Embodiments relate to an XMR-sensor. Further embodiments relate to a method for manufacturing an XMR-sensor. Further embodiments relate to a bridge circuit comprising four XMR-sensors. Some embodiments relate to an integration concept for a vertical AMR sensor.
Magnetic field sensors are used for a variety of applications. Many applications require the measurement of all three components of a magnetic field, e.g., compass applications. For two dimensional measurements the XMR-technology is very suitable due to the sensitivity to in-plane fields (e.g., along the x-axis and the y-axis), but fields perpendicular to the XMR-plane (e.g., along the z-axis) cannot be detected without further measures.
An XMR-sensor is provided. The XMR-sensor comprises a substrate, an XMR-structure, a first contact and a second contact. The XMR-structure comprises at least one section which extends along a first direction perpendicular to the first main surface area or second main surface area such that an XMR-plane of the XMR-structure is arranged in the first direction. The first and second contacts are arranged to contact the at least one section of the XMR-structure at different locations.
An XMR-sensor is provided. The XMR-sensor comprises a substrate, a first contact, a second contact and an XMR-structure. The substrate comprises a first main surface area and a second main surface area. The first contact is arranged at the first main surface area and the second contact is arranged at the second main surface area. The XMR-structure extends from the first contact to the second contact such that an XMR-plane of the XMR-structure is arranged along a first direction perpendicular to the first main surface area or the second main surface area.
A method for manufacturing an XMR-sensor is provided. The method comprises providing a substrate having a first main surface area and a second main surface area. The method comprises providing an XMR-structure comprising at least one section which extends along a first direction perpendicular to the first main surface area or the second main surface area such that an XMR-plane of the XMR-structure is arranged in the first direction. The method comprises providing a first and second contact arranged to contact the at least one section of the XMR-structure at different locations.
A bridge circuit comprising a first bridge section and a second bridge section is provided. The first bridge section comprises a series connection of a first XMR-sensor and a second XMR-sensor. The second bridge section comprises a series connection of a third XMR-sensor and a fourth XMR-sensor. Each of the first, second, third and fourth XMR-sensors comprises a substrate area, a first contact, a second contact and an XMR-structure. The substrate comprises a first main surface area and a second main surface area. The XMR-structure comprises at least one section which extends along a first direction perpendicular to the first main surface area or the second main surface area, such that an XMR-plane of the XMR-structure is arranged in the first direction and in a second direction perpendicular to the first direction. The first and second contacts are arranged to contact the at least one section of the XMR-structure at different locations.
Embodiments of the present disclosure are described herein making reference to the appended drawings.
Equal or equivalent elements or elements with equal or equivalent functionality are denoted in the following description by equal or equivalent reference numerals.
In the following description, a plurality of details are set forth to provide a more thorough explanation of embodiments of the present disclosure. However, it will be apparent to those skilled in the art that embodiments of the present disclosure may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form rather than in detail in order to avoid obscuring embodiments of the present disclosure. In addition, features of the different embodiments described hereinafter may be combined with each other, unless specifically noted otherwise.
In the drawings, a Cartesian coordinate system comprising a first axis, a second axis and a third axis (substantially) perpendicular to each other is shown for illustration purposes.
Moreover, subsequently, a first direction describes a direction parallel to or along the first axis of the Cartesian coordinate system, wherein a second direction describes a direction parallel to or along the second axis of the Cartesian coordinate system, and wherein a third direction describes a direction parallel to or along the third axis of the Cartesian coordinate system.
The first axis of the Cartesian coordinate system can be denoted as the z-axis, wherein the second axis of the Cartesian coordinate system can be denoted as the y-axis, and wherein the third axis of the Cartesian coordinate system can be denoted as the x-axis. Moreover, the first direction can be denoted as the z-direction, wherein the second direction can be denoted as the y-direction, and wherein the third direction can be denoted as the x-direction.
In embodiments, the XMR-structure 108 is arranged such that the XMR-plane, i.e., the active or sensitive area of the XMR-sensor 100, is arranged perpendicular to the first main surface area 110 and/or the second main surface area 112. Thus, the XMR-sensor 100 is sensitive to magnetic fields or magnetic field components perpendicular to the first main surface area 110 and/or the second main surface area 112.
As shown in
For example, the first contact 104 can be arranged at the first main surface area 110, wherein the second contact 106 can be arranged at the second main surface area 112. The XMR-structure 108 can extend from the first contact 104 to the second contact 106 such that the XMR-plane of the XMR-structure 108 is arranged along the first direction perpendicular to the first main surface area 110 and/or the second main surface area 112.
In some embodiments, the first main surface area 110 can span a plane along the second direction (e.g., y-direction) and the third direction (e.g., x-direction), perpendicular to the first direction (e.g., z-direction).
Similarly, the second main surface area 112 can span a plane parallel to the second direction (e.g., y-direction) and the third direction (e.g., x-direction), perpendicular to the first direction (e.g., z-direction).
In other words, the idea is to tune the sensitive plane of the XMR-sensor 100 parallel to the first axis (e.g., z-axis) in order to obtain, in a direct way, a sensitivity along the first axis (e.g., z-axis).
Thereby, the XMR-structure 108 can be an AMR-structure (AMR=Anisotropic Magneto Resistive), a GMR-structure (GMR=Giant Magneto Resistive), a TMR-structure (TMR=Tunnel Magneto Resistive), or a CMR-structure (CMR=Colossal Magneto Resistive) or an EMR-structure (EMR=Extraordinary Magneto Resistive). Thus, XMR may refer to AMR, GMR, TMR, CMR or EMR.
Note that a possible integration concept is explained in some embodiments by means of an AMR-sensor, since its essential component is only one permalloy layer, e.g., NiFe, of a certain thickness (e.g., 10 to 50 nm, or 5 to 70 nm, or 20 to 40 nm). In other words, in some embodiments, a way how to implement an AMR-technology sensitive to magnetic fields perpendicular to the substrate plane (or first main surface area 110 and/or second main surface area 112) is described.
As indicated in
Note that the substrate 102 can comprise up to n substrate layers 102_1 to 102_n, wherein n is a natural number equal to or greater than 2 (n≧2). For example, as shown in
At least the first substrate layer 102_1 and the second substrate layer 102_2 of the at least two substrate layers 102_1 to 102_n (n≧2) can comprise a dielectric material. For example, the first substrate layer 102_1 and the second substrate layer 102_2 can comprise oxide or nitride.
As indicated in
The XMR-structure 108 may extend from the first contact 104 to the second contact 106 such that the XMR-plane of the XMR-structure is arranged along the first direction (e.g., z-direction) and the second direction (e.g., y-direction) perpendicular to the first direction (e.g., z-direction).
Further, the XMR-structure 108 may extend from the first contact 104 to the second contact 106 such that a first edge 114 of the XMR-structure 108 is arranged along the first direction (e.g., z-direction) and a second edge 116 of the XMR-structure 108 is arranged along the second direction (e.g., y-direction) perpendicular to the first direction (e.g., z-direction).
Naturally, also a third edge 118 of the XMR-structure 108 can be arranged along the first direction (e.g., z-direction), wherein a fourth edge 120 of the XMR-structure 108 can be arranged along the second direction (e.g., y-direction).
The XMR-structure 108 with the four edges 114 to 120 can comprise a (substantially) rectangular or quadratic shape.
Thus, a current applied to the first contact 104 (or the second contact 106) may flow through the XMR-structure 108 to the second contact 106 (or first contact 104) at a certain angle with respect to the first main surface area 110 and/or the second main surface area 112. The certain angle can be in a range between 10° and 80°, between 20° and 70°, between 30° and 60°, or between 40° to 50°. A modification and optimization of the mean certain angle can be done by an adjustment of the ratio of the XMR structure height 140 and the distance of the first and second contact 142. Furthermore, also a vertical current direction parallel to the first direction of approximately 0° can be obtained.
As shown in
Moreover, a dimension of the substrate 102 along the first direction (e.g., z-direction) can be smaller than a dimension of the substrate 102 along the second direction (e.g., y-direction) and/or a dimension of the substrate 102 along the third direction (e.g., x-direction), perpendicular to the first direction (e.g., z-direction).
The low impedance connection 109 can be a connection having an impedance smaller than 10Ω, 1Ω, 0.1Ω, 0.01Ω, or 0.001Ω, such as a wire, a trace, or a combination of a via and a trace, for example.
Naturally, also the second contact 106 can be arranged to contact the at least one section of the XMR-structure 108 by means of a low impedance connection.
Note that the first contact 104 may contact the at least one section of the XMR-substrate 108 directly or by means of a low impedance connection at a first location, wherein the second contact 106 may contact the at least one section of the XMR-substrate 108 directly or by means of a low impedance connection at a second location different from the first location (along the first direction). As indicated in
Referring to
Moreover, the first contact 104 can be arranged at the second main surface area 112, which is indicated with reference numeral 104b, and be connected to the at least one section of the XMR-structure 108 by means of the low impedance connection 109, which is indicated with reference numeral 109b.
In the following, a method for manufacturing the XMR-sensor 100 shown in
Subsequently, the method 200 for manufacturing the XMR-sensor is described by way of example making reference to
Thereby, it is assumed that the first contact 104 is arranged at the first main surface area 110, wherein the second contact 106 is arranged at the second main surface area 112, and wherein the XMR-structure extends from the first contact 104 to the second contact 106 such that the XMR-plane of the XMR-structure 108 is arranged along the first direction perpendicular to the first main surface area 110 and/or the second main surface area 112.
As indicated in
Providing the first contact 104 at 204 can comprise providing the first contact 104 such that the first contact is arranged in or at the first substrate layer 102_1.
Providing the XMR-structure 108 at 208 can comprise etching the substrate 102 from the second main surface area 112 against or opposite to the first direction at least until reaching the first contact 104 in order to obtain an etched structure 126 in which the first contact 104 is at least partly exposed.
The etched structure 126 can be arranged such that a first wall 128 of the etched structure 126 extends from the second main surface area 112 to the first contact 104.
In other words,
Providing the XMR-structure 108 at 208 can comprise depositing a ferromagnetic layer (or XMR-layer) 108 on the second main surface area 112 and the etched structure 126 such that the ferromagnetic layer 108 rests on the etched structure 126 and such that at least a part of the ferromagnetic layer 108 extends from the second main surface area 112 to the first contact 104 along the edge 128.
Providing 208 the XMR-structure 108 can further comprise depositing the dielectric layer 129 on the ferromagnetic layer 108.
In other words,
Providing the XMR-structure 108 at 208 can comprise chemical mechanical polishing the XMR-sensor 100 beginning from a surface 130 of the dielectric layer 129 until at least the second main surface area 112 of the substrate 102 and the part of the ferromagnetic layer 108 that extends from the second main surface area 112 to the first contact 104 is exposed.
The second contact 106 can be provided at the second main surface area 112 such that the part of the ferromagnetic layer 108 that extends from the second main surface area 112 to the first contact 104 forms the XMR-structure 108.
As shown in
In other words,
According to a further embodiment, the manufacturing steps shown in
Providing the XMR-structure 108 can comprise etching the XMR-layer 108 at the bottom of the etched structure 126 while maintaining the part of the XMR-layer 108 which extends from the second main surface area 112 to the first contact 104.
In other words, the step of providing the XMR-structure 108 can comprise removing the XMR-material 108 from the bottom plane of the etched structure 126 by an etch process.
For example, the XMR-material 108 can be removed from the bottom of the etched structure 126 with an (anisotropic) etch process.
Providing the XMR-structure 108 can comprise applying a lithographic mask 190 on a portion of the etched structure 126 such that the lithographic mask 190 rests on a portion of the XMR-layer 108, the portion of the XMR-layer 108 including the part of the XMR-layer 108 which extends from the second main surface area 112 to the first contact 104.
In other words, a lithography step can be applied where only a portion of the etched structure 126 is covered by a resist 190.
Providing the XMR-structure 108 can comprise etching a portion the XMR-layer 108 while maintaining the portion of the XMR-layer 108 on which the lithographic mask 190 rests.
In other words, providing the XMR-structure 108 can comprise a lithography step and a subsequent etch process step where all XMR material is removed such that the XMR material remains only in selected regions of the side walls of the etched structure
For example, after an (isotropic) etch process only XMR material 108 beneath the resist remains at the side walls 128. As a result, the XMR sensor structure 108 exhibits two additional edges 114 and 118 (see
Alternatively, the removal of the XMR material from the bottom of the etched structure 126 can also be omitted.
In the following, the functionality of the XMR-sensor 100 is described by way of example making reference to
The first contact 104 and the second contact 106 are arranged at different positions along the second direction (e.g., y-direction) perpendicular to the first direction (e.g., z-direction).
As shown in
As already mentioned, by arranging the first contact 104 and the second contact 106 at different positions along the second direction (e.g., y-direction), a current applied to the second contact 106 (or first contact 104) flows through the XMR-structure 108 to the first contact 104 (or second contact 106) at a certain angle with respect to the first main surface area 110 and/or the second main surface area 112. This current direction is indicated in
Due to the shape of the XMR-structure, i.e., that the dimension of the XMR-structure 108 along the first direction (e.g., z-direction) is smaller than a dimension of the XMR-structure along the second direction (e.g., y-direction), the anisotropic axis 146 (easy axis) of the XMR-structure 108 is parallel to the first direction (e.g., y-direction).
In other words,
AMR-magnetic field strength sensors exhibit a predefined angle between the easy axis of the magnetization and the current direction of ˜45° in order to shift the working point into a region of the magnetoresistance response with a linear and non-zero sensitivity (“barber poles” of AMR-sensors). For a detection of the z-axis magnetic field component, the easy axis 146 can be in the x-/y-plane, e.g., along the y-axis as shown in
In other words, a current conductor 105 providing a current flow 111 parallel to the first main surface 110 or second main surface 112 and perpendicular to the plane of the XMR structure 108 can be provided as shown in
As shown in
In other words,
A distinct angle variation of the current direction can be observed in the region with significant current density between approximately 25° and 65°. By combining the calculated current distribution with the simulated micro magnetic behavior, the simulated output signal upon an external y-component magnetic field can be obtained.
Thereby, the ordinate describes the output signal (AMR-signal) in relative units, wherein the abscissa describes the magnetic field in oersted.
In other words,
As shown in
As described above, some embodiments provide a vertical AMR-active layer 108 having a magnetic field sensitivity perpendicular to the chip plane (z-axis) 110 or 112. The AMR-active layer 108 exhibits an easy axis 146 perpendicular the z-axis and a defined angle (direction distribution) between the sensor current and the easy axis 146.
Thereby, the XMR-sensor 100 provides the advantage of no hysteresis effects due to flux concentrator materials as they are widely used for other state-of-the-art technologies to realize a transformation of perpendicular-to-plane field components into in-plane components. The result is a higher accuracy.
Furthermore, also other possibilities to realize a vertical orientated AMR-layer are possible, like a plating processes of a groove having a width of the final AMR-layer.
In addition to the z-component sensitive sensor structure, also usual XMR-sensor structures can be used to set the x- and/or y-component in order to realize a fully three-dimensional sensor.
As already mentioned, by sweeping the position of the top and bottom contact 104 and 106 position, two types of vertical AMR-elements can be defined showing an inverted magnetoresistive characteristic. An adequate combination allows the realization of a differential Wheatstone bridge configuration as will become clear from the following description.
The first XMR-sensor 100_1 comprises a substrate area, a first contact 104_1, a second contact 106_1 and an XMR-structure 108_1. The substrate area comprises a first main surface area and a second main surface area. The first contact 104_1 is arranged at the first main surface area. The second contact 106_1 is arranged at the second main surface area. The XMR-structure 108_1 extends from the first contact 104_1 to the second contact 106_1 such that an XMR-plane of the XMR-structure 108_1 is arranged along a first direction perpendicular to the first main surface area and the second main surface area, and along a second direction perpendicular to the first direction.
The second XMR-sensor 100_2 comprises a substrate area, a first contact 104_2, a second contact 106_2 and an XMR-structure 108_2. The substrate area comprises a first main surface area and a second main surface area. The first contact 104_2 is arranged at the first main surface area. The second contact 106_2 is arranged at the second main surface area. The XMR-structure 108_2 extends from the first contact 104_2 to the second contact 106_2 such that an XMR-plane of the XMR-structure 108_2 is arranged along a first direction perpendicular to the first main surface area and the second main surface area, and along a second direction perpendicular to the first direction.
The third XMR-sensor 100_3 comprises a substrate area, a first contact 104_3, a second contact 106_3 and an XMR-structure 108_3. The substrate area comprises a first main surface area and a second main surface area. The first contact 104_3 is arranged at the first main surface area. The second contact 106_3 is arranged at the second main surface area. The XMR-structure 108_3 extends from the first contact 104_3 to the second contact 106_3 such that an XMR-plane of the XMR-structure 108_3 is arranged along a first direction perpendicular to the first main surface area and the second main surface area, and along a second direction perpendicular to the first direction.
The fourth XMR-sensor 100_4 comprises a substrate area, a first contact 104_4, a second contact 106_4 and an XMR-structure 108_4. The substrate area comprises a first main surface area and a second main surface area. The first contact 104_4 is arranged at the first main surface area. The second contact 106_4 is arranged at the second main surface area. The XMR-structure 108_4 extends from the first contact 104_4 to the second contact 106_4 such that an XMR-plane of the XMR-structure 108_4 is arranged along a first direction perpendicular to the first main surface area and the second main surface area, and along a second direction perpendicular to the first direction.
Note that the first directions along which the XMR-planes of the first, second, third and fourth XMR-sensors 100_1 to 100_4 extend may be parallel to each other such that the first, second, third and fourth XMR-sensors 100_1 to 100_4 are sensitive to magnetic field components along the first direction.
Moreover, the second directions along which the XMR-planes of the first, second, third and fourth XMR-sensors 100_1 to 100_4 extend may be, but do not have to be, parallel to each other.
For example, if it is assumed that the bridge circuit 180 is arranged relative to a Cartesian coordinate system having an x′-axis, a y′-axis, and a z′-axis perpendicular to each other, then the XMR-planes of the XMR-sensors 100_1 to 100_4 can be arranged such that the first directions along which the XMR-planes of the XMR-sensors 100_1 to 100_4 extend are parallel to the z′-axis, e.g., to achieve a sensitivity to magnetic field components along the z′-axis.
A sensitivity of the XMR-planes of the XMR-sensors 100_1 to 100_4 to magnetic field components along the x′-/y′-axis then depend on the orientations of the XMR-planes (or vertical planes) of the XMR-sensors 100_1 to 100_4 to the stationary x′-/y′-axis. Naturally, it is possible to build up the resistances (XMR-sensors) of the Wheatstone bridge such that the second directions along which the XMR-planes of the XMR-sensors 100_1 to 100_4 extend are parallel to each other (e.g., parallel to the x′-axis or y′-axis), or in other words, such that the XMR-planes of the XMR-sensors 100_1 to 100_4 are parallel to each other. However, it would also be possible to assemble any resistance of the Wheatstone bridge by means of a combination of mutually perpendicular XMR-planes (sensor planes), for example, to reduce a dependence on the direction of the fields in the x′-/y′-plane, e.g., to achieve a reduced difference in the sensor signal when a parasitic field along the x′- or y′-axis is present.
In some embodiments, the first, second, third and fourth XMR-sensors 100_1 to 100_4 can share the same substrate 102, i.e., the substrate areas of the first, second, third and fourth XMR-sensors 100_1 to 100_4 can be substrate areas of the same substrate 102. In that case, the first main surface areas of the XMR-sensors 100_1 to 100_4 can be areas of a first main surface 110 of the substrate 102, wherein the second main surface areas of the XMR-sensors 100_1 to 100_4 can be areas of a second main surface 112 of the substrate 102.
Naturally, it is also possible that each XMR-sensor of the XMR-sensors 104_1 to 104_4 comprises its own substrate or that at least two XMR-sensors of the XMR-sensors 104_1 to 104 share the same substrate, e.g., that the first and second XMR-sensors 100_1 and 100_2 share a substrate and that the third and fourth XMR-sensor 100_3 and 100_4 share a substrate.
Moreover, the first contacts 104_1 to 104_4 of the XMR-sensors 100_1 to 100_4 can be arranged at a first plane perpendicular to the first direction (e.g., the first main surface 110 of the substrate 102), wherein the second contacts 106_1 to 106_4 of the XMR-sensors 100_1 to 100_4 can be arranged at a second plane parallel to the first plane and perpendicular to the first direction (e.g., the second main surface 112 of the substrate 102).
The first XMR-sensor 100_1 and the second XMR-sensor 100_2 can be arranged such that a distance along the second direction between the first contact 104_1 of the first XMR-sensor 100_1 and the first contact 104_2 of the second XMR-sensor 100_2 is smaller (or greater in an alternative embodiment) than a distance along the second direction between the second contact 106_1 of the first XMR-sensor 100_1 and the second contact 106_2 of the second XMR-sensor 100_2. Moreover, the third XMR-sensor 100_3 and the fourth XMR-sensor 100_4 can be arranged such that a distance along the second direction between the first contact 104_3 of the third XMR-sensor 100_3 and the first contact 104_4 of the fourth XMR-sensor 100_4 is smaller (or greater in the alternative embodiment) than a distance along the second direction between the second contact 106_3 of the third XMR-sensor 100_3 and the second contact 106_4 of the fourth XMR-sensor 100_4.
The first XMR-sensor 100_1 and the second XMR-sensor 100_2 can be connected in series such that the first contact 104_1 of the first XMR-sensor 100_1 and the first contact 104_2 of the second XMR-sensor 100_2 are connected to each other. The third XMR-sensor 100_3 and the fourth XMR-sensor 100_4 can be connected in series such that the first contact 104_3 of the third XMR-sensor 100_3 and the first contact 104_4 of the fourth XMR-sensor 100_4 are connected to each other.
As described in detail with respect to
As already mentioned, in some embodiments, the first, second, third and fourth XMR-sensors 100_1 to 100_4 can share the same substrate 102, wherein the first main surface areas of the XMR-sensors 100_1 to 100_4 can be areas of a first main surface 110 of the substrate 102, wherein the second main surface areas of the XMR-sensors 100_1 to 100_4 can be areas of a second main surface 112 of the substrate 102. In that case, the current conductor 105 can be arranged at or parallel to the first main surface 110 or second main surface of the substrate 102.
Although some aspects have been described in the context of an apparatus, it is clear that these aspects also represent a description of the corresponding method, where a block or device corresponds to a method step or a feature of a method step. Analogously, aspects described in the context of a method step also represent a description of a corresponding block or item or feature of a corresponding apparatus. Some or all of the method steps may be executed by (or using) a hardware apparatus, like for example, a microprocessor, a programmable computer or an electronic circuit. In some embodiments, some one or more of the most important method steps may be executed by such an apparatus.
The above described embodiments are merely illustrative for the principles of the present disclosure. It is understood that modifications and variations of the arrangements and the details described herein will be apparent to others skilled in the art. It is the intent, therefore, to be limited only by the scope of the impending patent claims and not by the specific details presented by way of description and explanation of the embodiments herein.
This Application is a Continuation of U.S. application Ser. No. 13/741,693 filed on Jan. 15, 2013, now U.S. Pat. No. 9,244,134, the contents of which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5247278 | Pant | Sep 1993 | A |
5712751 | Yoda | Jan 1998 | A |
5898546 | Kanai | Apr 1999 | A |
5898548 | Dill | Apr 1999 | A |
5935453 | Fontana | Aug 1999 | A |
5959809 | Uehara | Sep 1999 | A |
5978182 | Kanai | Nov 1999 | A |
5991125 | Iwasaki | Nov 1999 | A |
6002553 | Stearns | Dec 1999 | A |
6054226 | Takeda | Apr 2000 | A |
6131457 | Sato | Oct 2000 | A |
6157525 | Iwasaki | Dec 2000 | A |
6166539 | Dahlberg | Dec 2000 | A |
6252749 | Hayakawa | Jun 2001 | B1 |
6278271 | Schott | Aug 2001 | B1 |
6529114 | Bohlinger | Mar 2003 | B1 |
6536123 | Tamura | Mar 2003 | B2 |
6545462 | Schott | Apr 2003 | B2 |
6721141 | Attenborough | Apr 2004 | B1 |
6831817 | Hasegawa | Dec 2004 | B2 |
6867952 | Hasegawa | Mar 2005 | B2 |
6917088 | Takahashi | Jul 2005 | B2 |
6943041 | Sugita | Sep 2005 | B2 |
6961222 | Kishi | Nov 2005 | B2 |
7005201 | Hasegawa | Feb 2006 | B2 |
7005958 | Wan | Feb 2006 | B2 |
7038448 | Schott | May 2006 | B2 |
7157898 | Hastings | Jan 2007 | B2 |
7235968 | Popovic | Jun 2007 | B2 |
7280322 | Takahashi | Oct 2007 | B2 |
7323870 | Tatschl et al. | Jan 2008 | B2 |
7532436 | Hinoue | May 2009 | B2 |
7810398 | Zimmer | Oct 2010 | B2 |
7835117 | Zhou | Nov 2010 | B2 |
7923987 | Ausserlechner | Apr 2011 | B2 |
8150657 | Yamashita | Apr 2012 | B2 |
8421453 | Bauer | Apr 2013 | B2 |
8486723 | Wan | Jul 2013 | B1 |
8518734 | Whig | Aug 2013 | B2 |
8928602 | Wan | Jan 2015 | B1 |
8981773 | Pozzati | Mar 2015 | B2 |
20020034055 | Seyama | Mar 2002 | A1 |
20030094944 | Suzuki | May 2003 | A1 |
20030184921 | Sugita | Oct 2003 | A1 |
20040004261 | Takahashi | Jan 2004 | A1 |
20040165319 | Wan | Aug 2004 | A1 |
20050073295 | Hastings | Apr 2005 | A1 |
20060164080 | Popovic | Jul 2006 | A1 |
20060176142 | Naito | Aug 2006 | A1 |
20060291106 | Shoji | Dec 2006 | A1 |
20070063690 | De Wilde | Mar 2007 | A1 |
20070264422 | Zimmer | Nov 2007 | A1 |
20080037182 | Albrecht | Feb 2008 | A1 |
20080100289 | Zimmer | May 2008 | A1 |
20080272771 | Guo | Nov 2008 | A1 |
20080316654 | Aiso | Dec 2008 | A1 |
20090015252 | Raberg | Jan 2009 | A1 |
20090027048 | Sato | Jan 2009 | A1 |
20090128282 | Zimmer | May 2009 | A1 |
20090153138 | Theuss | Jun 2009 | A1 |
20090190264 | Fukuzawa | Jul 2009 | A1 |
20090271142 | Yamashita | Oct 2009 | A1 |
20090309590 | Kataoka | Dec 2009 | A1 |
20110074406 | Mather | Mar 2011 | A1 |
20110233696 | Li | Sep 2011 | A1 |
20110244599 | Whig | Oct 2011 | A1 |
20110309829 | Loreit | Dec 2011 | A1 |
20120068698 | Chen | Mar 2012 | A1 |
20120074511 | Takahashi | Mar 2012 | A1 |
20120153937 | Pozzati | Jun 2012 | A1 |
20120153947 | Ausserlechner | Jun 2012 | A1 |
20120193736 | Mather | Aug 2012 | A1 |
20120212217 | Engel | Aug 2012 | A1 |
20120262152 | Ausserlechner | Oct 2012 | A1 |
20130176022 | Lee | Jul 2013 | A1 |
20130214776 | Holman | Aug 2013 | A1 |
20130229175 | Wang | Sep 2013 | A1 |
20130241543 | Stenson et al. | Sep 2013 | A1 |
20130299930 | Paci | Nov 2013 | A1 |
20140015524 | Lorenz et al. | Jan 2014 | A1 |
20140028307 | Ausserlechner | Jan 2014 | A1 |
20150285661 | Ausserlechner | Oct 2015 | A1 |
20160097827 | Zimmer | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
WO 2005073744 | Aug 2005 | NL |
2006136577 | Dec 2006 | WO |
Entry |
---|
Non-Final Office Action dated Feb. 5, 2015 for U.S. Appl. No. 13/741,693. |
Final Office Action dated Jun. 12, 2015 for U.S. Appl. No. 13/741,693. |
Notice of Allowance dated Sep. 22, 2015 for U.S. Appl. No. 13/741,693. |
Number | Date | Country | |
---|---|---|---|
20160097827 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13741693 | Jan 2013 | US |
Child | 14969378 | US |