Wound care method and system with one or both of vacuum-light therapy and thermally augmented oxygenation

Abstract
A combination therapy pad that includes a first layer and a second layer operatively coupled to the first layer. A fiber-optic array is disposed between the first layer and the second layer. A third layer is operatively coupled to the first layer. The third layer includes a vacuum tube in fluid communication with a vacuum source and a therapeutic fluid tube in fluid communication with a therapeutic fluid source. The third layer provides at least one of vacuum therapy and therapeutic fluid treatment to a wound area.
Description
BACKGROUND OF THE INVENTION

1. Technical Field


The present invention relates to a wound care method and system with one or both of vacuum-light therapy, pulsed radio frequency (“RF”), and thermally augmented oxygenation, and more particularly, but not by way of limitation, to a programmable wound care control unit configured to generate a negative pressure for wound cleaning with light therapy, and, in one embodiment, pulsed RF or oxygenation of a wound area for healing in conjunction with high thermal contrast modalities generated by the control unit.


2. Description of the Related Art


An important aspect of patient treatment is wound care. Medical facilities are constantly in need of advanced technology for the cleaning and treatment of skin wounds. The larger the skin wound, the more serious the issues are of wound closure and infection prevention. The rapidity of the migration over the wound of epithelial and subcutaneous tissue adjacent the wound is thus critical. Devices have been developed and/or technically described which address certain aspects of such wound healing. For example, U.S. Pat. No. 6,695,823 to Lina et al. (“Lina”) describes a wound therapy device that facilitates wound closure. A vacuum pump is taught for collecting fluids from the wound. WO 93/09727 discloses a solution for wound drainage by utilizing negative pressure over the wound to promote the above references migration of epithelial and subcutaneous tissue over the wound.


In other embodiments, wound treatment is performed using light therapy. For example, U.S. Pat. No. 7,081,128 to Hart et al. (“Hart”) describes a method of treating various medical conditions such as, for example, joint inflammation, edema, etc., utilizing an array of Light Emitting Diodes contained on a flexible substrate that may be wrapped around an anatomical feature of the human body. U.S. Pat. No. 6,596,016 to Vreman et al. (“Vreman”) discloses a phototherapy garment for an infant having a flexible backing material, a transparent liner, and a flexible printed circuit sheet containing surface-mounted LEDs. The LEDs preferably emit high-intensity blue light, suitable for the treatment of neonatal hyperbilirubinemia. The device may include a portable power supply.


In other embodiments, wound treatment is performed using oxygen. The use of oxygen for the treatment of skin wounds has been determined to be very beneficial in certain medical instances. The advantages are multitudinous and include rapidity in healing. For this reason, systems have been designed for supplying high concentration of oxygen to wound sites to facilitate the healing process. For example, U.S. Pat. No. 5,578,022 to Scherson et al. (“Scherson”) teaches an oxygen producing bandage and method. One of the benefits cited in Scherson is the ability to modulate a supply of concentrated hyperbaric oxygen to skin wounds. Although oxygen is beneficial in direct application of predetermined dosages to skin wounds, too much oxygen can be problematic. Oxygen applied to a wound site can induce the growth of blood vessels for stimulating the growth of new skin. Too much oxygen, however, can lead to toxic effects and the cessation of healing of the wound. It would be an advantage, therefore, to maximize the effectiveness of oxygen applied to a wound area by enhancing the absorption rate of oxygen into the skin and tissue fluids. By enhancing the absorption rate of the oxygen in the wound, less exposure time and concomitantly fewer toxic side effects to the endothelial cells surrounding the wound, such as devasculation, occurs. It would be a further advantage, therefore, to utilize existing medical treatment modalities directed toward other aspects of patient therapy to augment oxygenation for wound care.


It has been accepted for many years by medical care providers that patient thermal therapy can be very advantageous for certain injuries and/or post operative recovery. For this reason, thermal therapy has been advanced and many reliable and efficient systems exist today which provide localized thermal therapy to patients in both pre and post surgical environments. In particular, absorption of oxygen by cells is enhanced by contrast thermal therapy wherein the wound area is heated prior to being saturated with oxygen and subsequently cooled.


Addressing first thermal therapy systems, several devices have been engineered to deliver temperature controlled fluids through pads or convective thermal blankets to achieve the above purpose. Typically, these devices have a heating or a cooling element, a source for the fluid, a pump for forcing the fluid through the pad or blanket, and a thermal interface between the patient and the temperature controlled fluid. U.S. Pat. No. 4,884,304 to Elkins (“Elkins”) is, for example, directed to a mattress cover device which contains liquid flow channels which provide the selective heating or cooling by conduction.


Devices have also been developed for simply providing heat or cooling to a person in bed. Electric blankets containing electric heating elements have been used, for example, to provide heat to people in bed. Likewise, cooling blankets, such as the blanket disclosed in U.S. Pat. No. 4,660,388 to Greene (“Greene”), have also been proposed. Greene discloses a cooling cover having an inflatable pad with plenum chambers at opposite ends thereof. Cool air is generated in a separate unit and directed to the pad and out to a number of apertures on the underside of the pad and against the body of the person using the cover.


A disposable heating or cooling blanket is disclosed in U.S. Pat. No. 5,125,238 to Ragan et al. (“Ragan”), which has three layers of flexible sheeting. Two of the layers form an air chamber while a third layer includes a comfortable layer for contact with the patient. Conditioned air is directed toward the covered person through a multiplicity of orifices in the bottom layers of the blanket.


A temperature controlled blanket and bedding assembly is also disclosed in U.S. Pat. No. 5,989,285 to DeVilbiss et al. (“DeVilbiss”), assigned to the assignee of the present invention. DeVilbiss discloses a temperature controlled blanket and temperature control bedding system having the provision of both recirculating temperature controlled fluid and temperature controlled gas to enhance performance for convectively heating or cooling a patient. Counter-flow or co-flow heat exchanging principles between the temperature controlled liquid and the temperature controlled gas achieve temperature uniformity across different sections of the blanket and the bedding system. Drapes and the temperature controlled bedding system provide a temperature controlled envelope around a person using the bedding system. In one embodiment of the bedding system, the air portion of the bedding system is provided for use with a patient that supplies the fluid portion of the overall bedding system. In another embodiment of the bedding system, the fluid portion of the bedding system is provided for use with a patient bed which supplies the air portion of the overall bedding system.


U.S. Pat. No. 5,097,829 to Quisenberry (“Quisenberry”) describes an improved temperature controlled fluid circulating system for automatically cooling a temperature controlled fluid in a thermal blanket with a thermoelectric cooling device having a cold side and a hot side when powered by electricity. The temperature controlled fluid is cooled by the cold side of the cooling device and pumped through, to, and from the blanket through first and second conduits.


Finally, co-pending U.S. patent application Ser. No. 10/894,369, assigned to the assignee of the present invention, teaches a sequential compression blanket for use with heating or cooling therapy. In this particular embodiment, the utilization of thermal therapy with sequential compression in a programmable format which further has the option of the introduction of oxygenation through a perforated membrane disposed between the patient and the thermal therapy pad is taught. These advances in the medical industry have been recognized as advantageous to both the medical care providers as well as the patients. The precise manner of oxygenation application is, however, still in the process of development.


The present invention provides improvements in wound care by providing multiple wound healing approaches such as, for example, the application of negative pressure over the wound area along with light therapy of the wound area, and oxygenation of the wound area in conjunction with thermal therapy. By combining an oxygenation modality that is utilized in conjunction with light and thermal therapy and/or sequential compression in association therewith, the individual benefits of negative wound pressure, light therapy, and oxygenation treatments can be synergistically enhanced.


SUMMARY

In one aspect, the present invention relates to a therapy system. The therapy system includes a therapy pad having a plurality of fiber-optic strands and a port. A pressure switch is fluidly coupled to the port. An oxygen source is fluidly coupled to the pressure switch. A vacuum pump is fluidly coupled to the pressure switch. A plurality of light emitting diodes is operationally coupled to the plurality of fiber-optic strands. The pressure switch adjusts the therapy pad between vacuum and oxygenation therapy.


In another aspect, the present invention relates to a therapy pad. The therapy pad includes an outer surface and an inner surface. A bladder is disposed between the outer surface and the inner surface. An array of fiber optic strands is disposed on the inner surface. An inlet is disposed on the outer surface. The inlet is fluidly coupled to a plurality of ports disposed on the inner surface. A radio frequency antenna is disposed on the inner surface.


In another aspect, the present invention relates to a method of treating a wound area. The method includes dressing the wound area with a therapy pad and administering at least one of ultra-violet light and vacuum therapy to the wound area via the therapy pad. In various embodiments, the method may also include administering oxygenation therapy to a wound area via the therapy pad, administering thermal therapy to the wound area via the therapy pad, and administering a pulsed radio frequency signal to the wound area via a radio frequency antenna disposed within the therapy pad.


A combination therapy pad that includes a first layer and a second layer operatively coupled to the first layer. A fiber-optic array is disposed between the first layer and the second layer. A third layer is operatively coupled to the first layer. The third layer includes a vacuum tube in fluid communication with a vacuum source and a therapeutic fluid tube in fluid communication with a therapeutic fluid source. The third layer provides at least one of vacuum therapy and therapeutic fluid treatment to a wound area.


A therapy system that includes a combination therapy pad having a plurality of fiber-optic strands and a port. A pressure switch is fluidly coupled to the port. An oxygen source and a vacuum pump are fluidly coupled to the pressure switch. A plurality of light emitting diodes are optically coupled to the plurality of fiber-optic strands. A thermoelectric element is thermally exposed to the oxygen source. The combination therapy pad administers at least one of vacuum therapy and oxygenation therapy via the pressure switch.


A method of treating a wound area. The method includes covering the wound area with a therapy pad, the therapy pad having a first layer, a second layer operatively coupled to the first layer, a fiber-optic array disposed between the first layer and the second layer, and a third layer operatively coupled to the first layer. The third layer includes a vacuum tube in fluid communication with a vacuum source and a therapeutic fluid tube in fluid communication with a therapeutic fluid source. The third layer provides at least one of vacuum therapy and therapeutic fluid treatment to a wound area. The method further includes administering at least one of ultra-violet light therapy and vacuum therapy to the wound area via the therapy pad and administering at least one of oxygenation therapy and thermal therapy to the wound area via the therapy pad.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the method and apparatus of the present invention may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings wherein:



FIG. 1 is an illustration of the wound care system according to an exemplary embodiment;



FIG. 2 is a block diagram according to an exemplary embodiment;



FIG. 3 is a flow diagram of a process according to an exemplary embodiment;



FIG. 4 illustrates a side elevational cross sectional view of a therapy blanket/pad according to an exemplary embodiment;



FIG. 5 illustrates a side elevational cross sectional view of a therapy blanket/pad according to an exemplary embodiment;



FIG. 6 is a diagrammatic illustration of a therapy blanket/pad according to an exemplary embodiment;



FIG. 7 is a diagrammatic illustration of a wound evacuation and UV LED treatment pad according to an exemplary embodiment;



FIG. 8A is a schematic diagram of a wound care system according to an exemplary embodiment;



FIG. 8B is a front perspective view of a wound care system according to an exemplary embodiment;



FIG. 8C is a front perspective view of a wound care system illustrating a plurality of hooks according to an exemplary embodiment;



FIG. 9 is a is a block diagram of a wound care system according to an exemplary embodiment;



FIG. 10 is a block diagram of a wound care system according to an exemplary embodiment;



FIG. 11 is a diagrammatic illustration of a combination therapy pad according to an exemplary embodiment;



FIG. 12 is a diagrammatic illustration of a combination therapy pad according to an exemplary embodiment; and



FIG. 13 is an exploded view of a combination therapy pad according to an exemplary embodiment.





DETAILED DESCRIPTION

Various embodiments of the present invention will now be described more fully with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, the embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.


Referring first to FIG. 1, there is shown an illustration of one embodiment of a wound care system 10 in accordance with principles of the present invention. The system 10 comprises a control unit 12, a therapy blanket/pad 14 and a plurality of tubular members 16 (to be defined below) connecting the control unit 12 to the therapy blanket/pad 14. The system 10 further includes a wound evacuation and ultra violet light emitting diode (UV LED) unit 28 and a wound evacuation and UV LED treatment pad 58. The wound evacuation and UV LED unit 28 is connected to the control unit 12 while the wound evacuation and UV LED treatment pad 58 is connected to the wound evacuation and UV LED unit 28. A system for providing both oxygenation therapy in conjunction with certain aspects of thermal therapy and fully describing the thermal operation and sequence compression aspects of one embodiment of the present invention is set forth and shown in U.S. patent application Ser. No. 10/894,369, assigned to the assignee of the present invention and incorporated herein in its entirety by reference. For that reason, thermal detail relative to the interaction between the control unit 12 and the therapy blanket/pad 14 relative to the thermal fluid flow and pressurization for sequenced compression therapy is not further defined herein. What is defined, is the added aspect of wound care provided by wound evacuation and light therapy. Light therapy is the application of light energy to the skin for therapeutic benefits. LED light therapy promotes wound healing and human tissue growth. Energy delivered by the LEDs enhances cellular metabolism, accelerates the repair and replenishment of damaged skin cells, as well as stimulates the production of collagen which is the foundation of a healthy and smooth skin. Light therapy is non-ablative, non-invasive, and painless.


Still referring to FIG. 1, the use of the therapy blanket/pad 14 to the wound site of the patient may be, in one embodiment, subsequent to the cleaning of the wound area of dead tissue by the wound evacuation and UV LED treatment pad 58. In one embodiment, Velcro cross straps may be utilized to secure the therapy blanket/pad 14. A 93% concentration of oxygen has been suggested to be advantageous when applied to a wound site as described herein with one or two atmospheres of pressure. In accordance with one aspect of the present invention, an oxygen generator/concentrator 20 may be utilized within the control unit 12 or may be separate therefrom. In FIG. 1, an oxygen generator/concentrator 20 is shown in association with the control unit 12 by dotted line 22 and an oxygenation gas line 24 shown extending between the control unit 12 and the therapy blanket/pad 14 as a diagrammatic illustration according to an embodiment of the present invention.


In FIG. 1, fiber optic strands (not explicitly shown) direct ultraviolet light from a plurality of LEDs (not explicitly shown) to an array of fiber optic strand ends (not explicitly shown) located on the undersurface of wound evacuation and UV LED treatment pad 58. The control unit 12 may be used to modulate the ultraviolet light to create various patterns of light, different intensities of light, and different durations of light. For example, the control unit 12 may be used to generate pulsed emission of ultraviolet light. The ultraviolet light is capable of penetrating through several layers of skin to destroy infectious bacteria. In one embodiment, not specifically shown herein, the UV LED treatment pad 58 may be provided on the therapy blanket/pad 14. According to exemplary embodiments, the ultraviolet light from the plurality of LEDs located on the undersurface of wound evacuation and UV LED treatment pad 58 destroys a wide variety of microorganisms such as, for example, bacteria which causes skin infections. In addition, the ultraviolet light from the plurality of LEDs improves wound healing along with cell and bone growth. Furthermore, the use of LEDs in light therapy is safe, non-invasive, drug-free and therapeutic.


Referring now to FIG. 2, there is a block diagram 200 illustrating the flow of oxygenation gas as a transfer fluid according to an embodiment of the present invention. As set forth in the block diagram 200, a control unit display 30 is provided in conjunction with an analog/digital processing unit 32. A plurality of sensors 34 are utilized in conjunction with the processing unit 32 for control of heat transfer fluids to the therapy blanket/pad 14 as well as the oxygen delivery thereto. The oxygen generator/concentrator 20 is connected to a power supply 36, which power supply 36, also powers the processing unit 32. The oxygen generated from the oxygen generator/concentrator 20 is then pumped through compression pump 38 before delivery to the therapy blanket/pad 14. It should be noted that an oxygen supply may also be used.


Referring still to FIG. 2, a water/alcohol reservoir 40 is shown in fluid flow communication with fluid pump 42 and Thermo Electric Cooler (TEC) heater/cooler 44. The TEC heater/cooler 44 is controlled by the processing unit 32 and a TEC supply 46 is likewise shown. Adjacent the TEC supply 46 is illustrated a diagrammatical schematic of a treatment chamber 50 defined beneath the therapy blanket/pad 14 wherein the treatment chamber 50 is thermally exposed to the thermal fluid by the fluid path therein illustrated. The adhesive attachment edges 52 therein shown likewise define the treatment chamber space 50 between the therapy blanket/pad 14 and the wound site to allow for the flow of the oxygenation gas therein.


Referring still to FIG. 2, there is shown a vacuum pump 59 powered by the power supply 36. A collection chamber 56 is connected to the vacuum pump 59 and to a wound evacuation and UV LED treatment pad 58. The wound evacuation and UV LED treatment pad 58 is used prior to the therapy blanket/pad 14, in one embodiment of the present invention, for cleaning the wound area in preparation for oxygenation in conjunction with thermal therapy in accordance with the present invention.


Referring still to FIG. 2, there is shown a plurality of ultraviolet LEDs 60 and fiber optic strands 62, which are interoperably connected to the wound evacuation and UV LED treatment pad 58. The wound evacuation and UV LED treatment pad 58 is used prior to the therapy blanket/pad 14, in one embodiment of the present invention, for removing bacteria from the wound area in preparation for oxygenation in conjunction with thermal therapy in accordance with an embodiment. According to exemplary embodiments, ultraviolet light from the plurality of LEDs 60 destroys a wide variety of microorganisms such as, for example, bacteria which causes skin infections. In addition, the ultraviolet light from the plurality of LEDs 60 improves wound healing along with cell and bone growth. Furthermore, the use of the plurality of LEDs 60 in light therapy is safe, non-invasive, drug-free and therapeutic.


According to exemplary embodiments, the ultraviolet light from the plurality of LEDs 60 is in the range of approximately 200 to 450 nanometers and higher, and energy levels of up to 35,000 microwatt seconds/cm2, which are necessary to eliminate or destroy most microorganisms such as bacteria, spores, algae and viruses. Most bacteria can be destroyed at ultra violet energies of from about 3,000 to about 5,000 microwatt-seconds/cm2 while mold spores may require energies in the 20,000 to 35,000 mW-seconds/cm2.


Referring now to FIG. 3 there is shown a flow diagram of a process 300 according to an embodiment. The process 300 starts at step 101. At step 102, the wound area is cleaned of dead tissue, any undesirable fluids, and bacteria by applying the wound evacuation and UV LED treatment pad 58. The wound evacuation and UV LED treatment pad 58 is used prior to the therapy blanket/pad 14 for removing bacteria from the wound area in preparation for oxygenation in conjunction with thermal therapy in accordance with the present invention. According to exemplary embodiments, the ultraviolet light from the plurality of LEDs located on the undersurface of wound evacuation and UV LED treatment pad 58 destroys a wide variety of microorganisms such as, for example, bacteria which causes skin infections. In addition, the ultraviolet light from the plurality of LEDs improves wound healing along with cell and bone growth. Furthermore, the use of LEDs in light therapy is safe, non-invasive, drug-free and therapeutic.


At step 103, the therapy blanket/pad 14 is applied to the wound area. The therapy blanket/pad 14 is held in position by an adhesive border and, in one embodiment, elastic Velcro cross straps. At step 104, according to an embodiment, an oxygenation gas comprising on the order of 93% concentration of oxygen gas is delivered to the wound site with one to two atmospheric pressures. The numbers as set forth and shown are exemplary and other oxygenation concentrations as well as pressures are contemplated in various embodiments. Consistent therewith, however, is the concept of, and teachings for, thermal treatment of the wound site in conjunction with oxygenation. In step 106, the site is warmed through the fluid path herein shown on the back side of the therapy blanket/pad 14 up to approximately 5 to approximately 6 degrees above the body temperature of the patient. Warming allows the pores of the patient's skin to open, exposing capillaries therein. The capillaries of the skin are then saturated with oxygen. In one period of time herein described, a warming period of approximately 15 to approximately 30 minutes is recommended. At step 108, oxygenation is continued at one to two atmospheres and the therapy blanket/pad fluid is lowered to approximately 30 to approximately 40 degrees below body temperatures. Cooling closes the pores of the wound area and pulls oxygen into the underlying tissue. Cooling then proceeds for approximately 30 to approximately 45 minutes in accordance with an embodiment. At step 110, the process 300 may be repeated periodically and the wound area may be cleaned of dead tissue before each treatment. At step 112, the process 300 ends.



FIG. 4 is a side elevational, cross sectional view of one embodiment of the therapy blanket/pad 14. In an embodiment, the therapy blanket/pad 14 is constructed with a single bladder 114 where thermal fluid flow may be provided. The tubular members 16 are coupled to the therapy blanket/pad 14. The therapy blanket/pad is fabricated with a circuitous flow path therein for thermal fluid flow. The circuitous flow path may be tubular in form, or simply a path within therapy blanket/pad 14 defined by flow channels. What is shown is a path 117 within therapy blanket/pad 14. The path 117 is shown with tubular ends 117A, for example, illustrating that thermal fluid flows therein for thermal treatment of the underlying wound area. Again, the path 117 may not be of tubular form and may have a variety of shapes and fabrication techniques well know in the art of thermal pads.


According to an exemplary embodiment, the therapy blanket/pad 14 is separated from the patient's skin by adhesive strips 119 having a thickness of, for example, ⅛ inch. The therapy blanket/pad 14 (not drawn to scale) exposes the wound to both heat and cold via the path 117 while oxygen is injected into the treatment chamber 50. The injection of oxygen in conjunction with the aforesaid heating and cooling via the path 117 helps treat the wound area and any stasis zones therein where tissue swelling has restricted flow of blood to tissues within the wound area. It is well known that, without sufficient blood flow, the epithelial and subcutaneous tissues referenced above receive less oxygen and are less able to migrate over the wound area to promote healing. By utilizing the embodiments disclosed herein, oxygenation is enhanced and the problems associated with such conditions are mitigated.



FIG. 5 illustrates an exemplary embodiment of the thermal therapy and oxygenation treatment pad of FIG. 4. A dual bladder 214 is thus provided where air may be applied to second bladder 207 atop the path 117, also represented by the “tubular” ends 117A shown for purposes of example only. In this manner, select compression therapy may be afforded in conjunction with the thermal and oxygenation treatment. In that regard, air inlet tube 201 is connected to the second bladder 207. Both FIGS. 4 and 5 show oxygen tube 24 for feeding oxygen to the treatment chamber 50, with tube 203 allowing thermal fluid into conduits 117 with tube 205 allowing thermal fluid return to control unit 12 of FIG. 1. FIG. 5 further illustrates the advantages of FIG. 4 with the ability for either compression or sequenced compression as referenced above.


Referring now to FIG. 6, there is shown a diagrammatic illustration of the therapy blanket/pad 14 of FIGS. 1 and 4. The tubular members 16 for thermal fluid flow and the tube 24 for oxygen flow are clearly seen. The adhesive border 119 is likewise shown.



FIG. 7 is diagrammatic illustration of a wound evacuation and UV LED treatment pad 58 according to an embodiment of the present invention. In this embodiment, the wound evacuation and UV LED treatment pad 58 contains an array of fiber optic strand 72 to project ultraviolet light onto a wound area (not explicitly shown). In a typical embodiment, the fiber optic strands 72 may be cleaved side emitting fibers. The wound evacuation and UV LED treatment pad 58 also contains an array of unique removal ports 57 that may be used to remove any undesirable fluid from the wound area. The wound evacuation and UV LED treatment pad 58 further contains a non-tissue adhesive service 80 which contains both the fiber optic strand array 72 and the unique removal ports 57. An adhesive circumference 82 is located around the periphery of the wound evacuation and UV LED treatment pad 58 to allow for a seal to be formed around the wound area. The seal, in conjunction with the removal ports 57, allows a negative pressure to form over the wound area. Negative pressure facilitates removal undesirable tissues from the wound area. The wound evacuation and UV LED treatment pad 58 is connected to a control unit 12. The control unit 12 contains a vacuum pump (not shown) and a plurality of ultraviolet LEDs (not explicitly shown). The vacuum pump is connected to the wound evacuation and UV LED treatment pad 58 via a vacuum line 55. A collection chamber 56 is positioned between the vacuum pump and the wound evacuation and UV LED treatment pad 58 to intercept and store undesirable fluids, tissues, and the like that are removed from the wound area as a result of negative pressure applied to the wound area with the vacuum pump. The plurality of ultraviolet LEDs transmit ultraviolet light through the fiber optic strands 70 to the wound evacuation and UV LED treatment pad 58, where the fiber optic strands 70 are then dispersed throughout the wound evacuation and UV LED treatment pad 58 to project ultraviolet light onto the wound area. Energy delivered by the plurality of LEDs enhances cellular metabolism, accelerates repair and replenishment of damaged skin cells, as well as stimulates production of collagen which is the foundation of a healthy and smooth skin. Light therapy is non-ablative, non-invasive, and painless.



FIG. 8A is a schematic diagram of a wound care system according to an exemplary embodiment. A wound care system 800 includes a control unit 802, a combination therapy pad 804, and a plurality of tubular members 806 connecting the combination therapy pad 804 to the control unit 802. A wound evacuation and UV-LED unit 808 is associated with the control unit 802 and connected to the combination therapy pad 804. In various embodiments, the wound evacuation and UV-LED unit 808 and the control unit 802 are contained in a single housing; however, in various alternative embodiments, the wound evacuation and UV-LED unit 808 and the control unit 802 may not be in a single housing and are independent devices.


Still referring to FIG. 8A, use of the combination therapy pad 804 incorporates ultraviolet light and evacuation therapy for wound cleaning with thermal and oxygenation therapy known to promote healing. In various embodiments, Velcro cross straps are used to secure the combination therapy pad 804. An oxygen generator/concentrator 810 is utilized to provide, for example, a 93% concentration of oxygen to a wound site via the combination therapy pad 804. In a typical embodiment, the oxygen generator/concentrator 810 and the control unit 802 are separate devices; however, in other embodiments, the oxygen generator/concentrator 810 and the control unit 802 are contained in a single housing.


Still referring to FIG. 8A, fiber optic strands (not explicitly shown) direct ultraviolet light from a plurality of LEDs (not explicitly shown) located in the wound evacuation and UV-LED unit 808 to an array of fiber optic strands (not explicitly shown) located on an undersurface of the combination therapy pad 804. The control unit 802 may be used to modulate the ultraviolet light to create, for example, various patterns of light, different intensities of light, and different durations of light. For example, in various embodiments, the control unit 802 is used to produce pulsed emission of the ultraviolet light.



FIG. 8B is a front perspective view of a wound care system according to an exemplary embodiment. The wound care system 800 includes the control unit 802, the combination therapy pad 804, and the plurality of tubular members 806 connecting the combination therapy pad 804 to the control unit 802. A user interface 805 is disposed on a front surface of the control unit 802. In a typical embodiment, the user interface 805 allows a user to control various parameters of wound care-treatment including, for example, oxygen concentration, oxygen pressure, temperature, and ultra-violet light intensity. The user interface 805 may be pivoted relative to the control unit 802 to provide a favorable viewing angle. In a typical embodiment, the user interface 805 may be, for example a touch screen interface; however, in other embodiments, the user interface 805 may be, for example, a plurality of controls or any other user interface. Use of the combination therapy pad 804 incorporates ultraviolet light and evacuation therapies for wound cleaning with thermal and oxygenation therapy known to promote healing. In various embodiments, Velcro cross straps (not shown) may be used to secure the combination therapy pad 804.



FIG. 8C is a front perspective view of the wound care system of FIG. 8A illustrating a plurality of foldable hooks. The wound care system 800 includes a plurality of foldable hooks 803 disposed, for example, along a top of the control unit 802. In a typical embodiment, the plurality of foldable hooks 803 may be utilized to hang the control unit 802 from, for example, a hospital bed.



FIG. 9 is a block diagram of a wound care system according to an exemplary embodiment. In a wound-care system 900, a control unit display 902 is provided in conjunction with a processing unit 904. In a typical embodiment, the processing unit 904 is an analog/digital processing unit. A plurality of sensors 906 are utilized in conjunction with the processing unit 904 for control of heat transfer fluids to a combination therapy pad 804. In various embodiments, the oxygen generator/concentrator 810 is connected to a power supply 908. The power supply 908 also powers the processing unit 904. Oxygen generated by the oxygen generator/concentrator 810 is pumped through a compression pump 910 and a pressure switch 921 before being delivered to the combination therapy pad 804.


Still referring to FIG. 9, in a typical embodiment, a water/alcohol reservoir 912 is in fluid communication with a fluid pump 914 and a thermoelectric cooler 916. The thermoelectric cooler 916 is controlled by the processing unit 904. In a typical embodiment, a vacuum pump 918 is powered by the power supply 908. A collection chamber 920 is fluidly connected to the vacuum pump 918 and the pressure switch 921. The pressure switch 921 is fluidly coupled to the combination therapy pad 804. In a typical embodiment, oxygen therapy and vacuum therapy are each administered to the combination therapy pad 804 through a common port 922. In a typical embodiment, the pressure switch 921 is capable of adjusting the combination therapy pad 804 between vacuum treatment and oxygenation therapy.



FIG. 10 is a block diagram of a wound care system according to an exemplary embodiment. In a typical embodiment, a wound care system 1000 is similar in construction to the arrangement described above with respect to FIG. 9. However, the wound care system 1000 does not include a water/alcohol reservoir or a fluid pump as shown in FIG. 9. In a typical embodiment, the thermoelectric cooler 916 is in fluid communication with the compression pump 910. Thus, thermal therapy is supplied to the combination therapy pad 804 through heating and cooling of the oxygen supplied by the oxygen generator/concentrator 810.



FIG. 11 is a diagrammatic illustration of a combination therapy pad according to an exemplary embodiment. In a typical embodiment, the combination therapy pad 804 includes a plurality of fiber optic strands 72 to project ultraviolet light onto a wound area (not explicitly shown). In various embodiments, the fiber optic strands 72 may be cleaved or side-emitting fibers; however, one skilled in the art will recognize that any type of fiber-optic strand could be used. In a typical embodiment, the combination therapy pad 804 also includes a plurality of oxygenation/removal ports 1102. In a typical embodiment, the oxygenation/removal ports 1102 alternate between providing oxygen therapy and vacuum therapy to the wound area.


Still referring to FIG. 11, in a typical embodiment, oxygen therapy and vacuum therapy is administered to the combination therapy pad 804 via an evacuation/oxygenation line 1104. The evacuation/oxygenation line 1104 is fluidly coupled to the pressure switch 921. The pressure switch 921 is fluidly connected to the compression pump 910 and the vacuum pump 918. Thus, in a typical embodiment, the pressure switch 921 is capable of adjusting the combination therapy pad 804 between vacuum treatment and oxygenation therapy.


Still referring to FIG. 11, in various embodiments, a luer lock 1106 is fluidly coupled to the combination therapy pad 804. During treatment, it is often necessary to administer various medications to a wound site. Such administration often requires removal of a wound dressing such as, for example, the combination therapy pad 804. Frequent removal of the wound dressing can increase risk of further damage to tissue immediately surrounding the wound site. In a typical embodiment, the luer lock 1106 allows for administration of medications and other therapeutic compounds directly to a wound site without the need to remove the combination therapy pad 804.



FIG. 12 is a diagrammatic illustration of a combination therapy pad according to an exemplary embodiment. In a typical embodiment, the combination therapy pad 1200 includes the plurality of fiber optic strands 72 to project ultraviolet light onto a wound area (not explicitly shown). In a typical embodiment, a combination therapy pad 1200 also includes a radio frequency (“RF”) antenna 1202. In a typical embodiment, the RF antenna 1202 comprises a wire 1204. The wire 1204 extends along a length of the combination therapy pad 1204. In a typical embodiment, the wire 1204 is disposed within the combination therapy pad 1200 so that, during use, the wire is in close proximity to a wound area. In various embodiments, the wire 1204 is insulated to reduce risk of electric shock to a patient.



FIG. 13 is an exploded view of a combination therapy pad according to an exemplary embodiment. A combination therapy pad 1300 includes a first layer 1302 having a first central gap 1304 formed therein. In a typical embodiment, the first layer 1302 is constructed of, for example, urethane. A second layer 1305 is disposed below the first layer 1302 and includes an adhesive bottom surface 1306. A second central gap (not explicitly shown) is formed in the second layer 1305 In a typical embodiment, the second layer 1305 is constructed of, for example, urethane. The first layer 1302 and the second layer 1305 are coupled to each other around a perimeter of the first layer 1302 and the second layer 1305 so that the second central gap aligns with the first central gap 1304. A fiber-optic array 1308 is disposed between the first layer 1302 and the second layer 1305 so as to fill a space defined by the first central gap 1304 and the second central gap.


Still referring to FIG. 13, a third layer 1310 is disposed above the first layer 1302. The third layer 1310 includes a recessed central area 1312. The recessed central area 1312 is fluidly coupled to a vacuum tube 1314 via a first port and a therapeutic fluid tube 1316 via a second port. An antenna 1318 is coupled to the third layer 1310. The antenna 1318 is formed into a loop and is generally arranged around a perimeter of the recessed central area 1312. In a typical embodiment, the first layer 1302, the second layer 1305, and the third layer 1310 are coupled to each other via a process such as, for example, adhesive bonding or welding.


Still referring to FIG. 13, during operation, the adhesive bottom surface 1306 is placed on a bodily region of a patient proximate a wound area. In a typical embodiment, the adhesive bottom surface 1306 is oriented such that the second central gap is positioned over the wound area. Thus, the adhesive bottom surface 1306 is not in direct contact with the wound area. The fiber-optic array 1308 is disposed over the wound area and, in various embodiments, may contact the wound area. The fiber-optic array 1308 delivers UV lighting to the wound area thereby promoting cleaning and disinfection of the wound area. The vacuum tube 1314 applies negative pressure to the wound area thereby removing undesirable fluids, tissues, and the like from the wound area. The therapeutic fluid tube 1316 provides a therapeutic fluid such as, for example, oxygen to the wound area. In various embodiments, the therapeutic fluid may be heated or cooled prior to delivery to the wound area. Heating or cooling of the therapeutic fluid allows delivery of thermal therapy to the wound area.


Still referring to FIG. 13, during operation, a pulsed radio-frequency (“RF”) signal having a pulse frequency on the order of, for example 27 MHz, is transmitted to the antenna 1318. In a typical embodiment, an amplitude of the pulsed RF signal is on the order of, for example, a fraction of a Watt. Such an amplitude is below a threshold where federal licensing is typically required. The antenna 1318 receives the pulsed RF signal from a radio-frequency source and transmits the pulsed RF signal to a region in close proximity to the wound area. Exposing the wound area to the pulsed RF signal has been shown to be beneficial to healing by encouraging intracellular communication. In particular, pulsed RF signals have been shown to stimulate cellular bonding, and metabolism.


The previous Detailed Description is of embodiment(s) of the invention. The scope of the invention should not necessarily be limited by this Description. The scope of the invention is instead defined by the following claims and the equivalents thereof.

Claims
  • 1. A method of treating a wound area, the method comprising: covering the wound area with a therapy pad, the therapy pad comprising: a first layer;a second layer operatively coupled to the first layer;a fiber-optic array disposed between the first layer and the second layer;a third layer operatively coupled to the first layer, the third layer having a vacuum tube in fluid communication with a vacuum source and a therapeutic fluid tube in fluid communication with a therapeutic fluid source, wherein the third layer provides at least one of vacuum therapy and therapeutic fluid treatment to a wound area;administering at least one of ultra-violet light therapy and vacuum therapy to the wound area via the therapy pad;administering the therapeutic fluid therapy to the wound area via the therapy pad; andapplying therapeutic treatment to the wound area by administering a pulsed radio frequency signal to the wound area via a radio frequency antenna disposed within the third layer.
  • 2. The method of claim 1, wherein the administering at least one of oxygenation therapy and thermal therapy comprises delivering oxygen from an oxygen source to the wound area via the therapy pad.
  • 3. The method of claim 2, comprising administering thermal therapy by at least one of warming or cooling the oxygen via a thermoelectric element thermally exposed to the therapeutic fluid source.
  • 4. The method of claim 1, wherein the radio frequency antenna is disposed substantially around a perimeter of the wound area.
  • 5. The method of claim 1, wherein the vacuum therapy and the oxygenation therapy are administered via a common port in the therapy pad.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of U.S. patent application Ser. No. 13/456,410, filed on Apr. 26, 2012. U.S. patent application Ser. No. 13/456,410 is a Continuation-in-Part of U.S. patent application Ser. No. 13/359,210, filed on Jan. 26, 2012. U.S. patent application Ser. No. 13/359,210 is a Continuation-in-Part of U.S. patent application Ser. No. 11/975,047 (now U.S. Pat. No. 8,128,672), filed on Oct. 17, 2007. U.S. patent application Ser. No. 11/975,047 is a Continuation-in-Part of U.S. patent application Ser. No. 11/801,662 (now U.S. Pat. No. 8,100,956), filed on May 9, 2007. U.S. patent application Ser. No. 11/975,047 claims priority to, and incorporates by reference the entire disclosure of, U.S. Provisional Patent Application No. 60/852,803, filed on Oct. 19, 2006. U.S. patent application Ser. No. 11/801,662 (now U.S. Pat. No. 8,100,956) claims priority to, and incorporates by reference the entire disclosure of, U.S. Provisional Patent Application No. 60/798,982, filed on May 9, 2006. U.S. patent application Ser. No. 13/456,410 claims priority to, and incorporates by reference for any purpose, the entire disclosure of U.S. Provisional Patent Application No. 61/479,156, filed on Apr. 26, 2011. U.S. patent application Ser. No. 13/456,410, U.S. patent application Ser. No. 13/359,210, U.S. patent application Ser. No. 11/975,047, U.S. patent application Ser. No. 11/801,662, U.S. Provisional Patent Application No. 60/852,803, U.S. Provisional Patent Application No. 60/798,982, and U.S. Provisional Patent Application No. 61/479,156 are each incorporated herein by reference. This patent application is related to and incorporates by reference U.S. Provisional Patent Application No. 60/488,709, filed on Jul. 18, 2003; U.S. Provisional Patent Application No. 60/550,658 filed on Mar. 5, 2004; and U.S. patent application Ser. No. 10/894,369, filed on Jul. 19, 2004. This patent application incorporates by reference commonly assigned U.S. Pat. Nos. 5,097,829; 5,989,285, and 6,935,409.

US Referenced Citations (358)
Number Name Date Kind
773828 Titus Nov 1904 A
2110022 Kliesrath Mar 1938 A
2504308 Donkle, Jr. Apr 1950 A
3014117 Madding Dec 1961 A
3164152 Vere Nicoll Jan 1965 A
3345641 Jennings Oct 1967 A
3367319 Carter, Jr. Feb 1968 A
3548809 Conti Francesco Dec 1970 A
3608091 Olson et al. Sep 1971 A
3660849 Jonnes et al. May 1972 A
3736764 Chambers et al. Jun 1973 A
3738702 Jacobs Jun 1973 A
3744053 Parker et al. Jul 1973 A
3744555 Fletcher et al. Jul 1973 A
3862629 Rotta Jan 1975 A
3894213 Agarwala Jul 1975 A
4006604 Seff Feb 1977 A
4013069 Hasty Mar 1977 A
4029087 Dye et al. Jun 1977 A
4206751 Schneider Jun 1980 A
4224941 Stivala Sep 1980 A
4375217 Arkans Mar 1983 A
4402312 Villari et al. Sep 1983 A
4459468 Bailey Jul 1984 A
4459822 Pasternack Jul 1984 A
4471787 Bentall Sep 1984 A
4503484 Moxon Mar 1985 A
4547906 Nishida et al. Oct 1985 A
4597384 Whitney Jul 1986 A
4608041 Nielsen Aug 1986 A
D285821 Kneisley Sep 1986 S
D288372 Adams Feb 1987 S
4660388 Greene, Jr. Apr 1987 A
D295897 Thimm-Kelly May 1988 S
4741338 Miyamae May 1988 A
4821354 Little Apr 1989 A
4844072 French et al. Jul 1989 A
4884304 Elkins Dec 1989 A
4901200 Mazura Feb 1990 A
4911231 Horne et al. Mar 1990 A
4926881 Ichinomiya et al. May 1990 A
4962761 Golden Oct 1990 A
4969881 Viesturs Nov 1990 A
4979375 Nathans et al. Dec 1990 A
4989589 Pekanmaki et al. Feb 1991 A
4995698 Myers Feb 1991 A
4996970 Legare Mar 1991 A
5044364 Crowther Sep 1991 A
5051562 Bailey et al. Sep 1991 A
D320872 McCrane Oct 1991 S
5067040 Fallik Nov 1991 A
5080089 Mason et al. Jan 1992 A
5090409 Genis Feb 1992 A
5092271 Kleinsasser Mar 1992 A
5097829 Quisenberry Mar 1992 A
5106373 Augustine et al. Apr 1992 A
5112045 Mason et al. May 1992 A
5117812 McWhorter Jun 1992 A
5125238 Ragan et al. Jun 1992 A
5165127 Nicholson Nov 1992 A
5179941 Siemssen et al. Jan 1993 A
5184612 Augustine Feb 1993 A
5186698 Mason et al. Feb 1993 A
5230335 Johnson, Jr. et al. Jul 1993 A
5232020 Mason et al. Aug 1993 A
5241951 Mason et al. Sep 1993 A
5243706 Frim et al. Sep 1993 A
5263538 Amidieu et al. Nov 1993 A
5285347 Fox et al. Feb 1994 A
D345082 Wenzl Mar 1994 S
D345609 Mason et al. Mar 1994 S
D345802 Mason et al. Apr 1994 S
D345803 Mason et al. Apr 1994 S
5300101 Augustine et al. Apr 1994 A
5300102 Augustine et al. Apr 1994 A
5300103 Stempel et al. Apr 1994 A
5303716 Mason et al. Apr 1994 A
5316250 Mason et al. May 1994 A
D348106 Mason et al. Jun 1994 S
5323847 Koizumi et al. Jun 1994 A
5324319 Mason et al. Jun 1994 A
5324320 Augustine et al. Jun 1994 A
D348518 Mason et al. Jul 1994 S
5330519 Mason et al. Jul 1994 A
5336250 Augustine Aug 1994 A
5343579 Dickerhoff et al. Sep 1994 A
5350417 Augustine Sep 1994 A
D351472 Mason et al. Oct 1994 S
5352174 Mason et al. Oct 1994 A
5354117 Danielson et al. Oct 1994 A
D352781 Mason et al. Nov 1994 S
5360439 Dickerhoff et al. Nov 1994 A
5370178 Agonafer et al. Dec 1994 A
5371665 Quisenberry et al. Dec 1994 A
D354138 Kelly Jan 1995 S
D357747 Kelly Apr 1995 S
5402542 Viard Apr 1995 A
5405370 Irani Apr 1995 A
5405371 Augustine et al. Apr 1995 A
5407421 Goldsmith Apr 1995 A
D358216 Dye May 1995 S
5411494 Rodriguez May 1995 A
5411541 Bell et al. May 1995 A
5417720 Mason May 1995 A
5440450 Lau et al. Aug 1995 A
5449379 Hadtke Sep 1995 A
5466250 Johnson, Jr. et al. Nov 1995 A
5496262 Johnson, Jr. et al. Mar 1996 A
5505726 Meserol Apr 1996 A
5507792 Mason Apr 1996 A
5509894 Mason et al. Apr 1996 A
5528485 Devilbiss et al. Jun 1996 A
5561981 Quisenberry et al. Oct 1996 A
5566062 Quisenberry et al. Oct 1996 A
D376013 Sandman et al. Nov 1996 S
5578022 Scherson et al. Nov 1996 A
5588954 Ribando et al. Dec 1996 A
5591200 Cone et al. Jan 1997 A
D380874 Caswell Jul 1997 S
5648716 Devilbiss et al. Jul 1997 A
D383546 Amis et al. Sep 1997 S
D383547 Mason et al. Sep 1997 S
D383848 Mason et al. Sep 1997 S
5662695 Mason et al. Sep 1997 A
5672152 Mason et al. Sep 1997 A
5675473 McDunn et al. Oct 1997 A
5682748 DeVilbiss et al. Nov 1997 A
5689957 DeVilbiss et al. Nov 1997 A
5690849 DeVilbiss et al. Nov 1997 A
5711029 Visco et al. Jan 1998 A
5711155 DeVilbiss et al. Jan 1998 A
D393073 Downing et al. Mar 1998 S
5731954 Cheon Mar 1998 A
5733321 Brink Mar 1998 A
D394707 Tsubooka May 1998 S
5755755 Panyard May 1998 A
5772618 Mason et al. Jun 1998 A
5782780 Mason et al. Jul 1998 A
5795312 Dye Aug 1998 A
5807294 Cawley et al. Sep 1998 A
5827208 Mason Oct 1998 A
5831824 McDunn et al. Nov 1998 A
D403779 Davis et al. Jan 1999 S
D404490 Tripolsky Jan 1999 S
D405884 Roper Feb 1999 S
5871526 Gibbs et al. Feb 1999 A
5890371 Rajasubramanian et al. Apr 1999 A
5901037 Hamilton et al. May 1999 A
5923533 Olson Jul 1999 A
5947914 Augustine Sep 1999 A
5980561 Kolen et al. Nov 1999 A
5989285 DeVilbiss et al. Nov 1999 A
6007559 Arkans Dec 1999 A
6055157 Bartilson Apr 2000 A
6058010 Schmidt et al. May 2000 A
6058712 Rajasubramanian et al. May 2000 A
6080120 Sandman et al. Jun 2000 A
D428153 Davis Jul 2000 S
D430288 Mason et al. Aug 2000 S
D430289 Mason et al. Aug 2000 S
6117164 Gildersleeve et al. Sep 2000 A
6125036 Kang et al. Sep 2000 A
6129688 Arkans Oct 2000 A
6135116 Vogel et al. Oct 2000 A
6176869 Mason et al. Jan 2001 B1
6186977 Andrews et al. Feb 2001 B1
6238427 Matta May 2001 B1
6260890 Mason Jul 2001 B1
6270481 Mason et al. Aug 2001 B1
6295819 Mathiprakasam et al. Oct 2001 B1
6305180 Miller et al. Oct 2001 B1
6319114 Nair et al. Nov 2001 B1
6352550 Gildersleeve et al. Mar 2002 B1
6358219 Arkans Mar 2002 B1
6368592 Colton et al. Apr 2002 B1
6436064 Kloecker Aug 2002 B1
6443978 Zharov Sep 2002 B1
6462949 Parish, IV et al. Oct 2002 B1
6468237 Lina Oct 2002 B1
6508831 Kushnir Jan 2003 B1
D472322 Hoglund et al. Mar 2003 S
D473315 Miros et al. Apr 2003 S
D473656 Miros et al. Apr 2003 S
D473948 Elkins et al. Apr 2003 S
6551264 Cawley et al. Apr 2003 B1
D474544 Hoglund et al. May 2003 S
6562060 Momtaheni May 2003 B1
6596016 Vreman Jul 2003 B1
6648904 Altshuler et al. Nov 2003 B2
D484601 Griffiths et al. Dec 2003 S
D484602 Griffiths et al. Dec 2003 S
6660027 Gruszecki et al. Dec 2003 B2
6667883 Solis et al. Dec 2003 B1
6675072 Kerem Jan 2004 B1
D486870 Mason Feb 2004 S
6695823 Lina et al. Feb 2004 B1
6719713 Mason Apr 2004 B2
6719728 Mason et al. Apr 2004 B2
6736787 McEwen et al. May 2004 B1
D492411 Bierman Jun 2004 S
6775137 Chu et al. Aug 2004 B2
D496108 Machin et al. Sep 2004 S
6789024 Kochan, Jr. et al. Sep 2004 B1
6802823 Mason Oct 2004 B2
D499846 Cesko Dec 2004 S
6834712 Parish et al. Dec 2004 B2
6846295 Ben-Nun Jan 2005 B1
6848498 Seki et al. Feb 2005 B2
6855158 Stolpmann Feb 2005 B2
6893414 Goble et al. May 2005 B2
D506553 Tesluk Jun 2005 S
6935409 Parish, IV et al. Aug 2005 B1
6936019 Mason Aug 2005 B2
D510140 Brown Sep 2005 S
6945988 Jones Sep 2005 B1
D510626 Krahner et al. Oct 2005 S
D515218 McGuire et al. Feb 2006 S
D523147 Tesluk Jun 2006 S
7066949 Gammons et al. Jun 2006 B2
7081128 Hart et al. Jul 2006 B2
D533668 Brown Dec 2006 S
D551351 Silva Sep 2007 S
D551352 Frangi Sep 2007 S
7306568 Diana Dec 2007 B2
7354411 Perry et al. Apr 2008 B2
D568482 Gramza et al. May 2008 S
D569985 Ganapathy et al. May 2008 S
7427153 Jacobs et al. Sep 2008 B1
7429252 Sarangapani Sep 2008 B2
7484552 Pfahnl Feb 2009 B2
7492252 Maruyama Feb 2009 B2
D595620 Kingsbury Jul 2009 S
D601707 Chouiller Oct 2009 S
D608006 Avitable et al. Jan 2010 S
D612947 Turtzo et al. Mar 2010 S
D613870 Shust Apr 2010 S
7717869 Eischen, Sr. May 2010 B2
D618358 Avitable et al. Jun 2010 S
D619267 Beckwith et al. Jul 2010 S
D620122 Cotton Jul 2010 S
D625018 Smith et al. Oct 2010 S
D626241 Sagnip et al. Oct 2010 S
D626242 Sagnip et al. Oct 2010 S
D626243 Sagnip et al. Oct 2010 S
D626245 Sagnip et al. Oct 2010 S
D627896 Matsuo et al. Nov 2010 S
D628300 Caden Nov 2010 S
D630759 Matsuo et al. Jan 2011 S
7871387 Tordella et al. Jan 2011 B2
D631971 Turtzo et al. Feb 2011 S
D633657 Oban Mar 2011 S
D634437 Gramza et al. Mar 2011 S
D634851 Chiang Mar 2011 S
D635266 Chiang Mar 2011 S
D635267 Chiang Mar 2011 S
7896910 Schirrmacher et al. Mar 2011 B2
D636497 Giaccone Apr 2011 S
D638950 Janzon May 2011 S
D640380 Tweardy et al. Jun 2011 S
D640381 Tweardy et al. Jun 2011 S
D649648 Cavalieri et al. Nov 2011 S
1027598 Quisenberry et al. Nov 2011 A1
1028226 Quisenberry et al. Nov 2011 A1
8052630 Kloecker et al. Nov 2011 B2
D655420 Bowles Mar 2012 S
D655821 Matsuo Mar 2012 S
D657063 Chiang Apr 2012 S
D660438 Kennedy et al. May 2012 S
D660439 Chen et al. May 2012 S
D663850 Joseph Jul 2012 S
D665088 Joseph Aug 2012 S
D665470 Galbraith Aug 2012 S
D666258 Campbell Aug 2012 S
D666301 Joseph Aug 2012 S
8449483 Eddy May 2013 B2
20010039439 Elkins et al. Nov 2001 A1
20020116041 Daoud Aug 2002 A1
20020143373 Courtnage et al. Oct 2002 A1
20030050594 Zamierowski Mar 2003 A1
20030083610 McGrath et al. May 2003 A1
20030089486 Parish et al. May 2003 A1
20030089487 Parish, IV et al. May 2003 A1
20030127215 Parish, IV et al. Jul 2003 A1
20030135252 MacHold et al. Jul 2003 A1
20030163183 Carson Aug 2003 A1
20030171703 Grim et al. Sep 2003 A1
20030176822 Morgenlander Sep 2003 A1
20130191437 Knighton et al. Oct 2003 A1
20040008483 Cheon Jan 2004 A1
20040030281 Goble et al. Feb 2004 A1
20040046108 Spector Mar 2004 A1
20040054307 Mason et al. Mar 2004 A1
20040068309 Edelman Apr 2004 A1
20040068310 Edelman Apr 2004 A1
20040099407 Parish, IV et al. May 2004 A1
20040133135 Diana Jul 2004 A1
20040186535 Knowlton Sep 2004 A1
20040193218 Butler Sep 2004 A1
20040210176 Diana Oct 2004 A1
20040221604 Ota et al. Nov 2004 A1
20040260231 Goble et al. Dec 2004 A1
20050004636 Noda et al. Jan 2005 A1
20050006061 Quisenberry et al. Jan 2005 A1
20050033390 McConnell Feb 2005 A1
20050039887 Parish, IV et al. Feb 2005 A1
20050070828 Hampson et al. Mar 2005 A1
20050070835 Joshi Mar 2005 A1
20050133214 Pfahnl Jun 2005 A1
20050143797 Parish et al. Jun 2005 A1
20050177093 Barry et al. Aug 2005 A1
20050182364 Burchman Aug 2005 A1
20050256556 Schirrmacher et al. Nov 2005 A1
20050274120 Quisenberry et al. Dec 2005 A1
20050284615 Parish et al. Dec 2005 A1
20060034053 Parish et al. Feb 2006 A1
20060058714 Rhoades Mar 2006 A1
20060116620 Oyaski Jun 2006 A1
20060241549 Sunnen Oct 2006 A1
20060276845 George et al. Dec 2006 A1
20060282028 Howard et al. Dec 2006 A1
20070032778 Heaton et al. Feb 2007 A1
20070068651 Gammons et al. Mar 2007 A1
20070112401 Balachandran et al. May 2007 A1
20070118194 Mason et al. May 2007 A1
20070129658 Hampson et al. Jun 2007 A1
20070233209 Whitehurst Oct 2007 A1
20070260162 Meyer et al. Nov 2007 A1
20070282249 Quisenberry Dec 2007 A1
20080058911 Parish et al. Mar 2008 A1
20080064992 Stewart et al. Mar 2008 A1
20080071330 Quisenberry Mar 2008 A1
20080082029 Diana Apr 2008 A1
20080103422 Perry et al. May 2008 A1
20080132976 Kane et al. Jun 2008 A1
20080249559 Brown et al. Oct 2008 A1
20080319362 Joseph Dec 2008 A1
20090069731 Parish et al. Mar 2009 A1
20090109622 Parish et al. Apr 2009 A1
20090149821 Scherson et al. Jun 2009 A1
20090254160 Shawver et al. Oct 2009 A1
20100010477 Augustine et al. Jan 2010 A1
20100030306 Edelman et al. Feb 2010 A1
20100081975 Avitable et al. Apr 2010 A1
20100121230 Vogel et al. May 2010 A1
20100137764 Eddy Jun 2010 A1
20100145421 Tomlinson et al. Jun 2010 A1
20100150991 Bernstein Jun 2010 A1
20100249679 Perry et al. Sep 2010 A1
20100249680 Davis Sep 2010 A1
20110009785 Meyer et al. Jan 2011 A1
20110034861 Schaefer Feb 2011 A1
20110071447 Liu et al. Mar 2011 A1
20110082401 Iker et al. Apr 2011 A1
20110087142 Ravikumar et al. Apr 2011 A1
20130245508 Maxon-Maldonado Sep 2013 A1
20130245519 Edelman et al. Sep 2013 A1
20130261512 Maxon-Maldonado et al. Oct 2013 A1
20140012169 Wilford et al. Jan 2014 A1
Foreign Referenced Citations (8)
Number Date Country
670 541 Jun 1989 CH
35 22 127 Jan 1987 DE
0 489 326 Jun 1992 EP
2373444 Sep 2002 GB
689674 Oct 1979 SU
WO-9309727 May 1993 WO
WO-0040186 Jul 2000 WO
WO-0114012 Mar 2001 WO
Non-Patent Literature Citations (25)
Entry
U.S. Appl. No. 12/730,060, Parish et al.
U.S. Appl. No. 12/708,422, Balachandran et al.
U.S. Appl. No. 12/871,188, Parish et al.
U.S. Appl. No. 13/107,264, Quisenberry.
U.S. Appl. No. 12/364,434, Quisenberry.
U.S. Appl. No. 13/190,564, Quisenberry et al.
U.S. Appl. No. 29/397,856, Quisenberry.
U.S. Appl. No. 29/400,194, Quisenberry.
U.S. Appl. No. 29/400,202, Quisenberry.
U.S. Appl. No. 29/400,212, Quisenberry.
U.S. Appl. No. 29/402,115, Quinsenberry.
U.S. Appl. No. 13/796,139, Quisenberry.
Artikis, T., PCT International Preliminary Report on Patentability as mailed Jul. 29, 2005, (10 pgs.).
Tom Lee, T.Y. et al; “Compact Liquid Cooling System for Small, Moveable Electronic Equipment”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Oct. 15, 1992, vol. 15, No. 5, pp. 786-793.
Copenheaver, Blaine R., “International Search Report” for PCT/US2007/022148 as mailed Apr. 2, 2008, 2 pages.
Young, Lee W., “International Search Report” for PCT/US07/08807 as mailed Mar. 3, 2008, (3 pages).
Mahmoud Karimi Azar Daryany, et al., “Photoinactivation of Escherichia coli and Saccharomyces cerevisiae Suspended in Phosphate-Buffered Saline-A Using 266- and 355-nm Pulsed Ultraviolet Light”, Curr Microbiol, vol. 56, 2008, pp. 423-428.
J. Li, et al., “Enhanced germicidal effects of pulsed UV-LED irradiation on biofilms”, Journal of Applied Microbiology, 2010, pp. 1-8.
Cyro/Temp Therapy Systems; Product News Catalogue; Jobst Institute, Inc., 6 pages (Copyright 1982).
Quisenberry, Tony, U.S. Appl. No. 13/359,210, filed Jan. 26, 2012.
Quisenberry, Tony, U.S. Appl. No. 29/424,860, filed Jun. 15, 2012.
Quisenberry, Tony, U.S. Appl. No. 13/456,410, filed Apr. 26, 2012.
Copenheaver, Blaine R., “International Search Report” for PCT/US2012/035096 as mailed Aug. 7, 2012, 3 pages.
Quisenberry, Tony, U.S. Appl. No. 13/558,615, filed Jul. 26, 2012.
Copenheaver, Blaine R., “International Search Report” prepared for PCT/US2013/030475 as mailed May 23, 2013, 3 pages.
Related Publications (1)
Number Date Country
20130331767 A1 Dec 2013 US
Provisional Applications (3)
Number Date Country
61479156 Apr 2011 US
60852803 Oct 2006 US
60798982 May 2006 US
Continuations (1)
Number Date Country
Parent 13456410 Apr 2012 US
Child 13962994 US
Continuation in Parts (3)
Number Date Country
Parent 13359210 Jan 2012 US
Child 13456410 US
Parent 11975047 Oct 2007 US
Child 13359210 US
Parent 11801662 May 2007 US
Child 11975047 US