This invention relates generally to computer memory, and more specifically, to writing to memory using shared address buses.
Limited lifetime computer storage devices include, but are not limited to, flash memory (e.g., not-and or “NAND” flash memory, and not-or or “NOR” flash memory) and phase change memory (PCM). Limited lifetime memory technologies may benefit from iterative write techniques (commonly referred to as “write-and-verify”) that are comprised of a sequence of write and read operations. Iterative write techniques may allow a controller for the memory to store a desired value with an increased accuracy, since the read operations offer a feedback mechanism that can be used to reduce errors in the writing process. Such increased accuracy is particularly relevant when the storage of more than one bit per cell is desired. A drawback of write-and-verify techniques is that the iterative process consumes additional resources in the memory. For example, the write bandwidth gets reduced in a manner proportional to the number of attempts it takes to store a value in the memory.
An exemplary embodiment is a memory device that includes a plurality of memory arrays connected to a common address bus, the common address bus used to broadcast memory addresses simultaneously to the plurality of memory arrays. Each memory array includes a plurality of memory locations and circuitry for: receiving the broadcasted memory addresses from the address bus; selecting a memory address in the memory array from a list of most recent memory addresses received from the address bus; and performing a memory access at the selected memory address, such that at a given point in time at least two of the memory arrays perform the memory access at a different broadcasted address when the memory access is a write.
Another exemplary embodiment is a memory system that includes a plurality of memory devices connected to a common address bus that is used to broadcast memory addresses simultaneously to the plurality of memory devices. Each memory device includes a plurality of memory locations. Each memory device also includes circuitry for: receiving the broadcasted memory addresses from the address bus; selecting a memory address in the memory device from a list of most recent memory addresses received from the address bus; and performing a memory access at the selected memory address, such that at a given point in time at least two of the memory devices perform the memory access at a different broadcasted address when the memory access is a write.
A further exemplary embodiment is a computer implemented method for accessing memory. The method includes receiving a plurality of memory addresses at a plurality of memory arrays, the receiving from a common address bus that is shared between the plurality of memory arrays. The common address bus is used to broadcast the memory addresses simultaneously to the plurality of memory arrays. The method also includes selecting at each memory array a memory address from the plurality of memory addresses. A memory access is performed at the selected memory address at each memory array such that at a given point in time at least two of the plurality of memory arrays perform the memory access at a different broadcasted memory address when the memory access is a write.
Additional features and advantages are realized through the techniques of the present embodiment. Other embodiments and aspects are described herein and are considered a part of the claimed invention. For a better understanding of the invention with the advantages and features, refer to the description and to the drawings.
The subject matter that is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Exemplary embodiments of the present invention are directed to memories in which a writing action can result in a stored value that does not agree with the desired value, an outcome referred to herein as a “write error”. Memory technologies like NAND flash or phase change memory (PCM) suffer this kind of write issue. In these types of memories, further attempts at writing the desired value may be required. Write techniques employing additional writes following an unsuccessful write are generally known as write-and-verify techniques. The act of performing additional writes can consume resources (e.g., bandwidth) of the memory and the system that employs it. Exemplary embodiments described herein utilize writing schemes that are able to reduce or eliminate the number of write attempts beyond the first one, while at the same time, providing a means for dealing with write errors.
As used herein, the term “memory device” refers to an entity that contains memory elements as well as circuitry for accessing them. As used herein, the term “memory array” refers to a collection of memory elements in which a single memory access may be performed at any given time. A memory array has associated circuitry for reading and writing and although physically this circuitry may be regarded as separate from the memory array, such circuitry is included in the concept of memory array herein for the purposes of description. A memory array will generally reside of a memory device, which in turn can have many such memory arrays. As used herein, the term “memory bank” refers to an entity within a memory device that is comprised of one or more memory arrays in which a single memory write or read can be performed. A memory device can have multiple banks, and these can operate independently. One of the inputs to the memory bank is the address to be read or written, and thus the memory bank has an address bus. The arrays within the memory bank receive the same address as the bank, and thus, each of the arrays has an address bus which relays the information from the bank address bus. As such, a reference to the address bus of an array implicitly refers to the address bus of the bank. In turn, the address is communicated to the bank by the memory device, which in turn obtains this input from an externally (to the memory device) specified address in an address bus.
Also as referred to herein, a memory array is comprised of memory cells. Such memory cells are grouped in memory locations; a memory location is defined to be the natural unit (granularity) in which memory is accessed. For example, a typical memory location in Dynamic Random Access Memory (DRAM) is given by the DRAM burst length multiplied times the I/O width of the memory device; this number is 64 bits for a DDR3×8 DRAM memory device. In contemporary memory systems, a memory access is achieved by requesting either a read or a write to a given memory address which can be fulfilled if the bank associated with such request is free. A memory device is defined to have at most one read data bus and at most one write data bus (sometimes these buses will be merged into a single one that may only be used in a given mode at any given time instance). The data communicated through a data bus is directed to/from one bank in the device. In some instances, the act of writing data to a bank is more time consuming than the act of transmitting this data to the device through the data bus. Thus, although at any given time, multiple distinct addresses may be being written into in a multi-bank device, only data for exactly one bank (and hence one address) is being transmitted in the data bus. It is generally the case that a memory device is physically packaged as an integrated circuit or chip.
Exemplary embodiments also include a memory system comprised of a plurality of memory devices in which memory devices that share an address bus may simultaneously receive data that is nonetheless written to different addresses. In an exemplary embodiment, this is accomplished by using a list of addresses kept at each memory device and a control circuit that selects which address from the list is to be used at any given time. An exemplary embodiment is used to implement adaptive write strategies in which what is written to a current memory device may depend on what was written to a previous memory device.
Exemplary embodiments include a general class of methods that are used to overcome write errors with reduced or no rewrites, that are applicable to a memory in which a message is stored via an encoding in a set of memory locations. In an exemplary embodiment, this is accomplished by sequentially writing to memory locations and adapting what is to be written to a next memory location on the basis of the result of the write actions on memory locations earlier in the sequence. This sequence is stopped when the last memory location is written to and then an assessment is made as to whether the written values reflect the intended message. If the written values do not reflect the intended message, then the process is restarted. In an alternate exemplary embodiment, instead of restarting the entire process only a portion of the memory locations are rewritten.
From the perspective of a system that is employing a memory, the latency for a write is generally not nearly as important the latency for a read. One reason for this is that read requests are generally caused by a pending computation process while write requests can be deferred since it is generally the case that no computation process is stalled waiting for them to be completed. It should be noted that there are exceptions to this statement, for example when a write queue is full, a stall may still happen at a computation unit.
An exemplary embodiment includes a method for recovering from write errors in a memory that does not necessarily require rewriting a value that is in error. In exemplary embodiments, a write-and-verify technique is implemented. In other exemplary embodiments, the write-and-verify technique is combined with other methods described herein.
Exemplary embodiments may be utilized when a message is encoded in a plurality of memory locations. A memory location can be a single memory cell in a memory technology in which information is stored in arrays of cells (e.g., flash memory and PCM).
In exemplary embodiments, a linear ordering for the memory locations 104 is assumed. The basic idea is to write to each memory location 104 in sequence, with a read following a write to the memory location 104. In a key aspect of exemplary embodiments, the decision of what to write to a given memory location 104 depends on the outcome of previous writes and reads to other memory locations 104.
It may be appreciated that by writing to memory locations 104 one at a time instead of writing to a group of them in parallel, the total amount of time required to write a message increases. Nonetheless, exemplary embodiments remain useful in practice due to the earlier cited fact that write latency commonly does not represent a significant component of total system performance. A read request can be serviced by obtaining information from all memory locations 104 involved in parallel, even if the processing of the obtained information is done serially.
The memory controller, such as memory controller 204 or 208, is capable of accepting a write command, a corresponding message to be written in the memory and an address identifying a position where to write the contents associated with the message. The association between memory contents and the message is referred to herein as “an encoding of the message”.
The system depicted in
Exemplary embodiments of the system may operate in several different modes.
As depicted in
Because the address bus is common to all arrays, in order to operate in “write sweep mode”, as depicted in
Enabling the use of a common address bus 708 and the possibility of having, at the same time, different arrays operating onto different addresses, is an important aspect of a low-cost implementation of the above described method, where the contents of the memory locations to be written in each array 702 are a function of the contents actually written in the memory locations in the previous arrays. To this end, in exemplary embodiments, each array 702 is associated with local control circuitry responsible for providing the proper address at write time. For every message received by the memory controller to be stored, the memory controller specifies the address to the control circuitries of the arrays connected to the common address bus 708 only at the time the first content to be written is specified to the first memory array. Each memory array control circuitry stores the received address 708 in a first-in first-out (FIFO) queue 710, whose shift capability is controlled by a clock signal 712.
In this way the last n addresses (n is the size of the FIFO queue 710) are stored and available for successive usage. In an exemplary embodiment, the address register 0 corresponds to the input address at the current time. In order to access an address in the FIFO queue 710, a multiplexer (MUX) 714 is connected to all the entries of the FIFO queue 710. The input of the MUX 714 allows control of which address is actually specified to the array 702. According to the exemplary method illustrated, for example, in
In exemplary embodiments, the array ID corresponds to the set of binary signals, which when used as input to the MUX 714, cause the address register corresponding to the array 702 to be selected. In particular, the array ID is the binary representation of the number associated with the array 702, where the arrays are numbered from the first one to be written to the last one to be written. In exemplary embodiments, a selector circuit 716 allows operation both according to the write method described in this invention, and to directly address the memory locations specified by the current value of the address 708. The particular behavior is controlled by a mode register 720, which specifies whether the selector circuit should output 0 or the contents of the array ID register 718 as input to the MUX 714, and is controlled by an input mode set signal 722. In an exemplary embodiment, valid states for the mode register 720 include a “read parallel” state which specifies that the selector circuit 716 should output 0 to the MUX 714, a “write parallel” state which specifies that the selector circuit 716 should output 0 to the MUX 714, and a “write/read iterative” state which specifies that the selector circuit 716 should output the contents of the array ID register 718 to the MUX 714.
Typical operation of exemplary embodiments as shown in
In exemplary embodiments, a parallel write operation is conducted as follows. The mode register 729 is set to “write parallel” state. An address is specified to all the arrays and the write is initialized by issuing a command through the control bus. The memory controller specifies the desired memory contents through the data write bus 704, possibly after the application of an error correction encoding algorithm to the information message to be stored in the memory at the specified address. The write proceeds according to the iterative method described in
In exemplary embodiments, an iterative read/write operation is conducted as follows. The mode register 729 is set to “write/read iterative” state. An address is specified to all the arrays and the write is initialized by issuing a command to the first array through the control bus. After the first write attempt, which could comprise a series of micro write-and-verify steps, the local control circuitry performs a read and issues the outcome through the data read bus 706. The memory controller computes the contents to be stored in the next array at the same address. In the following cycles, the memory controller specifies the computed contents to the second (then third, fourth and so on) array. The procedure continues until all the memory arrays have completed the write operation.
In exemplary embodiments, the memory controller stores the contents actually stored in the memory locations received from the arrays and upon completion of the write process verifies if the actually stored set of contents can be decoded to obtain the originally specified message. If the original message is not obtained, the write process is reinitialized.
The circuitry depicted in
At block 802, a message, “m” containing “n” symbols to be written is received, along with a maximum number of retries parameter. In addition, an index “i” is initialized to zero and the number of retries is initialized to zero. At block 804, a next data value to be written, “Di”, is computed based on the next symbol in the message to be written, “mi”, and any previously read data, “R1 . . . Ri−1”. If the current symbol in the message is the first symbol in the message, then there isn't any previously read data and the next data value to be written is a function of the current symbol. A variety of encoding functions may be utilized to compute the next data value to be written, such as but not limited to information theory tools for channels with a feedback and described below with reference to
It is determined at block 810, if the writing process has been completed by comparing the index value to the number of symbols in the message. If the index is not equal to the number of symbols in the message, then block 822 is performed and the index is incremented. Processing then continues at block 804 where the next symbol in the message is written.
If it is determined at block 810, that the writing process has completed, then block 812 is performed and a decode function is applied to the read data, R1 . . . Rn, to determine if the message was written successfully. The decode function utilized is selected based on the encode function utilized when the data is written. If the decode is successful, then block 814 is performed and the write process ends normally. If the decode is not successful, then block 818 is performed to determine if the number of retries is equal to a maximum number of retries. If the number of retries is equal to the maximum number of retries, then block 820 is performed and the write process ends abnormally (e.g., by setting a flag indicating faulty write). If the number of retries is not equal to the maximum number of retries, then block 816 is performed and the number of retries is incremented and the index into the message is initialized to zero. Processing then continues at block 804 where another attempt to write the message is started.
The complete restart of the write sweep process may be done up to a limit established previously as specified by the maximum number of retries parameter. In an exemplary embodiment, this limit may be raised (or lowered) during execution, if, for example, a special priority for the message to be written is conveyed to the memory controller and/or the memory has a low utilization.
In an exemplary embodiment, the encoding function, which decides the contents to be written into an array based on the outcomes of previous data written is obtained using information theory tools for channels with feedback.
For Method One 902, it is assumed that the number of distinct memory locations, or symbols in the message, “n”, is equal to the number of distinct memory locations available for writing minus twice the number of write errors that can be sustained by the writing of the message. In the example depicted in
Next, the ith symbol in the message is written to the jth array, and the results are read. If this write is in error, then the error_counter is incremented, the value j is added to the error_list, j is incremented, and processing continues by writing the ith symbol to the next array (j+1), and reading the results to determine if the write is in error. In this manner, an attempt is made to write the symbol to the next array, or memory location and the faulty memory array location is skipped.
If the ith symbol in the message is not in error, then both i and j are incremented and processing continues by writing the next symbol to the next array, and reading the results to determine if the write is in error. Processing continues in this manner until the error_counter exceeds the number of errors that can be corrected or until the entire message has been written.
When the error counter exceeds the number of errors that can be corrected, the entire process of writing the message starts again, up to a maximum number of retries. If the maximum number of retries is reached, then the process is aborted.
Referring to Method One 902 in
Once all of the symbols have been written, the indices in error_list are written using error_counter locations following the last location written to. These writes also have an intervening read. Any of the M last memory locations, or arrays, that are unused are written to with a default value. If any of the indices are written in error, then the entire process starting from step one is repeated up to max_retries times. As shown in Method One 902 in
An exemplary process of decoding data encoded using Method One 902 is as follows: the error_list and error_counter are retrieved from the last M memory locations; all symbols with indices in the error list are ignored; and concatenating the remaining symbols results in the message.
In Method One 902 it is assumed that an index can be written in a memory location (i.e., that the magnitude of this index “fits” in a memory location).
In an alternate exemplary embodiment, such as Method Two 904 in
In an exemplary embodiment, the data encoded in the memory through the use of the techniques described herein could itself be encoded with an error control code before being subject to the methods described above. This allows for the recovery of errors that take place after the write process is finished. In exemplary embodiments, instead of writing a special symbol on a memory location which did not converge to the proper value, the special symbol is written in the following location, thus reducing the time required to complete the writing task. At the decoding, a special symbol behaves as a “delete” character. In other words, the data is read serially, and upon reception of a special symbol, the index steps back by one symbol and erases it.
An example of another operation is a high priority read or write request to the memory. Some of these priorities could be associated with memory refresh activity (the act of reading and writing data again when it is expected that the memory will not retain data over time) or with priorities informed to the memory controller through an external signal.
In an exemplary embodiment, the definition of a write in the description above can be generalized to include write-and-verify techniques that by themselves are comprised of writes with intervening reads not shown in the diagrams such as the one in
In exemplary embodiment an array adapts a writing strategy as a function of the information obtained from the previous arrays. For example, the information conveyed could be the number of memory locations that could not be programmed to the desired contents and the writing strategy can be modified as follows. An iterative writing strategy is adopted. If the number of memory locations that could not be programmed to the desired contents is lower than a given threshold Nnp then the number of allowed iterations is Ni1. If it is larger then the number of allowed iterations is increased to Ni2>Ni1.
Technical effects and benefits include the ability to implement a write-and-verify technique that reduces or eliminates the number of write attempts while still providing a way of dealing with write errors. This may lead to a decrease in the amount of memory resources required to perform an iterative write technique. Other technical effects and benefits include the ability to share an address line between memory arrays when the same address in the connected memory arrays are not accessing the same address simultaneously. This leads to a decrease in the number of address buses required in a memory system.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method, or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Aspects of the present invention are described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
Number | Name | Date | Kind |
---|---|---|---|
5502728 | Smith, III | Mar 1996 | A |
5623436 | Sowards et al. | Apr 1997 | A |
5751993 | Ofek et al. | May 1998 | A |
5818755 | Koyanagi et al. | Oct 1998 | A |
5860080 | James et al. | Jan 1999 | A |
5867429 | Chen et al. | Feb 1999 | A |
5912839 | Ovshinsky et al. | Jun 1999 | A |
5987570 | Hayes et al. | Nov 1999 | A |
6009547 | Jaquette et al. | Dec 1999 | A |
6026464 | Cohen | Feb 2000 | A |
6040993 | Chen et al. | Mar 2000 | A |
6076183 | Espie et al. | Jun 2000 | A |
6222762 | Guterman et al. | Apr 2001 | B1 |
6226723 | Gustavson et al. | May 2001 | B1 |
6292398 | Pasotti et al. | Sep 2001 | B1 |
6292903 | Coteus et al. | Sep 2001 | B1 |
6301151 | Engh et al. | Oct 2001 | B1 |
6370324 | Kawahara et al. | Apr 2002 | B1 |
6397366 | Tanaka et al. | May 2002 | B1 |
6415363 | Benayoun et al. | Jul 2002 | B1 |
6424566 | Parker | Jul 2002 | B1 |
6457174 | Kuroda et al. | Sep 2002 | B1 |
6473879 | Ishii et al. | Oct 2002 | B1 |
6522580 | Chen et al. | Feb 2003 | B2 |
6570784 | Lowrey | May 2003 | B2 |
6728826 | Kaki et al. | Apr 2004 | B2 |
6748561 | Prasad | Jun 2004 | B2 |
6816413 | Tanzawa | Nov 2004 | B2 |
6870773 | Noguchi et al. | Mar 2005 | B2 |
6937522 | Funaki | Aug 2005 | B2 |
6970382 | Toros et al. | Nov 2005 | B2 |
7031181 | Happ | Apr 2006 | B1 |
7073012 | Lee | Jul 2006 | B2 |
7103812 | Thompson et al. | Sep 2006 | B1 |
7127004 | Sonning et al. | Oct 2006 | B1 |
7177199 | Chen et al. | Feb 2007 | B2 |
7180771 | Cho et al. | Feb 2007 | B2 |
7203886 | Brown et al. | Apr 2007 | B2 |
7292466 | Nirschl | Nov 2007 | B2 |
7301817 | Li et al. | Nov 2007 | B2 |
7305596 | Noda et al. | Dec 2007 | B2 |
7313016 | Dodge et al. | Dec 2007 | B2 |
7327609 | Kim et al. | Feb 2008 | B2 |
7352624 | Roohparvar | Apr 2008 | B2 |
7352627 | Cohen | Apr 2008 | B2 |
7355237 | Lutze et al. | Apr 2008 | B2 |
7362615 | Pham et al. | Apr 2008 | B2 |
7372725 | Philipp et al. | May 2008 | B2 |
7391642 | Gordon et al. | Jun 2008 | B2 |
7397698 | Fong et al. | Jul 2008 | B2 |
7430639 | Bali et al. | Sep 2008 | B1 |
7436703 | Pham et al. | Oct 2008 | B2 |
7440315 | Lung | Oct 2008 | B2 |
7447948 | Galbi et al. | Nov 2008 | B2 |
7471559 | Shibata | Dec 2008 | B2 |
7480176 | Kamei | Jan 2009 | B2 |
7542336 | Han | Jun 2009 | B2 |
7606077 | Li et al. | Oct 2009 | B2 |
20020099996 | Demura et al. | Jul 2002 | A1 |
20030163776 | Prasad | Aug 2003 | A1 |
20040153902 | Machado et al. | Aug 2004 | A1 |
20050138276 | Navada et al. | Jun 2005 | A1 |
20050166006 | Talbot et al. | Jul 2005 | A1 |
20050190609 | Janssen et al. | Sep 2005 | A1 |
20050240745 | Lyer et al. | Oct 2005 | A1 |
20050251621 | Theis | Nov 2005 | A1 |
20060015780 | Fong | Jan 2006 | A1 |
20060090051 | Speier et al. | Apr 2006 | A1 |
20060155791 | Tene et al. | Jul 2006 | A1 |
20060179400 | Qian et al. | Aug 2006 | A1 |
20070153579 | Roohparvar et al. | Jul 2007 | A1 |
20070189065 | Suh et al. | Aug 2007 | A1 |
20080010581 | Alrod et al. | Jan 2008 | A1 |
20080025080 | Chan et al. | Jan 2008 | A1 |
20080034272 | Wu et al. | Feb 2008 | A1 |
20080052424 | Sameshima et al. | Feb 2008 | A1 |
20080114947 | Brox et al. | May 2008 | A1 |
20080151613 | Chao et al. | Jun 2008 | A1 |
20080158959 | Mokhlesi | Jul 2008 | A1 |
20080162858 | Moyer | Jul 2008 | A1 |
20080222368 | Gehrmann | Sep 2008 | A1 |
20080222491 | Lee et al. | Sep 2008 | A1 |
20080266991 | Lee et al. | Oct 2008 | A1 |
20080282106 | Shalvi et al. | Nov 2008 | A1 |
20090003044 | Happ et al. | Jan 2009 | A1 |
20090034324 | Kim et al. | Feb 2009 | A1 |
20090157994 | Hampel et al. | Jun 2009 | A1 |
20100020620 | Kim et al. | Jan 2010 | A1 |
20100034022 | Dutta et al. | Feb 2010 | A1 |
20100036997 | Brewer et al. | Feb 2010 | A1 |
20100125701 | Park | May 2010 | A1 |
20100165730 | Sommer et al. | Jul 2010 | A1 |
20100202198 | Kim et al. | Aug 2010 | A1 |
20100223530 | Son et al. | Sep 2010 | A1 |
20100241929 | Song et al. | Sep 2010 | A1 |
20110145504 | Anh et al. | Jun 2011 | A1 |
20110154160 | Yurzola et al. | Jun 2011 | A1 |
20110216586 | Graef et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
WO2006064497 | Jun 2006 | WO |
Entry |
---|
Feng Qin et al.; “Exploiting ECC-Memory for Detecting Memory Leaks and Memory Corruption during Production Runs”, 11th International Symposium on High-Performance Comptuer Architecture (HPCA-11-2005), pp. 12. |
G. Novark et al.; “Exterminator: Automatically Correcting Memory Errors with High Probability”; PLDI'07; Jun. 11-13, 2007; San Diego, CA; Copyright 2007; 11 pages. |
Ki-Tae Park et al., “A Zeroing Cell-to-Cell Interference Page Architecture with Temporary LSB Storing and Parallel MSB Program Scheme for MLC NAND Flash Memories,” IEEE Journal of Solid-State Circuits, vol. 43, No. 4, Apr. 2008, pp. 919-928. |
Noboru Shibata et al., “A 70 nm 16 Gb 1-Level-Cell NAND Flash Memory”, IEEEJournal of Solid-State Circuits, vol. 43, No. 4, Apr. 2008, pp. 929-937. |
Number | Date | Country | |
---|---|---|---|
20110078387 A1 | Mar 2011 | US |