/429,465, filed Mar. 26, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/055344, mailed on Jun. 14, 2011.
Kubo et al.: “Antenna and Mobile Terminal”; U.S. Appl. No. 13/452,972, filed Apr. 23, 2012.
Ikemoto: “RFID System”; U.S. Appl. No. 13/457,525, filed Apr. 27, 2012.
Ikemoto et al.: “Wireless IC Device and Electronic Apparatus”; U.S. Appl. No. 13/468,058, filed May 10, 2012.
Official communication issued in counterpart International Application No. PCT/JP2008/071502, mailed Feb. 24, 2009.
Kato et al.: “Wireless IC Device and Manufacturing Method Thereof,”; U.S. Appl. No. 12/432,854, filed Apr. 30, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/058168, mailed Aug. 12, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/062886, mailed Oct. 21, 2008.
Kato et al.: “Wireless IC Device,”; U.S. Appl. No. 12/469,896, filed May 21, 2009.
Ikemoto et al.: “Wireless IC Device,”; U.S. Appl. No. 12/496,709, filed Jul. 2, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/062947, mailed Aug. 19, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/056026, mailed Jul. 1, 2008.
Ikemoto et al.: “Wireless IC Device and Electronic Apparatus,”; U.S. Appl. No. 12/503,188, filed Jul. 15, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/055567, mailed May 20, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/051853, mailed Apr. 22, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/057239, mailed Jul. 22, 2008.
Kimura et al.: “Wireless IC Device,”; U.S. Appl. No. 12/510,338, filed Jul. 28, 2009.
Kato et al.: “Wireless IC Device,”; U.S. Appl. No. 12/510,340, filed Jul. 28, 2009.
Kato: “Wireless IC Device,”; U.S. Appl. No. 12/510,344, filed Jul. 28, 2009.
Kato et al.: “Wireless IC Device,”; U.S. Appl. No. 12/510,347, filed Jul. 28, 2009.
Official Communication issued in International Patent Application No. PCT/JP2008/063025, mailed on Aug. 12, 2008.
Kato et al.: “Wireless IC Device,”; U.S. Appl. No. 12/603,608, filed Oct. 22, 2009.
Kato et al.: “Wireless IC Device,”; U.S. Appl. No. 12/688,072, filed Jan. 15, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/053693, mailed on Jun. 9, 2009.
Kato: “Composite Antenna,”; U.S. Appl. No. 12/845,846, filed Jul. 29, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/053690, mailed on Jun. 2, 2009.
Kato et al.: “Radio Frequency IC Device and Radio Communication System,”; U.S. Appl. No. 12/859,340, filed Aug. 19, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/055758, mailed on Jun. 23, 2009.
Kato et al.: “Wireless IC Device,”; U.S. Appl. No. 12/859,880, filed Aug. 20, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/057482, mailed on Jul. 21, 2009.
Kataya et al.: “Wireless IC Device, Electronic Apparatus, and Method for Adjusting Resonant Frequency of Wireless IC Device,”; U.S. Appl. No. 12/861,945, filed Aug. 24, 2010.
Kato: “Wireless IC Device and Electromagnetic Coupling Module,”; U.S. Appl. No. 12/890,895, filed Sep. 27, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059410, mailed on Aug. 4, 2009.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/902,174, filed Oct. 12, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059259, mailed on Aug. 11, 2009.
Official Communication issued in corresponding Japanese Patent Application No. 2010-506742, mailed on Apr. 6, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/056698, mailed on Jul. 7, 2009.
Official Communication issued in International Application No. PCT/JP2007/066007, mailed on Nov. 27, 2007.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 12/359,690, filed Jan. 26, 2009.
Dokai et al.: “Test System for Radio Frequency IC Devices and Method of Manufacturing Radio Frequency IC Devices Using the Same”; U.S. Appl. No. 12/388,826, filed Feb. 19, 2009.
Official Communication issued in International Application No. PCT/JP2008/061955, mailed on Sep. 30, 2008.
Official Communication issued in International Application No. PCT/JP2007/066721, mailed on Nov. 27, 2007.
Official Communication issued in International Application No. PCT/JP2007/070460, mailed on Dec. 11, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/390,556, filed Feb. 23, 2009.
Kato et al.: “Inductively Coupled Module and Item With Inductively Coupled Module”; U.S. Appl. No. 12/398,497, filed Mar. 5, 2009.
Official Communication issued in International Patent Application No. PCT/JP2008/050945, mailed on May 1, 2008.
Kato et al.: “Article Having Electromagnetic Coupling Module Attached Thereto”; U.S. Appl. No. 12/401,767, filed Mar. 11, 2009.
Taniguchi et al.: “Antenna Device and Radio Frequency IC Device”; U.S. Appl. No. 12/326,117, filed Dec. 2, 2008.
Official Communication issued in International Patent Application No. PCT/JP2008/061442, mailed on Jul. 22, 2008.
Kato et al.: “Container With Electromagnetic Coupling Module”; U.S. Appl. No. 12/426,369, filed Apr. 20, 2009.
Kato: “Wireless IC Device”; U.S. Appl. No. 12/429,346, filed Apr. 24, 2009.
Official communication issued in counterpart European Application No. 08 77 7758, dated on Jun. 30, 2009.
Official communication issued in counterpart Japanese Application No. 2008-103741, mailed on May 26, 2009.
Official communication issued in counterpart Japanese Application No. 2008-103742, mailed on May 26, 2009.
Official communication issued in International Application No. PCT/JP2008/050358, mailed on Mar. 25, 2008.
Official Communication issued in International Application No. PCT/JP2008/050356, mailed on Mar. 25, 2008.
Osamura et al.: “Packaging Material With Electromagnetic Coupling Module,”; U.S. Appl. No. 12/536,663, filed Aug. 6, 2009.
Osamura et al.: “Packaging Material With Electromagnetic Coupling Module,”; U.S. Appl. No. 12/536,669, filed Aug. 6, 2009.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device,”; U.S. Appl. No. 12/543,553, filed Aug. 19, 2009.
Shioya et al.: “Wireless IC Device,”; U.S. Appl. No. 12/551,037, filed Aug. 31, 2009.
Ikemoto: “Wireless IC Device and Manufacturing Method Thereof,”; U.S. Appl. No. 12/579,672, filed Oct. 15, 2009.
Official communication issued in International Application No. PCT/JP2008/058614, mailed on Jun. 10, 2008.
Official Communication issued in International Patent Application No. PCT/JP2009/069486, mailed on Mar. 2, 2010.
Kato: “Radio IC Device”; U.S. Appl. No. 13/080,775, filed Apr. 6, 2011.
Kato et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/083,626, filed Apr. 11, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/070617, mailed on Mar. 16, 2010.
Nagai, “Mounting Technique of RFID by Roll-To-Roll Process”, Material Stage, Technical Information Institute Co., Ltd, vol. 7, No. 9, 2007, pp. 4-12.
Dokai et al.: “Wireless IC Device”; U.S. Appl. No. 13/088,480, filed Apr. 18, 2011.
Kato et al.: “High-Frequency Device and Wireless IC Device”; U.S. Appl. No. 13/094,928, filed Apr. 27, 2011.
Dokai et al.: “Wireless IC Device”; U.S. Appl. No. 13/099,392, filed May 3, 2011.
Kato et al.: “Radio Frequency IC Device”; U.S. Appl. No. 13/163,803, filed Jun. 20, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/050170, mailed on Apr. 13, 2010.
Official Communication issued in International Patent Application No. PCT/JP2010/051205, mailed on May 11, 2010.
Kato: “Wireless IC Device, Wireless IC Module and Method of Manufacturing Wireless IC Module”; U.S. Appl. No. 13/169,067, filed Jun. 27, 2011.
Kato et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/190,670, filed Jul. 26, 2011.
Shiroki et al.: “RFIC Chip Mounting Structure”; U.S. Appl. No. 13/223,429, filed Sep. 1, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/056559, mailed on Jul. 27, 2010.
Taniguchi et al.: “Antenna Device and Radio Frequency IC Device”; U.S. Appl. No. 13/232,102, filed Sep. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/056934, mailed on Jun. 30, 2009.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/903,242, filed Oct. 13, 2010.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/940,103, filed Nov. 5, 2010.
Kato et al.: “Wireless IC Device System and Method of Determining Authenticity of Wireless IC Device”; U.S. Appl. No. 12/940,105, filed Nov. 5, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059669, mailed on Aug. 25, 2009.
Official Communication issued in International Patent Application No. PCT/JP2009/062181, mailed on Oct. 13, 2009.
Official Communication issued in corresponding Japanese Application No. 2010-501323, mailed on Apr. 6, 2010.
Kato et al.: “Component of Wireless IC Device and Wireless IC Device”; U.S. Appl. No. 12/944,099, filed Nov. 11, 2010.
Kato et al.: Wireless IC Device and Manufacturing Method Thereof; U.S. Appl. No. 12/961,599, filed Dec. 7, 2010.
Kataya et al.: “Radio Frequency IC Device and Electronic Apparatus”; U.S. Appl. No. 12/959,454, filed Dec. 3, 2010.
Ikemoto et al.:“Radio IC Device”; U.S. Appl. No. 12/981,582, filed Dec. 30, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/062801, mailed on Oct. 27, 2009.
Ikemoto et al.: “Wireless IC Device and Electronic Apparatus”; U.S. Appl. No. 13/022,695, filed Feb. 8, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/067778, mailed on Jan. 26, 2010.
Kato: “Wireless IC Device and Method for Manufacturing Same”; U.S. Appl. No. 13/022,693, filed Feb. 8, 2011.
Kato: “Wireless IC Device”; U.S. Appl. No. 13/080,781, filed Apr. 6, 2011.
Related Publications (1)
Number Date Country
20130140369 A1 Jun 2013 US
Continuations (1)
Number Date Country
Parent PCT/JP2011/071795 Sep 2011 US
Child 13738143 US