The present invention relates to the field of composite materials. More specifically, the present invention relates to the formation of composite materials from low-temperature bonding of inorganic material to organic material.
While composite materials have a variety of different applications, all of which are within the scope of the present invention, they may be particularly useful in the production of body armor, such as bullet-proof vests.
Currently, body armor is formed by bonding two types of armor together. A meltable plate is bonded to a hard plate via melting in an autoclave. However, the resulting armor is limited in both its hardness and its ductility.
What is needed in the art is a way to improve the hardness and the ductility of body armor. In a broader sense, what is needed is a new way of combining inorganic tiles with organic fibers to form a composite material.
While the present invention is particularly useful in forming body armor, it is contemplated that it may have a variety of other applications as well, all of which are within the scope of the present invention.
In one aspect of the present invention, a method of making a composite material is provided. The method comprises providing a tile, wherein the tile comprises an inorganic material, and bonding the tile to a ductile backing material using heat-curable adhering material and catalyzed foamable exothermic material between the tile and the ductile backing material. Heat generated from the use of the catalyzed foamable exothermic material cures the heat-curable adhering material.
In some embodiments, the step of bonding comprises wetting an interior surface of the tile with the heat-curable adhering material, wetting an interior surface of the ductile backing material with the heat-curable adhering material, and forming an interior volume between the tile and the ductile backing material, wherein the interior surface of the tile and the interior surface of the ductile backing material are facing one another, and wherein the interior surface of the tile and the interior surface of the ductile backing material each form a boundary of the interior volume. The catalyzed foamable exothermic material is inserted into the interior volume after wetting the interior surfaces of the tile and the ductile backing material with the heat-curable adhering material. An amount of catalyzed foamable exothermic material is used that is sufficient to fill the entire interior volume when foamed and form a solid foam body between the tile and the ductile backing material. The exotherm from the foaming is allowed to activate and cure the heat-curable adhering material for a time sufficient to unite the solid foam body to the heat-curable adhering material of the tile and the ductile backing material.
In some embodiments, the step of forming the interior volume comprises sealing the interior volume to a degree sufficient to allow the catalyzed foamable exothermic material to expand and build up interior pressure within the interior volume, thereby creating physical pressurized contact between the catalyzed foamable exothermic material and the heat-curable adhering material of each of the tile and the ductile backing material.
In some embodiments, the adhering material is resin. In some embodiments, the heat generated during the bonding step does not exceed ¼ of the melting point temperature of the tile.
In some embodiments, the tile comprises sintered nano-powder. In some embodiments, the tile comprises spark plasma sintered nano-powder. In some embodiments, the sintered nano-powder comprises ceramic nano-powder. In some embodiments, the ceramic nano-powder comprises boron carbide. In some embodiments, the sintered nano-powder comprises ceramic nano-powder and metallic nano-powder.
In some embodiments, the tile comprises sintered powder. The powder comprises particles having a ceramic core with a metallic outer layer. In some embodiments, the metallic outer layer comprises at least one of copper, tantalum, titanium, molybdenum, and aluminum.
In some embodiments, the ductile backing material comprises a plurality of fibers. In some embodiments, the ductile backing material comprises a plurality of polyethylene fibers.
In another aspect of the present invention, a method of making a composite material is provided. The method comprises providing a plurality of nano-particles, forming a tile from the plurality of nano-particles by performing a spark plasma sintering process on the plurality of nano-particles, and bonding the tile to a ductile backing material using heat-curable adhering material and catalyzed foamable exothermic material between the tile and the ductile backing material, wherein heat generated from the use of the catalyzed foamable exothermic material cures the heat-curable adhering material.
In some embodiments, the step of providing the plurality of nano-particles comprises applying a plasma stream to a precursor powder, thereby vaporizing the precursor powder and condensing the vaporized powder, thereby forming the plurality of nano-particles.
In some embodiments, the plurality of nano-particles comprises ceramic material. In some embodiments, the ceramic material is boron carbide.
In some embodiments, the plurality of nano-particles comprises ceramic material and metallic material. In some embodiments, the metallic material comprises at least one of copper, tantalum, titanium, molybdenum, and aluminum.
In some embodiments, the step of bonding comprises wetting an interior surface of the tile with the heat-curable adhering material, wetting an interior surface of the ductile backing material with the heat-curable adhering material, and forming an interior volume between the tile and the ductile backing material, wherein the interior surface of the tile and the interior surface of the ductile backing material are facing one another, and wherein the interior surface of the tile and the interior surface of the ductile backing material each form a boundary of the interior volume. The catalyzed foamable exothermic material is inserted into the interior volume after wetting the interior surfaces of the tile and the ductile backing material with the heat-curable adhering material, wherein an amount of catalyzed foamable exothermic material is used that is sufficient to fill the entire interior volume when foamed and form a solid foam body between the tile and the ductile backing material. The exotherm from the foaming is allowed to activate and cure the heat-curable adhering material for a time sufficient to unite the solid foam body to the heat-curable adhering material of the tile and the ductile backing material.
In some embodiments, the step of forming the interior volume comprises sealing the interior volume to a degree sufficient to allow the catalyzed foamable exothermic material to expand and build up interior pressure within the interior volume, thereby creating physical pressurized contact between the catalyzed foamable exothermic material and the heat-curable adhering material of each of the tile and the ductile backing material.
In some embodiments, the adhering material is resin. In some embodiments, the heat generated during the bonding step does not exceed ¼ of the melting point temperature of the nano-particles that form the tile.
In some embodiments, the ductile backing material comprises a plurality of fibers. In some embodiments, the ductile backing material comprises a plurality of polyethylene fibers.
In yet another aspect of the present invention, a composite material is provided. The composite material comprises a tile comprising inorganic material and a ductile backing material. The tile and the ductile backing material are bonded together via foam material and cured adhering material.
In some embodiments, tile has an interior surface with cured adhering material disposed thereon, the ductile backing material has an interior surface with cured adhering material disposed thereon, and the foam material is disposed in between and in contact with the cured adhering material on the interior surface of the tile and the cured adhering material on the interior surface of the ductile backing material.
In some embodiments, the tile comprises sintered nano-particles that have retained their nanoscale properties. In some embodiments, the plurality of nano particles comprises ceramic material. In some embodiments, the ceramic material is boron carbide. In some embodiments, the plurality of nano-particles comprises ceramic material and metallic material. In some embodiments, the metallic material comprises at least one of copper, tantalum, titanium, molybdenum, and aluminum.
In some embodiments, the adhering material is resin. In some embodiments, the ductile backing material comprises a plurality of fibers. In some embodiments, the ductile backing material comprises a plurality of polyethylene fibers.
The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the described embodiments will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
This disclosure refers to both particles and powders. These two terms are equivalent, except for the caveat that a singular “powder” refers to a collection of particles. The present invention may apply to a wide variety of powders and particles. Powders that fall within the scope of the present invention may include, but are not limited to, any of the following: (a) nano-structured powders (nano-powders), having an average grain size less than 250 nanometers and an aspect ratio between one and one million; (b) submicron powders, having an average grain size less than 1 micron and an aspect ratio between one and one million; (c) ultra-fine powders, having an average grain size less than 100 microns and an aspect ratio between one and one million; and (d) fine powders, having an average grain size less than 500 microns and an aspect ratio between one and one million.
At step 110, a plurality of particles are provided. In a preferred embodiment, the particles include ceramic particles. For example, the plurality of particles can include boron carbide particles. The plurality of particles can also include metallic particles in addition or as an alternative to the ceramic particles. Such metallic particles include, but are not limited to, copper, tantalum, titanium, molybdenum, and aluminum. It is contemplated that other types of particles can be used as well. In some embodiments, each particle in the plurality of particles comprises a ceramic core surrounded by a metallic outer layer. The ceramic core maintains the toughness of the resulting tile, while the metallic outer layer makes the tile more ductile, thereby reducing the likelihood of fracture. In some embodiments, these particles having the ceramic core and the metallic outer layer are micron-sized.
In a preferred embodiment, the particles are provided as nano-particles. However, it is contemplated that other particle sizes can be employed. It is contemplated that the nano-scale structure of the particles can be achieved in a variety of ways. In a preferred embodiment, a plurality of precursor particles are vaporized in the hottest region of a plasma gun. The vaporized particles are then subjected to rapid quenching, causing them to condense. As a result of this vaporization and condensation, nano-sized particles are formed.
Examples of particle production systems employing plasma reactors to produce nano-sized particles are disclosed in U.S. patent application Ser. No. 12/151,935, filed on May 8, 2008 and entitled, “HIGHLY TURBULENT QUENCH CHAMBER”, the entirety of which is hereby incorporated by reference as if set forth herein. One such particle production system 300 is presented in
Generally, the plasma production chamber 330 operates as a reactor, producing an output comprising particles within a gas stream. Particle production includes the steps of combination, reaction, and conditioning. Working gas is supplied from a gas source to a plasma reactor. Within the plasma reactor, energy is delivered to the working gas, thereby creating a plasma. A variety of different means can be employed to deliver this energy, including, but not limited to, DC coupling, capacitive coupling, inductive coupling, and resonant coupling. One or more material dispensing devices introduce at least one material, preferably in powder form, into the plasma reactor. The combination within the plasma reactor of the plasma and the material(s) introduced by the material dispensing device(s) forms a highly reactive and energetic mixture, wherein the powder can be vaporized. This mixture of vaporized powder moves through the plasma reactor in the flow direction of the working gas. As it moves, the mixture cools and particles are formed therein. The still-energetic output mixture, comprising hot gas and energetic particles, is emitted from the plasma reactor.
In an exemplary embodiment, the plasma production chamber 330 combines precursor material (preferably in powder form) supplied from the precursor supply device 310 and working gas supplied from the working gas supply device 320 within the energy delivery zone 335, where the working gas is energized to form a plasma. The plasma is applied to the precursor material within the energy delivery zone 335 to form an energized, reactive mixture. This mixture comprises one or more materials in at least one of a plurality of phases, which may include vapor, gas, and plasma.
The reactive mixture flows from the energy delivery zone 335 into the constricting quench chamber 345 through the injection port 340. As the hot mixture moves from the energy delivery zone 335, it expands rapidly within the quench chamber 345 and cools. While the mixture flows into the quench chamber 345, the ports 390 supply conditioning fluid along the inner surfaces of the quench chamber 345. The conditioning fluid combines, at least to some extent, with the mixture, and flows from the quench chamber 345 through the ejection port 365.
During a period immediately after entering the quench chamber 345, particle formation occurs. Furthermore, the supply of conditioning fluid along the inner surfaces of the quench chamber 345 works to condition the reactive mixture, to maintain entrainment of the particles therein, and to prevent the depositing of material on the inner surfaces of the quench chamber 345.
Still referring to
Substantial heat is emitted, mostly in the form of radiation, from the mixture following its entry into the quench chamber 345. The quench chamber 345 is preferably designed to dissipate this heat efficiently. For example, the surfaces of the quench chamber 345 are preferably exposed to a cooling apparatus (not shown).
Still referring to
The frusto-conical shape of the quench chamber 345 can provide a modest amount of turbulence within the quench region, thereby promoting the mixing of the conditioning fluid with the reactive mixture, and increasing the quenching rate beyond prior art systems. However, in some situations, an even greater increase in quenching rate may be desired. Such an increase in quenching rate can be achieved by creating a highly turbulent flow within a region of a quench chamber where the conditioning fluid is mixed with the reactive mixture.
Generally, the chamber 430 operates as a reactor, similar to chamber 330 in
The quench chamber 445 preferably comprises a substantially cylindrical surface 450, a frusto-conical surface 455, and an annular surface 460 connecting the injection port 440 with the cylindrical surface 450. The frusto-conical surface 460 narrows to meet the outlet 465. The plasma production and reactor chamber 430 includes an extended portion at the end of which the injection port 440 is disposed. This extended portion shortens the distance between the injection port 440 and the outlet 465, reducing the volume of region in which the reactive mixture and the conditioning fluid will mix, referred to as the quench region. In a preferred embodiment, the injection port 440 is arranged coaxially with the outlet 465. The center of the injection port is positioned a first distance d1 from the outlet 465. The perimeter of the injection port is positioned a second distance d2 from a portion of the frusto-conical surface 455. The injection port 440 and the frusto-conical surface 455 form the aforementioned quench region therebetween. The space between the perimeter of the injection port 440 and the frusto-conical surface 455 forms a gap therebetween that acts as a channel for supplying conditioning fluid into the quench region. The frusto-conical surface 455 acts as a funneling surface, channeling fluid through the gap and into the quench region.
While the reactive mixture flows into the quench chamber 445, the ports 490 supply conditioning fluid into the quench chamber 445. The conditioning fluid then moves along the frusto-conical surface 455, through the gap between the injection port 440 and the frusto-conical surface 455, and into the quench region. In some embodiments, the controlled atmosphere system 470 is configured to control the volume flow rate or mass flow rate of the conditioning fluid supplied to the quench region.
As the reactive mixture moves out of the injection port 440, it expands and mixes with the conditioning fluid. Preferably, the angle at which the conditioning fluid is supplied produces a high degree of turbulence and promotes mixing with the reactive mixture. This turbulence can depend on many parameters. In a preferred embodiment, one or more of these parameters is adjustable to control the level of turbulence. These factors include the flow rates of the conditioning fluid, the temperature of the frusto-conical surface 455, the angle of the frusto-conical surface 455 (which affects the angle at which the conditioning fluid is supplied into the quench region), and the size of the quench region. For example, the relative positioning of the frusto-conical surface 455 and the injection port 440 is adjustable, which can be used to adjust the volume of quench region. These adjustments can be made in a variety of different ways, using a variety of different mechanisms, including, but not limited to, automated means and manual means.
During a brief period immediately after entering the quench chamber 445, particle formation occurs. The degree to which the particles agglomerate depends on the rate of cooling. The cooling rate depends on the turbulence of the flow within the quench region. Preferably, the system is adjusted to form a highly turbulent flow, and to form very dispersed particles. For example, in preferred embodiments, the turbidity of the flow within the quench region is such that the flow has a Reynolds Number of at least 1000.
Still referring to
Substantial heat is emitted, mostly in the form of radiation, from the reactive mixture following its entry into the quench chamber 445. The quench chamber 445 is designed to dissipate this heat efficiently. The surfaces of the quench chamber 245 are preferably exposed to a cooling system (not shown). In a preferred embodiment, the cooling system is configured to control a temperature of the frusto-conical surface 455.
Following injection into the quench region, cooling, and particle formation, the mixture flows from the quench chamber 445 through the outlet port 465. Suction generated by a generator 495 moves the mixture and conditioning fluid from the quench region into the conduit 492. From the outlet port 465, the mixture flows along the conduit 492, toward the suction generator 495. Preferably, the particles are removed from the mixture by a collection or sampling system (not shown) prior to encountering the suction generator 495.
Still referring to
The angle of the frusto-conical surface affects the angle at which the conditioning fluid is supplied into the quench region, which can affect the level of turbulence in the quench region. The conditioning fluid preferably flows into the quench region along a plurality of momentum vectors. The greater the degree of the angle between the momentum vectors, the higher the level of turbulence that will be produced. In a preferred embodiment, the high turbulent quench chamber comprises a frusto-conical surface that is configured to funnel at least two conditioning fluid momentum vectors into the quench region such that there is at least a 90 degree angle between the two momentum vectors. It is contemplated that other angle degree thresholds may be applied as well. For example, attention may also be paid to the angle formed between at least one of the conditioning fluid momentum vectors and the momentum vector of the reactive mixture. In one embodiment of a highly turbulent quench chamber, a reactive mixture inlet is configured to supply the reactive mixture into the quench region along a first momentum vector, the frusto-conical surface is configured to supply the conditioning fluid to the quench region along a second momentum vector, and the second momentum vector has an oblique angle greater than 20 degrees relative to the first momentum vector.
The size of the quench region also affects the level of turbulence in the quench region. The smaller the quench region, the higher the level of turbulence that will be produced. The size of the quench region can be reduced by reducing the distance between the center of the injection port 440 and the outlet 465.
The high turbulence produced by the embodiments of the present invention decreases the period during which particles formed can agglomerate with one another, thereby producing particles of more uniform size, and in some instances, producing smaller-sized particles. Both of these features lead to particles with increased dispersibility and increased ratio of surface area to volume.
Referring back to the method 100 in
At step 120, a tile is formed from the plurality of particles. It is contemplated that this formation can be achieved in a variety of ways. In some embodiments, the tile is formed by performing a sintering process on the plurality of particles. When using nano-particles to form the tile, maintaining the nano-scale properties of the particles during formation may be difficult. For example, performing a standard sintering process on a plurality of nano-particles will typically result in an undesirable amount of melting of the nano-particles due to the high-temperature of the standard sintering process, thereby leading to nano-particles uniting with nearby nano-particles to a degree that they form particles that are larger than nano-particles. Therefore, in order to maintain the nano-scale properties of the particles within the formed tile, some embodiments employ spark plasma sintering (also known as field assisted sintering technique) on the plurality of particles to form the tile. Spark plasma sintering uses axial pressure and elevated temperature that are generated by a current flow. The energy released by the current raises the temperature in the graphite dies enclosing the powder and within powders that have some electrical conductivity. The heat is generated internally, in contrast to conventional hot pressing, where the heat is provided by external heating elements. The spark plasma sintering process is very fast, thereby ensuring it has the potential of densifying powders with nanosize or nanostructure, while avoiding coarsening which accompanies standard densification routes. Spark plasma sintering provides significant advantages by lowering the required sintering temperature and shortening its duration.
At step 130, the tile is bonded to a ductile backing material using heat-curable adhering material and catalyzed foamable exothermic material between the tile and the ductile backing material. Such a bonding process is described in U.S. Pat. No. 6,117,376 to Merkel, entitled “Method of Making Foam-Filled Composite Products,” the entirety of which is hereby incorporated by reference as if set forth herein. Merkel discloses a method for making foam-filled parts having fiber-reinforced skins or surfaces. Mold halves of pressure-resisting thermally insulative material are covered with a release material, which is then covered with the fiber skins. The fiber skins are coated with heat-curable resin, and the mold halves are then clamped together to form a cavity. A catalyzed foam-forming mixture is poured into the cavity. The mixture foams and expands to the full volume of the cavity. While the mixture hardens, it generates heat sufficient to cure the resin.
In some embodiments, the concave inner surfaces of the mold halves are covered with a commercial Teflon™ sheet having an adhesive backing. This material adheres to the mold face through numerous replications of parts and freely releases from polymers that are cured in direct contact with its surface. This approach also has the advantage of avoiding contamination of the resin surface with the release agent, such as wax-based materials. Dry (i.e., unimpregnated) fiber-reinforced skin material is laid in to cover the inner surfaces of the mold halves. The fiber skins can be in loosely woven sheet or strip form, having sufficient cross weave fibers to permit easy handling without separating. The fibers are then thoroughly wetted or impregnated in place with an uncured resin, such as an epoxy resin from West, sold as system resin with 205 or 206 hardener. The hardener is a thermally activated catalyst that requires a long term curing at ambient temperature, although it acts quickly above a threshold, so that it remains wet until the proper time in the ensuing process. The resin system causes the fiber reinforcement to adhere tightly to the inner surfaces of the mold halves, despite the Teflon™ covering. With the two mold halves prepared in this manner, they can be placed together. With side flanges being in intimate contact, an interior cavity is defined between the concave inner surfaces of the mold halves, and C-clamps are then placed about the periphery of the flanges and tightened. The clamped mold halves thus form what may be regarded as a pressure vessel. In addition, a malleable seal is placed across one end of the mold cavity.
When the two mold halves are clamped together in opposition, the C-clamps are tightened sufficiently on the flanges to prevent leakage of foam material out the sides. The mold cavity is thus sealed on three sides, and can be placed in a substantially vertical position so that a premixed foamable liquid can be poured in immediately after preparation. This mix may be of the type such as Polytech 20/08-, and will include the proper amount of catalyst for the volume of resin and the cavity. This material expands to about 40 times its original volume. The foamable liquid mix rapidly begins to expand and build up interior pressure within the mold cavity after being poured. The reaction is strongly exothermic, and heats the foam to in excess of 300 degrees F. as it expands under significant local pressure everywhere in the mold cavity. The heat is conducted into the skin layers throughout. A property of this mixture, however, is that the expansion is self-limiting, in that while significant pressure is generated during expansion, total expansion is limited by the rapid hardening characteristic of the material. Consequently, while the predetermined volume of mix is such that material foams out of the top of the mold cavity, and may even leak through the malleable seal to a limited extent, the interior of the mold cavity is uniformly pressurized and there are no voids. The heat generated by the exotherm raises the temperature of the wet resin matrix at the skin above the curing level. A high temperature level is also maintained for many more minutes by the insulative characteristic of the mold halves. The close physical, pressurized contact between the foam and the skin resin system not only cures the skins into true fiber-reinforced composites, but assures chemical adherence at the interface between the foam and the skin on all surfaces. Typically, after one to two hours, the C-clamps are released and the mold halves are readily separated from the formed composite.
While any of the features of U.S. Pat. No. 6,117,376 to Merkel can be used in the bonding process of the present invention, it is contemplated that certain modifications can be made in order to bond an inorganic tile to a ductile backing material, which is not disclosed in Merkel. For example, in some embodiments, fiber skins may be required on only one of the mold halves or on one side of the composite (e.g., acting as the ductile backing material). Additionally, in some embodiments, the resin (or other heat curable adhering material) may be required on only one of the mold halves or on one side of the composite. Furthermore, in some embodiments, separable mold halves may not be required. In some embodiments, all that is required is that an interior volume between the tile and the ductile backing material be sealed to a degree sufficient to allow the catalyzed foamable exothermic material to expand and build up interior pressure within the interior volume, thereby creating physical pressurized contact between the catalyzed foamable exothermic material and the heat-curable adhering material of each of the tile and the ductile backing material. Other modifications are within the scope of the present invention as well.
The interior surface of the tile 210 is wetted with a heat-curable adhering material 215. The interior surface of the ductile backing material 220 is also wetted with a heat-curable adhering material 225. In some embodiments, heat-curable adhering material 215 and heat-curable adhering material 225 are the same material. In some embodiments, the adhering material is resin.
An interior volume 230 is formed between the tile 210 and the ductile backing material 220, with the interior surface of the tile 210 and the interior surface of the ductile backing material 220 facing one another. The interior surface of the tile 210 and the interior surface of the ductile backing material 220 each form a boundary of the interior volume 230. The tile 210 and the ductile backing material 220 can be secured in this position using mold halves and/or clamps, and/or other securing and sealing means. For the purposes of this disclosure, the interior volume 230 does not extend into any area that is not disposed between the tile 210 and the ductile backing material 220.
A catalyzed foamable exothermic material, such as that used in U.S. Pat. No. 6,117,376 to Merkel, is inserted into the interior volume after wetting the interior surfaces of the tile 210 and the ductile backing material 220 with the heat-curable adhering material. An amount of catalyzed foamable exothermic material is used that is sufficient to fill (in some cases, overfill) the entire interior volume when foamed and form a solid foam body between the tile 210 and the ductile backing material 220. The exotherm from the foaming is allowed to activate and cure the heat-curable adhering material 215, 225 for a time sufficient to unite the solid foam body to the heat-curable adhering material 215, 225 of the tile 210 and the ductile backing material 220.
The use of the catalyzed foamable exothermic material and heat-curable adhering material provides a significant advantage over the use of an autoclave, which is the standard way of bonding a meltable plate to a hard plate. An autoclave process is too hot, resulting in the loss of the nanoscale properties of the tile 210. Typically, the maximum temperature of the bonding process is half the melting point temperature of the particles of the tile 210. However, when the tile 210 is formed from nano-particles, the maximum temperature of the bonding process is preferably one-quarter of the melting point temperature of the particles of the tile 210. Using the exotherm from the foamable material instead of the heat from an autoclave allows the temperature of the bonding process to be sufficiently minimized and the tile 210 to retain its nano-properties.
It is noted that while
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be readily apparent to one skilled in the art that other various modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention as defined by the claims.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/284,329, filed Dec. 15, 2009 and entitled “MATERIALS PROCESSING,” which is hereby incorporated herein by reference in its entirety as if set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
2284554 | Beyerstedt | May 1942 | A |
2419042 | Todd | Apr 1947 | A |
2519531 | Worn | Aug 1950 | A |
2562753 | Trost | Jul 1951 | A |
2689780 | Rice | Sep 1954 | A |
3001402 | Koblin | Sep 1961 | A |
3067025 | Chisholm | Dec 1962 | A |
3145287 | Siebein et al. | Aug 1964 | A |
3178121 | Wallace, Jr. | Apr 1965 | A |
3179782 | Matvay | Apr 1965 | A |
3313908 | Unger et al. | Apr 1967 | A |
3401465 | Larwill | Sep 1968 | A |
3450926 | Kiernan | Jun 1969 | A |
3457788 | Miyajima | Jul 1969 | A |
3537513 | Austin | Nov 1970 | A |
3741001 | Fletcher et al. | Jun 1973 | A |
3752172 | Cohen et al. | Aug 1973 | A |
3774442 | Gustavsson | Nov 1973 | A |
3830756 | Sanchez et al. | Aug 1974 | A |
3871448 | Vann et al. | Mar 1975 | A |
3892882 | Guest et al. | Jul 1975 | A |
3914573 | Muehlberger | Oct 1975 | A |
3959420 | Geddes et al. | May 1976 | A |
3969482 | Teller | Jul 1976 | A |
4008620 | Narato et al. | Feb 1977 | A |
4018388 | Andrews | Apr 1977 | A |
4139497 | Castor et al. | Feb 1979 | A |
4157316 | Thompson et al. | Jun 1979 | A |
4171288 | Keith et al. | Oct 1979 | A |
4174298 | Antos | Nov 1979 | A |
4227928 | Wang | Oct 1980 | A |
4248387 | Andrews | Feb 1981 | A |
4253917 | Wang | Mar 1981 | A |
4284609 | deVries | Aug 1981 | A |
4369167 | Weir | Jan 1983 | A |
4388274 | Rourke et al. | Jun 1983 | A |
4431750 | McGinnis et al. | Feb 1984 | A |
4436075 | Campbell et al. | Mar 1984 | A |
4458138 | Adrian et al. | Jul 1984 | A |
4459327 | Wang | Jul 1984 | A |
4505945 | Dubust et al. | Mar 1985 | A |
4513149 | Gray et al. | Apr 1985 | A |
4731517 | Cheney | Mar 1988 | A |
4764283 | Ashbrook et al. | Aug 1988 | A |
4765805 | Wahl et al. | Aug 1988 | A |
4824624 | Palicka et al. | Apr 1989 | A |
4855505 | Koll | Aug 1989 | A |
4866240 | Webber | Sep 1989 | A |
4885038 | Anderson et al. | Dec 1989 | A |
4983555 | Roy et al. | Jan 1991 | A |
4987033 | Abkowitz et al. | Jan 1991 | A |
5015863 | Takeshima et al. | May 1991 | A |
5041713 | Weidman | Aug 1991 | A |
5043548 | Whitney et al. | Aug 1991 | A |
5070064 | Hsu et al. | Dec 1991 | A |
5073193 | Chaklader et al. | Dec 1991 | A |
5157007 | Domesle et al. | Oct 1992 | A |
5230844 | Macaire et al. | Jul 1993 | A |
5338716 | Triplett et al. | Aug 1994 | A |
5369241 | Taylor et al. | Nov 1994 | A |
5371049 | Moffett et al. | Dec 1994 | A |
5372629 | Anderson et al. | Dec 1994 | A |
5392797 | Welch | Feb 1995 | A |
5439865 | Abe et al. | Aug 1995 | A |
5442153 | Marantz et al. | Aug 1995 | A |
5460701 | Parker et al. | Oct 1995 | A |
5464458 | Yamamoto | Nov 1995 | A |
5485941 | Guyomard et al. | Jan 1996 | A |
5534149 | Birkenbeil et al. | Jul 1996 | A |
5553507 | Basch et al. | Sep 1996 | A |
5562966 | Clarke et al. | Oct 1996 | A |
5582807 | Liao et al. | Dec 1996 | A |
5611896 | Swanepoel et al. | Mar 1997 | A |
5630322 | Heilmann et al. | May 1997 | A |
5652304 | Calderon et al. | Jul 1997 | A |
5726414 | Kitahashi et al. | Mar 1998 | A |
5749938 | Coombs | May 1998 | A |
5776359 | Schultz et al. | Jul 1998 | A |
5788738 | Pirzada et al. | Aug 1998 | A |
5811187 | Anderson et al. | Sep 1998 | A |
5837959 | Muehlberger et al. | Nov 1998 | A |
5851507 | Pirzada et al. | Dec 1998 | A |
5853815 | Muehlberger | Dec 1998 | A |
5905000 | Yadav et al. | May 1999 | A |
5935293 | Detering et al. | Aug 1999 | A |
5989648 | Phillips | Nov 1999 | A |
5993967 | Brotzman, Jr. et al. | Nov 1999 | A |
5993988 | Ohara et al. | Nov 1999 | A |
6012647 | Ruta et al. | Jan 2000 | A |
6033781 | Brotzman, Jr. et al. | Mar 2000 | A |
6045765 | Nakatsuji et al. | Apr 2000 | A |
6059853 | Coombs | May 2000 | A |
6102106 | Manning et al. | Aug 2000 | A |
6117376 | Merkel | Sep 2000 | A |
6213049 | Yang | Apr 2001 | B1 |
6214195 | Yadav et al. | Apr 2001 | B1 |
6228904 | Yadav et al. | May 2001 | B1 |
6254940 | Pratsinis et al. | Jul 2001 | B1 |
6261484 | Phillips et al. | Jul 2001 | B1 |
6267864 | Yadav et al. | Jul 2001 | B1 |
6322756 | Arno et al. | Nov 2001 | B1 |
6342465 | Klein et al. | Jan 2002 | B1 |
6344271 | Yadav et al. | Feb 2002 | B1 |
6379419 | Celik et al. | Apr 2002 | B1 |
6387560 | Yadav et al. | May 2002 | B1 |
6395214 | Kear et al. | May 2002 | B1 |
6398843 | Tarrant | Jun 2002 | B1 |
6409851 | Sethuram et al. | Jun 2002 | B1 |
6413781 | Geis et al. | Jul 2002 | B1 |
6416818 | Aikens et al. | Jul 2002 | B1 |
RE37853 | Detering et al. | Sep 2002 | E |
6444009 | Liu et al. | Sep 2002 | B1 |
6475951 | Domesle et al. | Nov 2002 | B1 |
6517800 | Cheng et al. | Feb 2003 | B1 |
6524662 | Jang et al. | Feb 2003 | B2 |
6531704 | Yadav et al. | Mar 2003 | B2 |
6548445 | Buysch et al. | Apr 2003 | B1 |
6554609 | Yadav et al. | Apr 2003 | B2 |
6562304 | Mizrahi | May 2003 | B1 |
6562495 | Yadav et al. | May 2003 | B2 |
6569397 | Yadav et al. | May 2003 | B1 |
6569518 | Yadav et al. | May 2003 | B2 |
6572672 | Yadav et al. | Jun 2003 | B2 |
6579446 | Teran et al. | Jun 2003 | B1 |
6596187 | Coll et al. | Jul 2003 | B2 |
6603038 | Hagemeyer et al. | Aug 2003 | B1 |
6607821 | Yadav et al. | Aug 2003 | B2 |
6610355 | Yadav et al. | Aug 2003 | B2 |
6623559 | Huang | Sep 2003 | B2 |
6635357 | Moxson et al. | Oct 2003 | B2 |
6641775 | Vigliotti et al. | Nov 2003 | B2 |
6652822 | Phillips et al. | Nov 2003 | B2 |
6652967 | Yadav et al. | Nov 2003 | B2 |
6669823 | Sarkas et al. | Dec 2003 | B1 |
6682002 | Kyotani | Jan 2004 | B2 |
6689192 | Phillips et al. | Feb 2004 | B1 |
6699398 | Kim | Mar 2004 | B1 |
6706097 | Zornes | Mar 2004 | B2 |
6706660 | Park | Mar 2004 | B2 |
6710207 | Bogan, Jr. et al. | Mar 2004 | B2 |
6713176 | Yadav et al. | Mar 2004 | B2 |
6716525 | Yadav et al. | Apr 2004 | B1 |
6746791 | Yadav et al. | Jun 2004 | B2 |
6772584 | Chun et al. | Aug 2004 | B2 |
6786950 | Yadav et al. | Sep 2004 | B2 |
6813931 | Yadav et al. | Nov 2004 | B2 |
6817388 | Tsangaris et al. | Nov 2004 | B2 |
6832735 | Yadav et al. | Dec 2004 | B2 |
6838072 | Kong et al. | Jan 2005 | B1 |
6841509 | Hwang et al. | Jan 2005 | B1 |
6855410 | Buckley | Feb 2005 | B2 |
6855426 | Yadav | Feb 2005 | B2 |
6855749 | Yadav et al. | Feb 2005 | B1 |
6886545 | Holm | May 2005 | B1 |
6896958 | Cayton et al. | May 2005 | B1 |
6902699 | Fritzemeier et al. | Jun 2005 | B2 |
6916872 | Yadav et al. | Jul 2005 | B2 |
6919527 | Boulos et al. | Jul 2005 | B2 |
6933331 | Yadav et al. | Aug 2005 | B2 |
6972115 | Ballard | Dec 2005 | B1 |
6986877 | Takikawa et al. | Jan 2006 | B2 |
6994837 | Boulos et al. | Feb 2006 | B2 |
7007872 | Yadav et al. | Mar 2006 | B2 |
7022305 | Drumm et al. | Apr 2006 | B2 |
7052777 | Brotzman, Jr. et al. | May 2006 | B2 |
7073559 | O'Larey et al. | Jul 2006 | B2 |
7081267 | Yadav | Jul 2006 | B2 |
7101819 | Rosenflanz et al. | Sep 2006 | B2 |
7147544 | Rosenflanz | Dec 2006 | B2 |
7147894 | Zhou et al. | Dec 2006 | B2 |
7166198 | Van Der Walt et al. | Jan 2007 | B2 |
7166663 | Cayton et al. | Jan 2007 | B2 |
7172649 | Conrad et al. | Feb 2007 | B2 |
7172790 | Koulik et al. | Feb 2007 | B2 |
7178747 | Yadav et al. | Feb 2007 | B2 |
7208126 | Musick et al. | Apr 2007 | B2 |
7211236 | Stark et al. | May 2007 | B2 |
7217407 | Zhang | May 2007 | B2 |
7220398 | Sutorik et al. | May 2007 | B2 |
7265076 | Taguchi et al. | Sep 2007 | B2 |
7307195 | Polverejan et al. | Dec 2007 | B2 |
7323655 | Kim | Jan 2008 | B2 |
7384447 | Kodas et al. | Jun 2008 | B2 |
7417008 | Richards et al. | Aug 2008 | B2 |
7494527 | Jurewicz et al. | Feb 2009 | B2 |
7541012 | Yeung et al. | Jun 2009 | B2 |
7541310 | Espinoza et al. | Jun 2009 | B2 |
7572315 | Boulos et al. | Aug 2009 | B2 |
7611686 | Alekseeva et al. | Nov 2009 | B2 |
7615097 | McKechnie et al. | Nov 2009 | B2 |
7618919 | Shimazu et al. | Nov 2009 | B2 |
7622693 | Foret | Nov 2009 | B2 |
7632775 | Zhou et al. | Dec 2009 | B2 |
7678419 | Kevwitch et al. | Mar 2010 | B2 |
7709411 | Zhou et al. | May 2010 | B2 |
7803210 | Sekine et al. | Sep 2010 | B2 |
7851405 | Wakamatsu et al. | Dec 2010 | B2 |
7874239 | Howland | Jan 2011 | B2 |
7897127 | Layman et al. | Mar 2011 | B2 |
7905942 | Layman | Mar 2011 | B1 |
8051724 | Layman et al. | Nov 2011 | B1 |
8076258 | Biberger | Dec 2011 | B1 |
8080494 | Yasuda et al. | Dec 2011 | B2 |
8142619 | Layman et al. | Mar 2012 | B2 |
20010042802 | Youds | Nov 2001 | A1 |
20020018815 | Sievers et al. | Feb 2002 | A1 |
20020068026 | Murrell et al. | Jun 2002 | A1 |
20020079620 | DuBuis et al. | Jun 2002 | A1 |
20020100751 | Carr | Aug 2002 | A1 |
20020102674 | Anderson | Aug 2002 | A1 |
20020131914 | Sung | Sep 2002 | A1 |
20020143417 | Ito et al. | Oct 2002 | A1 |
20020182735 | Kibby et al. | Dec 2002 | A1 |
20020183191 | Faber et al. | Dec 2002 | A1 |
20020192129 | Shamouilian et al. | Dec 2002 | A1 |
20030036786 | Duren et al. | Feb 2003 | A1 |
20030042232 | Shimazu | Mar 2003 | A1 |
20030066800 | Saim et al. | Apr 2003 | A1 |
20030108459 | Wu et al. | Jun 2003 | A1 |
20030110931 | Aghajanian et al. | Jun 2003 | A1 |
20030139288 | Cai et al. | Jul 2003 | A1 |
20030143153 | Boulos et al. | Jul 2003 | A1 |
20030172772 | Sethuram et al. | Sep 2003 | A1 |
20030223546 | McGregor et al. | Dec 2003 | A1 |
20040009118 | Phillips et al. | Jan 2004 | A1 |
20040023302 | Archibald et al. | Feb 2004 | A1 |
20040023453 | Xu et al. | Feb 2004 | A1 |
20040077494 | LaBarge et al. | Apr 2004 | A1 |
20040103751 | Joseph et al. | Jun 2004 | A1 |
20040119064 | Narayan et al. | Jun 2004 | A1 |
20040127586 | Jin et al. | Jul 2004 | A1 |
20040167009 | Kuntz et al. | Aug 2004 | A1 |
20040176246 | Shirk et al. | Sep 2004 | A1 |
20040208805 | Fincke et al. | Oct 2004 | A1 |
20040213998 | Hearley et al. | Oct 2004 | A1 |
20040238345 | Koulik et al. | Dec 2004 | A1 |
20040251017 | Pillion et al. | Dec 2004 | A1 |
20040251241 | Blutke et al. | Dec 2004 | A1 |
20050000321 | O'Larey et al. | Jan 2005 | A1 |
20050000950 | Schroder et al. | Jan 2005 | A1 |
20050066805 | Park et al. | Mar 2005 | A1 |
20050077034 | King | Apr 2005 | A1 |
20050097988 | Kodas et al. | May 2005 | A1 |
20050106865 | Chung et al. | May 2005 | A1 |
20050163673 | Johnson et al. | Jul 2005 | A1 |
20050199739 | Kuroda et al. | Sep 2005 | A1 |
20050220695 | Abatzoglou et al. | Oct 2005 | A1 |
20050227864 | Sutorik et al. | Oct 2005 | A1 |
20050233380 | Persiri et al. | Oct 2005 | A1 |
20050240069 | Polverejan et al. | Oct 2005 | A1 |
20050258766 | Kim | Nov 2005 | A1 |
20050275143 | Toth | Dec 2005 | A1 |
20060051505 | Kortshagen et al. | Mar 2006 | A1 |
20060068989 | Ninomiya et al. | Mar 2006 | A1 |
20060094595 | Labarge | May 2006 | A1 |
20060096393 | Pesiri | May 2006 | A1 |
20060105910 | Zhou et al. | May 2006 | A1 |
20060108332 | Belashchenko | May 2006 | A1 |
20060153728 | Schoenung et al. | Jul 2006 | A1 |
20060153765 | Pham-Huu et al. | Jul 2006 | A1 |
20060159596 | De La Veaux et al. | Jul 2006 | A1 |
20060166809 | Malek et al. | Jul 2006 | A1 |
20060222780 | Gurevich et al. | Oct 2006 | A1 |
20060231525 | Asakawa et al. | Oct 2006 | A1 |
20070048206 | Hung et al. | Mar 2007 | A1 |
20070049484 | Kear et al. | Mar 2007 | A1 |
20070063364 | Hsiao et al. | Mar 2007 | A1 |
20070084308 | Nakamura et al. | Apr 2007 | A1 |
20070084834 | Hanus et al. | Apr 2007 | A1 |
20070087934 | Martens et al. | Apr 2007 | A1 |
20070163385 | Takahashi et al. | Jul 2007 | A1 |
20070173403 | Koike et al. | Jul 2007 | A1 |
20070178673 | Gole et al. | Aug 2007 | A1 |
20070253874 | Foret | Nov 2007 | A1 |
20070292321 | Plischke et al. | Dec 2007 | A1 |
20080006954 | Yubuta et al. | Jan 2008 | A1 |
20080031806 | Gavenonis et al. | Feb 2008 | A1 |
20080038578 | Li | Feb 2008 | A1 |
20080064769 | Sato et al. | Mar 2008 | A1 |
20080105083 | Nakamura et al. | May 2008 | A1 |
20080116178 | Weidman | May 2008 | A1 |
20080125308 | Fujdala et al. | May 2008 | A1 |
20080138651 | Doi et al. | Jun 2008 | A1 |
20080175936 | Tokita et al. | Jul 2008 | A1 |
20080187714 | Wakamatsu et al. | Aug 2008 | A1 |
20080206562 | Stucky et al. | Aug 2008 | A1 |
20080207858 | Kowaleski et al. | Aug 2008 | A1 |
20080274344 | Vieth et al. | Nov 2008 | A1 |
20080277092 | Layman et al. | Nov 2008 | A1 |
20080277266 | Layman | Nov 2008 | A1 |
20080277267 | Biberger et al. | Nov 2008 | A1 |
20080277268 | Layman | Nov 2008 | A1 |
20080277269 | Layman et al. | Nov 2008 | A1 |
20080277270 | Biberger et al. | Nov 2008 | A1 |
20080277271 | Layman | Nov 2008 | A1 |
20080280049 | Kevwitch et al. | Nov 2008 | A1 |
20080280751 | Harutyunyan et al. | Nov 2008 | A1 |
20080280756 | Biberger | Nov 2008 | A1 |
20090010801 | Murphy et al. | Jan 2009 | A1 |
20090054230 | Veeraraghavan et al. | Feb 2009 | A1 |
20090088585 | Schammel et al. | Apr 2009 | A1 |
20090114568 | Trevino et al. | May 2009 | A1 |
20090162991 | Beneyton et al. | Jun 2009 | A1 |
20090168506 | Han et al. | Jul 2009 | A1 |
20090170242 | Lin et al. | Jul 2009 | A1 |
20090181474 | Nagai | Jul 2009 | A1 |
20090200180 | Capote et al. | Aug 2009 | A1 |
20090253037 | Park et al. | Oct 2009 | A1 |
20090274903 | Addiego | Nov 2009 | A1 |
20090286899 | Hofmann et al. | Nov 2009 | A1 |
20100089002 | Merkel | Apr 2010 | A1 |
20100275781 | Tsangaris | Nov 2010 | A1 |
20110006463 | Layman | Jan 2011 | A1 |
20110143041 | Layman et al. | Jun 2011 | A1 |
20110143915 | Yin et al. | Jun 2011 | A1 |
20110143916 | Leamon | Jun 2011 | A1 |
20110143926 | Yin et al. | Jun 2011 | A1 |
20110143930 | Yin et al. | Jun 2011 | A1 |
20110143933 | Yin et al. | Jun 2011 | A1 |
20110144382 | Yin et al. | Jun 2011 | A1 |
20110152550 | Grey et al. | Jun 2011 | A1 |
20110158871 | Arnold et al. | Jun 2011 | A1 |
20110174604 | Duesel et al. | Jul 2011 | A1 |
20110247336 | Farsad et al. | Oct 2011 | A9 |
20120045373 | Biberger | Feb 2012 | A1 |
20120171098 | Hung et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
56-146804 | Nov 1981 | JP |
61-086815 | May 1986 | JP |
63-214342 | Sep 1988 | JP |
05-228361 | Sep 1993 | JP |
05-324094 | Dec 1993 | JP |
H6-065772 | Sep 1994 | JP |
7031873 | Feb 1995 | JP |
07-256116 | Oct 1995 | JP |
11-502760 | Mar 1999 | JP |
2000-220978 | Aug 2000 | JP |
2004-233007 | Aug 2004 | JP |
2004-249206 | Sep 2004 | JP |
2004-290730 | Oct 2004 | JP |
2005-503250 | Feb 2005 | JP |
2005-122621 | May 2005 | JP |
2005-218937 | Aug 2005 | JP |
2005-342615 | Dec 2005 | JP |
2006-001779 | Jan 2006 | JP |
2006-508885 | Mar 2006 | JP |
2006-247446 | Sep 2006 | JP |
2006-260385 | Sep 2006 | JP |
493241 | Mar 1976 | SU |
201023207 | Jun 2010 | TW |
WO-9628577 | Sep 1996 | WO |
WO 02092503 | Nov 2002 | WO |
WO 2004052778 | Jun 2004 | WO |
WO 2006079213 | Aug 2006 | WO |
WO-2008130451 | Oct 2008 | WO |
WO 2008130451 | Oct 2008 | WO |
WO-2008130451 | Oct 2008 | WO |
WO-2011081833 | Jul 2011 | WO |
Entry |
---|
Derwent English Abstract for publication No. SU 193241 A, Application No. 1973SU1943286 filed on Jul. 2, 1973, published on Mar. 1, 1976, entitled “Catalyst for Ammonia Synthesis Contains Oxides of Aluminium, Potassium, Calcium, Iron and Nickel Oxide for Increased Activity,” 3 pgs. |
A. Gutsch et al., “Gas-Phase Production of Nanoparticles”, Kona No. 20, 2002, pp. 24-37. |
Dr. Heike Mühlenweg et al., “Gas-Phase Reactions—Open Up New Roads to Nanoproducts”, Degussa ScienceNewsletter No. 08, 2004, pp. 12-16. |
Coating Generation: Vaporization of Particles in Plasma Spraying and Splat Formation, M. Vardelle, A. Vardelle,K-I li P. Fauchais, Universite de Limoges, 123 Avenue A. Thomas 87000, Limoges, F. , Pure & Chem, vol. 68, No. 5, pp. 1093-1099, 1996. |
H. Konrad et al., “Nanostructured Cu—Bi Alloys Prepared by Co-Evaporation in a Continuous Gas Flow,” NanoStructured Materials, vol. 7, No. 6, 1996, pp. 605-610. |
Kenvin et al. “Supported Catalysts Prepared from Mononuclear Copper Complexes: Catalytic Properties”, Journal of Catalysis, pp. 81-91,(1992). |
J. Heberlein, “New Approaches in Thermal Plasma Technology”, Pure Appl. Chem., vol. 74, No. 3, 2002, pp. 327-335. |
M. Vardelle et al., “Experimental Investigation of Powder Vaporization in Thermal Plasma Jets,” Plasma Chemistry and Plasma Processing, vol. 11, No. 2, Jun. 1991, pp. 185-201. |
National Aeronautics and Space Administration, “Enthalpy”, http://www.grc.nasa.gov/WWW/K-12/airplane/enthalpy.html, Nov. 23, 2009, 1 page. |
P. Fauchais et al., “Plasma Spray: Study of the Coating Generation,” Ceramics International, Elsevier, Amsterdam, NL, vol. 22, No. 4, Jan. 1996, pp. 295-303. |
P. Fauchais et al., “Les Dépôts Par Plasma Thermique,” Revue Generale De L'Electricitie, RGE. Paris, FR, No. 2, Jan. 1993, pp. 7-12. |
P. Fauchais et al, “La Projection Par Plasma: Une Revue,” Annales De Physique, vol. 14, No. 3, Jun. 1989, pp. 261-310. |
T. Yoshida, “The Future of Thermal Plasma Processing for Coating”, Pure & Appl. Chem., vol. 66, No. 6, 1994 pp. 1223-1230. |
Hanet al., Deformation Mechanisms and Ductility of Nanostructured A1 Alloys, Mat. Res. Soc. Symp. Proc. vol. 821, Jan. 2004, Material Research Society, http://www.mrs.org/s—mrs/bin.asp?CID=2670&DOC=FILE.PDF., 6 pages. |
Nagai, Yasutaka, et al., “Sintering Inhibition Mechanism of Platinum Supported on Ceria-based Oxide and Pt-oxide-support Interaction,” Journal of Catalysis 242 (2006), pp. 103-109, Jul. 3, 2006, Elsevier. |
Stiles, A. B. (Jan. 1, 1987). “Manufacture of Carbon-Supported Metal Catalysts,” in Catalyst Supports and Supported Catalysts, Butterworth Publishers, MA, pp. 125-132. |
Bateman, J. E. et al. (Dec. 17, 1998). “Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes,” Angew. Chem Int. Ed. 37(19):2683-2685. |
Carrot, G. et al. (Sep. 17, 2002). “Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering,” Macromolecules 35(22):8400-8404. |
Chen, H.-S. et al. (Jul. 3, 2001). “On the Photoluminescence of Si Nanoparticles,” Mater. Phys. Mech. 4:62-66. |
Fojtik, A. et al. (Apr. 29, 1994). “Luminescent Colloidal Silicon Particles,” Chemical Physics Letters 221:363-367. |
Fojtik, A. (Jan. 13, 2006). “Surface Chemistry of Luminescent Colloidal Silicon Nanoparticles,” J. Phys. Chem. B. 110(5):1994-1998. |
Hua, F. et al. (Mar. 2006). “Organically Capped Silicon Nanoparticles With Blue Photoluminescence Prepared by Hydrosilylation Followed by Oxidation,” Langmuir 22(9):4363-4370. |
Jouet, R. J. et al. (Jan. 25, 2005). “Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids,” Chem. Mater.17(11):2987-2996. |
Kim, N. Y. et al. (Mar. 5, 1997). “Thermal Derivatization of Porous Silicon with Alcohols,” J. Am. Chem. Soc. 119(9):2297-2298. |
Kwon, Y.-S. et al. (Apr. 30, 2003). “Passivation Process for Superfine Aluminum Powders Obtained by Electrical Explosion of Wires,” Applied Surface Science 211:57-67. |
Langner, A. et al. (Aug. 25, 2005). “Controlled Silicon Surface Functionalization by Alkene Hydrosilylation,” J. Am. Chem. Soc. 127(37):12798-12799. |
Li, D. et al. (Apr. 9, 2005). “Environmentally Responsive “Hairy” Nanoparticles: Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical Polymerization Techniques,” J. Am. Chem. Soc. 127(7):6248-6256. |
Li, X. et al. (May 25, 2004). “Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane Followed by HF-HNO3 Etching,” Langmuir 20(11):4720-4727. |
Liao, Y.-C. et al. (Jun. 27, 2006). “Self-Assembly of Organic Monolayers on Aerosolized Silicon Nanoparticles,” J.Am. Chem. Soc. 128(28):9061-9065. |
Liu, S.-M. et al. (Jan. 13, 2006). “Enhanced Photoluminescence from Si Nano-Organosols by Functionalization With Alkenes and Their Size Evolution,” Chem. Mater. 18(3):637-642. |
Neiner, D. (Aug. 5, 2006). “Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles,” J. Am. Chem. Soc. 128:11016-11017. |
Netzer, L. et al. (1983). “A New Approach to Construction of Artificial Monolayer Assemblies,” J. Am. Chem. Soc. 105(3):674-676. |
“Platinum Group Metals: Annual Review 1996” (Oct. 1997). Engineering and Mining Journal, p. 63. |
Sailor, M. J. (1997). “Surface Chemistry of Luminescent Silicon Nanocrystallites,” Adv. Mater. 9(10):783-793. |
Subramanian, S. et al. (1991). “Structure and Activity of Composite Oxide Supported Platinum-Iridium Catalysts,” Applied Catalysts 74: 65-81. |
Tao, Y.-T. (May 1993). “Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the surfaces of Silver, Copper, and Aluminum,” J. Am. Chem. Soc. 115(10):4350-4358. |
Zou, J. et al. (Jun. 4, 2004). “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Letters 4(7):1181-1186. |
U.S. Appl. No. 13/291,983, filed Nov. 8, 2011, for Layman et al. |
U.S. Appl. No. 12/152,084, filed May 9, 2008, for Biberger. |
U.S. Appl. No. 13/028,693, filed Feb. 16, 2011, for Biberger. |
U.S. Appl. No. 12/943,909, filed Nov. 10, 2010, for Layman. |
U.S. Appl. No. 12/152,111, filed May 9, 2008, for Biberger et al. |
U.S. Appl. No. 12/151,830, filed May 8, 2008, for Biberger et al. |
U.S. Appl. No. 12/968,245, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/968,241, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/968,239, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/969,128, filed Dec. 15, 2010, for Biberger. |
U.S. Appl. No. 12/962,463, filed Dec. 7, 2010, for Leamon. |
U.S. Appl. No. 12/961,030, filed Dec. 6, 2010, for Lehman. |
U.S. Appl. No. 12/961,108, filed Dec. 6, 2010, for Lehman. |
U.S. Appl. No. 12/961,200, filed Dec. 6, 2010, for Lehman. |
U.S. Appl. No. 12/968,253, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/968,235, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/969,306, filed Dec. 15, 2010, for Lehman et al. |
U.S. Appl. No. 12/969,447, filed Dec. 15, 2010, for Biberger et al. |
U.S. Appl. No. 12/969,087, filed Dec. 15, 2010, for Biberger. |
U.S. Appl. No. 12/962,533, filed Dec. 7, 2010, for Yin et al. |
U.S. Appl. No. 12/962,523, filed Dec. 7, 2010, for Yin et al. |
U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, for Biberger et al. |
U.S. Appl. No. 12/474,081, filed May 28, 2009, for Biberger et al. |
U.S. Appl. No. 12/001,602, filed Dec. 11, 2007, for Biberger et al. |
U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, for Biberger et al. |
U.S. Appl. No. 12/969,457, filed Nov. 15, 2010, for Leamon et al. |
U.S. Appl. No. 12/969,503, filed Nov. 15, 2010, for Leamon et al. |
U.S. Appl. No. 12/954,813, filed Nov. 26, 2010, for Biberger. |
U.S. Appl. No. 12/954,822, filed Nov. 26, 2010, for Biberger. |
U.S. Appl. No. 13/033,514, filed Feb. 23, 2011, for Biberger et al. |
Non-Final Office Action mailed Nov. 8, 2012, for U.S. Appl. No. 12/968,245, filed Dec. 14, 2010, for Biberger et al.; 13 pages. |
Non-Final Office Action mailed on Sep. 26, 2012, for U.S. Appl. No. 12/968,241, filed Dec. 14, 2010, for Biberger et al.; 15 pages. |
Non-Final Office Action mailed Nov. 8, 2012, for U.S. Appl. No. 12/968,253, filed Dec. 14, 2010, for Biberger et al., 13 pages. |
Number | Date | Country | |
---|---|---|---|
61284329 | Dec 2009 | US |