1. Technical Field
The present invention relates to a wound care method and system with one or both of vacuum-light therapy, pulsed radio frequency (“RF”), and thermally augmented oxygenation, and more particularly, but not by way of limitation, to a programmable wound care control unit configured to generate a negative pressure for wound cleaning with light therapy, and, in one embodiment, pulsed RF or oxygenation of a wound area for healing in conjunction with high thermal contrast modalities generated by the control unit.
2. Description of the Related Art
An important aspect of patient treatment is wound care. Medical facilities are constantly in need of advanced technology for the cleaning and treatment of skin wounds. The larger the skin wound, the more serious the issues are of wound closure and infection prevention. The rapidity of the migration over the wound of epithelial and subcutaneous tissue adjacent the wound is thus critical. Devices have been developed and/or technically described which address certain aspects of such wound healing. For example, U.S. Pat. No. 6,695,823 to Lina et al. (“Lina”) describes a wound therapy device that facilitates wound closure. A vacuum pump is taught for collecting fluids from the wound. WO 93/09727 discloses a solution for wound drainage by utilizing negative pressure over the wound to promote the above references migration of epithelial and subcutaneous tissue over the wound.
In other embodiments, wound treatment is performed using light therapy. For example, U.S. Pat. No. 7,081,128 to Hart et al. (“Hart”) describes a method of treating various medical conditions such as, for example, joint inflammation, edema, etc., utilizing an array of Light Emitting Diodes contained on a flexible substrate that may be wrapped around an anatomical feature of the human body. U.S. Pat. No. 6,596,016 to Vreman et al. (“Vreman”) discloses a phototherapy garment for an infant having a flexible backing material, a transparent liner, and a flexible printed circuit sheet containing surface-mounted LEDs. The LEDs preferably emit high-intensity blue light, suitable for the treatment of neonatal hyperbilirubinemia. The device may include a portable power supply.
In other embodiments, wound treatment is performed using oxygen. The use of oxygen for the treatment of skin wounds has been determined to be very beneficial in certain medical instances. The advantages are multitudinous and include rapidity in healing. For this reason, systems have been designed for supplying high concentration of oxygen to wound sites to facilitate the healing process. For example, U.S. Pat. No. 5,578,022 to Scherson et al. (“Scherson”) teaches an oxygen producing bandage and method. One of the benefits cited in Scherson is the ability to modulate a supply of concentrated hyperbaric oxygen to skin wounds. Although oxygen is beneficial in direct application of predetermined dosages to skin wounds, too much oxygen can be problematic. Oxygen applied to a wound site can induce the growth of blood vessels for stimulating the growth of new skin. Too much oxygen, however, can lead to toxic effects and the cessation of healing of the wound. It would be an advantage, therefore, to maximize the effectiveness of oxygen applied to a wound area by enhancing the absorption rate of oxygen into the skin and tissue fluids. By enhancing the absorption rate of the oxygen in the wound, less exposure time and concomitantly fewer toxic side effects to the endothelial cells surrounding the wound, such as devasculation, occurs. It would be a further advantage, therefore, to utilize existing medical treatment modalities directed toward other aspects of patient therapy to augment oxygenation for wound care.
It has been accepted for many years by medical care providers that patient thermal therapy can be very advantageous for certain injuries and/or post operative recovery. For this reason, thermal therapy has been advanced and many reliable and efficient systems exist today which provide localized thermal therapy to patients in both pre and post surgical environments. In particular, absorption of oxygen by cells is enhanced by contrast thermal therapy wherein the wound area is heated prior to being saturated with oxygen and subsequently cooled.
Addressing first thermal therapy systems, several devices have been engineered to deliver temperature controlled fluids through pads or convective thermal blankets to achieve the above purpose. Typically, these devices have a heating or a cooling element, a source for the fluid, a pump for forcing the fluid through the pad or blanket, and a thermal interface between the patient and the temperature controlled fluid. U.S. Pat. No. 4,884,304 to Elkins (“Elkins”) is, for example, directed to a mattress cover device which contains liquid flow channels which provide the selective heating or cooling by conduction.
Devices have also been developed for simply providing heat or cooling to a person in bed. Electric blankets containing electric heating elements have been used, for example, to provide heat to people in bed. Likewise, cooling blankets, such as the blanket disclosed in U.S. Pat. No. 4,660,388 to Greene (“Greene”), have also been proposed. Greene discloses a cooling cover having an inflatable pad with plenum chambers at opposite ends thereof. Cool air is generated in a separate unit and directed to the pad and out to a number of apertures on the underside of the pad and against the body of the person using the cover.
A disposable heating or cooling blanket is disclosed in U.S. Pat. No. 5,125,238 to Ragan et al. (“Ragan”), which has three layers of flexible sheeting. Two of the layers form an air chamber while a third layer includes a comfortable layer for contact with the patient. Conditioned air is directed toward the covered person through a multiplicity of orifices in the bottom layers of the blanket.
A temperature controlled blanket and bedding assembly is also disclosed in U.S. Pat. No. 5,989,285 to DeVilbiss et al. (“DeVilbiss”), assigned to the assignee of the present invention. DeVilbiss discloses a temperature controlled blanket and temperature control bedding system having the provision of both recirculating temperature controlled fluid and temperature controlled gas to enhance performance for convectively heating or cooling a patient. Counter-flow or co-flow heat exchanging principles between the temperature controlled liquid and the temperature controlled gas achieve temperature uniformity across different sections of the blanket and the bedding system. Drapes and the temperature controlled bedding system provide a temperature controlled envelope around a person using the bedding system. In one embodiment of the bedding system, the air portion of the bedding system is provided for use with a patient that supplies the fluid portion of the overall bedding system. In another embodiment of the bedding system, the fluid portion of the bedding system is provided for use with a patient bed which supplies the air portion of the overall bedding system.
U.S. Pat. No. 5,097,829 to Quisenberry (“Quisenberry”) describes an improved temperature controlled fluid circulating system for automatically cooling a temperature controlled fluid in a thermal blanket with a thermoelectric cooling device having a cold side and a hot side when powered by electricity. The temperature controlled fluid is cooled by the cold side of the cooling device and pumped through, to, and from the blanket through first and second conduits.
Finally, co-pending U.S. patent application Ser. No. 10/894,369, assigned to the assignee of the present invention, teaches a sequential compression blanket for use with heating or cooling therapy. In this particular embodiment, the utilization of thermal therapy with sequential compression in a programmable format which further has the option of the introduction of oxygenation through a perforated membrane disposed between the patient and the thermal therapy pad is taught. These advances in the medical industry have been recognized as advantageous to both the medical care providers as well as the patients. The precise manner of oxygenation application is, however, still in the process of development.
The present invention provides improvements in wound care by providing multiple wound healing approaches such as, for example, the application of negative pressure over the wound area along with light therapy of the wound area, and oxygenation of the wound area in conjunction with thermal therapy. By combining an oxygenation modality that is utilized in conjunction with light and thermal therapy and/or sequential compression in association therewith, the individual benefits of negative wound pressure, light therapy, and oxygenation treatments can be synergistically enhanced.
In one aspect, the present invention relates to a therapy system. The therapy system includes a therapy pad having a plurality of fiber-optic strands and a port. A pressure switch is fluidly coupled to the port. An oxygen source is fluidly coupled to the pressure switch. A vacuum pump is fluidly coupled to the pressure switch. A plurality of light emitting diodes is operationally coupled to the plurality of fiber-optic strands. The pressure switch adjusts the therapy pad between vacuum and oxygenation therapy.
In another aspect, the present invention relates to a therapy pad. The therapy pad includes an outer surface and an inner surface. A bladder is disposed between the outer surface and the inner surface. An array of fiber optic strands is disposed on the inner surface. An inlet is disposed on the outer surface. The inlet is fluidly coupled to a plurality of ports disposed on the inner surface. A radio frequency antenna is disposed on the inner surface.
In another aspect, the present invention relates to a method of treating a wound area. The method includes dressing the wound area with a therapy pad and administering at least one of ultra-violet light and vacuum therapy to the wound area via the therapy pad. In various embodiments, the method may also include administering oxygenation therapy to a wound area via the therapy pad, administering thermal therapy to the wound area via the therapy pad, and administering a pulsed radio frequency signal to the wound area via a radio frequency antenna disposed within the therapy pad.
A combination therapy pad that includes a first layer and a second layer operatively coupled to the first layer. A fiber-optic array is disposed between the first layer and the second layer. A third layer is operatively coupled to the first layer. The third layer includes a vacuum tube in fluid communication with a vacuum source and a therapeutic fluid tube in fluid communication with a therapeutic fluid source. The third layer provides at least one of vacuum therapy and therapeutic fluid treatment to a wound area.
A therapy system that includes a combination therapy pad having a plurality of fiber-optic strands and a port. A pressure switch is fluidly coupled to the port. An oxygen source and a vacuum pump are fluidly coupled to the pressure switch. A plurality of light emitting diodes are optically coupled to the plurality of fiber-optic strands. A thermoelectric element is thermally exposed to the oxygen source. The combination therapy pad administers at least one of vacuum therapy and oxygenation therapy via the pressure switch.
A method of treating a wound area. The method includes covering the wound area with a therapy pad, the therapy pad having a first layer, a second layer operatively coupled to the first layer, a fiber-optic array disposed between the first layer and the second layer, and a third layer operatively coupled to the first layer. The third layer includes a vacuum tube in fluid communication with a vacuum source and a therapeutic fluid tube in fluid communication with a therapeutic fluid source. The third layer provides at least one of vacuum therapy and therapeutic fluid treatment to a wound area. The method further includes administering at least one of ultra-violet light therapy and vacuum therapy to the wound area via the therapy pad and administering at least one of oxygenation therapy and thermal therapy to the wound area via the therapy pad.
A more complete understanding of the method and apparatus of the present invention may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings wherein:
Various embodiments of the present invention will now be described more fully with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, the embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Referring first to
Still referring to
In
Referring now to
Referring still to
Referring still to
Referring still to
According to exemplary embodiments, the ultraviolet light from the plurality of LEDs 60 is in the range of approximately 200 to 450 nanometers and higher, and energy levels of up to 35,000 microwatt seconds/cm2, which are necessary to eliminate or destroy most microorganisms such as bacteria, spores, algae and viruses. Most bacteria can be destroyed at ultra violet energies of from about 3,000 to about 5,000 microwatt-seconds/cm2 while mold spores may require energies in the 20,000 to 35,000 mW-seconds/cm2.
Referring now to
At step 103, the therapy blanket/pad 14 is applied to the wound area. The therapy blanket/pad 14 is held in position by an adhesive border and, in one embodiment, elastic Velcro cross straps. At step 104, according to an embodiment, an oxygenation gas comprising on the order of 93% concentration of oxygen gas is delivered to the wound site with one to two atmospheric pressures. The numbers as set forth and shown are exemplary and other oxygenation concentrations as well as pressures are contemplated in various embodiments. Consistent therewith, however, is the concept of, and teachings for, thermal treatment of the wound site in conjunction with oxygenation. In step 106, the site is warmed through the fluid path herein shown on the back side of the therapy blanket/pad 14 up to approximately 5 to approximately 6 degrees above the body temperature of the patient. Warming allows the pores of the patient's skin to open, exposing capillaries therein. The capillaries of the skin are then saturated with oxygen. In one period of time herein described, a warming period of approximately 15 to approximately 30 minutes is recommended. At step 108, oxygenation is continued at one to two atmospheres and the therapy blanket/pad fluid is lowered to approximately 30 to approximately 40 degrees below body temperatures. Cooling closes the pores of the wound area and pulls oxygen into the underlying tissue. Cooling then proceeds for approximately 30 to approximately 45 minutes in accordance with an embodiment. At step 110, the process 300 may be repeated periodically and the wound area may be cleaned of dead tissue before each treatment. At step 112, the process 300 ends.
According to an exemplary embodiment, the therapy blanket/pad 14 is separated from the patient's skin by adhesive strips 119 having a thickness of, for example, ⅛ inch. The therapy blanket/pad 14 (not drawn to scale) exposes the wound to both heat and cold via the path 117 while oxygen is injected into the treatment chamber 50. The injection of oxygen in conjunction with the aforesaid heating and cooling via the path 117 helps treat the wound area and any stasis zones therein where tissue swelling has restricted flow of blood to tissues within the wound area. It is well known that, without sufficient blood flow, the epithelial and subcutaneous tissues referenced above receive less oxygen and are less able to migrate over the wound area to promote healing. By utilizing the embodiments disclosed herein, oxygenation is enhanced and the problems associated with such conditions are mitigated.
Referring now to
Still referring to
Still referring to
Still referring to
Still referring to
Still referring to
Still referring to
Still referring to
Still referring to
The previous Detailed Description is of embodiment(s) of the invention. The scope of the invention should not necessarily be limited by this Description. The scope of the invention is instead defined by the following claims and the equivalents thereof.
This patent application is a Continuation-in-Part of U.S. patent application Ser. No. 13/359,210, filed on Jan. 26, 2012. U.S. patent application Ser. No. 13/359,210 is a Continuation-in-Part of U.S. patent application Ser. No. 11/975,047 (now U.S. Pat. No. 8,128,672), filed on Oct. 17, 2007. U.S. patent application Ser. No. 11/975,047 is a Continuation-in-Part of U.S. patent application Ser. No. 11/801,662 (now U.S. Pat. No. 8,100,956), filed on May 9, 2007. U.S. patent application Ser. No. 11/975,047 claims priority to, and incorporates by reference the entire disclosure of, U.S. Provisional Patent Application No. 60/852,803, filed on Oct. 19, 2006. U.S. patent application Ser. No. 11/801,662 (now U.S. Pat. No. 8,100,956) claims priority to, and incorporates by reference the entire disclosure of, U.S. Provisional Patent Application No. 60/798,982, filed on May 9, 2006. This application claims priority to, and incorporates by reference for any purpose, the entire disclosure of U.S. Provisional Patent Application No. 61/479,156, filed on Apr. 26, 2011. This patent application is related to and incorporates by reference U.S. Provisional Patent Application No. 60/488,709, filed on Jul. 18, 2003; U.S. Provisional Patent Application No. 60/550,658 filed on Mar. 5, 2004; and U.S. patent application Ser. No. 10/894,369, filed on Jul. 19, 2004. This patent application incorporates by reference commonly assigned U.S. Pat. Nos. 5,097,829; 5,989,285, and 6,935,409.
Number | Name | Date | Kind |
---|---|---|---|
773828 | Titus | Nov 1904 | A |
2110022 | Kliesrath | Mar 1938 | A |
2504308 | Donkle, Jr. | Apr 1950 | A |
3014117 | Madding | Dec 1961 | A |
3164152 | Vere Nicoll | Jan 1965 | A |
3345641 | Jennings | Oct 1967 | A |
3367319 | Carter, Jr. | Feb 1968 | A |
3608091 | Olson et al. | Sep 1971 | A |
3660849 | Jonnes et al. | May 1972 | A |
3736764 | Chambers et al. | Jun 1973 | A |
3738702 | Jacobs | Jun 1973 | A |
3744053 | Parker et al. | Jul 1973 | A |
3744555 | Fletcher et al. | Jul 1973 | A |
3862629 | Rotta | Jan 1975 | A |
3894213 | Agarwala | Jul 1975 | A |
4006604 | Seff | Feb 1977 | A |
4013069 | Hasty | Mar 1977 | A |
4029087 | Dye et al. | Jun 1977 | A |
4206751 | Schneider | Jun 1980 | A |
4224941 | Stivala | Sep 1980 | A |
4375217 | Arkans | Mar 1983 | A |
4402312 | Villari et al. | Sep 1983 | A |
4459468 | Bailey | Jul 1984 | A |
4459822 | Pasternack | Jul 1984 | A |
4471787 | Bentall | Sep 1984 | A |
4503484 | Moxon | Mar 1985 | A |
4547906 | Nishida et al. | Oct 1985 | A |
4597384 | Whitney | Jul 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
D285821 | Kneisley | Sep 1986 | S |
D288372 | Adams | Feb 1987 | S |
4660388 | Greene, Jr. | Apr 1987 | A |
D295897 | Thimm-Kelly | May 1988 | S |
4741338 | Miyamae | May 1988 | A |
4821354 | Little | Apr 1989 | A |
4844072 | French et al. | Jul 1989 | A |
4884304 | Elkins | Dec 1989 | A |
4901200 | Mazura | Feb 1990 | A |
4911231 | Horne et al. | Mar 1990 | A |
4926881 | Ichinomiya et al. | May 1990 | A |
4962761 | Golden | Oct 1990 | A |
4969881 | Viesturs | Nov 1990 | A |
4979375 | Nathans et al. | Dec 1990 | A |
4995698 | Myers | Feb 1991 | A |
4996970 | Legare | Mar 1991 | A |
5044364 | Crowther | Sep 1991 | A |
5051562 | Bailey et al. | Sep 1991 | A |
D320872 | McCrane | Oct 1991 | S |
5067040 | Fallik | Nov 1991 | A |
5080089 | Mason et al. | Jan 1992 | A |
5090409 | Genis | Feb 1992 | A |
5092271 | Kleinsasser | Mar 1992 | A |
5097829 | Quisenberry | Mar 1992 | A |
5106373 | Augustine et al. | Apr 1992 | A |
5112045 | Mason et al. | May 1992 | A |
5117812 | McWhorter | Jun 1992 | A |
5125238 | Ragan et al. | Jun 1992 | A |
5165127 | Nicholson | Nov 1992 | A |
5179941 | Siemssen et al. | Jan 1993 | A |
5184612 | Augustine | Feb 1993 | A |
5186698 | Mason et al. | Feb 1993 | A |
5230335 | Johnson, Jr. et al. | Jul 1993 | A |
5232020 | Mason et al. | Aug 1993 | A |
5241951 | Mason et al. | Sep 1993 | A |
5243706 | Frim et al. | Sep 1993 | A |
5263538 | Amidieu et al. | Nov 1993 | A |
5285347 | Fox et al. | Feb 1994 | A |
D345082 | Wenzl | Mar 1994 | S |
D345609 | Mason et al. | Mar 1994 | S |
D345802 | Mason et al. | Apr 1994 | S |
D345803 | Mason et al. | Apr 1994 | S |
5300101 | Augustine et al. | Apr 1994 | A |
5300102 | Augustine et al. | Apr 1994 | A |
5300103 | Stempel et al. | Apr 1994 | A |
5303716 | Mason et al. | Apr 1994 | A |
5316250 | Mason et al. | May 1994 | A |
D348106 | Mason et al. | Jun 1994 | S |
5323847 | Koizumi et al. | Jun 1994 | A |
5324319 | Mason et al. | Jun 1994 | A |
5324320 | Augustine et al. | Jun 1994 | A |
D348518 | Mason et al. | Jul 1994 | S |
5330519 | Mason et al. | Jul 1994 | A |
5336250 | Augustine | Aug 1994 | A |
5343579 | Dickerhoff et al. | Sep 1994 | A |
5350417 | Augustine | Sep 1994 | A |
D351472 | Mason et al. | Oct 1994 | S |
5352174 | Mason et al. | Oct 1994 | A |
5354117 | Danielson et al. | Oct 1994 | A |
D352781 | Mason et al. | Nov 1994 | S |
5360439 | Dickerhoff et al. | Nov 1994 | A |
5370178 | Agonafer et al. | Dec 1994 | A |
5371665 | Quisenberry et al. | Dec 1994 | A |
D354138 | Kelly | Jan 1995 | S |
D357747 | Kelly | Apr 1995 | S |
5402542 | Viard | Apr 1995 | A |
5405370 | Irani | Apr 1995 | A |
5405371 | Augustine et al. | Apr 1995 | A |
5407421 | Goldsmith | Apr 1995 | A |
D358216 | Dye | May 1995 | S |
5411494 | Rodriguez | May 1995 | A |
5411541 | Bell et al. | May 1995 | A |
5417720 | Mason | May 1995 | A |
5440450 | Lau et al. | Aug 1995 | A |
5449379 | Hadtke | Sep 1995 | A |
5466250 | Johnson, Jr. et al. | Nov 1995 | A |
5496262 | Johnson, Jr. et al. | Mar 1996 | A |
5505726 | Meserol | Apr 1996 | A |
5507792 | Mason | Apr 1996 | A |
5509894 | Mason et al. | Apr 1996 | A |
5528485 | Devilbiss et al. | Jun 1996 | A |
5561981 | Quisenberry et al. | Oct 1996 | A |
5566062 | Quisenberry et al. | Oct 1996 | A |
D376013 | Sandman et al. | Nov 1996 | S |
5578022 | Scherson et al. | Nov 1996 | A |
5588954 | Ribando et al. | Dec 1996 | A |
5591200 | Cone et al. | Jan 1997 | A |
D380874 | Caswell | Jul 1997 | S |
5648716 | Devilbiss et al. | Jul 1997 | A |
D383546 | Amis et al. | Sep 1997 | S |
D383547 | Mason et al. | Sep 1997 | S |
D383848 | Mason et al. | Sep 1997 | S |
5662695 | Mason et al. | Sep 1997 | A |
5672152 | Mason et al. | Sep 1997 | A |
5675473 | McDunn et al. | Oct 1997 | A |
5682748 | DeVilbiss et al. | Nov 1997 | A |
5689957 | DeVilbiss et al. | Nov 1997 | A |
5690849 | DeVilbiss et al. | Nov 1997 | A |
5711029 | Visco et al. | Jan 1998 | A |
5711155 | DeVilbiss et al. | Jan 1998 | A |
D393073 | Downing et al. | Mar 1998 | S |
5731954 | Cheon | Mar 1998 | A |
5733321 | Brink | Mar 1998 | A |
D394707 | Tsubooka | May 1998 | S |
5755755 | Panyard | May 1998 | A |
5772618 | Mason et al. | Jun 1998 | A |
5782780 | Mason et al. | Jul 1998 | A |
5795312 | Dye | Aug 1998 | A |
5807294 | Cawley et al. | Sep 1998 | A |
5827208 | Mason | Oct 1998 | A |
5831824 | McDunn et al. | Nov 1998 | A |
D403779 | Davis et al. | Jan 1999 | S |
D404490 | Tripolsky | Jan 1999 | S |
D405884 | Roper | Feb 1999 | S |
5871526 | Gibbs et al. | Feb 1999 | A |
5890371 | Rajasubramanian et al. | Apr 1999 | A |
5901037 | Hamilton et al. | May 1999 | A |
5923533 | Olson | Jul 1999 | A |
5947914 | Augustine | Sep 1999 | A |
5980561 | Kolen et al. | Nov 1999 | A |
5989285 | DeVilbiss et al. | Nov 1999 | A |
6007559 | Arkans | Dec 1999 | A |
6055157 | Bartilson | Apr 2000 | A |
6058010 | Schmidt et al. | May 2000 | A |
6058712 | Rajasubramanian et al. | May 2000 | A |
6080120 | Sandman et al. | Jun 2000 | A |
D428153 | Davis | Jul 2000 | S |
D430288 | Mason et al. | Aug 2000 | S |
D430289 | Mason et al. | Aug 2000 | S |
6117164 | Gildersleeve et al. | Sep 2000 | A |
6125036 | Kang et al. | Sep 2000 | A |
6129688 | Arkans | Oct 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6176869 | Mason et al. | Jan 2001 | B1 |
6186977 | Andrews et al. | Feb 2001 | B1 |
6238427 | Matta | May 2001 | B1 |
6260890 | Mason | Jul 2001 | B1 |
6270481 | Mason et al. | Aug 2001 | B1 |
6295819 | Mathiprakasam et al. | Oct 2001 | B1 |
6305180 | Miller et al. | Oct 2001 | B1 |
6319114 | Nair et al. | Nov 2001 | B1 |
6352550 | Gildersleeve et al. | Mar 2002 | B1 |
6358219 | Arkans | Mar 2002 | B1 |
6368592 | Colton et al. | Apr 2002 | B1 |
6436064 | Kloecker | Aug 2002 | B1 |
6443978 | Zharov | Sep 2002 | B1 |
6462949 | Parish, IV et al. | Oct 2002 | B1 |
6468237 | Lina | Oct 2002 | B1 |
6508831 | Kushnir | Jan 2003 | B1 |
D472322 | Hoglund et al. | Mar 2003 | S |
D473315 | Miros et al. | Apr 2003 | S |
D473656 | Miros et al. | Apr 2003 | S |
D473948 | Elkins et al. | Apr 2003 | S |
6551264 | Cawley et al. | Apr 2003 | B1 |
D474544 | Hoglund et al. | May 2003 | S |
6562060 | Momtaheni | May 2003 | B1 |
6596016 | Vreman | Jul 2003 | B1 |
6648904 | Altshuler et al. | Nov 2003 | B2 |
D484601 | Griffiths et al. | Dec 2003 | S |
D484602 | Griffiths et al. | Dec 2003 | S |
6660027 | Gruszecki et al. | Dec 2003 | B2 |
6667883 | Solis et al. | Dec 2003 | B1 |
6675072 | Kerem | Jan 2004 | B1 |
D486870 | Mason | Feb 2004 | S |
6695823 | Lina et al. | Feb 2004 | B1 |
6719713 | Mason | Apr 2004 | B2 |
6719728 | Mason et al. | Apr 2004 | B2 |
6736787 | McEwen et al. | May 2004 | B1 |
D492411 | Bierman | Jun 2004 | S |
6775137 | Chu et al. | Aug 2004 | B2 |
D496108 | Machin et al. | Sep 2004 | S |
6789024 | Kochan, Jr. et al. | Sep 2004 | B1 |
6802823 | Mason | Oct 2004 | B2 |
D499846 | Cesko | Dec 2004 | S |
6834712 | Parish et al. | Dec 2004 | B2 |
6846295 | Ben-Nun | Jan 2005 | B1 |
6848498 | Seki et al. | Feb 2005 | B2 |
6855158 | Stolpmann | Feb 2005 | B2 |
6893414 | Goble et al. | May 2005 | B2 |
D506553 | Tesluk | Jun 2005 | S |
6935409 | Parish, IV et al. | Aug 2005 | B1 |
6936019 | Mason | Aug 2005 | B2 |
D510140 | Brown | Sep 2005 | S |
6945988 | Jones | Sep 2005 | B1 |
D510626 | Krahner et al. | Oct 2005 | S |
D515218 | McGuire et al. | Feb 2006 | S |
D523147 | Tesluk | Jun 2006 | S |
7066949 | Gammons et al. | Jun 2006 | B2 |
7081128 | Hart et al. | Jul 2006 | B2 |
D533668 | Brown | Dec 2006 | S |
D551351 | Silva | Sep 2007 | S |
D551352 | Frangi | Sep 2007 | S |
7306568 | Diana | Dec 2007 | B2 |
7354411 | Perry et al. | Apr 2008 | B2 |
D568482 | Gramza et al. | May 2008 | S |
D569985 | Ganapathy et al. | May 2008 | S |
7427153 | Jacobs et al. | Sep 2008 | B1 |
7429252 | Sarangapani | Sep 2008 | B2 |
7484552 | Pfahnl | Feb 2009 | B2 |
7492252 | Maruyama | Feb 2009 | B2 |
D595620 | Kingsbury | Jul 2009 | S |
D601707 | Chouiller | Oct 2009 | S |
D608006 | Avitable et al. | Jan 2010 | S |
D612947 | Turtzo et al. | Mar 2010 | S |
D613870 | Shust | Apr 2010 | S |
7717869 | Eischen, Sr. | May 2010 | B2 |
D618358 | Avitable et al. | Jun 2010 | S |
D619267 | Beckwith et al. | Jul 2010 | S |
D620122 | Cotton | Jul 2010 | S |
D625018 | Smith et al. | Oct 2010 | S |
D626241 | Sagnip et al. | Oct 2010 | S |
D626242 | Sagnip et al. | Oct 2010 | S |
D626243 | Sagnip et al. | Oct 2010 | S |
D626245 | Sagnip et al. | Oct 2010 | S |
D627896 | Matsuo et al. | Nov 2010 | S |
D628300 | Caden | Nov 2010 | S |
D630759 | Matsuo et al. | Jan 2011 | S |
7871387 | Tordella et al. | Jan 2011 | B2 |
D631971 | Turtzo et al. | Feb 2011 | S |
D633657 | Oban | Mar 2011 | S |
D634437 | Gramza et al. | Mar 2011 | S |
D634851 | Chiang | Mar 2011 | S |
D635266 | Chiang | Mar 2011 | S |
D635267 | Chiang | Mar 2011 | S |
7896910 | Schirrmacher et al. | Mar 2011 | B2 |
D636497 | Giaccone | Apr 2011 | S |
D638950 | Janzon | May 2011 | S |
D640380 | Tweardy et al. | Jun 2011 | S |
D640381 | Tweardy et al. | Jun 2011 | S |
D649648 | Cavalieri et al. | Nov 2011 | S |
8052630 | Kloecker et al. | Nov 2011 | B2 |
D655420 | Bowles | Mar 2012 | S |
D655821 | Matsuo | Mar 2012 | S |
D657063 | Chiang | Apr 2012 | S |
D660438 | Kennedy et al. | May 2012 | S |
D660439 | Chen et al. | May 2012 | S |
D663850 | Joseph | Jul 2012 | S |
D665088 | Joseph | Aug 2012 | S |
D665470 | Galbraith | Aug 2012 | S |
D666258 | Campbell | Aug 2012 | S |
D666301 | Joseph | Aug 2012 | S |
20010039439 | Elkins et al. | Nov 2001 | A1 |
20020116041 | Daoud | Aug 2002 | A1 |
20020143373 | Courtnage et al. | Oct 2002 | A1 |
20030050594 | Zamierowski | Mar 2003 | A1 |
20030083610 | McGrath et al. | May 2003 | A1 |
20030089486 | Parish et al. | May 2003 | A1 |
20030089487 | Parish, IV et al. | May 2003 | A1 |
20030127215 | Parish, IV et al. | Jul 2003 | A1 |
20030135252 | MacHold et al. | Jul 2003 | A1 |
20030163183 | Carson | Aug 2003 | A1 |
20030176822 | Morgenlander | Sep 2003 | A1 |
20040008483 | Cheon | Jan 2004 | A1 |
20040030281 | Goble et al. | Feb 2004 | A1 |
20040046108 | Spector | Mar 2004 | A1 |
20040054307 | Mason et al. | Mar 2004 | A1 |
20040068309 | Edelman | Apr 2004 | A1 |
20040068310 | Edelman | Apr 2004 | A1 |
20040099407 | Parish, IV et al. | May 2004 | A1 |
20040133135 | Diana | Jul 2004 | A1 |
20040186535 | Knowlton | Sep 2004 | A1 |
20040193218 | Butler | Sep 2004 | A1 |
20040210176 | Diana | Oct 2004 | A1 |
20040221604 | Ota et al. | Nov 2004 | A1 |
20040260231 | Goble et al. | Dec 2004 | A1 |
20050004636 | Noda et al. | Jan 2005 | A1 |
20050006061 | Quisenberry et al. | Jan 2005 | A1 |
20050033390 | McConnell | Feb 2005 | A1 |
20050039887 | Parish, IV et al. | Feb 2005 | A1 |
20050070828 | Hampson et al. | Mar 2005 | A1 |
20050070835 | Joshi | Mar 2005 | A1 |
20050133214 | Pfahnl | Jun 2005 | A1 |
20050143797 | Parish et al. | Jun 2005 | A1 |
20050177093 | Barry et al. | Aug 2005 | A1 |
20050182364 | Burchman | Aug 2005 | A1 |
20050256556 | Schirrmacher et al. | Nov 2005 | A1 |
20050274120 | Quisenberry et al. | Dec 2005 | A1 |
20050284615 | Parish et al. | Dec 2005 | A1 |
20060034053 | Parish et al. | Feb 2006 | A1 |
20060058714 | Rhoades | Mar 2006 | A1 |
20060116620 | Oyaski | Jun 2006 | A1 |
20060241549 | Sunnen | Oct 2006 | A1 |
20060276845 | George et al. | Dec 2006 | A1 |
20060282028 | Howard et al. | Dec 2006 | A1 |
20070032778 | Heaton et al. | Feb 2007 | A1 |
20070068651 | Gammons et al. | Mar 2007 | A1 |
20070112401 | Balachandran et al. | May 2007 | A1 |
20070118194 | Mason et al. | May 2007 | A1 |
20070129658 | Hampson et al. | Jun 2007 | A1 |
20070233209 | Whitehurst | Oct 2007 | A1 |
20070260162 | Meyer et al. | Nov 2007 | A1 |
20070282249 | Quisenberr | Dec 2007 | A1 |
20080058911 | Parish et al. | Mar 2008 | A1 |
20080064992 | Stewart et al. | Mar 2008 | A1 |
20080071330 | Quisenberry | Mar 2008 | A1 |
20080082029 | Diana | Apr 2008 | A1 |
20080103422 | Perry et al. | May 2008 | A1 |
20080132976 | Kane et al. | Jun 2008 | A1 |
20080249559 | Brown et al. | Oct 2008 | A1 |
20080319362 | Joseph | Dec 2008 | A1 |
20090069731 | Parish et al. | Mar 2009 | A1 |
20090109622 | Parish et al. | Apr 2009 | A1 |
20090149821 | Scherson et al. | Jun 2009 | A1 |
20090254160 | Shawver et al. | Oct 2009 | A1 |
20100010477 | Augustine et al. | Jan 2010 | A1 |
20100030306 | Edelman et al. | Feb 2010 | A1 |
20100081975 | Avitable et al. | Apr 2010 | A1 |
20100121230 | Vogel et al. | May 2010 | A1 |
20100137764 | Eddy | Jun 2010 | A1 |
20100145421 | Tomlinson et al. | Jun 2010 | A1 |
20100150991 | Bernstein | Jun 2010 | A1 |
20100249679 | Perry et al. | Sep 2010 | A1 |
20100249680 | Davis | Sep 2010 | A1 |
20110009785 | Meyer et al. | Jan 2011 | A1 |
20110034861 | Schaefer | Feb 2011 | A1 |
20110071447 | Liu et al. | Mar 2011 | A1 |
20110082401 | Iker et al. | Apr 2011 | A1 |
20110087142 | Ravikumar et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
670 541 | Jun 1989 | CH |
35 22 127 | Jan 1987 | DE |
0 489 326 | Jun 1992 | EP |
2373444 | Sep 2002 | GB |
689674 | Oct 1979 | SU |
WO-9309727 | May 1993 | WO |
WO-0040186 | Jul 2000 | WO |
WO-0114012 | Mar 2001 | WO |
Entry |
---|
U.S. Appl. No. 13/796,139, Quisenberry. |
Copenheaver, Blaine R., “International Search Report” prepared for PCT/US2013/030475 as mailed May 23, 2013, 3 pages. |
Copenheaver, Blaine R., “International Search Report” for PCT/US2012/035096 as mailed Aug. 7, 2012, 3 pages. |
Quisenberry, Tony, U.S. Appl. No. 13/558,615, filed Jul. 26, 2012. |
U.S. Appl. No. 12/730,060, Parish et al. |
U.S. Appl. No. 12/708,422, Balachandran et al. |
U.S. Appl. No. 12/871,188, Parish et al. |
U.S. Appl. No. 13/107,264, Quisenberry. |
U.S. Appl. No. 12/264,434, Quisenberry. |
U.S. Appl. No. 13/190,564, Quisenberry et al. |
U.S. Appl. No. 29/397,846, Quisenberry. |
U.S. Appl. No. 29/400,194, Quisenberry. |
U.S. Appl. No. 29/400,202, Quisenberry. |
U.S. Appl. No. 20/400,212, Quisenberry. |
U.S. Appl. No. 29/402,115, Quisenberry. |
Artikis, T., PCT International Preliminary Report on Patentability as mailed Jul. 29, 2005, (10 pgs.). |
Tom Lee, T.Y. et al; “Compact Liquid Cooling System for Small, Moveable Electronic Equipment”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Oct. 15, 1992, vol. 15, No. 5, pp. 786-793. |
Copenheaver, Blaine R., “International Search Report” for PCT/US2007/022148 as mailed Apr. 2, 2008, 2 pages. |
Young, Lee W., “International Search Report” for PCT/US07/08807 as mailed Mar. 3, 2008, (3 pages). |
Mahmoud Karimi Azar Daryany, et al., “Photoinactivation of Escherichia coli and Saccharomyces cerevisiae Suspended in Phosphate-Buffered Saline-A Using 266- and 355-nm Pulsed Ultraviolet Light”, Curr Microbiol, vol. 56, 2008, pp. 423-428. |
J. Li, et al., “Enhanced germicidal effects of pulsed UV-LED irradiation on biofilms”, Journal of Applied Microbiology, 2010, pp. 1-8. |
Cyro/Temp Therapy Systems; Product News Catalogue; Jobst Institute, Inc., 6 pages (Copyright 1982). |
Quisenberry, Tony, U.S. Appl. No. 29/424,860, filed Jun. 15, 2012. |
Number | Date | Country | |
---|---|---|---|
20120259266 A1 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
60852803 | Oct 2006 | US | |
60798982 | May 2006 | US | |
61479156 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13359210 | Jan 2012 | US |
Child | 13456410 | US | |
Parent | 11975047 | Oct 2007 | US |
Child | 13359210 | US | |
Parent | 11801662 | May 2007 | US |
Child | 11975047 | US |