The present invention relates to X-rays scanners and scanner systems. It has particular application in scanner systems for scanning baggage and cargo, but can also be used in other types of X-ray scanner.
In typical computed tomography systems, X-rays, generated by an X-ray source, are collimated to form a fan beam that is transmitted through an imaged object to an X-ray detector array orientated within the imaging plane. The detector array is comprised of detector elements which each measure the intensity of transmitted radiation along a ray projected from the X-ray source to that particular detector element. The X-ray source and detector array are typically rotated on a gantry within the imaging plane, around the imaged object, so that the fan beam intercepts the imaged object at different angles. At each angle, a projection is acquired comprised of the intensity signals from each of detector elements. The gantry is then rotated to a new angle and the process is repeated to collect a number of projections at different angles to form a tomographic projection set. In alternate tomography systems, the detector array remains fixed and comprises a 360 degree ring of detectors and the source is moved arcwise around the imaged object through 180 degrees plus the fan beam angle or more of arc. In such systems, only the X-ray source is rotated to acquire the tomographic projection set.
The time and expense of a tomographic study increases with the number of slices required. The time required to collect the data for a series of slices depends in part on aspects such as a) the time required to accelerate the gantry to scanning speed, b) the time required to obtain a complete tomographic projection set, c) the time required to decelerate the gantry and d) the time required to reposition the object in the z-axis for the next slice. Reducing the time required to obtain a full slice series may be accomplished by reducing the time required to complete any of these four steps. Additionally, movement of the object under inspection as well as the motion of the X-ray source and/or detector array, using the gantry, results in creation of unacceptably high levels of artefact in reconstructed images.
Accordingly, there is need in the prior art to reduce the overall time of conducting a tomographic inspection. There is also need to improve the overall imaging quality of tomographic inspection by addressing causes leading to image artefacts—particularly those induced by physical motion of the source-detector assembly.
It is an object of the present invention to provide an X-ray scanner comprising an X-ray source arranged to emit X-rays from a plurality of source points through an imaging volume. The scanner may further comprise an array of X-ray detectors which may be arranged around the imaging volume and may be arranged to output detector signals in response to the detection of X-rays. The scanner may further comprise a conveyor arranged to convey an object through the imaging volume in a scan direction, and may also comprise at least one processor arranged to process the detector signals to produce an image data set defining an image of the object. The image may be a two dimensional image or a three dimensional image. The image may have a resolution in the scan direction that is at least 90% as high as in one direction, and in some cases two directions, orthogonal to the scan direction. For a three dimensional image the resolution in the scan direction may be at least 90% as high, or may be as high in the scan direction as the average of the resolutions in two other orthogonal directions. In some embodiments the resolution in the scan direction may be higher, for example at least 20% or in some cases 50% higher, than the resolution in one, or two, other orthogonal directions. The image may have a resolution in at least two directions, the scan direction (R1) and a direction orthogonal to the scan direction (R2). In some embodiments of the present invention, R1≥(0.90)*R2. In some cases R1≥R2.
The resolution in the scan direction may be substantially equal to the resolution in the other two directions. For example the resolutions may all be within 10% of each other, and preferably within 5% of each other.
The source points may be arranged in a plane perpendicular to the scan direction. The detectors of the array may be located in a plane which is perpendicular to the scan direction, or a plurality of such planes.
The detector array may be offset from the source points in the scan direction. The detector array may be at least two detectors wide in the scan direction, and may for example be up to six or eight detectors wide, or in some cases up to ten detectors wide in the scan direction. The detectors may be arranged in a plurality of rings, the rings being in respective planes, which may be spaced from each other in the scan direction. In this case there may be ten rings or less, or in some cases eight rings or less, or even six rings or less. The detectors may have a width in a circumferential direction and each detector may be offset in the circumferential direction from one adjacent to it in the scan direction. Each detector may have a width in the circumferential direction and the offset is less than the width.
The scanner may further comprise a controller arranged to activate each of the source points in a predetermined sequence, once in each of a sequence of scan cycles. The controller may be arranged to control the frequency of the scan cycles so that it takes an integer number, which may be greater than one, of scan periods for the object to move a distance in the scan direction equal to the spacing of the detectors in the scan direction.
The scan cycle frequency may be variable so that the resolution in the scan direction can be adjusted. The control means may be arranged to adjust the scan frequency so as to provide a constant resolution in the scan direction for a plurality of object speeds.
The conveyor may be arranged to convey the object at a speed of at least 0.1 m/s, or at least 0.5 m/s, or at least 1.0 m/s. The scanner may be arranged to generate an image data set having a signal to noise ratio of at least 60, or at least 80, or at least 100. The image may be made up of voxels having a size in the scan direction of 5 mm or less, or 4 mm or less, or 3 mm or less, or 2 mm or less, or 1.1 mm or less. The image voxels may have a size in the two directions orthogonal to the scan direction which is 5 mm or less, or 4 mm or less, or 3 mm or less, or 2 mm or less, or 1.1 mm or less.
Some embodiments of the invention can provide a motionless X-ray imaging system able to generate reconstructed three-dimensional X-ray images with a conveyor speed of 0.25 m/s to 1.0 m/s, corresponding to a throughput of 800 to 3000 items per hour, for scanned objects of length 1 m in the scan direction and spaced along the conveyor with a slot length of 1.2 m in the scan direction, with equal spatial resolution in all dimensions (2 mm and better) with a reconstructed pixel size of 1.5 mm×1.5 mm×1.5 mm or less with a reconstructed image signal-to-noise ratio of 50 or better, and typically in excess of 100, with no more than eight rings of X-ray detectors.
The present invention further provides a mobile scanning system comprising a vehicle comprising a body and a scanner housed within the body wherein the scanner comprises X-ray source means arranged to generate X-rays from a plurality of source points, an array of X-ray detectors arranged to detect X-rays from the source points, and control means arranged to activate each of the source points so as to scan an imaging volume. The system may include a single conveyor extending through the system. It may be split into two conveyor sections, one for in-feed and one for out-feed, but preferably has a single belt that passes across both sections.
The present invention further provides a modular scanner system comprising a scanner section, an input conveyor section comprising a conveyor arranged to convey items towards the scanner section and an output conveyor section comprising a conveyor arranged to move items away from the scanner section, wherein at least one of the conveyor sections is detachably connected to the scanner section.
The present invention further provides an X-ray scanner system comprising an X-ray source arranged to emit X-rays from a plurality of source points through an imaging volume, an array of X-ray detectors arranged to output detector signals in response to the detection of the X-rays, a controller arranged to activate each of the source points in turn, at least one processor arranged to process the detector signals to produce an image data set corresponding to each of a plurality of views of an object, and a user interface arranged to receive a plurality of different user inputs and a display arranged to display each of the views in response to a respective one of the inputs. The user interface may comprise one or more input members, such as input buttons, which can be pressed or otherwise operated to provide the inputs. For example the user interface may include a mouse. Alternatively it may comprise a touch screen with different areas which can be touched to provide the different inputs.
The present invention further provides a scanner system comprising an X-ray source and an array of X-ray detectors defining a scanning volume, an input conveyor arranged to convey items into the scanning volume and an exit conveyor arranged to convey items away from the scanning volume, first and second input sensors arranged to detect the presence of an item at first and second positions on the input conveyor and first and second exit sensors arranged to detect the presence of an item at first and second positions on the exit conveyor, and control means arranged to control activation of the X-ray source in response to signals from the sensors.
These and other features and advantages of the present invention will be appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings:
Various modifications to the preferred embodiment, disclosed herein, will be readily apparent to those of ordinary skill in the art and the disclosure set forth herein may be applicable to other embodiments and applications without departing from the spirit and scope of the present invention and the claims hereto appended. Thus, the present invention is not intended to be limited to the embodiments described, but is to be accorded the broadest scope consistent with the disclosure set forth herein.
Referring to
Referring to
The X-Y plane or planes in which the X-ray tube source points 12 are located are offset from the planes of the X-ray detectors 24 such that there is an unobstructed path, except for the conveyor 22 and the object 20 under inspection, from each active source point 12 to its associated set of X-ray detectors 24. Thus, in one embodiment, the detectors 24 have a width in a circumferential direction and each detector is offset in the circumferential direction from one adjacent to it in the scan direction. Each detector has a width in the circumferential direction and the offset is less than the width, in one embodiment.
In one embodiment, the detector array 24 is at least two detectors wide in the scan direction, and may for example be up to six or eight detectors wide, or in some cases up to ten detectors wide in the scan direction. As mentioned earlier, the detectors may be arranged in a plurality of rings, the rings being in respective planes, which may be spaced from each other in the scan direction. In this case there may be ten rings or less, or in some cases eight rings or less, or even six rings or less. In alternate embodiments, the detectors may be arranged in one or more helical arrays.
A processor 30 is arranged to receive the signals output by all of the detectors 24 and forms an X-ray re-construction engine arranged to process the detector signals. As the X-ray source points 12 are switched according to a pre-determined sequence, the detector signals are digitized and transmitted to the X-ray reconstruction engine 30 which produces a reconstruction of the object 20 that is present in the beam. It is advantageous to select a sequence of X-ray source point activation which maximises the quality of the reconstructed image. The reconstruction engine 30 produces from the detector signals one image data set for each activation of each source point 12. Each source point is activate once in each of a series of scan cycles. The data sets for one cycle can be combined to generate a three dimensional image of a slice of the item, and a series of such image data sets built up as the item moves through the scanner in the Z-direction can be built up into a full three dimensional image data set of the item. Also the data sets from one source point collected as the item moves through the scanner can be built up to form a two-dimensional image data set of the item.
An exemplary sequence provides X-ray emission from sources points that rotate around the conveyor and object under inspection in a plane substantially perpendicular to the direction of motion of the conveyor and object under inspection. For example there may be four source points, which may be equally spaced around the Z axis. Of course, other scanning sequences may be adopted as required to optimise the image reconstruction method.
It is generally reasonable to consider an optimization of the X-ray imaging system to the activity for which the system is to be deployed. With specific reference to X-ray screening of baggage and cargo items, it is highly advantageous to achieve equal resolution in all three dimensions. This substantially assists in the detection of materials that may be conformed into sheet-like structures. Further, it is highly advantageous to achieve this equally matched resolution at high conveyor speeds, for example in the range 0.25 m/s to 1 m/s.
In the embodiment described with reference to
Advantageously, an X-ray system of this type may be further optimized to deliver a spatial resolution in the scan direction (parallel to the conveyor) whose spatial resolution exceeds that of the in-plane spatial resolution (perpendicular to the plane of the conveyor). In one embodiment, the X-ray scanner of the present invention is optimized to deliver image resolution in the scan direction that is at least 90% as high as in one direction, and in some cases two directions, orthogonal to the scan direction. In another embodiment, for a three dimensional image the resolution in the scan direction may be at least 90% as high, or may be as high in the scan direction as the average of the resolutions in two other orthogonal directions. In alternate embodiments the resolution in the scan direction may be higher, for example at least 20% or in some cases 50% higher, than the resolution in one, or two, other orthogonal directions. Again, the resolution in the scan direction may be substantially equal to the resolution in the other two directions. For example the resolutions may all be within 10% of each other, and preferably within 5% of each other in further embodiments.
X-ray image may have a resolution in at least two directions, the scan direction (R1) and a direction orthogonal to the scan direction (R2). In some embodiments of the present invention, R1≥(0.90)*R2. In some cases R1≥R2.
It shall be understood by one skilled in the art that the reconstructed image signal-to-noise figures are affected by the design of the X-ray sensor (for example by the sensor area, by the sensor detection efficiency, by the noise of the associated readout electronics and by timing jitter in the switching of the X-ray source points and the data acquisition system), and that the information presented in this regard in
Generally, it is understood that the in-plane reconstructed pixel size shall be determined based on overall acceptable data rate at the output of the image reconstruction process and on the spatial resolution of the imaging data based on the optimised sensor configuration. A suitable reconstructed pixel size to match the system performance characteristics as shown in
It is further possible to establish suitable operating characteristics for operation of an X-ray imaging system with varying conveyor speed. As described in
In some embodiments the tube current can be controlled so that it varies in direct proportion to the conveyor speed. This can provide a constant signal-to-noise ratio which is independent of scan speed. For example if the scan speed is doubled then the tube current would be doubled, and if the scan speed is halved the tube current is also halved.
Such a practical optimization allows the performance of the X-ray system to be altered dynamically based on imaging load. At times when high throughput is required, the conveyor speed may be set to a fast speed with a reduction in reconstructed image signal to noise ratio. At times of low throughput, the conveyor speed may be reduced to a lower speed with an associated improvement in reconstructed image signal-to-noise ratio.
According to an aspect of the present invention, the image quality for the X-ray scanner of the present invention as shown in
Signal-to-Noise Ratio (SNR)
For the X-ray scanner of the present invention,
Accordingly the X-ray scanner of
In one embodiment the X-ray scanner of the present invention provides a motionless X-ray imaging system able to generate reconstructed three-dimensional X-ray images with a conveyor speed of 0.25 m/s to 1.0 m/s, corresponding to a throughput of 800 to 3000 items per hour with equal spatial resolution in all dimensions (2 mm and better) with a reconstructed pixel size of 1.5 mm×1.5 mm×1.5 mm or less with a reconstructed image signal-to-noise ratio of 50 or better, and typically in excess of 100, with no more than eight rings of X-ray detectors.
Contrast
Contrast in the X-ray scanner of the present invention is defined as 1/SNR, where SNR is signal-to-noise ratio. Referring
Dynamic Range
Dynamic range is defined as (full-scale signal)/(dark noise). The dark noise is obtained by switching off the X-ray source while leaving the detectors and image reconstruction system active. If this dark level is normalized to zero and the light level (i.e. that intensity which is reconstructed with the X-ray beam switched on with no object in the beam) is normalized to 1000, the dynamic range is equal to 1000/(standard deviation in the dark image). An optimized X-ray scanner of the present invention, in one embodiment, provides a reconstructed dark noise of the order of 0.1% of full scale or less, thereby resulting in a dynamic range of 1000 or more.
The overall X-ray scanner dynamic range is dependent on the noise of the electronics readout system used. Thus, the noisier the electronics readout system, the worse the overall scanner dynamic range. Electronics readout system noise depends at least on the design of the photodiode, on the layout and length of the signal traces that lead from the photodiode sensors, on the design of the input electronics stage and on the resolution of the analogue-to-digital converter that follows its front end amplifier.
To achieve a wide dynamic range, the X-ray scanner of the present invention uses a scintillation detector 1400 with photodiode electronics readout as shown in
A reverse illuminated photodiode array 1410 with thin common cathode entrance window is adhered, glued, or otherwise attached to the base of the scintillation crystal array 1405. Optical photons from the scintillator 1405 pass through a thin optical coupling, further through a thin passivation/contact layer in the photodiode and into the bulk region of the photodiode. Charge generated in the depletion region drift under the influence of an applied bias towards a set of anodes—one anode contact region per scintillation crystal. The anode is advantageously constructed so as to minimize cross-talk of drift electrons from one pixel to another. The photodiode array 1410 is then bump bonded to a patterned substrate 1415 using, for example, a conductive epoxy pad on an indium bump bond with backfill of adhesive to ensure good adherence of the photodiode/crystal array to the substrate 1415.
The multi-layer ceramic substrate 1415 is advantageously drilled, printed with conductive ink and fired at high temperature to produce a multi-layer circuit card with pads on one side that match the layout of anodes on the photodiode array 1410 and on the other side match the pads on suitable electronic readout circuits 1420. The thermal expansion coefficient of the ceramic substrate 1415 and photodiode 1410 arc matched to provide good thermal stability during firing of the adhesives and during bump bonding.
The electronic readout circuit 1420 is advantageously either soldered or fixed to the ceramic substrate 1415 using conductive epoxy pads. A low density connector then takes electrical signals from the front-end electronics to subsequent signal processing circuitry. In this way, the scintillator detector 1400 has minimum trace lengths and hence low intrinsic capacitance which helps to maximise dynamic range of the X-ray scanner of the present invention.
Linearity
Intrinsic linearity of an X-ray system depends on aspects such as filtering of the X-ray spectrum emitted from X-ray source, X-ray tube operating voltage, filtering of the X-ray beam prior to X-ray detectors and the material from which the X-ray detector is fabricated. Also, degradation of X-ray system linearity is caused by detection of X-rays which have scattered from the object under investigation and on X-rays which scatter from the components of the X-ray system itself.
Therefore, the X-ray scanner of the present invention uses collimation and radiation shielding structures to reduce scatter.
The X-ray scanner optimized for low scatter also results in maximizing its contrast performance. The signal-to-noise ratio (SNR) of an X-ray system, the noise performance of which is dominated by X-ray photon noise, is defined as:
In other words, the signal-to-noise ratio (SNR) is simply the standard deviation of the photon signal. However, in the presence of X-ray scatter, the situation is changed such that the standard deviation, σ2, comprises noise due both to the primary signal as well as due to scatter:
A scatter fraction of 1% of primary beam intensity results in a reduction of SNR by a similar amount. The distribution of scattered radiation at the detectors is approximately constant independent of position in the array for a given object density. Thus, the impact of scatter is more significant in high attenuation regions of an image than in low attenuation regions of an image.
Therefore, to maximize imaging performance, the X-ray scanner of the present invention further uses a well controlled space charge limited electron gun 1600 as shown in
Referring to
Thermal Load on X-Ray Tube Target
Thermal load on X-ray tube target of the X-ray scanner of the present invention is minimized to allow high power operation over extended operating periods. As a first measure, this thermal load minimization is achieved by having a large, distributed, anode where only small sections of the anode are irradiated by an electron beam at any one time and that too only for very short durations. Still, for example, a distributed anode with an irradiation time of 80 μs per source point results in an increase in localized temperature at the central point of the electron irradiation spot by around 200 degrees. Thus, as a second measure, a coolant fluid is passed around the anode such that the coolant is capable of extracting the total power that is driven into the anode (2.4 kW for a system operating at 160 kV, 20 mA). As a result, the anode is maintained at a temperature which is substantially constant over extended operating periods. The coolant fluid is selected to have good thermal transfer properties and low viscosity with a high ionisation threshold. Coolant flow rate is maintained to establish turbulent flow in the coolant pipe in order to maximise thermal transfer from the anode into the coolant fluid.
Thermal Load on X-Ray Detectors
Scintillation efficiency of X-ray detectors as well as leakage current of photodiodes (when operated in reverse bias condition) of the detectors varies with temperature. Therefore, the X-ray scanner of the present invention provides cooling of its X-ray detectors to maintain a constant operating temperature independent of ambient conditions, thereby stabilizing the reconstructed voxel values resulting in high quantitative accuracy of X-ray image.
Referring back to
As an enhancement of this application, the detector rings may be configured as shown in
An improvement in horizontal pixel sampling rate can also be achieved by sampling more rapidly with respect to the conveyor velocity than just by sampling once every one detector spacing, i.e. by performing more than one scan cycle in the time taken for the object to move a distance equal to the width of the detector ring 40 of
In a related scanning mode, a sequence may be generated in which X-ray tube source points are activated over a small range of angles, typically over 10 degrees, at a rate such that all of the chosen source points are activated individually in the time taken for the conveyor to travel one detector spacing. For a detector dimension of 5 mm, a source point located every 1 degree and a conveyor speed of 0.5 m/s, each individual projection will be collected in 1 ms. In this way, a set of two-dimensional projection images are acquired, one for each selected source point.
A graphical user interface may then be provided which enables the operator to view each image in turn under control of a suitable input device such as a mouse or a pair of buttons, and to rapidly flip between images from adjacent source points as the input device is actuated. The result is a “rocking two-dimensional image” in which the object under inspection appears to rotate back and forth about the central axis of the scanning tunnel in the direction parallel to the conveyor motion under the control of the operator. This rocking image provides a powerful method by which the operator can easily perceive depth information about objects within the object under inspection.
It is clear that the data for the above two scanning modes exists within the data set that is typically collected during data acquisition for a three-dimensional tomographic image reconstruction in the system of
A high speed three-dimensional X-ray scanning system as described with reference to
The scanning equipment is very compact due to the lack of a mechanical gantry to rotate the source and detector assembly as is required in known X-ray tomography systems. The scanning equipment is of low power consumption compared to known mechanical X-ray tomography systems due to the lack of motor drive components.
In this mobile configuration, the vehicle 50 includes a cab 52 and a body 54 which has two side walls 56, 58, a rear end 60 having doors 62 therein, and a roof 64. Each of the side walls 56, 58 has an aperture 66 in it and a scanner, such as that of
An operator inspection workstation can be located adjacent to the driver in the cab 52 at the front of the vehicle or adjacent to the equipment itself in the body 54 at the rear of the vehicle.
In a further embodiment of the invention, the X-ray system may be constructed on a wheelable chassis as shown in
To allow the system 80 to be moved between various levels of a building, the scanner may be easily and quickly separated into three parts: an inlet tunnel section 86, an exit tunnel section 88 and a scanner section 90 as shown in
To save space, in-feed and out-feed conveyor sections 94, 96 fold up to a stowed position against the front face of their respective tunnel sections 86, 88 and can be dropped back down into an in-use position once the system has been maneuvered to its required location.
An operator workstation 100 is also advantageously located on one or more of the tunnel sections 86, 88 such that the necessary computer monitor 102 and keyboard assembly 104 are arranged to fold down from the equipment itself in order to minimise cabling and to minimise down time between system relocation. Referring to
In one embodiment, the keyboard 104 of
Referring back to
Referring now to
In one embodiment, the X-ray system 1100 is also provided with a Human Machine Interface. This comprises a video screen through which is provided dynamic status information on the scanning process (including the locations of objects to be scanned within the system), statistical information on the quantity and type of objects scanned together with inspection results and machine status information including software and hardware revision levels, electrical, computational, X-ray and sensor sub-system status indication. In one embodiment, the Human Machine Interface is advantageously provided with a touch screen interface, as is known to those of ordinary skill in the art, with the requirement for an operator to enter a security code in order to access some elements of the available information.
It will be appreciated that various above-disclosed embodiments, other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims. In particular, it should be appreciated that these all operative numbers represent an exemplary range and the present invention encompasses ranges that represent improvements, including higher resolution, improved signal to noise ratio, lower voltage, and more rapid conveyor speeds, relative to the numbers shown.
Number | Date | Country | Kind |
---|---|---|---|
0309371.3 | Apr 2003 | GB | national |
0309383.8 | Apr 2003 | GB | national |
0309387.9 | Apr 2003 | GB | national |
0525593.0 | Dec 2005 | GB | national |
0903198.0 | Feb 2009 | GB | national |
The present application is a continuation of U.S. patent application Ser. No. 12/712,476, filed on Feb. 25, 2010, entitled “X-Ray Scanners” (the “'476 Application”) The '476 Application relies on U.S. Patent Provisional Application No. 61/155,572 filed on Feb. 26, 2009. The '476 Application also relies on Great Britain Patent No. GB0903198.0, filed on Feb. 25, 2009, for foreign priority. The '476 Application is also a continuation-in-part of U.S. patent application Ser. No. 12/485,897, filed on Jun. 16, 2009, which is a continuation of U.S. patent application Ser. No. 10/554,656, filed on Oct. 25, 2005, which is a 371 national stage application of PCT/GB04/01729, which was filed on and relies on for priority UK Patent Application No. 0309387, filed on Apr. 25, 2003. The '476 Application is also a continuation-in-part of U.S. patent application Ser. No. 12/371,853, filed on Feb. 16, 2009, which is a continuation of U.S. patent application Ser. No. 10/554,975, filed on Oct. 25, 2005, which is a national stage application of PCT/GB2004/01741, filed on Apr. 23, 2004 and which, in turn, relies on Great Britain Application Number 0309383.8, filed on Apr. 25, 2003, for priority. The '476 Application is also a continuation-in-part of U.S. patent application Ser. No. 12/651,479, which is a continuation of U.S. patent application Ser. No. 10/554,654, filed on Oct. 25, 2005, which is a national stage application of PCT/GB2004/001731, filed on Apr. 23, 2004, which relies on Great Britain Patent Application Number 0309371.3, filed on Apr. 25, 2003 for priority. The '476 Application is also a continuation-in-part of U.S. patent application Ser. No. 12/364,067, which is a continuation of U.S. patent application Ser. No. 12/033,035, which is a continuation of U.S. patent application Ser. No. 10/554,569, filed on Oct. 25, 2005, which is a national stage filing of PCT/GB04/001732, having a priority date of Apr. 25, 2003. The '476 Application is also a continuation-in-part of U.S. patent application Ser. No. 12/211,219, filed on Sep. 16, 2008, which is a continuation of U.S. patent application Ser. No. 10/554,655, which is a national stage application of PCT/GB2004/001751, filed on Apr. 23, 2004, having a priority date of Apr. 25, 2003. The '476 Application is also a continuation-in-part of U.S. patent application Ser. No. 10/554,570, which is a national stage application of PCT/GB2004/001747, filed on Apr. 23, 2004, having a priority date of Apr. 25, 2003. The '476 Application is also a continuation-in-part of U.S. patent application Ser. No. 12/097,422, filed on Jun. 13, 2008, which is a national stage application of PCT/GB2006/004684, filed on Dec. 15, 2006 and relies on Great Britain Patent Application Number 0525593.0, filed on Dec. 16, 2005, for priority. Each of the aforementioned PCT, foreign, and U.S. applications is herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2299251 | Perbal | Oct 1942 | A |
2831123 | Daly | Apr 1958 | A |
2952790 | Steen | Sep 1960 | A |
2999935 | Foster | Sep 1961 | A |
3239706 | Farrell | Mar 1966 | A |
3707672 | Miller | Dec 1972 | A |
3713156 | Pothier | Jan 1973 | A |
3766387 | Heffan | Oct 1973 | A |
3768645 | Conway | Oct 1973 | A |
3784837 | Holmstrom | Jan 1974 | A |
3848130 | Macovski | Nov 1974 | A |
3854049 | Mistretta | Dec 1974 | A |
RE28544 | Stein | Sep 1975 | E |
3965358 | Macovski | Jun 1976 | A |
3980889 | Haas | Sep 1976 | A |
4047035 | Dennhoven | Sep 1977 | A |
4057725 | Wagner | Nov 1977 | A |
4105922 | Lambert | Aug 1978 | A |
4122783 | Pretini | Oct 1978 | A |
4139771 | Dennhoven | Feb 1979 | A |
4158770 | Davis | Jun 1979 | A |
4210811 | Dennhoven | Jul 1980 | A |
4216499 | Dennhoven | Aug 1980 | A |
4228353 | Johnson | Oct 1980 | A |
4259721 | Kuznia | Mar 1981 | A |
4266425 | Allport | May 1981 | A |
4274005 | Yamamura | Jun 1981 | A |
4297580 | Juner | Oct 1981 | A |
4340816 | Schott | Jul 1982 | A |
4352021 | Boyd | Sep 1982 | A |
4366382 | Kotowski | Dec 1982 | A |
4375695 | Harding | Mar 1983 | A |
4384209 | Wagner | May 1983 | A |
4399403 | Strandberg | Aug 1983 | A |
4430568 | Yoshida | Feb 1984 | A |
4468802 | Friedel | Aug 1984 | A |
4471343 | Lemelson | Sep 1984 | A |
4566113 | Doenges | Jan 1986 | A |
4571491 | Vinegar | Feb 1986 | A |
4599740 | Cable | Jul 1986 | A |
4622688 | Diemer | Nov 1986 | A |
4641330 | Herwig | Feb 1987 | A |
4672649 | Rutt | Jun 1987 | A |
4675890 | Plessis | Jun 1987 | A |
4736401 | Donges | Apr 1988 | A |
4754469 | Harding | Jun 1988 | A |
4788704 | Donges | Nov 1988 | A |
4788706 | Jacobson | Nov 1988 | A |
4789930 | Sones | Dec 1988 | A |
4825454 | Annis | Apr 1989 | A |
RE32961 | Wagner | Jun 1989 | E |
4866745 | Akai | Sep 1989 | A |
4868856 | Frith | Sep 1989 | A |
4884289 | Glockmann | Nov 1989 | A |
4887604 | Shefer | Dec 1989 | A |
4956856 | Harding | Sep 1990 | A |
4958363 | Nelson | Sep 1990 | A |
4975968 | Yukl | Dec 1990 | A |
4979202 | Siczek | Dec 1990 | A |
4987584 | Doenges | Jan 1991 | A |
4991189 | Boomgaarden | Feb 1991 | A |
5007072 | Jenkins | Apr 1991 | A |
5008911 | Harding | Apr 1991 | A |
5022062 | Annis | Jun 1991 | A |
5033106 | Kita | Jul 1991 | A |
5056124 | Kakimoto | Oct 1991 | A |
5065418 | Bermbach | Nov 1991 | A |
5081456 | Michiguchi | Jan 1992 | A |
5091924 | Bermbach | Feb 1992 | A |
5098640 | Gozani | Mar 1992 | A |
5105452 | McInerney | Apr 1992 | A |
5144191 | Jones et al. | Sep 1992 | A |
5155365 | Cann | Oct 1992 | A |
5172401 | Asari | Dec 1992 | A |
5179581 | Annis | Jan 1993 | A |
5181234 | Smith | Jan 1993 | A |
5182764 | Peschmann | Jan 1993 | A |
5224144 | Annis | Jun 1993 | A |
5227800 | Huguenin | Jul 1993 | A |
5237598 | Albert | Aug 1993 | A |
5247556 | Eckert | Sep 1993 | A |
5247561 | Kotowski | Sep 1993 | A |
5253283 | Annis | Oct 1993 | A |
5259014 | Brettschneider | Nov 1993 | A |
5263075 | McGann | Nov 1993 | A |
5265144 | Harding | Nov 1993 | A |
5272627 | Maschhoff | Dec 1993 | A |
5313511 | Annis | May 1994 | A |
5319547 | Krug | Jun 1994 | A |
5339080 | Steinway | Aug 1994 | A |
5345240 | Frazier | Sep 1994 | A |
5365567 | Ohtsuchi | Nov 1994 | A |
5367552 | Peschmann | Nov 1994 | A |
5379334 | Zimmer | Jan 1995 | A |
5410156 | Miller | Apr 1995 | A |
5412702 | Sata | May 1995 | A |
5420905 | Bertozzi | May 1995 | A |
5467377 | Dawson | Nov 1995 | A |
5481584 | Tang | Jan 1996 | A |
5490196 | Rudich | Feb 1996 | A |
5490218 | Krug | Feb 1996 | A |
5493596 | Annis | Feb 1996 | A |
5511104 | Mueller | Apr 1996 | A |
5524133 | Neale | Jun 1996 | A |
5552705 | Keller | Sep 1996 | A |
5557108 | Tumer | Sep 1996 | A |
5557283 | Sheen | Sep 1996 | A |
5570403 | Yamazaki | Oct 1996 | A |
5600303 | Husseiny | Feb 1997 | A |
5600700 | Krug | Feb 1997 | A |
5604778 | Polacin | Feb 1997 | A |
5606167 | Miller | Feb 1997 | A |
5633906 | Hell | May 1997 | A |
5633907 | Gravelle | May 1997 | A |
5638420 | Armistead | Jun 1997 | A |
5642393 | Krug | Jun 1997 | A |
5642394 | Rothschild | Jun 1997 | A |
5648997 | Chao | Jul 1997 | A |
5651047 | Moorman | Jul 1997 | A |
5661774 | Gordon | Aug 1997 | A |
5666393 | Annis | Sep 1997 | A |
5687210 | Maitrejean | Nov 1997 | A |
5689239 | Turner | Nov 1997 | A |
5689541 | Schardt | Nov 1997 | A |
5692028 | Geus | Nov 1997 | A |
5712926 | Eberhard | Jan 1998 | A |
5745543 | De | Apr 1998 | A |
5751837 | Watanabe | May 1998 | A |
5764683 | Swift | Jun 1998 | A |
5768334 | Maitrejean | Jun 1998 | A |
5787145 | Geus | Jul 1998 | A |
5796802 | Gordon | Aug 1998 | A |
5805660 | Perion | Sep 1998 | A |
5812630 | Blaffert | Sep 1998 | A |
5818897 | Gordon | Oct 1998 | A |
5838758 | Krug | Nov 1998 | A |
5838759 | Armistead | Nov 1998 | A |
5841831 | Hell | Nov 1998 | A |
5859891 | Hibbard | Jan 1999 | A |
5881122 | Crawford | Mar 1999 | A |
5887047 | Bailey | Mar 1999 | A |
5901198 | Crawford | May 1999 | A |
5903623 | Swift | May 1999 | A |
5905806 | Eberhard | May 1999 | A |
5909477 | Crawford | Jun 1999 | A |
5910973 | Grodzins | Jun 1999 | A |
5930326 | Rothschild | Jul 1999 | A |
5940468 | Huang | Aug 1999 | A |
5943388 | Tuemer | Aug 1999 | A |
5966422 | Dafni | Oct 1999 | A |
5974111 | Krug | Oct 1999 | A |
5982843 | Bailey | Nov 1999 | A |
5987097 | Salasoo | Nov 1999 | A |
6018562 | Willson | Jan 2000 | A |
6021174 | Campbell | Feb 2000 | A |
6026135 | McFee | Feb 2000 | A |
6026143 | Simanovsky | Feb 2000 | A |
6026171 | Hiraoglu | Feb 2000 | A |
6031890 | Bermbach | Feb 2000 | A |
6035014 | Hiraoglu | Mar 2000 | A |
6037597 | Karavolos | Mar 2000 | A |
6054712 | Komardin | Apr 2000 | A |
6058158 | Eiler | May 2000 | A |
6067344 | Grodzins | May 2000 | A |
6067366 | Simanovsky | May 2000 | A |
6075871 | Simanovsky | Jun 2000 | A |
6076400 | Bechwati | Jun 2000 | A |
6078642 | Simanovsky | Jun 2000 | A |
6081580 | Grodzins | Jun 2000 | A |
6088423 | Krug | Jul 2000 | A |
6091795 | Schafer | Jul 2000 | A |
6094472 | Smith | Jul 2000 | A |
6108396 | Bechwati | Aug 2000 | A |
6111974 | Hiraoglu | Aug 2000 | A |
6118850 | Mayo | Sep 2000 | A |
6118852 | Rogers | Sep 2000 | A |
6122343 | Pidcock | Sep 2000 | A |
6125167 | Morgan | Sep 2000 | A |
6128365 | Bechwati | Oct 2000 | A |
6149592 | Yanof | Nov 2000 | A |
6151381 | Grodzins | Nov 2000 | A |
6163591 | Benjamin | Dec 2000 | A |
6181765 | Sribar | Jan 2001 | B1 |
6183139 | Solomon | Feb 2001 | B1 |
6184841 | Shober | Feb 2001 | B1 |
6185272 | Hiraoglu | Feb 2001 | B1 |
6188743 | Tybinkowski | Feb 2001 | B1 |
6188745 | Gordon | Feb 2001 | B1 |
6188747 | Geus | Feb 2001 | B1 |
6192101 | Grodzins | Feb 2001 | B1 |
6192104 | Adams | Feb 2001 | B1 |
6195413 | Geus | Feb 2001 | B1 |
6195444 | Simanovsky | Feb 2001 | B1 |
6198795 | Naumann | Mar 2001 | B1 |
6216540 | Nelson | Apr 2001 | B1 |
6218943 | Ellenbogen | Apr 2001 | B1 |
6236709 | Perry | May 2001 | B1 |
6249567 | Rothschild | Jun 2001 | B1 |
6252929 | Swift | Jun 2001 | B1 |
6252932 | Arakawa | Jun 2001 | B1 |
6256369 | Lai | Jul 2001 | B1 |
6256404 | Gordon | Jul 2001 | B1 |
6269142 | Smith | Jul 2001 | B1 |
6272230 | Hiraoglu | Aug 2001 | B1 |
6278115 | Annis | Aug 2001 | B1 |
6282260 | Grodzins | Aug 2001 | B1 |
6288676 | Maloney | Sep 2001 | B1 |
6292533 | Swift | Sep 2001 | B1 |
6301326 | Bjorkholm | Oct 2001 | B2 |
6304629 | Conway | Oct 2001 | B1 |
6317509 | Simanovsky | Nov 2001 | B1 |
6320933 | Grodzins | Nov 2001 | B1 |
6324249 | Fazzio | Nov 2001 | B1 |
6342696 | Chadwick | Jan 2002 | B1 |
6345113 | Crawford | Feb 2002 | B1 |
6347132 | Annis | Feb 2002 | B1 |
6356620 | Rothschild | Mar 2002 | B1 |
6359582 | MacAleese | Mar 2002 | B1 |
6417797 | Cousins | Jul 2002 | B1 |
6418189 | Schafer | Jul 2002 | B1 |
6424695 | Grodzins | Jul 2002 | B1 |
6429578 | Danielsson | Aug 2002 | B1 |
6430255 | Fenkart | Aug 2002 | B2 |
6434219 | Rothschild | Aug 2002 | B1 |
6435715 | Betz | Aug 2002 | B1 |
6442233 | Grodzins | Aug 2002 | B1 |
6445765 | Frank | Sep 2002 | B1 |
6453003 | Springer | Sep 2002 | B1 |
6453007 | Adams | Sep 2002 | B2 |
6456093 | Merkel | Sep 2002 | B1 |
6456684 | Mun | Sep 2002 | B1 |
6459755 | Li | Oct 2002 | B1 |
6459761 | Grodzins et al. | Oct 2002 | B1 |
6459764 | Grodzins | Oct 2002 | B1 |
6469624 | Whan | Oct 2002 | B1 |
6473487 | Le | Oct 2002 | B1 |
RE37899 | Grodzins | Nov 2002 | E |
6480141 | Toth | Nov 2002 | B1 |
6483894 | Hartick | Nov 2002 | B2 |
6501414 | Arndt | Dec 2002 | B2 |
6507025 | Verbinski et al. | Jan 2003 | B1 |
6546072 | Chalmers | Jan 2003 | B1 |
6532276 | Hartick | Mar 2003 | B1 |
6542574 | Grodzins | Apr 2003 | B2 |
6542578 | Ries | Apr 2003 | B2 |
6542580 | Carver | Apr 2003 | B1 |
6552346 | Verbinski | Apr 2003 | B2 |
6556653 | Chalmers | Apr 2003 | B2 |
6563906 | Hussein | Apr 2003 | B2 |
6563903 | Kang | May 2003 | B2 |
6590956 | Hussein | May 2003 | B2 |
6580778 | Meder | Jun 2003 | B2 |
6584170 | Aust | Jun 2003 | B2 |
6597760 | Beneke | Jul 2003 | B2 |
6618466 | Fenkart | Jul 2003 | B1 |
6606516 | Levine | Aug 2003 | B2 |
6628745 | Annis | Sep 2003 | B1 |
6647091 | Ning | Sep 2003 | B2 |
6636581 | Sorenson | Oct 2003 | B2 |
6647094 | Fenkart | Nov 2003 | B2 |
6647095 | Harding | Nov 2003 | B2 |
6650276 | Lawless | Nov 2003 | B2 |
6653588 | Gillard-Hickman | Nov 2003 | B1 |
6658087 | Chalmers | Dec 2003 | B2 |
6661866 | Limkeman | Dec 2003 | B1 |
6663280 | Doenges | Dec 2003 | B2 |
6665373 | Kotowski | Dec 2003 | B1 |
6665433 | Roder | Dec 2003 | B2 |
6687333 | Carroll et al. | Feb 2004 | B2 |
6690766 | Carroll | Feb 2004 | B2 |
6707879 | Kresse | Feb 2004 | B2 |
6715533 | McClelland | Mar 2004 | B2 |
6721387 | Kresse | Apr 2004 | B1 |
6735271 | Naidu | Apr 2004 | B1 |
6737652 | Rand | May 2004 | B2 |
6748043 | Lanza | May 2004 | B1 |
6754298 | Dobbs | Jun 2004 | B2 |
6760407 | Fessler | Jun 2004 | B2 |
6763635 | Lowman | Jul 2004 | B1 |
6768317 | Moeller | Jul 2004 | B2 |
6770884 | Price | Jul 2004 | B2 |
6775348 | Bryman | Aug 2004 | B2 |
6785357 | Bernardi | Aug 2004 | B2 |
6785359 | Lemaitre | Aug 2004 | B2 |
6788761 | Hoffman | Aug 2004 | B2 |
6798863 | Sato | Sep 2004 | B2 |
6813374 | Bijjani | Sep 2004 | B1 |
6807248 | Mihara | Oct 2004 | B2 |
6812426 | Kotowski | Nov 2004 | B1 |
6816571 | Karimi | Nov 2004 | B2 |
6827265 | Bijjani | Nov 2004 | B2 |
6830185 | Knowles | Dec 2004 | B2 |
6831590 | Steinway | Dec 2004 | B1 |
6837422 | Meder | Jan 2005 | B1 |
6837432 | Tsikos | Jan 2005 | B2 |
6839403 | Kotowski et al. | Jan 2005 | B1 |
6843599 | Le | Jan 2005 | B2 |
6856667 | Tsikos | Jan 2005 | B2 |
6856271 | Hausner | Feb 2005 | B1 |
6859514 | Ellenbogen | Feb 2005 | B2 |
6901135 | Hoffman | Feb 2005 | B2 |
6876322 | Keller | Apr 2005 | B2 |
6891381 | Bailey | May 2005 | B2 |
6894636 | Anderton | May 2005 | B2 |
6906329 | Fox | May 2005 | B2 |
6907101 | Bryman | Jun 2005 | B2 |
6922455 | Hoffman | Jun 2005 | B2 |
6920196 | Ueno | Jul 2005 | B2 |
6920197 | Kang | Jul 2005 | B2 |
6922460 | Jurczyk | Jul 2005 | B2 |
6922461 | Skatter | Jul 2005 | B2 |
6933504 | Kang | Jul 2005 | B2 |
6928141 | Carver | Aug 2005 | B2 |
6934354 | Hoffman | Aug 2005 | B2 |
6940071 | Hoffman | Aug 2005 | B2 |
6944264 | Ramsden | Sep 2005 | B2 |
6947517 | Bijjani | Sep 2005 | B2 |
6950492 | Hoffman | Sep 2005 | B2 |
6950493 | Besson | Sep 2005 | B2 |
6952163 | Besson | Sep 2005 | B2 |
6953935 | Huey | Oct 2005 | B1 |
6957913 | Hoffman | Oct 2005 | B2 |
6962289 | Renkart | Oct 2005 | B2 |
6968030 | Vatan | Nov 2005 | B2 |
6968034 | Hoffman | Nov 2005 | B2 |
6971577 | Ellenbogen | Nov 2005 | B2 |
6973158 | Besson | Dec 2005 | B2 |
6975698 | Tsikos | Dec 2005 | B2 |
6975703 | Katcha | Dec 2005 | B2 |
6978936 | Wilson | Dec 2005 | B2 |
6980627 | Tsikos | Dec 2005 | B2 |
6990171 | Toth et al. | Jan 2006 | B2 |
6990172 | Toth | Jan 2006 | B2 |
6991371 | Toth | Jan 2006 | B2 |
6993115 | Georgeson | Jan 2006 | B2 |
6996209 | McGuire | Jan 2006 | B2 |
7010083 | Marek | Feb 2006 | B2 |
7012256 | Roos | Mar 2006 | B1 |
7012989 | Holland | Mar 2006 | B2 |
7016459 | Hoffman | Mar 2006 | B2 |
7020241 | Ellenbogen | Mar 2006 | B2 |
7020242 | Beneke | Mar 2006 | B2 |
7023956 | Ellenbogen | Mar 2006 | B2 |
7023950 | Annis | Apr 2006 | B1 |
7023957 | Heaton | Apr 2006 | B2 |
7027553 | Bijjani | Apr 2006 | B2 |
7027554 | Dunham | Apr 2006 | B2 |
7031430 | Gaultier | Apr 2006 | B2 |
7031434 | Kaucic | Apr 2006 | B1 |
7034313 | Saunders | Apr 2006 | B2 |
7039154 | Hoffman | Apr 2006 | B1 |
7039159 | Muenchau | May 2006 | B2 |
7045787 | Ellenbogen | May 2006 | B1 |
7046756 | Verbinski | May 2006 | B2 |
7046761 | Hoffman | May 2006 | B2 |
7050529 | Hoffman | May 2006 | B2 |
7050536 | Ellenbogen | May 2006 | B1 |
7050540 | Wilkins | May 2006 | B2 |
7054408 | Fenkart | May 2006 | B2 |
7062009 | Jiang | May 2006 | B2 |
7062011 | Karimi | Jun 2006 | B1 |
7062074 | Tybinkowski | Jun 2006 | B1 |
7064334 | Beneke | Jun 2006 | B2 |
7065175 | Hoffman | Jun 2006 | B2 |
7065179 | Green | Jun 2006 | B2 |
7068749 | Block | Jun 2006 | B2 |
7068750 | Kollegal | Jun 2006 | B2 |
7068751 | Toth | Jun 2006 | B2 |
7072434 | Toth | Jun 2006 | B1 |
7076029 | Tybinkowski | Jul 2006 | B2 |
7078699 | Toth | Jul 2006 | B2 |
7081628 | Seppi | Jul 2006 | B2 |
7084404 | Granfors | Jul 2006 | B2 |
7087902 | Hoffman | Aug 2006 | B2 |
7088799 | Wang | Aug 2006 | B2 |
7090133 | Hoffman | Aug 2006 | B2 |
7092481 | Zhu | Aug 2006 | B2 |
7092485 | Hoffman | Aug 2006 | B2 |
7103137 | Kravis | Aug 2006 | B2 |
7110488 | Seppi | Sep 2006 | B2 |
7112797 | Katcha | Sep 2006 | B2 |
7116749 | Hoge | Sep 2006 | B2 |
7116751 | Besson | Oct 2006 | B2 |
7119553 | Ellenbogen | Oct 2006 | B2 |
7120222 | Hoffman | Oct 2006 | B2 |
7123681 | Yang | Oct 2006 | B2 |
7127027 | Ellenbogen | Oct 2006 | B2 |
7130374 | Hoffman | Oct 2006 | B1 |
7133491 | Jacobs | Oct 2006 | B2 |
7136450 | Bernardi | Nov 2006 | B2 |
7136451 | Ying | Nov 2006 | B2 |
7139367 | Naidu | Nov 2006 | B1 |
7139406 | Le | Nov 2006 | B2 |
7142629 | McClelland | Nov 2006 | B2 |
7149278 | Edic | Dec 2006 | B2 |
7149339 | Arenson | Dec 2006 | B2 |
7155812 | Peterson et al. | Jan 2007 | B1 |
7158611 | Peterson | Jan 2007 | B2 |
7164747 | Heismann | Jan 2007 | B2 |
7164750 | Ellenbogen | Jan 2007 | B2 |
7166458 | Nabors | Jan 2007 | B2 |
7167539 | Ballerstadt | Jan 2007 | B1 |
7173998 | Hoffman | Jan 2007 | B2 |
7177387 | Hoffman | Feb 2007 | B2 |
7177391 | Yasunaga | Feb 2007 | B2 |
7183906 | Zanovitch | Feb 2007 | B2 |
7190757 | Chapin | Feb 2007 | B2 |
7187756 | Gohno | Mar 2007 | B2 |
7192031 | Ying | Mar 2007 | B2 |
7197113 | Dunham | Mar 2007 | B1 |
7197116 | Dunham | Mar 2007 | B2 |
7197172 | Katcha | Mar 2007 | B1 |
7203629 | Naidu | Mar 2007 | B2 |
7203269 | Huber | Apr 2007 | B2 |
7203271 | Benz | Apr 2007 | B2 |
7206379 | Oezis | Apr 2007 | B2 |
7207713 | Lowman | Apr 2007 | B2 |
7215731 | Lemaitre | Apr 2007 | B1 |
7215738 | Basu | May 2007 | B2 |
7218700 | Muenchau | May 2007 | B2 |
7218704 | Huber | May 2007 | B1 |
7224763 | Adams | May 2007 | B2 |
7224765 | Naidu | May 2007 | B2 |
7224766 | Ellenbogen | May 2007 | B2 |
7224769 | Jiang | May 2007 | B2 |
7233640 | Turner | May 2007 | B2 |
7233644 | Bendahan | Jun 2007 | B1 |
7236564 | Ikhlef | Jun 2007 | B2 |
7238945 | Hopkins | Jun 2007 | B2 |
7247856 | Hoffman | Jul 2007 | B2 |
7251310 | Hoge | Jul 2007 | B2 |
7260170 | Smith | Jul 2007 | B2 |
7260171 | Arenson | Aug 2007 | B1 |
7260172 | Arenson | Aug 2007 | B2 |
7260173 | Arenson | Aug 2007 | B2 |
7260174 | Wakayama | Aug 2007 | B2 |
7260182 | Hoffman | Aug 2007 | B2 |
7263160 | Toth | Aug 2007 | B2 |
7266180 | Schlomka | Aug 2007 | B1 |
7272429 | Saunders | Sep 2007 | B2 |
7274767 | Walker | Sep 2007 | B2 |
7277577 | Clayton | Sep 2007 | B2 |
7279120 | Ying | Oct 2007 | B2 |
7280631 | Cheng | Oct 2007 | B2 |
7282727 | De | Oct 2007 | B2 |
7283604 | Retsky | Oct 2007 | B2 |
7283609 | De | Oct 2007 | B2 |
7295019 | Possin | Oct 2007 | B2 |
7295651 | Yang | Nov 2007 | B2 |
7298812 | Delgado | Nov 2007 | B2 |
7302083 | Tkaczyk | Nov 2007 | B2 |
7308073 | Larson | Nov 2007 | B2 |
7308074 | Tkaczyk | Dec 2007 | B2 |
7308077 | Jiang | Dec 2007 | B2 |
7317195 | Eikman | Jan 2008 | B2 |
7317390 | Eikman | Jan 2008 | B2 |
7319737 | Huey | Jan 2008 | B2 |
7322745 | Agrawal | Jan 2008 | B2 |
7324625 | Singh | Jan 2008 | B2 |
7327853 | Eilbert | Jan 2008 | B2 |
7330527 | Ying | Feb 2008 | B2 |
7330535 | Hoffman | Feb 2008 | B2 |
7333587 | De | Feb 2008 | B2 |
7333588 | Arenson | Feb 2008 | B2 |
7333589 | Mistretta | Feb 2008 | B2 |
7335887 | Ellenbogen | Feb 2008 | B1 |
7336769 | Verbinski | Feb 2008 | B2 |
7340525 | Morton | Mar 2008 | B1 |
7349525 | Morton | Mar 2008 | B2 |
7440543 | Morton | Mar 2008 | B2 |
7369640 | Seppi | May 2008 | B2 |
7369643 | Kotowski | May 2008 | B2 |
7372934 | De | May 2008 | B2 |
7400701 | Cason | Jul 2008 | B1 |
7486760 | Harding | Feb 2009 | B2 |
7486769 | Brondo | Feb 2009 | B2 |
7492855 | Hopkins et al. | Feb 2009 | B2 |
7512215 | Hopkins | Feb 2009 | B2 |
7505563 | Morton | Mar 2009 | B2 |
7564939 | Morton | Mar 2009 | B2 |
7579845 | Peschmann | Aug 2009 | B2 |
7590215 | Schlomka | Sep 2009 | B2 |
7593506 | Cason | Sep 2009 | B2 |
7596275 | Richardson | Sep 2009 | B1 |
7636638 | Russ | Dec 2009 | B2 |
7643866 | Heismann | Jan 2010 | B2 |
7649981 | Seppi | Jan 2010 | B2 |
7664230 | Morton | Feb 2010 | B2 |
7684538 | Morton | Mar 2010 | B2 |
7724868 | Morton | May 2010 | B2 |
7769132 | Hurd | Aug 2010 | B1 |
7778382 | Hoffman | Aug 2010 | B2 |
7835495 | Harding | Nov 2010 | B2 |
7876879 | Morton | Jan 2011 | B2 |
7903789 | Morton | Mar 2011 | B2 |
7929663 | Morton | Apr 2011 | B2 |
7949101 | Morton | May 2011 | B2 |
8135110 | Morton | Mar 2012 | B2 |
8138770 | Peschmann | Mar 2012 | B2 |
8243876 | Morton | Aug 2012 | B2 |
9020095 | Morton | Apr 2015 | B2 |
20010022346 | Katagami et al. | Sep 2001 | A1 |
20010033635 | Katagami | Sep 2001 | A1 |
20010050972 | Yamada | Dec 2001 | A1 |
20020008655 | Haj-Yousef | Jan 2002 | A1 |
20020031202 | Callerame | Mar 2002 | A1 |
20020094064 | Zhou | Jul 2002 | A1 |
20020094117 | Funahashi | Jul 2002 | A1 |
20020097836 | Grodzins | Jul 2002 | A1 |
20020176531 | McClelland | Jul 2002 | A1 |
20020101958 | Bertsche | Aug 2002 | A1 |
20030009202 | Levine | Jan 2003 | A1 |
20030021377 | Turner et al. | Jan 2003 | A1 |
20030031352 | Turner | Jan 2003 | A1 |
20030048868 | Bailey | Mar 2003 | A1 |
20030053597 | Flohr | Mar 2003 | A1 |
20030076921 | Mihara | Apr 2003 | A1 |
20030076924 | Mario | Apr 2003 | A1 |
20030085163 | Chan | May 2003 | A1 |
20030108155 | Wilkins | Jun 2003 | A1 |
20030179126 | Jablonski | Sep 2003 | A1 |
20030190011 | Beneke | Oct 2003 | A1 |
20030216644 | Hall | Nov 2003 | A1 |
20040017224 | Tumer | Jan 2004 | A1 |
20040017888 | Seppi et al. | Jan 2004 | A1 |
20040120454 | Seppi | Jan 2004 | A1 |
20040077943 | Meaney | Apr 2004 | A1 |
20040081270 | Heuscher | Apr 2004 | A1 |
20040096030 | Banchieri | May 2004 | A1 |
20040101098 | Bijjani | May 2004 | A1 |
20040213378 | Ellenbogen | Jun 2004 | A1 |
20040141584 | Bernardi | Jul 2004 | A1 |
20040213379 | Zhou | Oct 2004 | A1 |
20040252807 | Skatter | Oct 2004 | A1 |
20040223585 | Heismann | Nov 2004 | A1 |
20040232054 | Brown | Nov 2004 | A1 |
20040245449 | Nakashige | Dec 2004 | A1 |
20040258198 | Carver | Dec 2004 | A1 |
20040258305 | Burnham | Dec 2004 | A1 |
20050008073 | Techmer | Jan 2005 | A1 |
20050031075 | Hopkins | Feb 2005 | A1 |
20050053189 | Gohno | Feb 2005 | A1 |
20050058242 | Peschmann | Mar 2005 | A1 |
20050105682 | Heumann | Mar 2005 | A1 |
20050084069 | Du | Apr 2005 | A1 |
20050084073 | Seppi | Apr 2005 | A1 |
20050089140 | Mario | Apr 2005 | A1 |
20050111610 | DeMan | May 2005 | A1 |
20050111619 | Bijjani | May 2005 | A1 |
20050157925 | Lorenz | May 2005 | A1 |
20050226364 | Lorenz | Jul 2005 | A1 |
20050169422 | Ellenbogen | Aug 2005 | A1 |
20050169423 | Ellenbogen | Aug 2005 | A1 |
20050180542 | Leue | Aug 2005 | A1 |
20050190882 | McGuire | Sep 2005 | A1 |
20050238232 | Ying | Oct 2005 | A1 |
20050281390 | Bernard | Oct 2005 | A1 |
20050249416 | Leue | Nov 2005 | A1 |
20060002585 | Larson | Jan 2006 | A1 |
20060008047 | Zhou | Jan 2006 | A1 |
20060018428 | Li et al. | Jan 2006 | A1 |
20060113163 | Li | Jan 2006 | A1 |
20060109949 | Tkaczyk | May 2006 | A1 |
20060109954 | Gohno | May 2006 | A1 |
20060133571 | Winsor | Jun 2006 | A1 |
20060134000 | Heismann | Jun 2006 | A1 |
20060273259 | Hu | Jun 2006 | A1 |
20060145771 | Strange | Jul 2006 | A1 |
20060233295 | Edic | Oct 2006 | A1 |
20060280286 | Kaval | Dec 2006 | A1 |
20070003003 | Seppi et al. | Jan 2007 | A1 |
20070053495 | Seppi | Jan 2007 | A1 |
20070025512 | Gertsenshteyn | Feb 2007 | A1 |
20070096030 | Morton | Mar 2007 | A1 |
20070110215 | Li | May 2007 | A1 |
20070122003 | Dobkin | May 2007 | A1 |
20070133740 | Hu | May 2007 | A1 |
20070172024 | Kang | Jun 2007 | A1 |
20070183568 | Morton | Jul 2007 | A1 |
20070189597 | Limer | Aug 2007 | A1 |
20070237288 | Tkaczyk | Oct 2007 | A1 |
20070242802 | Dafni | Oct 2007 | A1 |
20070263767 | Brondo | Nov 2007 | A1 |
20070269005 | Chalmers | Nov 2007 | A1 |
20080043912 | Harding | Feb 2008 | A1 |
20080056432 | Pack | Mar 2008 | A1 |
20080056435 | Basu et al. | Mar 2008 | A1 |
20080198967 | Connelly | Aug 2008 | A1 |
20080237480 | Robinson | Oct 2008 | A1 |
20080267355 | Morton | Oct 2008 | A1 |
20090003514 | Edic | Jan 2009 | A1 |
20090010386 | Peschmann | Jan 2009 | A1 |
20090034792 | Kennison | Feb 2009 | A1 |
20090041186 | Gray | Feb 2009 | A1 |
20090161816 | DeMan | Jun 2009 | A1 |
20090168958 | Cozzini | Jul 2009 | A1 |
20090207967 | Liu | Aug 2009 | A1 |
20090265386 | March | Oct 2009 | A1 |
20100020920 | Mertelmeier | Jan 2010 | A1 |
20100020934 | Morton | Jan 2010 | A1 |
20110249788 | Nuesch | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
392160 | Feb 1991 | AT |
2003254124 | Feb 2004 | AU |
2365045 | Jun 2003 | CA |
85107860 | Oct 1986 | CN |
1050769 | Apr 1991 | CN |
1130498 | Sep 1996 | CN |
1309768 | Aug 2001 | CN |
1550215 | Dec 2004 | CN |
1626039 | Jun 2005 | CN |
1708256 | Dec 2005 | CN |
1745296 | Mar 2006 | CN |
1780585 | May 2006 | CN |
1795527 | Jun 2006 | CN |
100371689 | Jul 2006 | CN |
1820705 | Aug 2006 | CN |
1937961 | Mar 2007 | CN |
201034948 | Mar 2008 | CN |
101189534 | May 2008 | CN |
101303317 | Nov 2008 | CN |
2729353 | Jan 1979 | DE |
4410757 | Jan 1995 | DE |
4436688 | Apr 1996 | DE |
102004056590 | Jun 2005 | DE |
0198276 | Oct 1986 | EP |
0424912 | May 1991 | EP |
0432568 | Jun 1991 | EP |
0531993 | Mar 1993 | EP |
0564292 | Oct 1993 | EP |
0584871 | Mar 1994 | EP |
0795919 | Sep 1997 | EP |
0873511 | Oct 1998 | EP |
0924742 | Jun 1999 | EP |
0930046 | Jul 1999 | EP |
1277439 | Jan 2003 | EP |
1298055 | Apr 2003 | EP |
1371970 | Dec 2003 | EP |
1374776 | Jan 2004 | EP |
1540318 | Jun 2005 | EP |
1558142 | Aug 2005 | EP |
1618584 | Jan 2006 | EP |
1689640 | Aug 2006 | EP |
1739413 | May 2010 | EP |
2406809 | Jan 2012 | EP |
1970700 | Jul 2014 | EP |
2328280 | May 1977 | FR |
1497396 | Jan 1978 | GB |
1526041 | Sep 1978 | GB |
2015245 | Sep 1979 | GB |
2089109 | Jun 1982 | GB |
2133208 | Jul 1984 | GB |
2212903 | Aug 1989 | GB |
2244900 | Dec 1991 | GB |
2329817 | Mar 1995 | GB |
2285506 | Jul 1995 | GB |
2299251 | Sep 1996 | GB |
2356453 | May 2001 | GB |
2414072 | Nov 2005 | GB |
2416655 | Feb 2006 | GB |
2416944 | Feb 2006 | GB |
2417821 | Mar 2006 | GB |
2418529 | Mar 2006 | GB |
2423687 | Aug 2006 | GB |
2437777 | Nov 2007 | GB |
2471421 | Dec 2010 | GB |
50012990 | Feb 1975 | JP |
S5427793 | Mar 1979 | JP |
S5717524 | Jan 1982 | JP |
570175247 | Oct 1982 | JP |
S57175247 | Oct 1982 | JP |
590016254 | Jan 1984 | JP |
S5916254 | Jan 1984 | JP |
59075549 | Apr 1984 | JP |
59174744 | Oct 1984 | JP |
600015546 | Jan 1985 | JP |
S601554 | Jan 1985 | JP |
600021440 | Feb 1985 | JP |
S60021440 | Feb 1985 | JP |
60073442 | Apr 1985 | JP |
S61028039 | Feb 1986 | JP |
S6104193 | Oct 1986 | JP |
62064977 | Mar 1987 | JP |
S63150840 | Jun 1988 | JP |
64034333 | Feb 1989 | JP |
05100037 | Apr 1993 | JP |
05192327 | Aug 1993 | JP |
H05060381 | Sep 1993 | JP |
5325851 | Dec 1993 | JP |
H05325851 | Dec 1993 | JP |
060038957 | Feb 1994 | JP |
H06133960 | May 1994 | JP |
H06169911 | Jun 1994 | JP |
6296607 | Oct 1994 | JP |
H07012756 | Jan 1995 | JP |
H07057113 | Mar 1995 | JP |
H08178872 | Jul 1996 | JP |
H08299322 | Nov 1996 | JP |
10005206 | Jan 1998 | JP |
H10001209 | Jan 1998 | JP |
10075944 | Mar 1998 | JP |
1998075944 | Mar 1998 | JP |
10506195 | Jun 1998 | JP |
H10211196 | Aug 1998 | JP |
11146871 | Jun 1999 | JP |
H11230918 | Aug 1999 | JP |
H11230918 | Aug 1999 | JP |
11262486 | Sep 1999 | JP |
2000107173 | Apr 2000 | JP |
200113089 | Jan 2001 | JP |
2001083171 | Mar 2001 | JP |
2001176408 | Jun 2001 | JP |
2001233440 | Aug 2001 | JP |
2001351551 | Dec 2001 | JP |
2002039966 | Feb 2002 | JP |
2002503816 | Feb 2002 | JP |
2002162472 | Jun 2002 | JP |
2002168805 | Jun 2002 | JP |
2002195961 | Jul 2002 | JP |
2002320610 | Nov 2002 | JP |
2002370814 | Dec 2002 | JP |
2003126075 | May 2003 | JP |
2003135442 | May 2003 | JP |
2004000605 | Jan 2004 | JP |
2004079128 | Mar 2004 | JP |
2004226253 | Aug 2004 | JP |
2004233206 | Aug 2004 | JP |
2005013768 | Jan 2005 | JP |
2005110722 | Apr 2005 | JP |
2005177469 | Jul 2005 | JP |
2005534009 | Nov 2005 | JP |
2006502386 | Jan 2006 | JP |
2006071514 | Mar 2006 | JP |
2006167463 | Jun 2006 | JP |
2006518039 | Aug 2006 | JP |
2006320464 | Nov 2006 | JP |
2006524809 | Nov 2006 | JP |
2007010455 | Jan 2007 | JP |
2007500357 | Jan 2007 | JP |
2007508561 | Apr 2007 | JP |
2007533993 | Nov 2007 | JP |
2008113960 | May 2008 | JP |
2008178714 | Aug 2008 | JP |
2008212840 | Sep 2008 | JP |
2008268035 | Nov 2008 | JP |
3147024 | Dec 2008 | JP |
2009519457 | May 2009 | JP |
1021026 | Jan 2004 | NL |
1027596 | Nov 2005 | NL |
9217771 | Oct 1992 | WO |
9528715 | Oct 1995 | WO |
9718462 | May 1997 | WO |
9941676 | Aug 1999 | WO |
199950882 | Oct 1999 | WO |
1999050882 | Oct 1999 | WO |
9960387 | Nov 1999 | WO |
0231857 | Apr 2002 | WO |
200231857 | Apr 2002 | WO |
2002031857 | Apr 2002 | WO |
2003029844 | Apr 2003 | WO |
03042674 | May 2003 | WO |
03051201 | Jun 2003 | WO |
2003051201 | Jun 2003 | WO |
2003065772 | Aug 2003 | WO |
2003088302 | Oct 2003 | WO |
03105159 | Dec 2003 | WO |
2004008968 | Jan 2004 | WO |
2004008970 | Jan 2004 | WO |
2004010127 | Jan 2004 | WO |
2004010381 | Jan 2004 | WO |
2004031755 | Apr 2004 | WO |
2004031755 | Apr 2004 | WO |
2004037088 | May 2004 | WO |
2004054329 | Jun 2004 | WO |
2004072685 | Aug 2004 | WO |
02004096050 | Nov 2004 | WO |
2004097344 | Nov 2004 | WO |
2004097386 | Nov 2004 | WO |
2004097886 | Nov 2004 | WO |
2004097888 | Nov 2004 | WO |
2004097889 | Nov 2004 | WO |
2004105610 | Dec 2004 | WO |
2004111625 | Dec 2004 | WO |
2005017566 | Feb 2005 | WO |
2005037074 | Apr 2005 | WO |
2005050405 | Jun 2005 | WO |
2005084351 | Sep 2005 | WO |
2005095931 | Oct 2005 | WO |
2005102170 | Nov 2005 | WO |
2006027122 | Mar 2006 | WO |
2006047718 | May 2006 | WO |
2006074431 | Jul 2006 | WO |
2006137919 | Dec 2006 | WO |
2006135586 | Feb 2007 | WO |
2007051418 | May 2007 | WO |
2007068933 | Jun 2007 | WO |
2007068933 | Jun 2007 | WO |
2007076707 | Jul 2007 | WO |
2007079675 | Jul 2007 | WO |
2008018021 | Feb 2008 | WO |
2008027703 | Mar 2008 | WO |
2008094305 | Aug 2008 | WO |
2008115275 | Sep 2008 | WO |
2009005932 | Jan 2009 | WO |
2009006044 | Jan 2009 | WO |
2009024817 | Feb 2009 | WO |
2009025935 | Feb 2009 | WO |
2010097621 | Sep 2010 | WO |
20012115629 | Aug 2012 | WO |
Entry |
---|
US 5,987,079, 11/1999, Scott (withdrawn) |
Development of ultra-fast X-ray computed tomography scanner system, INS 98-43 6068772 A9823-8760J-016 (PHA); B9812-7510B-113 (EEA) NDN-174-0606-8771-7, Hori, K.; Fujimoto, T.; Kawanishi, K., Editor—Nalcioglu, O., Abbreviated Journal Title—1997 IEEE Nuclear Science Symposium, Conference Record (Cat. No. 97CH36135), Part No. vol. 2, 1997, pp. 1003-1008 vol. 2, 2 vol. xlviii+1761 page(s), ISBN-0 7803 4258 5. |
International Search Report, PCT/GB2004/001729, dated Aug. 12, 2004, Rapiscan Systems, Inc. |
International Search Report, PCT/GB2004/001731, dated May 27, 2005. |
International Search Report, PCT/GB2004/001732, dated Feb. 25, 2005. |
International Search Report, PCT/GB2004/001741, dated Mar. 3, 2005. |
International Search Report, PCT/GB2004/001751, dated Mar. 21, 2005. |
International Search Report PCT/GB2004/001747 dated Aug. 10, 2004. |
Great Britain Patent Application No. GB1017187.4, Combined Search and Examination Report, dated Jun. 21, 2007, CXR Limited. |
International Search Report, PCT/GB2006/004684, dated May 23, 2007, CXR Ltd. |
International Search Report, PCT/US2010/36221, dated Aug. 23, 2010, Rapiscan Security Productions, Inc. |
International Search Report, PCT/US2011/25777, dated Jul. 26, 2011, Rapiscan Systems, Inc. |
Notice of Allowance dated Dec. 11, 2014 for U.S. Appl. No. 13/548,873. |
Sheen, David et al. ‘Three-Dimensional Millimeter-Wave Imaging for Concealed Weapon Detection’, Sep. 2001, IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 9, pp. 1581-1592. |
Appeal Decision, Japanese Patent Application No. 2009-274526, dated Dec. 3, 2015. |
Chinese Patent Application No. 201110114529.2, Third Office Action, dated Jul. 14, 2014. |
Rejection Decision for Chinese Patent Application No. 201110114529.2, dated Oct. 21, 2015. |
Notice of Allowance dated Jan. 28, 2015 for U.S. Appl. No. 14/094,603. |
Office Action for U.S. Appl. No. 12/485,900, dated Jul. 8, 2010. |
Notice of Allowance for U.S. Appl. No. 12/485,900, dated Jan. 18, 2011. |
Office Action for U.S. Appl. No. 13/086,708, dated Jun. 20, 2013. |
Notice of Allowance for U.S. Appl. No. 13/086,708, dated Sep. 4, 2013. |
Office Action for Japanese Application No. JP2011550657, dated Apr. 30, 2015. |
Examination report for Application No. EP107132318, CXR limited, dated Feb. 23, 2015. |
Examination Report for Application No. GB1114747.7 dated Jul. 30, 2014. |
Letter to IPO for Application No. GB1114747.7 dated Dec. 2, 2014. |
Second Examination Report for Application No. GB1114747.7 dated Mar. 6, 2015. |
Third Examination Report for Application No. GB1114747.7 dated Jul. 28, 2015. |
Fourth office action for Chinese Patent Application No. 2010800330571, dated Mar. 31, 2015. |
Second office action for Japanese Application No. JP2011553531 dated Dec. 1, 2014. |
Notice of Allowance dated Apr. 17, 2015 for U.S. Appl. No. 13/032,593. |
Keevil, S.V., Lawinski, C.P. and Morton, E.J., 1987, “Measurement of the performance characteristics of anti-scatter grids.”, Phys. Med. Biol., 32(3), 397-403. |
Morton, E.J., Webb, S., Bateman, J.E., Clarke, L.J. and Shelton, C.G., 1990, “Three-dimensional x-ray micro-tomography for medical and biological applications.”, Phys. Med. Biol., 35(7), 805-820. |
Morton, E.J., Swindell, W., Lewis, D.G. and Evans, P.M., 1991, “A linear array scintillation-crystal photodiode detector for megavoltage imaging.”, Med. Phys., 18(4), 681-691. |
Morton, E.J., Lewis, D.G. and Swindell, W., 1988, “A method for the assessment of radiotherapy treatment precision”, Brit. J. Radiol., Supplement 22, 25. |
Swindell, W., Morton, E.J., Evans, P.M. and Lewis, D.G., 1991, “The design of megavoltage projection imaging systems: some theoretical aspects.”, Med. Phys.,18(5), 855-866. |
Morton, E.J., Evans, P.M., Ferraro, M., Young, E.F. and Swindell, W., 1991, “A video frame store facility for an external beam radiotherapy treatment simulator.”, Brit. J. Radiol., 64, 747-750. |
Antonuk, L.E., Yorkston, J., Kim, C.W., Huang, W., Morton, E.J., Longo, M.J. and Street, R.A., 1991, “Light response characteristics of amorphous silicon arrays for megavoltage and diagnostic imaging.”, Mat. Res. Soc. Sym. Proc., 219, 531-536. |
Yorkston, J., Antonuk, L.E., Morton, E.J., Boudry, J., Huang, W., Kim, C.W., Longo, M.J. and Street, R.A., 1991, “The dynamic response of hydrogenated amorphous silicon imaging pixels.”, Mat. Res. Soc. Sym. Proc., 219, 173-178. |
Evans, P.M., Gildersleve, J.Q., Morton, E.J., Swindell, W., Coles, R., Ferraro, M., Rawlings, C., Xiao, Z.R. and Dyer, J., 1992, “Image comparison techniques for use with megavoltage imaging systems.”, Brit. J. Radiol., 65, 701-709. |
Morton, E.J., Webb, S., Bateman, J.E., Clarke, L.J. and Shelton, C.G., 1989, “The development of 3D x-ray micro-tomography at sub 100Ã?Âμm resolution with medical, industrial and biological applications.”, Presentation at IEE colloquium “Medical scanning and imaging techniques of value in non-destructive testing”, London, Nov. 3, 1989. |
Antonuk, L.E., Boudry, J., Huang, W., McShan, D.L., Morton, E.J., Yorkston, J, Longo, M.J. and Street, R.A., 1992, “Demonstration of megavoltage and diagnostic x-ray imaging with hydrogenated amorphous silicon arrays.”, Med. Phys., 19(6), 1455-1466. |
Gildersleve, J.Q., Swindell, W., Evans, P.M., Morton, E.J., Rawlings, C. and Dearnaley, D.P., 1991, “Verification of patient positioning during radiotherapy using an integrated megavoltage imaging system.”, in “Tumour Response Monitoring and Treatment Planning”, Proceedings of the International Symposium of the W. Vaillant Foundation on Advanced Radiation Therapy, Munich, Germany, Ed A. Breit (Berlin: Springer), 693-695. |
Lewis, D.G., Evans, P.M., Morton, E.J., Swindell, W. and Xiao, X.R., 1992, “A megavoltage CT scanner for radiotherapy verification.”, Phys. Med. Biol., 37, 1985-1999. |
Antonuk, L.E., Boudry, J., Kim, C.W., Longo, M.J., Morton, E.J., Yorkston, J. and Street, R.A., 1991, “Signal, noise and readout considerations in the development of amorphous silicon photodiode arrays for radiotherapy and diagnostic x-ray imaging.”, SPIE vol. 1443 Medical Imaging V: Image Physics, 108-119. |
Antonuk, L.E., Yorkston, J., Huang, W., Boudry, J., Morton, E.J., Longo, M.J. and Street, R.A., 1992, “Radiation response characteristics of amorphous silicon arrays for megavoltage radiotherapy imaging.”, IEEE Trans. Nucl. Sci., 39,1069-1073. |
Antonuk, L.E., Yorkston, J., Huang, W., Boudry, J., Morton, E.J., Longo, M.J. and Street, R.A., 1992, “Factors affecting image quality for megavoltage and diagnostic x-ray a-Si:H imaging arrays.”, Mat. Res. Soc. Sym. Proc., 258, 1069-1074. |
Antonuk, L.E., Boudry, J., Yorkston, J., Morton, E.J., Huang, W. and Street, R.A., 1992, “Development of thin-film, flat-panel arrays for diagnostic and radiotherapy imaging.”, SPIE vol. 1651, Medical Imaging VI: Instrumentation, 94-105. |
Yorkston, J., Antonuk, L.E., Seraji, N., Boudry, J., Huang, W., Morton, E.J., and Street, R.A., 1992, “Comparison of computer simulations with measurements from a-Si:H imaging arrays.”, Mat. Res. Soc. Sym. Proc., 258, 1163-1168. |
Morton, E.J., Antonuk, L.E., Berry, J.E., Boudry, J., Huang, W., Mody, P., Yorkston, J. and Longo, M.J., 1992, “A CAMAC based data acquisition system for flat-panel image array readout”, Presentation at IEEE Nuclear Science Symposium, Orlando, Oct. 25-31, 1992. |
Antonuk, L.E., Yorkston, J., Huang, W., Boudry, J., Morton, E.J. and Street, R.A., 1993, “Large area, flat-panel a-Si:H arrays for x-ray imaging.”, SPIE vol. 1896, Medical Imaging 1993: Physics of Medical Imaging, 18-29. |
Morton, E.J., Antonuk, L.E., Berry, J.E., Huang, W., Mody, P. and Yorkston, J., 1994, “A data acquisition system for flat-panel imaging arrays”, IEEE Trans. Nucl. Sci., 41(4), 1150-1154. |
Antonuk, L.E., Boudry, J., Huang, W., Lam, K.L., Morton, E.J., TenHaken, R.K., Yorkston, J. and Clinthorne, N. H., 1994, “Thin-film, flat-panel, composite imagers for projection and tomographic imaging”, IEEE Trans. Med. Im., 13(3), 482-490. |
Gildersleve, J., Dearnaley, D., Evans, P., Morton, E.J. and Swindell, W., 1994, “Preliminary clinical performance of a scanning detector for rapid portal imaging”, Clin. Oncol., 6, 245-250. |
Hess, R., De Antonis, P., Morton, E.J. and Gilboy, W.B., 1994, “Analysis of the pulse shapes obtained from single crystal CdZnTe radiation detectors”, Nucl. Inst. Meth., A353, 76-79. |
DeAntonis, P., Morton, E.J., T. Menezes, 1996, “Measuring the bulk resistivity of CdZnTe single crystal detectors using a contactless alternating electric field method”, Nucl. Inst. Meth., A380, 157-159. |
DeAntonis, P., Morton, E.J., Podd, F., 1996, “Infra-red microscopy of CdZnTe radiation detectors revealing their internal electric field structure under bias”, IEEE Trans. Nucl. Sci., 43(3), 1487-1490. |
Tavora, L.M.N., Morgado, R.E., Estep, R.J., Rawool-Sullivan, M., Gilboy, W.B. and Morton, E.J., 1998, “One-sided imaging of large, dense, objects using the 511 keV photons from induced pair production”, IEEE Trans. Nucl. Sci., 45(3), 970-975. |
Morton, E.J., 1995, “Archaeological potential of computerised tomography”, Presentation at IEE Colloquium on “NDT in archaeology and art”, London, May 25, 1995. |
Tavora, L.M.N. and Morton, E.J., 1998, “Photon production using a low energy electron expansion of the EGS4 code system”, Nucl. Inst. Meth., B143, 253-271. |
Patel, D.C. and Morton, E.J., 1998, “Analysis of improved adiabatic pseudo-domino logic family”, Electron. Lett., 34(19), 1829-1830. |
Kundu, A and Morton, E.J., 1999, “Numerical simulation of argon-methane gas filled proportional counters”, Nucl. Inst. Meth., A422, 286-290. |
Luggar, R.D., Key, M.J., Morton, E.J. and Gilboy, W.B., 1999, “Energy dispersive X-ray scatter for measurement of oil/water ratios”, Nucl. Inst. Meth., A422, 938-941. |
Morton, E.J., Crockett, G.M., Sellin, P.J. and DeAntonis, P., 1999, “The charged particle response of CdZnTe radiation detectors”, Nucl. Inst. Meth., A422, 169-172. |
Morton, E.J., Clark, R.J. and Crowley, C., 1999, “Factors affecting the spectral resolution of scintillation detectors”, Nucl. Inst. Meth., A422, 155-158. |
Morton, E.J., Caunt, J.C., Schoop, K., Swinhoe, M., 1996, “A new handheld nuclear material analyser for safeguards purposes”, Presentation at INMM annual meeting, Naples, Florida, Jul. 1996. |
Hepworth, S., McJury, M., Oldham, M., Morton, E.J. and Doran, S.J., 1999, “Dose mapping of inhomogeneities positioned in radiosensitive polymer gels”, Nucl. Inst. Meth., A422, 756-760. |
Morton, E.J., Luggar, R.D., Key, M.J., Kundu, A., Tavora, L.M.N. and Gilboy, W.B., 1999, “Development of a high speed X-ray tomography system for multiphase flow imaging”, IEEE Trans. Nucl. Sci., 46 III(1), 380-384. |
Tavora, L.M.N., Morton, E.J., Santos, F.P. and Dias, T.H.V.T., 2000, “Simulation of X-ray tubes for imaging applications”, IEEE Trans. Nucl. Sci., 47, 1493-1497. |
Tavora, L.M.N. L.M.N., Morton, E.J. and Gilboy, W.B., 2000, “Design considerations for transmission X-ray tubes operated at diagnostic energies”, J. Phys. D: Applied Physics, 33(19), 2497-2507. |
Morton, E.J., Hossain, M.A., DeAntonis, P. and Ede, A.M.D., 2001, “Investigation of Au—CdZnTe contacts using photovoltaic measurements”, Nucl. Inst. Meth., A458, 558-562. |
Ede, A.M.D., Morton, E.J. and DeAntonis, P., 2001, “Thin-film CdTe for imaging detector applications”, Nucl. Inst. Meth., A458, 7-11. |
Tavora, L.M.N. L.M.N., Morton, E.J. and Gilboy, W.B., 2001, “Enhancing the ratio of fluorescence to bremsstrahlung radiation in X-ray tube spectra”, App. Rad. and Isotopes, 54(1), 59-72. |
Menezes, T. and Morton, E.J., 2001, “A preamplifier with digital output for semiconductor detectors”, Nucl. Inst. Meth. A., A459, 303-318. |
Johnson, D.R., Kyriou, J., Morton, E.J., Clifton, A.C. Fitzgerald, M. and MacSweeney, J.E., 2001, “Radiation protection in interventional radiology”, Clin. Rad., 56(2), 99-106. |
Tavora, L.M.N., Gilboy, W.B. and Morton, E.J., 2001, “Monte Carlo studies of a novel X-ray tube anode design”, Rad. Phys. and Chem., 61, 527-529. |
“Morton, E.J., 1998, “Is film dead: the flat plate revolution”, Keynote Talk, IPEM Annual Conference, Brighton, Sep. 14-17, 1998”\. |
Luggar, R.D., Morton, E.J., Jenneson, P.M. and Key, M.J., 2001, “X-ray tomographic imaging in industrial process control”, Rad. Phys. Chem., 61, 785-787. |
Luggar, R.D., Morton, E.J., Key, M.J., Jenneson, P.M. and Gilboy, W.B., 1999, “An electronically gated multi-emitter X-ray source for high speed tomography”, Presentation at SPIE Annual Meeting, Denver, Jul. 19-23, 1999. |
Gregory, P.J., Hutchinson, D.J., Read, D.B., Jenneson, P.M., Gilboy, W.B. and Morton, E.J., 2001, “Non-invasive imaging of roots with high resolution X-ray microtomography”, Plant and Soil, 255(1), 351-359. |
Kundu, A., Morton, E.J., Key, M.J. and Luggar, R.D., 1999, “Monte Carlo simulations of microgap gas-filled proportional counters”, Presentation at SPIE Annual Meeting, Denver, Jul. 19-23, 1999. |
Hossain, M.A., Morton, E.J., and Ozsan, M.E., 2002, “Photo-electronic investigation of CdZnTe spectral detectors”, IEEE Trans. Nucl. Sci, 49(4), 1960-1964. |
Panman, A., Morton, E.J., Kundu, A and Sellin, P.J., 1999, “Optical Monte Carlo transport in scintillators”, Presentation at SPIE Annual Meeting, Denver, Jul. 19-23, 1999. |
Jenneson, P.M., Gilboy, W.B., Morton, E.J., and Gregory, P.J., 2003, “An X-ray micro-tomography system optimised for low dose study of living organisms”, App. Rad. Isotopes, 58, 177-181. |
Key, M.J., Morton, E.J., Luggar, R.D. and Kundu, A., 2003, “Gas microstrip detectors for X-ray tomographic flow imaging”, Nucl. Inst. Meth., A496, 504-508. |
Jenneson, P.M., Luggar, R.D., Morton, E.J., Gundogdu, O, and Tuzun, U, 2004, “Examining nanoparticle assemblies using high spatial resolution X-ray microtomography”, J. App. Phys, 96(5), 2889-2894. |
Tavora, L.M., Gilboy, W.B. and Morton, E.J., 2000, “Influence of backscattered electrons on X-ray tube output”, Presentation at SPIE Annual Meeting, San Diego, Jul. 30-Aug. 3, 2000. |
Wadeson, N., Morton, E.J., and Lionheart, W.B., 2010, “Scatter in an uncollimated x-ray CT machine based on a Geant4 Monte Carlo simulation”, SPIE Medical Imaging 2010: Physics of Medical Imaging, Feb. 15-18, 2010, San Diego, USA. |
Morton, E.J., 2010, “Position sensitive detectors in security: Users perspective”, Invited talk, STFC meeting on position sensitive detectors, RAL, May 2010. |
Office Action for U.S. Appl. No. 14/641,777, dated Oct. 7, 2015. |
Office Action for Japanese Patent Application No. 2014-266203, dated Nov. 24, 2015. |
Office Action for Japanese Patent Application No. 2014-266204, dated Nov. 24, 2015. |
Office Action for Japanese Patent Application No. 2014-266205, dated Nov. 24, 2015. |
Office Action dated May 9, 2016 for U.S. Appl. No. 14/641,777. |
Notice of Allowance dated Aug. 12, 2016 for U.S. Appl. No. 14/641,777. |
Final Office Action for Japanese Patent Application No. 2014-266204, dated Jun. 30, 2016. |
OfficeActionforJapanesePatentApplicationNo. 2014-266203,dated Jul. 25, 2016. |
Examination Report for EP11190809.1, dated Jan. 10, 2017. |
Office Action for Japanese Patent Application No. 2014266205, dated Aug. 4, 2016. |
Office Action for CN2015103138164, dated May 19, 2017. |
First Office Action for CN2015103122965, CXR ltd., dated Feb. 13, 2017. |
Examination Report for EP107132318, CXR Limited, dated Nov. 24, 2016. |
Examination Report for EP111908067, CXR Limited, dated Dec. 19, 2016. |
Examination Report for EP111908109, CXR Limited, dated Dec. 15, 2016. |
Decision of Rejection for Japanese Patent Application No. 2014-266203, dated May 22, 2017. |
Decision of dismissal of amendment for Decision of dismissal of amendment for , dated May 22, 2017, dated May 22, 2017. |
Decision of rejection for Japanese Patent Application No. 2014266205, dated May 22, 2017. |
Decision of rejection for Japanese Patent Application No. 2014266205, dated May 29, 2017. |
“FISCAN Multi-power X-ray Luggage Security Check Vehicle”, Wenxi Chen, et al., Technique for Police, No. 1, pp. 10-13, 20001231. |
First Office Action for Chinese Patent Application No. CN201510312353, dated Feb. 10, 2017. |
Second Office Action for Chinese Patent Application No. CN201510312353, dated Oct. 18, 2017. |
Second Office Action for CN2015103122965, CXR ltd., dated Oct. 18, 2017. |
Office Action for CN2015103138164, dated Feb. 23, 2018. |
Number | Date | Country | |
---|---|---|---|
20170299763 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
61155572 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14641777 | Mar 2015 | US |
Child | 15439837 | US | |
Parent | 13548873 | Jul 2012 | US |
Child | 14641777 | US | |
Parent | 12712476 | Feb 2010 | US |
Child | 13548873 | US | |
Parent | 10554656 | US | |
Child | 12485897 | US | |
Parent | 10554975 | US | |
Child | 12371853 | US | |
Parent | 10554654 | US | |
Child | 12651479 | US | |
Parent | 12033035 | Feb 2008 | US |
Child | 12364067 | US | |
Parent | 10554569 | US | |
Child | 12033035 | US | |
Parent | 10554655 | US | |
Child | 12211219 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12485897 | Jun 2009 | US |
Child | 12712476 | US | |
Parent | 12371853 | Feb 2009 | US |
Child | 12712476 | Feb 2010 | US |
Parent | 12651479 | Jan 2010 | US |
Child | 12712476 | Feb 2010 | US |
Parent | 12364067 | Feb 2009 | US |
Child | 12712476 | Feb 2010 | US |
Parent | 12211219 | Sep 2008 | US |
Child | 12712476 | Feb 2010 | US |
Parent | 10554570 | US | |
Child | 12712476 | Feb 2010 | US |
Parent | 12097422 | US | |
Child | 12712476 | Feb 2010 | US |