1. Field of the Invention
The present invention relates to a work transfer apparatus for transferring a plate-shaped work in e.g. a vacuum space.
2. Background of the Art
An example of work transfer apparatus for transferring a plate-shaped work in a vacuum space is disclosed in JP-A-2007-118171. The work transfer apparatus disclosed in the document includes a stationary base, a rotary base rotatably supported by the stationary base, an elevation base supporting the rotary base, a ball screw slide mechanism for moving the elevation base supporting the rotary base in a vertical direction, a link arm mechanism supported by the rotary base, and a hand supported by the link arm mechanism.
The hand and the link arm mechanism are arranged in a vacuum space, whereas most part of the housing of the stationary base is arranged in an atmospheric space below the vacuum space. The stationary base accommodates a motor for rotating the rotary base and driving the link arm mechanism, the ball screw slide mechanism and a driving motor for the ball screw slide mechanism.
In the conventional work transfer apparatus, various kinds of driving motors are accommodated in the stationary base. Accordingly, the stationary base and hence, the transfer apparatus as a whole tend to be rather large.
The present invention has been proposed under the circumstances described above. It is therefore an object of the present invention to provide a work transfer apparatus which is suitable for reducing the overall size and, in particular, downsizing the vertical dimension.
According to a first aspect of the present invention, there is provided a work transfer apparatus that includes: a hand mechanism for reciprocally moving a work; a scissors lift mechanism for supporting the hand mechanism and moving the hand mechanism up and down in a vertical direction; a seat supporting the scissors lift mechanism; and a rotary mechanism for rotating the seat around a vertical axis.
According to a second aspect of the present invention, the hand mechanism includes a hand for holding the work, a slide link mechanism supporting the hand and linearly moving the hand reciprocally, and a slide driver for operating the slide link mechanism. The scissors lift mechanism includes a stage supporting the hand mechanism, at least one scissors link, and a lift driver. The scissors link includes a first and a second cross arms rotatably connected to each other at a crossing point, where the first cross arm includes an upper end that is slidable relative to the stage in a horizontal direction, while also including a lower end connected to the seat rotatably around a first horizontal axis. The second cross arm includes an upper end that is rotatable relative to the stage around a second horizontal axis, while also including a lower end connected to the seat slidably in a horizontal direction. The lift driver is mounted on the seat and configured to cause the lower end of the second cross arm to slide relative to the seat.
According to a third aspect of the present invention, the work transfer apparatus of the second aspect further includes a plurality of pipes arranged between the hand mechanism and the seat, where the pipes are communicably connected to each other and rotatable around a horizontal axis.
According to a fourth aspect of the present invention, the work transfer apparatus of the third aspect further includes a cable accommodated in the pipes and connected to the hand mechanism.
According to a fifth aspect of the present invention, the work transfer apparatus of the third aspect, the scissors link includes a first and a second scissors links provided on the seat in parallel to each other. The pipes include a lower pipe, an upper pipe, and a middle pipe arranged between the upper pipe and the lower pipe, where the upper pipe and the lower pipe are spaced from each other in a horizontal direction. The lower pipe extends from the lower end of the second cross arm of the first scissors link to the crossing point in the first scissors link, the upper pipe extends from the upper end of the second cross arm of the second scissors link to the crossing point in the second scissors link, and the middle pipe is disposed between the crossing points in the first scissors link and the second scissors link and communicably connected to the lower pipe and the upper pipe.
According to a six aspect of the present invention, the work transfer apparatus of the fifth aspect further includes a swivel joint rotatable around a third horizontal axis, where the swivel joint is connected to one of the lower pipe and the upper pipe and to the middle pipe.
According to a seventh aspect of the present invention, the work transfer apparatus of the sixth aspect further includes a through pipe provided at the seat, where the through pipe is arranged to communicate with the lower pipe via the lower end of the first cross arm of the first scissors link.
According to an eighth aspect of the present invention, the work transfer apparatus of the seventh aspect further includes first, second, third and fourth joints. The first joint and the second joint are provided at the lower end and the crossing point, respectively, of the first cross arm of the first scissors link, and the third joint and the fourth joint are provided at the crossing point and the upper end, respectively, of the second cross arm of the second scissors link. The lower end of the lower pipe is communicably connected to the through pipe directly or indirectly via the first joint, and the upper end of the lower pipe is communicably connected to the middle pipe via the second joint. The lower end of the upper pipe is communicably connected to the middle pipe via the third joint, and the upper end of the upper pipe is communicably connected to the hand mechanism directly or indirectly via the fourth joint.
According to a ninth aspect of the present invention, in the work transfer apparatus of the eighth aspect, at least one of the second joint and the third joint is a swivel joint rotatable around the third horizontal axis.
According to a tenth aspect of the present invention, the work transfer apparatus of the fifth aspect further includes a through pipe provided at the seat. The lower end of the lower pipe is communicably connected to the through pipe directly or indirectly via the lower end of the first cross arm of the first scissors link to be rotatable around the first horizontal axis, and the upper end of the lower pipe is communicably connected to the middle pipe via the crossing point of the first cross arm of the first scissors link to be rotatable around a third horizontal axis. The lower end of the upper pipe is communicably connected to the middle pipe via the crossing point of the second cross arm of the second scissors link to be rotatable around the third horizontal axis, and the upper end of the upper pipe is communicably connected to the hand mechanism directly or indirectly via the upper end of the second cross arm of the second scissors link to be rotatable around the second horizontal axis.
According to an eleventh aspect of the present invention, the work transfer apparatus of the tenth aspect further includes a cable connected to the hand mechanism and another cable connected to the lift driver, where these cables are accommodated in the through pipe.
According to a twelfth aspect of the present invention, in the work transfer apparatus of the fifth aspect, the lower pipe, the middle pipe and the upper pipe are hermetically sealed.
According to a thirteenth aspect of the present invention, in the work transfer apparatus of the fifth aspect, each of the lower pipe, the middle pipe and the upper pipe includes a portion using an elastic member.
According to a fourteenth aspect of the present invention, in the work transfer apparatus of the third aspect, the pipes include an upper pipe and a lower pipe. The lower pipe is connected directly or indirectly to the seat to be rotatable around the first horizontal axis, the upper pipe is connected directly or indirectly to the hand mechanism to be rotatable around the second horizontal axis, and the upper pipe and the lower pipe are communicably connected to each other directly or indirectly to be rotatable around a third horizontal axis.
According to a fifteenth aspect of the present invention, the work transfer apparatus of the fourteenth aspect further includes: a swivel joint rotatable around the first horizontal axis and provided at a connection portion of the lower pipe with respect to the seat; a swivel joint rotatable around the second horizontal axis and provided at a connection portion of the upper pipe with respect to the hand mechanism; and a swivel joint rotatable around the third horizontal axis and provided at a communicable connection portion between the lower pipe and the upper pipe.
According to a sixteenth aspect of the present invention, in the work transfer apparatus of the fifteenth aspect, the first horizontal axis, the second horizontal axis and the third horizontal axis extend in parallel to each other, and the third horizontal axis is constantly positioned on a same side of a straight line connecting the first horizontal axis and the second horizontal axis to each other when viewed in a direction in which the first, the second and the third horizontal axes extend.
According to a seventeenth aspect of the present invention, in the work transfer apparatus of the sixteenth aspect, a distance between the first horizontal axis and the third horizontal axis is equal to a distance between the second horizontal axis and the third horizontal axis, and the first horizontal axis and the second horizontal axis are spaced vertically from each other.
According to an eighteenth aspect of the present invention, in the work transfer apparatus of the seventeenth aspect, the upper pipe and the lower pipe are arranged to provide a bending form.
According to a nineteenth aspect of the present invention, the work transfer apparatus of the fourteenth aspect further includes a through pipe provided at the seat, where the lower pipe is communicably connected to the through pipe directly or indirectly to be rotatable around the first horizontal axis.
According to, a twentieth aspect of the present invention, the work transfer apparatus of the nineteenth aspect further includes a cable accommodated in the through pipe and connected to the hand mechanism.
Other features and advantages of the present invention will become more apparent from detailed description given below with reference to the accompanying drawings.
Preferred embodiments of the present invention are described below with reference to the accompanying drawings.
The bottom unit 1 accommodates a rotary mechanism for rotating the seat 2 around a vertical axis. The rotary mechanism includes, for example, a rotation driving motor and a sun-and-planet gear mechanism cooperating with the driving motor. The rotary mechanism includes a rotation shaft 10 which may be hollow and connected to the bottom of the seat 2 (see
The seat 2 supports the scissors lift mechanism 4. The seat 2 is provided with a through pipe 3. The lower end of the through pipe 3 extends through the hollow portion of the rotation shaft 10 into the bottom unit 1. The upper end of the through pipe 3 is connected to the lower pipe 7 via a bottom joint pipe 30 (see
The scissors lift mechanism 4 supports the hand mechanism 8 and moves the hand mechanism 8 as a whole up and down in the vertical direction. The scissors lift mechanism 4 includes a stage 40 on which the hand mechanism 8 is mounted, a first and a second scissors links 41, 42, and a lift driving motor 43. The first scissors link 41 includes a pair of cross arms 410 and 411 crossing each other at their center so as to be rotatable around a third horizontal axis S3. Likewise, the second scissors link 42 includes a pair of cross arms 420 and 421 crossing each other at their center as to be rotatable around the third horizontal axis S3. The first and the second scissors links 41 and 42 are arranged on opposite sides of the stage 40 in parallel to each other. The respective lower ends of the cross arms (first cross arms) 411 and 421, which extend in parallel to each other, are connected to the seat 2 to be rotatable around a first horizontal axis S1. The respective upper ends of the other two cross arms (second cross arms) 410 and 420 are connected to the stage 40 to be rotatable around a second horizontal axis S2. The first horizontal axis S1, the second horizontal axis S2 and the third horizontal axis S3 extend in parallel to each other. During the operation of the scissors lift mechanism 4, the second horizontal axis S2 and the third horizontal axis S3 move up and down in the vertical direction.
At the rear end of the upper surface of the seat 2, a pair of brackets 21 and bearings are provided for connecting the lower ends of the cross arms 411 and 421 to be rotatable around the first horizontal axis S1. Between the two brackets 21, a motor box 22 accommodating the lift driving motor 43 in a hermetically sealed state is provided. At the front end of the upper surface of the seat 2, a pair of ball screw shafts 23, a nut block 24, a pair of slide rails 25 and a pair of linear blocks 26 are provided, for connecting the lower ends of the cross arms 410 and 420 to be slidable back and forth in the horizontal direction. When the ball screw shafts 23 are rotated by the lift driving motor 43, the nut block 24 screwed to the ball screw shafts 23 slides back and forth. The respective lower ends of the cross arms 410 and 420 are rotatably connected to the opposite ends of the nut block 24. The lower ends of the cross arms 410, 420 are supported by the slide rails 25 via the linear blocks 26.
As illustrated in
The upper pipe 5 is provided on the outer side of the cross arm 420 to extend from the upper end to the crossing point of the cross arm 420. The middle pipe 6 extends to bridge between the crossing point of the cross arms 410, 411 and the crossing point of the cross arms 420, 421. As illustrated in
The hand mechanism 8 is fixed to the upper surface of the stage 40. At the rear end of the lower surface of the stage 40, a pair of brackets 40A and bearings are provided for connecting the upper ends of the cross arms 410 and 420 to be rotatable around the second horizontal axis S2. At the front end of the lower surface of the stage 40, a pair of slide rails 40B and a pair of linear guides 40C are provided for connecting the upper ends of the cross arms 411 and 421 to be slidable back and forth in the horizontal direction. Connection pipes 40E, 40F, 40G and a through connection pipe 40H are provided on the lower surface of the stage 40 in a region between the rear end and the center. One and of the connection pipe 40E is communicably connected to the upper end of the upper pipe 5 via a swivel joint J4 provided to penetrate the upper end of the cross arm 420 and the bracket 40A. The swivel joint J4, a fourth joint, is rotatable around the second horizontal axis S2. The other end of the connection pipe 40E is communicably connected to one end of the connection pipe 40F via an L-shaped joint J5 provided to penetrate the upper end of the cross arm 410 and the bracket 40A. The other end of the connection pipe 40F is communicably connected to one end of the connection pipe 40G via an L-shaped joint J6. The other end of the connection pipe 40G is communicably connected to the lower end of the through connection pipe 40H, which penetrates the center of the stage 40, via an L-shaped joint J7. The upper end of the through connection pipe 40H is connected to an appropriate portion (e.g. to an upper box 82 to be described later) of the hand mechanism 8.
The through pipe 3, the bottom joint pipe 30, the upper pipe 5, the middle pipe 6, the lower pipe 7, the connection pipes 40E, 40F, 40G and the through connection pipe 40H constitute a continuous conduit extending from the inside of the bottom unit 1 to the hand mechanism 8. The conduit is hermetically sealed to maintain atmospheric pressure in the conduit. In the conduit are provided power cables for supplying electric power to a slide driving motor of the hand mechanism 8, which will be described later, and to the lift driving motor 43. The conduit further accommodates a refrigerant circulation pipe for cooling appropriate portions of the hand mechanism 8. With this arrangement, the power cables and the refrigerant circulation pipe are laid to extend from within the bottom unit 1 to the motor box 22 or the hand mechanism 8, without being exposed to the vacuum space. The refrigerant may be a gas such as dry air or a liquid such as water. In the illustrated example, the conduit between the upper pipe 5 and the hand mechanism 8 is made up of the connection pipes 40E, 40F, 40G and the through connection pipe 40H, though the present invention is not limited to this. Since the positional relationship between the upper end of the upper pipe 5 and the hand mechanism 8 does not change even when the scissors lift mechanism 4 moves, the upper end of the upper pipe 5 and the hand mechanism 8 may be connected via a pipe, for example.
The hand mechanism 8 includes two hands 80 for holding a work, two slide link mechanism 81 for individually moving the two hands 80 straight back and forth in the horizontal direction, slide driving motors for driving the slide link mechanisms 81, and the hermetically sealed upper box 82 accommodating the slide driving motors. Two slide driving motors may be provided in the upper box 82 for individually driving the two slide link mechanism 81. The upper box 82 is fixed to the center of the upper surface of the stage 40. The through connection pipe 40H is hermetically connected to the bottom of the upper box 82. In the upper box 82 and around the slide link mechanisms 81, a refrigerant circulation path is provided, which is connected to the refrigerant circulation pipe extending from the through connection pipe 90H. With such a refrigerant circulation path provided, the interior of the slide link mechanisms 81 and the upper box 82, heated by the radiant heat from a high-temperature work during the transferring operation, are efficiently cooled. As a result, deformation by thermal expansion and deterioration of transfer accuracy can be prevented.
The workings of the work transfer apparatus A1 will be described below.
In transferring a work in a vacuum space, the hand mechanism 8 holding the work is operated to move in the horizontal direction, and the scissors lift mechanism 9 is operated to move the hand mechanism 8 up and down in the vertical direction. The rotary mechanism accommodated in the bottom unit 1 collectively rotates the hand mechanism 8 and the scissors lift mechanism 4. By these operations, the work is transferred from a predetermined position to a desired position in the three dimensional space.
As illustrated in
In accordance with the sliding movement of the lower ends of the cross arms 410 and 420, the upper ends of the cross arms 410 and 420 rotate around the second horizontal axis S2. The lower ends of the other two cross arms 411 and 421 rotate around the first horizontal axis S1, so that the upper ends of the cross arms 411 and 421 slide along the slide rails 40B. As a result, the stage 40 moves up and down in the vertical direction while keeping the horizontal posture.
Referring to
Due to the above-noted structure of the scissors lift mechanism 4, there is a gap in the height direction between the seat 2 and the stage 40, even when the stage 40 is moved to the lowest position by the scissors lift mechanism 4. The motor box 22 is arranged in the gap, so that the space on the seat 2 is put to efficient use.
The height of the motor box 22 depends on the size of the lift driving motor 43, for example. It is possible that the motor box 22 cannot be properly accommodated in the gap present when the stage 40 is at the lowest position. In such an instance, if the stage 40 is moved to the lowest position by the scissors lift mechanism 4, the motor box 22 may come into undesired contact with the stage 40 or the connection pipes 40E, 40G. To prevent this, the movement of the scissors lift mechanism 4 in the height direction may be limited so that the contact between the motor box 22 and the stage 40 or the connection pipes 40E, 40G does not occur. Alternatively, an additional, contact prevention means may be used, or the motor box 22 may be disposed at a position that can avoid the contact with the stage 40 or the connection pipes 40E, 40G. In the latter case, the seat 2 (the area of its upper surface) may need to be increased in size. The use of an intervening gear box provided between the lift driving motor 43 and the ball screw shafts 23 may allow greater flexibility in deciding the installation position of the motor box 22.
When the scissors lift mechanism 4 operates, the positional relationship between the upper pipe 5, the middle pipe 6, the lower pipe 7 and the connection pipe 40E changes. Since the upper pipe 5, the middle pipe 6, the lower pipe 7 and the connection pipe 40E are communicably and rotatably connected to each other via the hermetically sealed swivel joints J1, J3, J4 and L-shaped joint J2, the inner power cables and the refrigerant circulation pipe do not become disordered. Thus, even when the rotary mechanism operates, the power cable and the refrigerant circulation pipe do not get tangled or unduly bent.
In the work transfer apparatus A1, the work transferring mechanism is provided by the hand mechanism 8, the scissors lift mechanism 4 and the rotary mechanism, among which only the rotary mechanism is arranged under the seat 2. Thus, the bottom unit 1 for accommodating the rotary mechanism can be small in height, and hence the work transfer apparatus A1 as a whole can be compact.
The power cable and the refrigerant circulation pipe are guided from the bottom unit 1 to the hand mechanism 8 in a conduit-accommodated condition. Thus, the power cable and the refrigerant circulation pipe do not hinder the operation of the scissors lift mechanism 4 or the rotary mechanism.
In the scissors lift mechanism 4, a temperature difference may arise between the upper portion and the lower portion, which may lead to thermal deformation of the cross arms 410, 411, 420, 421. To prevent this, as shown in
The hand mechanism to be mounted on the scissors lift mechanism may have a structure as illustrated in
As illustrated in
The upper pipe 5 is arranged on the outer side of the scissors lift mechanism 4, and its upper end is communicably connected to the upper pox 82 on the stage 40 via a swivel joint J4. The upper end of the upper pipe 5 is rotatable around a second horizontal axis S2′ due to the swivel joint J4. The lower end of the upper pipe 5 is communicably connected to the upper end of the lower pipe 7 via a swivel joint J3 arranged on the outer side of the scissors lift mechanism 4. The lower end of the upper pipe 5 is also rotatable around a third horizontal S3′ by the swivel joint J3.
The lower pipe 7 is arranged on the outer side of the scissors lift mechanism 4 so as to be at a position farther from the scissors lift mechanism 4 than the upper pipe 5 is. The lower end of the lower pipe 7 is communicably connected to the bottom joint pipe 30 via a swivel joint J1. The lower end of the lower pipe 7 is rotatable around a first horizontal axis S1′ due to the swivel joint J1. The upper end of the lower pipe 7 is connected to the lower end of the upper pipe 5 via the swivel joint J3. Thus, the upper pipe 5 and the lower pipe 7 are rotatable relative to each other around the third horizontal axis S3′ due to the swivel joint J3 disposed at the communicable connection point of the two pipes. The first horizontal axis S1′, the second horizontal axis S2′ and the third horizontal axis S3′ extend in parallel to each other. During the operation of the scissors lift mechanism 4, the first horizontal axis S1′ does not move relative to the seat 2, whereas the second horizontal axis S2′ and the third horizontal axis S3′ move up and down in the vertical direction.
When the scissors lift mechanism 4 is viewed in the direction normal to
With the above-described geometric relationship, when the scissors lift mechanism 4 is operated to move from the highest position to the lowest position, the third horizontal axis S3′ is moved only on the same side of the vertical line L and never passes through the dead point on the vertical line L. In accordance with the up-and-down movement of the scissors lift mechanism 4, the upper pipe 5 and the lower pipe 7 smoothly rotate in mutually opposite directions around the third horizontal axis S3′. Also, when the scissors lift mechanism 4 moves to the highest position or the lowest position, the third horizontal axis S3′ does not move upwards beyond the stage 90 or downwards beyond the seat 2. Likewise, the upper pipe 5 and the lower pipe 7 do not extend above the stage 40 or below the seat 2. Thus, as the scissors lift mechanism 4 performs up- or down-movement, the upper pipe 5 and the lower pipe 7 can rotate properly within as small a range of motion as possible.
The through pipe 3, the bottom joint pipe 30, the upper pipe 5 and the lower pipe 7 constitute a continuous conduit extending from the inside of the bottom unit 1 to the upper box 82 of the hand mechanism 8. The conduit is hermetically sealed to maintain atmospheric pressure in the conduit. Similarly to the foregoing embodiment, the conduit accommodates a power cable for supplying electric power to the slide driving motor of the hand mechanism 8 and a refrigerant circulation pipe for cooling appropriate portions of the hand mechanism 8.
In the work transfer apparatus A9, when the scissors lift mechanism 4 moves up and down in the vertical direction, the upper pipe 5 and the lower pipe 7 rotate in accordance with the up-and-down movement of the stage 40. The upper pipe 5 and the lower pipe 7 are communicably and rotatably connected to each other via the hermetically sealed swivel joint J3. Thus, the power cable and the refrigerant circulation pipe arranged in the pipes do not bend or twist unduly.
As illustrated in
As illustrated in
With the above-noted arrangement and shape of the upper pipe 5 and the lower pipe 7, when the scissors lift mechanism 4 moves vertically between the highest position and the lowest position, the upper pipe 5 and the lower pipe 7 rotate smoothly in the opposite directions around the swivel joint J3 between the stage 40 and the seat 2. In this process, the swivel joint J3 and the upper and lower pipes 5 and 7, which are rotatable around the third horizontal axis S3′, can move within the smallest range possible without hindrance, without coming into contact with the other members on the seat 2.
The through pipe 3, the upper pipe 5, the lower pipe and the through connection pipe 40H constitute a continuous conduit extending from the inside of the bottom unit 1 to the upper box 82 of the hand mechanism 8. The conduit is hermetically sealed to maintain atmospheric pressure in the conduit. Similarly to the foregoing embodiments, the conduit accommodates a power cable for supplying electric power to the slide driving motor of the hand mechanism 8 and also a refrigerant circulation pipe for cooling appropriate portions of the hand mechanism 8.
In the work transfer apparatus A5, when the scissors lift mechanism 4 moves up and down in the vertical direction, the upper pipe 5 and the lower pipe 7 rotate in accordance with the up-and-down movement of the stage 40. The upper pipe 5 and the lower pipe 7 are communicably connected to each other via the hermetically sealed swivel joint J3 to be rotatable around the third horizontal axis S3′. Thus, the accommodated power cable and refrigerant circulation pipe do not unduly bend or twist.
According to the work transfer apparatus A5 described above, it is possible to arrange the power cable and the refrigerant circulation pipe properly, and also to make compact the apparatus as a whole by arranging pipes in the space between the stage 40 and the seat 2.
The present invention is not limited to the foregoing embodiments.
In the foregoing embodiments, swivel joints are used for elements J1, J3, J4 and non-rotatable L-shaped joints are used for elements J2, J5. The present invention, however, is not limited to this. For instance, in the work transfer apparatus A1 of
In the work transfer apparatus A6 of
The work transfer apparatuses A4-A6 illustrated in
The cross arms 410 and 411 of the first scissors link 41 or the cross arms 420 and 421 of the second scissors link 42 cross each other at the middle of their length. Alternatively, two cross arms may be arranged to cross each other at a position longitudinally offset from the middle toward the upper or lower end of the respective arms.
In the work transfer apparatuses A4-A6 of
As a variation of the work transfer apparatuses A4-A6 of
The straight line connecting the first horizontal axis S1′ and the second horizontal axis S2′ may be inclined relative to the vertical line L. In such an instance, the third horizontal axis S3′ illustrated in
The positions of the first horizontal axis S1′ and the second horizontal axis S2′ are not limited to those illustrated in
The upper and the lower ends of each of the upper pipe 5 and the lower pipe 7 may be structured similarly to a swivel joint. In this instance, the lower end of the upper pipe 5 and the upper end of the lower pipe 7 can be connected directly, i.e., without using a swivel joint, to the opposite ends of the middle pipe 6 in a rotatable manner around the third horizontal axis S3.
The work transfer apparatuses A1-A6 of the present invention are also applicable to conditions under which no cooling function is required. In this case, it is not necessary to arrange a refrigerant circulation pipe in the conduit.
Number | Date | Country | Kind |
---|---|---|---|
2008-311705 | Dec 2008 | JP | national |
2009-179339 | Jul 2009 | JP | national |