Not Applicable
The fabrication of microelectronic components from a microelectronic workpiece, such as a semiconductor wafer substrate, polymer substrate, etc., involves a substantial number of processes. For purposes of the present application, a microelectronic workpiece is defined to include a workpiece formed from a substrate upon which microelectronic circuits or components, data storage elements or layers, and/or micro-mechanical elements are formed.
There are a number of different processing operations performed on the workpiece to fabricate the microelectronic component(s). Such operations include, for example, material deposition, patterning, doping, chemical mechanical polishing, electropolishing, and heat treatment. Material deposition processing involves depositing thin layers of material to the surface of the workpiece. Patterning provides removal of selected portions of these added layers. Doping of the microelectronic workpiece is the process of adding impurities known as “dopants” to the selected portions of the microelectronic workpiece to alter the electrical characteristics of the substrate material. Heat treatment of the microelectronic workpiece involves heating and/or cooling the microelectronic workpiece to achieve specific process results. Chemical mechanical polishing involves the removal of material through a combined chemical/mechanical process while electropolishing involves the removal of material from a workpiece surface using electrochemical reactions.
Numerous processing devices, known as processing “tools”, have been developed to implement the foregoing processing operations. These tools take on different configurations depending on the type of workpiece used in the fabrication process and the process or processes executed by the tool. One tool configuration, known as the Equinox(R) wet processing tool and available from Semitool, Inc., of Kalispell, Mont., includes one or more workpiece processing stations that utilize a workpiece holder and a process bowl or container for implementing wet processing operations. Such wet processing operations include electroplating, etching, cleaning, electroless deposition, electropolishing, etc.
In accordance with one configuration of the foregoing Equinox(R) tool, the workpiece holder and the processing container are disposed proximate one another and function to bring the microelectronic workpiece held by the workpiece holder into contact with a processing fluid disposed in the processing container thereby forming a processing chamber. Restricting the processing fluid to the appropriate portions of the workpiece, however, is often problematic. Additionally, ensuring proper mass transfer conditions between the processing fluid and the surface of the workpiece can be difficult. Absent such mass transfer control, the processing of the workpiece surface can often be non-uniform.
Conventional workpiece processors have utilized various techniques to bring the processing fluid into contact with the surface of the workpiece in a controlled manner. For example, the processing fluid may be brought into contact with the surface of the workpiece using a controlled spray. In other types of processes, such as in partial or full immersion processing, the processing fluid resides in a bath and at least one surface of the workpiece is brought into contact with or below the surface of the processing fluid. Electroplating, electroless plating, etching, cleaning, anodization, etc. are examples of such partial or full immersion processing.
Existing processing containers often provide a continuous flow of processing solution to the processing chamber through one or more inlets disposed at the bottom portion of the chamber. Even distribution of the processing solution over the workpiece surface to control the thickness and uniformity of the diffusion layer conditions is facilitated, for example, by a diffuser or the like that is disposed between the one or more inlets and the workpiece surface. A general illustration of such a system is shown in
Although substantial improvements in diffusion layer control result from the use of a diffuser, such control is limited. With reference to
The present inventors have found that these localized areas of increased flow velocity at the surface of the workpiece affect the diffusion layer conditions and can result in non-uniform processing of the surface of the workpiece. The diffusion layer tends to be thinner at the localized areas 5 when compared to other areas of the workpiece surface. The surface reactions occur at a higher rate in the localized areas in which the diffusion layer thickness is reduced thereby resulting in radially, non-uniform processing of the workpiece. Diffuser hole pattern configurations also affect the distribution of the electric field in electrochemical processes, such as electroplating, which can similarly result in non-uniform processing of the workpiece surface (e.g., non-uniform deposition of the electroplated material).
Another problem often encountered in immersion processing of the workpiece is disruption of the diffusion layer due to the entrapment of bubbles at the surface of the workpiece. Bubbles can be created in the plumbing and pumping system of the processing equipment and enter the processing chamber where they migrate to sites on the surface of the workpiece under process. Processing is inhibited at those sites due, for example, to the disruption of the diffusion layer.
As microelectronic circuit and device manufacturers decrease the size of the components and circuits that they manufacture, the need for tighter control over the diffusion layer conditions between the processing solution and the workpiece surface becomes more critical. To this end, the present inventors have developed an improved processing chamber that addresses the diffusion layer non-uniformities and disturbances that exist in the workpiece processing tools currently employed in the microelectronic fabrication industry. Although the improved processing chamber set forth below is discussed in connection with a specific embodiment that is adapted for electroplating, it will be recognized that the improved chamber may be used in any workpiece processing tool in which process uniformity across the surface of a workpiece is desired.
A processing container for providing a flow of a processing fluid during immersion processing of at least one surface of a microelectronic workpiece is set forth. The processing container comprises a principal fluid flow chamber providing a flow of processing fluid to at least one surface of the workpiece and a plurality of nozzles disposed to provide a flow of processing fluid to the principal fluid flow chamber. The plurality of nozzles are arranged and directed to provide vertical and radial fluid flow components that combine to generate a substantially uniform normal flow component radially across the surface of the workpiece. An exemplary apparatus using such a processing container is also set forth that is particularly adapted to carry out an electrochemical process, such as an electroplating process.
In accordance with a still further aspect of the present disclosure, a reactor for immersion processing of a microelectronic workpiece is set forth that includes a processing container having a processing fluid inlet through which a processing fluid flows into the processing container. The processing container also has an upper rim forming a weir over which processing fluid flows to exit from processing container. At least one helical flow chamber is disposed exterior to the processing container to receive processing fluid exiting from the processing container over the weir. Such a configuration assists in removing spent processing fluid from the site of the reactor while concurrently reducing turbulence during the removal process that might otherwise entrain air in the fluid stream or otherwise generate an unwanted degree of contact between the air and the processing fluid.
Basic Reactor Components
With reference to
The reactor head 30 of the reactor assembly 20 may be comprised of a stationary assembly 70 and a rotor assembly 75. Rotor assembly 75 is configured to receive and carry an associated microelectronic workpiece 25, position the workpiece in a process-side down orientation within a processing container in processing base 37, and to rotate or spin the workpiece. Because the specific embodiment illustrated here is adapted for electroplating, the rotor assembly 75 also includes a cathode contact assembly 85 that provides electroplating power to the surface of the microelectronic workpiece. It will be recognized, however, that backside contact and/or support of the workpiece on the reactor head 30 may be implemented in lieu of front side contact/support illustrated here.
The reactor head 30 is typically mounted on a lift/rotate apparatus which is configured to rotate the reactor head 30 from an upwardly-facing disposition in which it receives the microelectronic workpiece to be plated, to a downwardly facing disposition in which the surface of the microelectronic workpiece to be plated is positioned so that it may be brought into contact with the processing fluid that is held within a processing container of the processing base 37. A robotic arm, which preferably includes an end effector, is typically employed for placing the microelectronic workpiece 25 in position on the rotor assembly 75, and for removing the plated microelectronic workpiece from within the rotor assembly. During loading of the microelectronic workpiece, assembly 85 may be operated between an open state that allows the microelectronic workpiece to be placed on the rotor assembly 75, and a closed state that secures the microelectronic workpiece to the rotor assembly for subsequent processing. In the context of an electroplating reactor, such operation also brings the electrically conductive components of the contact assembly 85 into electrical engagement with the surface of the microelectronic workpiece that is to be plated.
It will be recognized that other reactor assembly configurations may be used with the inventive aspects of the disclosed reactor chamber, the foregoing being merely illustrative.
Processing Container
Processing fluid is provided through fluid inlet 515 disposed at the bottom of the container 35. The fluid from the fluid inlet 515 is directed therefrom at a relatively high velocity through antechamber 510. In the illustrated embodiment, antechamber 510 includes an acceleration channel 540 through which the processing fluid flows radially from the fluid inlet 515 toward fluid flow region 545 of antechamber 510. Fluid flow region 545 has a generally inverted U-shaped cross-section that is substantially wider at its outlet region proximate flow diffuser 525 than at its inlet region proximate acceleration channel 540. This variation in the cross-section assists in removing any gas bubbles from the processing fluid before the processing fluid is allowed to enter the main fluid flow chamber 505. Gas bubbles that would otherwise enter the main fluid flow chamber 505 are allowed to exit the processing base 37 through a gas outlet (not illustrated in
Processing fluid within antechamber 510 is ultimately supplied to main fluid flow chamber 505. To this end, the processing fluid is first directed to flow from a relatively high-pressure region 550 of the antechamber 510 to the comparatively lower-pressure plenum 520 through flow diffuser 525. Nozzle assembly 530 includes a plurality of nozzles or slots 535 that are disposed at a slight angle with respect to horizontal. Processing fluid exits plenum 520 through nozzles 535 with fluid velocity components in the vertical and radial directions.
Main fluid flow chamber 505 is defined at its upper region by a contoured sidewall 560 and a slanted sidewall 565. The contoured sidewall 560 assists in preventing fluid flow separation as the processing fluid exits nozzles 535 (particularly the uppermost nozzle(s)) and turns upward toward the surface of microelectronic workpiece 25. Beyond breakpoint 570, fluid flow separation will not substantially affect the uniformity of the normal flow. As such, slanted sidewall 565 can generally have any shape, including a continuation of the shape of contoured sidewall 560. In the specific embodiment disclosed here, sidewall 565 is slanted and, in those applications involving electrochemical processing is used to support one or more anodes/electrical conductors.
Processing fluid exits from main fluid flow chamber 505 through a generally annular outlet 572. Fluid exiting annular outlet 572 may be provided to a further exterior chamber for disposal or may be replenished for re-circulation through the processing fluid supply system.
In those instances in which the processing base 37 forms part of an electroplating reactor, the processing base 37 is provided with one or more anodes. In the illustrated embodiment, a central anode 580 is disposed in the lower portion of the main fluid flow chamber 505. If the peripheral edges of the surface of the microelectronic workpiece 25 extend radially beyond the extent of contoured sidewall 560, then the peripheral edges are electrically shielded from central anode 580 and reduced plating will take place in those regions. However, if plating is desired in the peripheral regions, one or more further anodes may be employed proximate the peripheral regions. Here, a plurality of annular anodes 585 are disposed in a generally concentric manner on slanted sidewall 565 to provide a flow of electroplating current to the peripheral regions. An alternative embodiment would include a single anode or multiple anodes with no shielding from the contoured walls to the edge of the microelectronic workpiece.
The anodes 580, 585 may be provided with electroplating power in a variety of manners. For example, the same or different levels of electroplating power may be multiplexed to the anodes 580, 585 Alternatively, all of the anodes 580, 585 may be connected to receive the same level of electroplating power from the same power source. Still further, each of the anodes 580, 585 may be connected to receive different levels of electroplating power to compensate for the variations in the resistance of the plated film. An advantage of the close proximity of the anodes 585 to the microelectronic workpiece 25 is that it provides a high degree of control of the radial film growth resulting from each anode.
Gases may undesirably be entrained in the processing fluid as the processing fluid circulates through the processing system. These gases may form bubbles that ultimately find their way to the diffusion layer and thereby impair the uniformity of the processing that takes place at the surface of the workpiece. To reduce this problem, as well as to reduce the likelihood of the entry of bubbles into the main fluid flow chamber 505, processing base 37 includes several unique features. With respect to central anode 580, a Venturi flow path 590 is provided between the underside of central anode 580 and the relatively lower pressure region of acceleration channel 540. In addition to desirably influencing the flow effects along central axis 537, this path results in a Venturi effect that causes the processing fluid proximate the surfaces disposed at the lower portion of the chamber, such as at the surface of central anode 580, to be drawn into acceleration channel 540 and may assist in sweeping gas bubbles away from the surface of the anode. More significantly, this Venturi effect provides a suction flow that affects the uniformity of the impinging flow at the central portion of the surface of the microelectronic workpiece along central axis 537. Similarly, processing fluid sweeps across the surfaces at the upper portion of the chamber, such as the surfaces of anodes 585, in a radial direction toward annular outlet 572 to remove gas bubbles present at such surfaces. Further, the radial components of the fluid flow at the surface of the microelectronic workpiece assists in sweeping gas bubbles therefrom.
There are numerous processing advantages with respect to the illustrated flow through the reactor chamber. As illustrated, the flow through the nozzles/slots 535 is directed away from the microelectronic workpiece surface and, as such, there are no substantial localized normal of flow components of fluid created that disturb the substantial uniformity of the diffusion layer. Although the diffusion layer may not be perfectly uniform, any non-uniformity will be relatively gradual as a result. Further, in those instances in which the microelectronic workpiece is rotated, such remaining non-uniformities in the diffusion layer can often be tolerated while consistently achieving processing goals.
As is also evident from the foregoing reactor design, the flow that is normal to the microelectronic workpiece has a slightly greater magnitude near the center of the microelectronic workpiece. This creates a dome-shaped meniscus whenever the microelectronic workpiece is not present (i.e., before the microelectronic workpiece is lowered into the fluid). The dome-shaped meniscus assists in minimizing bubble entrapment as the microelectronic workpiece is lowered into the processing solution.
The flow at the bottom of the main fluid flow chamber 505 resulting from the Venturi flow path influences the fluid flow at the centerline thereof. The centerline flow velocity is otherwise difficult to implement and control. However, the strength of the Venturi flow provides a non-intrusive design variable that may be used to affect this aspect of the flow.
A still further advantage of the foregoing reactor design is that it assists in preventing bubbles that find their way to the chamber inlet from reaching the microelectronic workpiece. To this end, the flow pattern is such that the solution travels downward just before entering the main chamber. As such, bubbles remain in the antechamber and escape through holes at the top thereof. Further, bubbles are-prevented from entering the main chamber through the Venturi flow path through the use of the shield that covers the Venturi flow path (see description of the embodiment of the reactor illustrated in
As illustrated, the processing base 37 shown in
With particular reference to
In the illustrated embodiment, antechamber 510 is defined by the walls of a plurality of separate components. More particularly, antechamber 510 is defined by the interior walls of drain cup member 627, an anode support member 697, the interior and exterior walls of a mid-chamber member 690, and the exterior walls of flow diffuser 525.
In the illustrated embodiment, the flow diffuser 525 is formed as a single piece and includes a plurality of vertically oriented slots 670. Similarly, the nozzle assembly 530 is formed as a single piece and includes a plurality of horizontally oriented slots that constitute the nozzles 535.
The anode support member 697 includes a plurality of annular grooves that are dimensioned to accept corresponding annular anode assemblies 785. Each anode assembly 785 includes an anode 585 (preferably formed from platinized titanium or in other inert metal) and a conduit 730 extending from a central portion of the anode 585 through which a metal conductor may be disposed to electrically connect the anode 585 of each assembly 785 to an external source of electrical power. Conduit 730 is shown to extend entirely through the processing chamber assembly 610 and is secured at the bottom thereof by a respective fitting 733. In this manner, anode assemblies 785 effectively urge the anode support member 697 downward to clamp the flow diffuser 525, nozzle assembly 530, mid-chamber member 690, and drain cup member 627 against the bottom portion 737 of the exterior cup 605. This allows for easy assembly and disassembly of the processing chamber 610. However, it will be recognized that other means may be used to secure the chamber elements together as well as to conduct the necessary electrical power to the anodes.
The illustrated embodiment also includes a weir member 739 that detachably snaps or otherwise easily secures to the upper exterior portion of anode support member 697. As shown, weir member 739 includes a rim 742 that forms a weir over which the processing solution flows into the helical flow chamber 640. Weir member 739 also includes a transversely extending flange 744 that extends radially inward and forms an electric field shield over all or portions of one or more of the anodes 585. Since the weir member 739 may be easily removed and replaced, the processing chamber assembly 610 may be readily reconfigured and adapted to provide different electric field shapes. Such differing electrical field shapes are particularly useful in those instances in which the reactor must be configured to process more than one size or shape of a workpiece. Additionally, this allows the reactor to be configured to accommodate workpieces that are of the same size, but have different plating area requirements.
The anode support member 697, with the anodes 585 in place, forms the contoured sidewall 560 and slanted sidewall 565 that is illustrated in
With particular reference to
Central anode 580 includes an electrical connection rod 581 that proceeds to the exterior of the processing chamber assembly 610 through central apertures formed in nozzle assembly 530, mid-chamber member 690 and inlet fluid guide 810. The Venturi flow path regions shown at 590 in
The foregoing reactor assembly may be readily integrated in a processing tool that is capable of executing a plurality of processes on a workpiece, such as a semiconductor microelectronic workpiece. One such processing tool is the LT-210™ electroplating apparatus available from Semitool, Inc., of Kalispell, Mont.
The workpieces are transferred between the processing stations 1610 and the RTP station 1615 using one or more robotic transfer mechanisms 1620 that are disposed for linear movement along a central track 1625. One or more of the stations 1610 may also incorporate structures that are adapted for executing an in-situ rinse. Preferably, all of the processing stations as well as the robotic transfer mechanisms are disposed in a cabinet that is provided with filtered air at a positive pressure to thereby limit airborne contaminants that may reduce the effectiveness of the microelectronic workpiece processing.
Numerous modifications may be made to the foregoing system without departing from the basic teachings thereof. Although the present invention has been described in substantial detail with reference to one or more specific embodiments, those of skill in the art will recognize that changes may be made thereto without departing from the scope and spirit of the invention as set forth herein.
The present application is a continuation of U.S. application Ser. No. 09/804,696, filed Mar. 12, 2001 now U.S. Pat. No. 6,569,297, which is a continuation of International Application No. PCT/US00/10210, filed Apr. 13, 2000 in the English language and published in the English language as International Publication No. WO00/61837, which in turn claims priority to the following three U.S. Provisional Applications: Ser. No. 60/128,055, entitled “WORKPIECE PROCESSOR HAVING IMPROVED PROCESSING CHAMBER,” filed Apr. 13, 1999; U.S. Ser. No. 60/143,769, entitled “WORKPIECE PROCESSING HAVING IMPROVED PROCESSING CHAMBER,” filed Jul. 12, 1999; U.S. Ser. No. 60/182,160 entitled “WORKPIECE PROCESSOR HAVING IMPROVED PROCESSING CHAMBER,” filed Feb. 14, 2000.
Number | Name | Date | Kind |
---|---|---|---|
1526644 | Pinney | Feb 1925 | A |
1881713 | Laukel | Oct 1932 | A |
2256274 | Boedecker et al. | Sep 1941 | A |
3309263 | Grobe | Mar 1967 | A |
3616284 | Bodmer et al. | Oct 1971 | A |
3664933 | Clauss | May 1972 | A |
3706635 | Kowalski | Dec 1972 | A |
3706651 | Leland | Dec 1972 | A |
3716462 | Jensen | Feb 1973 | A |
3727620 | Orr | Apr 1973 | A |
3798003 | Ensley et al. | Mar 1974 | A |
3798033 | Yost, Jr. | Mar 1974 | A |
3878066 | Dettke et al. | Apr 1975 | A |
3930963 | Polichette et al. | Jan 1976 | A |
3953265 | Hood | Apr 1976 | A |
3968885 | Hassan et al. | Jul 1976 | A |
4000046 | Weaver | Dec 1976 | A |
4022679 | Koziol et al. | May 1977 | A |
4030015 | Herko et al. | Jun 1977 | A |
4046105 | Gomez | Sep 1977 | A |
4072557 | Schiel | Feb 1978 | A |
4082638 | Jumer | Apr 1978 | A |
4113577 | Ross et al. | Sep 1978 | A |
4132567 | Blackwood | Jan 1979 | A |
4134802 | Herr | Jan 1979 | A |
4137867 | Aigo | Feb 1979 | A |
4165252 | Gibbs | Aug 1979 | A |
4170959 | Aigo | Oct 1979 | A |
4222834 | Bacon et al. | Sep 1980 | A |
4238310 | Eckler et al. | Dec 1980 | A |
4246088 | Murphy et al. | Jan 1981 | A |
4259166 | Whitehurst | Mar 1981 | A |
4276855 | Seddon | Jul 1981 | A |
4286541 | Blackwood | Sep 1981 | A |
4287029 | Shimamura | Sep 1981 | A |
4304641 | Grandia et al. | Dec 1981 | A |
4323433 | Loch | Apr 1982 | A |
4341629 | Uhlinger | Jul 1982 | A |
4360410 | Fletcher et al. | Nov 1982 | A |
4378283 | Seyffert | Mar 1983 | A |
4384930 | Eckles | May 1983 | A |
4391694 | Runsten | Jul 1983 | A |
4422915 | Wielonski et al. | Dec 1983 | A |
4431361 | Bayne | Feb 1984 | A |
4437943 | Beck et al. | Mar 1984 | A |
4439243 | Titus | Mar 1984 | A |
4439244 | Allevato | Mar 1984 | A |
4440597 | Wells et al. | Apr 1984 | A |
4443117 | Muramoto et al. | Apr 1984 | A |
4449885 | Hertel et al. | May 1984 | A |
4451197 | Lange | May 1984 | A |
4463503 | Applegate | Aug 1984 | A |
4466864 | Bacon | Aug 1984 | A |
4469566 | Wray | Sep 1984 | A |
4475823 | Stone | Oct 1984 | A |
4480028 | Kato et al. | Oct 1984 | A |
4495153 | Midorikawa | Jan 1985 | A |
4495453 | Inaba | Jan 1985 | A |
4500394 | Rizzo | Feb 1985 | A |
4529480 | Trokhan | Jul 1985 | A |
4541895 | Albert | Sep 1985 | A |
4544446 | Cady | Oct 1985 | A |
4566847 | Maeda | Jan 1986 | A |
4576685 | Goffredo et al. | Mar 1986 | A |
4576689 | Makkaev et al. | Mar 1986 | A |
4585539 | Edson | Apr 1986 | A |
4604177 | Sivilotti | Aug 1986 | A |
4604178 | Fiegener | Aug 1986 | A |
4634503 | Nogavich | Jan 1987 | A |
4639028 | Olson | Jan 1987 | A |
4648944 | George et al. | Mar 1987 | A |
4664133 | Silvernail | May 1987 | A |
4670126 | Messer et al. | Jun 1987 | A |
4685414 | DiRico | Aug 1987 | A |
4687552 | Early et al. | Aug 1987 | A |
4693017 | Oehler et al. | Sep 1987 | A |
4696729 | Santini | Sep 1987 | A |
4715934 | Tamminen | Dec 1987 | A |
4732785 | Brewer | Mar 1988 | A |
4741624 | Barroyer | May 1988 | A |
4750505 | Inuta | Jun 1988 | A |
4760671 | Ward | Aug 1988 | A |
4761214 | Hinman | Aug 1988 | A |
4770590 | Hugues et al. | Sep 1988 | A |
4773436 | Cantrell et al. | Sep 1988 | A |
4781800 | Goldman et al. | Nov 1988 | A |
4790262 | Nakayama | Dec 1988 | A |
4800818 | Kawaguchi et al. | Jan 1989 | A |
4824538 | Hibino et al. | Apr 1989 | A |
4828654 | Reed | May 1989 | A |
4838289 | Kottman | Jun 1989 | A |
4849054 | Klowak | Jul 1989 | A |
4858539 | Schumann | Aug 1989 | A |
4864239 | Casarcia et al. | Sep 1989 | A |
4868992 | Crafts et al. | Sep 1989 | A |
4898647 | Luce et al. | Feb 1990 | A |
4902398 | Homstad | Feb 1990 | A |
4903717 | Sumnitsch | Feb 1990 | A |
4906341 | Yamakawa | Mar 1990 | A |
4911818 | Kikuchi et al. | Mar 1990 | A |
4913085 | Vohringer et al. | Apr 1990 | A |
4924890 | Giles et al. | May 1990 | A |
4944650 | Matsumoto | Jul 1990 | A |
4949671 | Davis et al. | Aug 1990 | A |
4951601 | Maydan et al. | Aug 1990 | A |
4959278 | Shimauchi et al. | Sep 1990 | A |
4962726 | Matsushita et al. | Oct 1990 | A |
4979464 | Kunze-Concewitz et al. | Dec 1990 | A |
4982215 | Matsuoka | Jan 1991 | A |
4982753 | Grebinski | Jan 1991 | A |
4988533 | Freeman et al. | Jan 1991 | A |
5000827 | Schuster et al. | Mar 1991 | A |
5020200 | Mimasaka | Jun 1991 | A |
5024746 | Stierman et al. | Jun 1991 | A |
5026239 | Chiba | Jun 1991 | A |
5032217 | Tanaka | Jul 1991 | A |
5048589 | Cook et al. | Sep 1991 | A |
5054988 | Shiraiwa | Oct 1991 | A |
5055036 | Asano et al. | Oct 1991 | A |
5061144 | Akimoto | Oct 1991 | A |
5069548 | Boehnlein | Dec 1991 | A |
5078852 | Yee | Jan 1992 | A |
5083364 | Olbrich et al. | Jan 1992 | A |
5096550 | Mayer et al. | Mar 1992 | A |
5110248 | Asano et al. | May 1992 | A |
5115430 | Hahne et al. | May 1992 | A |
5117769 | DeBoer | Jun 1992 | A |
5125784 | Asano | Jun 1992 | A |
5128912 | Hug et al. | Jul 1992 | A |
5135636 | Yee et al. | Aug 1992 | A |
5138973 | Davis et al. | Aug 1992 | A |
5146136 | Ogura | Sep 1992 | A |
5151168 | Gilton et al. | Sep 1992 | A |
5155336 | Gronet et al. | Oct 1992 | A |
5156174 | Thompson | Oct 1992 | A |
5156730 | Bhatt et al. | Oct 1992 | A |
5168886 | Thompson et al. | Dec 1992 | A |
5168887 | Thompson | Dec 1992 | A |
5169408 | Biggerstaff et al. | Dec 1992 | A |
5172803 | Lewin | Dec 1992 | A |
5174045 | Thompson et al. | Dec 1992 | A |
5178512 | Skrobak | Jan 1993 | A |
5178639 | Nishi | Jan 1993 | A |
5180273 | Salaya et al. | Jan 1993 | A |
5183377 | Becker et al. | Feb 1993 | A |
5186594 | Toshima et al. | Feb 1993 | A |
5209180 | Shoda | May 1993 | A |
5209817 | Ahmad et al. | May 1993 | A |
5217586 | Datta et al. | Jun 1993 | A |
5222310 | Thompson et al. | Jun 1993 | A |
5224503 | Thompson | Jul 1993 | A |
5224504 | Thompson et al. | Jul 1993 | A |
5227041 | Brogden et al. | Jul 1993 | A |
5228232 | Miles | Jul 1993 | A |
5228966 | Murata | Jul 1993 | A |
5230371 | Lee | Jul 1993 | A |
5232511 | Bergman | Aug 1993 | A |
5235995 | Bergman et al. | Aug 1993 | A |
5238500 | Bergman | Aug 1993 | A |
5252137 | Tateyama et al. | Oct 1993 | A |
5252807 | Chizinsky | Oct 1993 | A |
5256262 | Blomsterberg | Oct 1993 | A |
5256274 | Poris | Oct 1993 | A |
5271953 | Litteral | Dec 1993 | A |
5271972 | Kwok et al. | Dec 1993 | A |
5301700 | Kamikawa et al. | Apr 1994 | A |
5302464 | Nomura et al. | Apr 1994 | A |
5306895 | Ushikoshi et al. | Apr 1994 | A |
5314294 | Taniguchi | May 1994 | A |
5316642 | Young | May 1994 | A |
5326455 | Kubo et al. | Jul 1994 | A |
5330604 | Allum et al. | Jul 1994 | A |
5332271 | Grant et al. | Jul 1994 | A |
5332445 | Bergman | Jul 1994 | A |
5340456 | Mehler | Aug 1994 | A |
5344491 | Katou | Sep 1994 | A |
5348620 | Hermans et al. | Sep 1994 | A |
5349978 | Sago | Sep 1994 | A |
5361449 | Akimoto | Nov 1994 | A |
5363171 | Mack | Nov 1994 | A |
5364504 | Smurkoski et al. | Nov 1994 | A |
5366785 | Sawdai | Nov 1994 | A |
5366786 | Connor et al. | Nov 1994 | A |
5368711 | Poris | Nov 1994 | A |
5372848 | Blackwell et al. | Dec 1994 | A |
5376176 | Kuriyama | Dec 1994 | A |
5377708 | Bergman | Jan 1995 | A |
5388945 | Garric et al. | Feb 1995 | A |
5391285 | Lytle et al. | Feb 1995 | A |
5391517 | Gelatos et al. | Feb 1995 | A |
5393624 | Ushijima | Feb 1995 | A |
5405518 | Hsieh et al. | Apr 1995 | A |
5411076 | Matsunaga et al. | May 1995 | A |
5421893 | Perlov | Jun 1995 | A |
5421987 | Tzanavaras et al. | Jun 1995 | A |
5427674 | Langenskiold et al. | Jun 1995 | A |
5429686 | Chiu et al. | Jul 1995 | A |
5429733 | Ishida | Jul 1995 | A |
5431421 | Thompson | Jul 1995 | A |
5431803 | DiFranco et al. | Jul 1995 | A |
5437777 | Kishi | Aug 1995 | A |
5441629 | Kosaki | Aug 1995 | A |
5442416 | Tateyama et al. | Aug 1995 | A |
5443707 | Mori | Aug 1995 | A |
5445484 | Kato et al. | Aug 1995 | A |
5447615 | Ishida | Sep 1995 | A |
5454405 | Hawes | Oct 1995 | A |
5460478 | Akimoto et al. | Oct 1995 | A |
5464313 | Ohsawa | Nov 1995 | A |
5472502 | Batchelder | Dec 1995 | A |
5474807 | Koshiishi | Dec 1995 | A |
5489341 | Bergman et al. | Feb 1996 | A |
5500081 | Bergman | Mar 1996 | A |
5501768 | Hermans et al. | Mar 1996 | A |
5508095 | Allum et al. | Apr 1996 | A |
5510645 | Fitch | Apr 1996 | A |
5512319 | Cook et al. | Apr 1996 | A |
5513594 | McClanahan | May 1996 | A |
5514258 | Brinket et al. | May 1996 | A |
5516412 | Andricacos et al. | May 1996 | A |
5522975 | Andricacos et al. | Jun 1996 | A |
5527390 | Ono et al. | Jun 1996 | A |
5544421 | Thompson et al. | Aug 1996 | A |
5549808 | Farooq et al. | Aug 1996 | A |
5551986 | Jain | Sep 1996 | A |
5567267 | Kazama et al. | Oct 1996 | A |
5571325 | Ueyama | Nov 1996 | A |
5575611 | Thompson et al. | Nov 1996 | A |
5584310 | Bergman | Dec 1996 | A |
5584971 | Komino | Dec 1996 | A |
5591262 | Sago | Jan 1997 | A |
5593545 | Rugowski et al. | Jan 1997 | A |
5597460 | Reynolds | Jan 1997 | A |
5597836 | Hackler et al. | Jan 1997 | A |
5600532 | Michiya et al. | Feb 1997 | A |
5609239 | Schlecker | Mar 1997 | A |
5616069 | Walker | Apr 1997 | A |
5620581 | Ang | Apr 1997 | A |
5639206 | Oda et al. | Jun 1997 | A |
5639316 | Cabral, Jr. et al. | Jun 1997 | A |
5641613 | Boff et al. | Jun 1997 | A |
5650082 | Anderson | Jul 1997 | A |
5651823 | Parodi et al. | Jul 1997 | A |
5651836 | Suzuki | Jul 1997 | A |
5658183 | Sandhu | Aug 1997 | A |
5658387 | Reardon | Aug 1997 | A |
5660472 | Peuse et al. | Aug 1997 | A |
5660517 | Thompson et al. | Aug 1997 | A |
5662788 | Sandhu | Sep 1997 | A |
5664337 | Davis et al. | Sep 1997 | A |
5666985 | Smith | Sep 1997 | A |
5670034 | Lowery | Sep 1997 | A |
5676337 | Giras et al. | Oct 1997 | A |
5677118 | Spara et al. | Oct 1997 | A |
5677824 | Harashima | Oct 1997 | A |
5678116 | Sugimoto | Oct 1997 | A |
5678320 | Thompson et al. | Oct 1997 | A |
5681392 | Swain | Oct 1997 | A |
5683564 | Reynolds | Nov 1997 | A |
5684654 | Searle et al. | Nov 1997 | A |
5684713 | Asada et al. | Nov 1997 | A |
5700127 | Harada | Dec 1997 | A |
5700180 | Sandhu | Dec 1997 | A |
5711646 | Ueda et al. | Jan 1998 | A |
5718763 | Tateyama | Feb 1998 | A |
5719495 | Moslehi | Feb 1998 | A |
5723028 | Poris | Mar 1998 | A |
5731678 | Zila et al. | Mar 1998 | A |
5744019 | Ang | Apr 1998 | A |
5746565 | Tepolt | May 1998 | A |
5747098 | Larson | May 1998 | A |
5754842 | Minagawa | May 1998 | A |
5755948 | Lazaro et al. | May 1998 | A |
5759006 | Miyamoto et al. | Jun 1998 | A |
5762708 | Motoda | Jun 1998 | A |
5762751 | Bleck | Jun 1998 | A |
5765444 | Bacchi | Jun 1998 | A |
5765889 | Nam et al. | Jun 1998 | A |
5776327 | Botts et al. | Jul 1998 | A |
5779796 | Tomoeda | Jul 1998 | A |
5785826 | Greenspan | Jul 1998 | A |
5788829 | Joshi et al. | Aug 1998 | A |
5802856 | Schaper et al. | Sep 1998 | A |
5815762 | Sakai | Sep 1998 | A |
5829791 | Kotsubo et al. | Nov 1998 | A |
5843296 | Greenspan | Dec 1998 | A |
5845662 | Sumnitsch | Dec 1998 | A |
5860640 | Marohl | Jan 1999 | A |
5868866 | Maekawa | Feb 1999 | A |
5871626 | Crafts et al. | Feb 1999 | A |
5871805 | Lemelson | Feb 1999 | A |
5872633 | Holzapfel | Feb 1999 | A |
5882433 | Ueno | Mar 1999 | A |
5882498 | Dubin et al. | Mar 1999 | A |
5885755 | Nakagawa | Mar 1999 | A |
5892207 | Kawamura et al. | Apr 1999 | A |
5900663 | Johnson | May 1999 | A |
5904827 | Reynolds | May 1999 | A |
5908543 | Matsunami et al. | Jun 1999 | A |
5916366 | Ueyama | Jun 1999 | A |
5924058 | Waldhauer | Jul 1999 | A |
5925227 | Kobayashi et al. | Jul 1999 | A |
5932077 | Reynolds | Aug 1999 | A |
5937142 | Moslehi et al. | Aug 1999 | A |
5942035 | Hasebe | Aug 1999 | A |
5948203 | Wang | Sep 1999 | A |
5952050 | Doan | Sep 1999 | A |
5957836 | Johnson | Sep 1999 | A |
5964643 | Birang | Oct 1999 | A |
5980706 | Bleck | Nov 1999 | A |
5985126 | Bleck | Nov 1999 | A |
5989397 | Laube et al. | Nov 1999 | A |
5989406 | Beetz, Jr. et al. | Nov 1999 | A |
5997653 | Yamasaka | Dec 1999 | A |
5998123 | Tanaka et al. | Dec 1999 | A |
5999886 | Martin et al. | Dec 1999 | A |
6001235 | Arken et al. | Dec 1999 | A |
6004047 | Akimoto | Dec 1999 | A |
6004828 | Hanson | Dec 1999 | A |
6017437 | Ting | Jan 2000 | A |
6017820 | Ting et al. | Jan 2000 | A |
6025600 | Archie | Feb 2000 | A |
6027631 | Broadbent | Feb 2000 | A |
6028986 | Song | Feb 2000 | A |
6045618 | Raoux | Apr 2000 | A |
6051284 | Byrne et al. | Apr 2000 | A |
6053687 | Kirkpatrick | Apr 2000 | A |
6063190 | Hasebe et al. | May 2000 | A |
6072160 | Bahl | Jun 2000 | A |
6072163 | Armstrong et al. | Jun 2000 | A |
6074544 | Reid et al. | Jun 2000 | A |
6077412 | Ting | Jun 2000 | A |
6080288 | Schwartz et al. | Jun 2000 | A |
6080291 | Woodruff et al. | Jun 2000 | A |
6080691 | Lindsay et al. | Jun 2000 | A |
6086680 | Foster et al. | Jul 2000 | A |
6090260 | Inoue et al. | Jul 2000 | A |
6091498 | Hanson | Jul 2000 | A |
6099702 | Reid | Aug 2000 | A |
6099712 | Ritzdorf | Aug 2000 | A |
6103085 | Woo et al. | Aug 2000 | A |
6107192 | Subrahmanyan et al. | Aug 2000 | A |
6108937 | Raaijmakers | Aug 2000 | A |
6110011 | Somekh | Aug 2000 | A |
6110346 | Reid et al. | Aug 2000 | A |
6122046 | Almogy | Sep 2000 | A |
6130415 | Knoot | Oct 2000 | A |
6132289 | Labunsky | Oct 2000 | A |
6132587 | Jorne et al. | Oct 2000 | A |
6136163 | Cheung | Oct 2000 | A |
6139703 | Hanson et al. | Oct 2000 | A |
6139708 | Nonomura et al. | Oct 2000 | A |
6139712 | Patton | Oct 2000 | A |
6140234 | Uzoh et al. | Oct 2000 | A |
6143147 | Jelinek | Nov 2000 | A |
6143155 | Adams | Nov 2000 | A |
6149729 | Iwata | Nov 2000 | A |
6151532 | Barone et al. | Nov 2000 | A |
6156167 | Patton et al. | Dec 2000 | A |
6157106 | Tietz et al. | Dec 2000 | A |
6159073 | Wiswesser | Dec 2000 | A |
6159354 | Contolini et al. | Dec 2000 | A |
6162344 | Reid et al. | Dec 2000 | A |
6162488 | Gevelber et al. | Dec 2000 | A |
6168693 | Uzoh | Jan 2001 | B1 |
6168695 | Woodruff | Jan 2001 | B1 |
6174425 | Simpson | Jan 2001 | B1 |
6174796 | Takagi et al. | Jan 2001 | B1 |
6179983 | Reid et al. | Jan 2001 | B1 |
6184068 | Ohtani et al. | Feb 2001 | B1 |
6187072 | Cheung | Feb 2001 | B1 |
6190234 | Swedek et al. | Feb 2001 | B1 |
6193802 | Pang | Feb 2001 | B1 |
6193859 | Contolini et al. | Feb 2001 | B1 |
6194628 | Pang | Feb 2001 | B1 |
6197181 | Chen | Mar 2001 | B1 |
6199301 | Wallace | Mar 2001 | B1 |
6201240 | Dotan | Mar 2001 | B1 |
6208751 | Almogy | Mar 2001 | B1 |
6218097 | Bell et al. | Apr 2001 | B1 |
6221230 | Takeuchi | Apr 2001 | B1 |
6228232 | Woodruff | May 2001 | B1 |
6231743 | Etherington | May 2001 | B1 |
6234738 | Kimata | May 2001 | B1 |
6238539 | Joyce | May 2001 | B1 |
6244931 | Pinson | Jun 2001 | B1 |
6247998 | Wiswesser et al. | Jun 2001 | B1 |
6251238 | Kaufman et al. | Jun 2001 | B1 |
6251528 | Uzoh et al. | Jun 2001 | B1 |
6251692 | Hanson | Jun 2001 | B1 |
6254742 | Hanson et al. | Jul 2001 | B1 |
6255222 | Xia | Jul 2001 | B1 |
6258220 | Dordi | Jul 2001 | B1 |
6261433 | Landau | Jul 2001 | B1 |
6264752 | Curtis | Jul 2001 | B1 |
6268289 | Chowdhury | Jul 2001 | B1 |
6270619 | Suzuki | Aug 2001 | B1 |
6270634 | Khan | Aug 2001 | B1 |
6270647 | Graham | Aug 2001 | B1 |
6277194 | Thilderkvist | Aug 2001 | B1 |
6277263 | Chen | Aug 2001 | B1 |
6278089 | Young et al. | Aug 2001 | B1 |
6280183 | Mayur et al. | Aug 2001 | B1 |
6280582 | Woodruff et al. | Aug 2001 | B1 |
6280583 | Woodruff et al. | Aug 2001 | B1 |
6290865 | Lloyd | Sep 2001 | B1 |
6297154 | Gross et al. | Oct 2001 | B1 |
6303010 | Woodruff et al. | Oct 2001 | B1 |
6309520 | Woodruff et al. | Oct 2001 | B1 |
6309524 | Woodruff et al. | Oct 2001 | B1 |
6309981 | Mayer | Oct 2001 | B1 |
6309984 | Nonaka | Oct 2001 | B1 |
6318385 | Curtis | Nov 2001 | B1 |
6318951 | Schmidt | Nov 2001 | B1 |
6322112 | Duncan | Nov 2001 | B1 |
6322677 | Woodruff | Nov 2001 | B1 |
6333275 | Mayer | Dec 2001 | B1 |
6342137 | Woodruff | Jan 2002 | B1 |
6350319 | Curtiss | Feb 2002 | B1 |
6365729 | Tyagi | Apr 2002 | B1 |
6391166 | Wang | May 2002 | B1 |
6399505 | Nogami | Jun 2002 | B2 |
6402923 | Mayer | Jun 2002 | B1 |
6409892 | Woodruff et al. | Jun 2002 | B1 |
6413436 | Aegerter | Jul 2002 | B1 |
6423642 | Peace | Jul 2002 | B1 |
6428660 | Woodruff et al. | Aug 2002 | B2 |
6428662 | Woodruff et al. | Aug 2002 | B1 |
6444101 | Stevens | Sep 2002 | B1 |
6471913 | Weaver et al. | Oct 2002 | B1 |
6481956 | Hofmeister | Nov 2002 | B1 |
6491806 | Dubin | Dec 2002 | B1 |
6494221 | Sellmer | Dec 2002 | B1 |
6497801 | Woodruff | Dec 2002 | B1 |
6562421 | Sudo | May 2003 | B2 |
6565729 | Chen | May 2003 | B2 |
6569297 | Wilson et al. | May 2003 | B2 |
6599412 | Graham | Jul 2003 | B1 |
6623609 | Harris | Sep 2003 | B2 |
6632334 | Anderson | Oct 2003 | B2 |
6660137 | Wilson | Dec 2003 | B2 |
6678055 | Du-Nour et al. | Jan 2004 | B2 |
6699373 | Woodruff | Mar 2004 | B2 |
6709562 | Andricacos | Mar 2004 | B1 |
6747754 | Iyoki | Jun 2004 | B1 |
6755954 | Mayer et al. | Jun 2004 | B2 |
6773571 | Mayer et al. | Aug 2004 | B1 |
20010024611 | Woodruff | Sep 2001 | A1 |
20010032788 | Woodruff | Oct 2001 | A1 |
20010043856 | Woodruff | Nov 2001 | A1 |
20020008036 | Wang | Jan 2002 | A1 |
20020008037 | Wilson et al. | Jan 2002 | A1 |
20020022363 | Ritzdorf et al. | Feb 2002 | A1 |
20020032499 | Wilson | Mar 2002 | A1 |
20020046952 | Graham | Apr 2002 | A1 |
20020079215 | Wilson et al. | Jun 2002 | A1 |
20020096508 | Weaver et al. | Jul 2002 | A1 |
20020125141 | Wilson et al. | Sep 2002 | A1 |
20020139678 | Wilson | Oct 2002 | A1 |
20030020928 | Ritzdorf | Jan 2003 | A1 |
20030038035 | Wilson | Feb 2003 | A1 |
20030062258 | Woodruff | Apr 2003 | A1 |
20030066752 | Ritzdorf | Apr 2003 | A1 |
20030070918 | Hanson | Apr 2003 | A1 |
20030127337 | Hanson | Jul 2003 | A1 |
20040031693 | Chen | Feb 2004 | A1 |
20040055877 | Wilson | Mar 2004 | A1 |
20040099533 | Wilson | May 2004 | A1 |
Number | Date | Country |
---|---|---|
873651 | Jun 1971 | CA |
3240330 | Oct 1982 | DE |
41 14 427 | Nov 1992 | DE |
195 25 666 | Oct 1996 | DE |
0 140 404 | Aug 1984 | EP |
0047132 | Jul 1985 | EP |
0 677 612 | Oct 1985 | EP |
0 257 670 | Mar 1988 | EP |
0 290 210 | Nov 1988 | EP |
0290210 | Nov 1988 | EP |
0 677 612 | Oct 1995 | EP |
0582019 | Oct 1995 | EP |
0544311 | May 1996 | EP |
0 881 673 | May 1998 | EP |
0 982 771 | Aug 1999 | EP |
1 069 213 | Jul 2000 | EP |
0452939 | Nov 2000 | EP |
2217107 | Mar 1989 | GB |
2 254 288 | Mar 1992 | GB |
2 279 372 | Jun 1994 | GB |
59150094 | Aug 1984 | JP |
1048442 | Feb 1989 | JP |
4144150 | May 1992 | JP |
4311591 | Nov 1992 | JP |
5146984 | Jun 1993 | JP |
5195183 | Aug 1993 | JP |
5211224 | Aug 1993 | JP |
6017291 | Jan 1994 | JP |
6073598 | Mar 1994 | JP |
6224202 | Aug 1994 | JP |
7113159 | May 1995 | JP |
7197299 | Aug 1995 | JP |
10-083960 | Mar 1998 | JP |
11036096 | Feb 1999 | JP |
11080993 | Mar 1999 | JP |
WO-9000476 | Jan 1990 | WO |
WO-9104213 | Apr 1991 | WO |
WO-9506326 | Mar 1995 | WO |
WO-9520064 | Jul 1995 | WO |
WO9916936 | Apr 1996 | WO |
WO-9916936 | Apr 1996 | WO |
WO-9925904 | May 1999 | WO |
WO-9925905 | May 1999 | WO |
WO-9940615 | Aug 1999 | WO |
WO-9941434 | Aug 1999 | WO |
WO-9945745 | Sep 1999 | WO |
WO-0002675 | Jan 2000 | WO |
WO-0002808 | Jan 2000 | WO |
WO-0002808 | Jan 2000 | WO |
WO-0003072 | Jan 2000 | WO |
WO-0202808 | Jan 2000 | WO |
WO 0061498 | Apr 2000 | WO |
WO 0061837 | Apr 2000 | WO |
WO-0032835 | Jun 2000 | WO |
WO-0146910 | Jun 2001 | WO |
WO-0190434 | Nov 2001 | WO |
WO-0191163 | Nov 2001 | WO |
WO-0204886 | Jan 2002 | WO |
WO-0204887 | Jan 2002 | WO |
WO-0217203 | Feb 2002 | WO |
WO-0245476 | Jun 2002 | WO |
WO 0245476 | Jun 2002 | WO |
WO-02097165 | Dec 2002 | WO |
WO-02099165 | Dec 2002 | WO |
WO-03018874 | Mar 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040055877 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
60182160 | Feb 2000 | US | |
60143769 | Jul 1999 | US | |
60128055 | Apr 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09804696 | Mar 2001 | US |
Child | 10400186 | US | |
Parent | PCT/US00/10210 | Apr 2000 | US |
Child | 09804696 | US |