2D and 3D inductors fabricating photoactive substrates

Information

  • Patent Grant
  • 11929199
  • Patent Number
    11,929,199
  • Date Filed
    Thursday, April 16, 2020
    4 years ago
  • Date Issued
    Tuesday, March 12, 2024
    8 months ago
Abstract
A method of fabrication and device made by preparing a photosensitive glass substrate comprising at least silica, lithium oxide, aluminum oxide, and cerium oxide, masking a design layout comprising one or more holes to form one or more electrical conduction paths on the photosensitive glass substrate, exposing at least one portion of the photosensitive glass substrate to an activating energy source, exposing the photosensitive glass substrate to a heating phase of at least ten minutes above its glass transition temperature, cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate and etching the glass-crystalline substrate with an etchant solution to form one or more angled channels that are then coated.
Description
FIELD OF INVENTION

The present invention relates to creating an inductive current device in a photo definable glass structure, in particular, creating Inductors, Antenna, and Transformers devices and arrays in glass ceramic substrates for electronic, microwave and radio frequency in general.


Photosensitive glass structures have been suggested for a number of micromachining and microfabrication processes such as integrated electronic elements in conjunction with other elements systems or subsystems.


Silicon microfabrication of traditional glass is expensive and low yield while injection modeling or embossing processes produce inconsistent shapes. Silicon microfabrication processes rely on expensive capital equipment; photolithography and reactive ion etching or ion beam milling tools that generally cost in excess of one million dollars each and require an ultra-clean, high-production silicon fabrication facility costing millions to billions more. Injection molding and embossing are less costly methods of producing a three dimensional shapes but generate defects with in the transfer or have differences due to the stochastic curing process.


SUMMARY OF INVENTION

The present invention provides creates a cost effective glass ceramic inductive individual or array device. Where glass ceramic substrate has demonstrated capability to form such structures through the processing of both the vertical as well as horizontal planes either separately or at the same time to form, two or three-dimensional inductive devices.


The present invention includes a method to fabricate a substrate with one or more, two or three dimensional inductive device by preparing a photosensitive glass substrate and further coating or filling with one or more metals.


A method of fabrication and device made by preparing a photosensitive glass ceramic composite substrate comprising at least silica, lithium oxide, aluminum oxide, and cerium oxide, masking a design layout comprising one or more, two or three dimensional inductive device in the photosensitive glass substrate, exposing at least one portion of the photosensitive glass substrate to an activating energy source, exposing the photosensitive glass substrate to a heating phase of at least ten minutes above its glass transition temperature, cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate and etching the glass-crystalline substrate with an etchant solution to form one or more angled channels or through holes that are then used in the inductive device.


The present invention provides a method to fabricate an inductive device created in or on photo-definable glass comprising the steps of: preparing a photosensitive glass substrate comprising at least silica, lithium oxide, aluminum oxide, and cerium oxide; masking a design layout comprising one or more structures to form one or more electrical conduction paths on the photosensitive glass substrate; exposing at least one portion of the photosensitive glass substrate to an activating energy source; exposing the photosensitive glass substrate to a heating phase of at least ten minutes above its glass transition temperature; cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate; etching the glass-crystalline substrate with an etchant solution to form the one or more angled channels in the device; wherein the glass-crystalline substrate adjacent to the trenches may also be converted to a ceramic phase; coating the one or more angled channels with one or more metals; coating all or part of the inductor structure with a dielectric media; removing all or part of the dielectric media to provide electrical contact or free standing inductive device; and wherein the metal is connected to a circuitry through a surface or buried contact.


The inductive device stores current and functions as a current storage device. The one or more metals are designed to operate as an inductor at the appropriate frequencies. The inductive device has a magnetic permeability greater than or equal to copper for frequencies greater than 100 MHz. The inductive device has a magnetic permeability greater than copper for frequencies less than 100 MHz. The ceramic phase can be etched from one side or both sides to partially or fully remove the glass-ceramic material. The method can further include the step of converting at least a portion of the glass into ceramic and etching away the ceramic to at least partially expose the metal structure. The method can further include the step of converting at least a portion of the glass into ceramic and etching away the ceramic to fully expose the metal structure.


The present invention also includes an inductive device having a glass-ceramic material surrounding one or more inductive coils wherein the one or more inductive coils are at least partially surround by air.


The one or more inductive coils include one or more angled channels in the glass-crystalline substrate with a metal coating over at least a portion of the one or more angled channels. The inductive element is further surrounded by a magnetically permeable material. The inductive element does not touch the magnetically permeable material. The inductive element comprises a cavity filled with a magnetically permeable material on one side, both sides or through the glass-ceramic material. The one or more inductors interact with each other. The one or more inductors share a magnetically permeable material. The metal coating may reside partially through, fully through, or on top of the glass-ceramic material, or a combination there of. The inductive device of further includes 1 or more second metal layer on any surface.


The present invention also includes an inductive device having a glass-crystalline substrate surrounding one or more inductive coils wherein the one or more inductive coils are at least partially surround by air. The inductive device includes one or more inductive coils are that are supported by one or more rails on the glass-crystalline substrate. The inductive device includes one or more inductive coils are that are positioned in one or more pits in the glass-crystalline substrate. The inductive device may include a metal coating, a multilayer metal coating, an alloy coating, a multilayer alloy coating.





BRIEF DESCRIPTION OF DRAWINGS

For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:



FIG. 1 shows a coreless transformer design.



FIG. 2 shows interlocking square spirals etched into APEX® glass.



FIG. 3A top view of an inductive device in/on APEX® glass.



FIG. 3B side view of an inductive device in/on APEX® glass.



FIG. 4A is an image of a free-standing copper RF antenna bridge structure.



FIG. 4B is an image of a free-standing coil.



FIG. 5 is an image of a partially etched inductor, where the surrounding ceramic has been partially etched away to allow mostly air to surround the inductive device.



FIG. 6 is an isometric image of a fully etched inductor, where the surrounding ceramic has been fully etched away to allow only air to surround the inductive device.



FIGS. 7A and 7B are side image of a fully etched inductor, where the surrounding ceramic has been fully etched away to allow only air to surround the inductive device.





DESCRIPTION OF INVENTION

While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not restrict the scope of the invention.


To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.



FIG. 1 shows a coreless transformer design. FIG. 2 shows interlocking square spirals etched into APEX® glass. FIG. 3A top view of an inductive device in/on APEX® glass. FIG. 3B side view of an inductive device in/on APEX® glass. FIG. 4A is an image of a free-standing copper RF antenna bridge structure. FIG. 4B is an image of a free-standing coil. FIG. 5 is an image of a partially etched inductor, where the surrounding ceramic has been partially etched away to allow mostly air to surround the inductive device. FIG. 6 is an isometric image of a fully etched inductor, where the surrounding ceramic has been fully etched away to allow only air to surround the inductive device. FIGS. 7A and 7B are side image of a fully etched inductor, where the surrounding ceramic has been fully etched away to allow only air to surround the inductive device.


To address these needs, the present inventors developed a glass ceramic (APEX®) Glass ceramic) as a novel packaging and substrate material for semiconductors, RF electronics, microwave electronics, and optical imaging. APEX® Glass ceramic is processed using first generation semiconductor equipment in a simple three step process and the final material can be fashioned into either glass, ceramic, or contain regions of both glass and ceramic. The APEX® Glass ceramic possesses several benefits over current materials, including: easily fabricated high density vias, demonstrated microfluidic capability, micro-lens or micro-lens array, high Young's modulus for stiffer packages, halogen free manufacturing, and economical manufacturing. Photoetchable glasses have several advantages for the fabrication of a wide variety of microsystems components. Microstructures have been produced relatively inexpensively with these glasses using conventional semiconductor processing equipment. In general, glasses have high temperature stability, good mechanical and electrically properties, and have better chemical resistance than plastics and many metals. To our knowledge, the only commercially available photoetchable glass is FOTURAN®, made by Schott Corporation and imported into the U.S. only by Invenios Inc. FOTURAN® comprises a lithium-aluminum-silicate glass containing traces of silver ions plus other trace elements specifically silicon oxide (SiO2) of 75-85% by weight, lithium oxide (Li2O) of 7-11% by weight, aluminum oxide (Al2O3) of 3-6% by weight, sodium oxide (Na2O) of 1-2% by weight, 0.2-0.5% by weight antimonium trioxide (Sb2O3) or arsenic oxide (As2O3), silver oxide (Ag2O) of 0.05-0.15% by weight, and cerium oxide (CeO2) of 0.01-0.04% by weight. As used herein the terms “APEX® Glass ceramic”, “APEX® glass” or simply “APEX®” is used to denote one embodiment of the glass ceramic composition of the present invention.


When exposed to UV-light within the absorption band of cerium oxide the cerium oxide acts as sensitizers, absorbing a photon and losing an electron that reduces neighboring silver oxide to form silver atoms, e.g.,

Ce3++Ag+=Ce4++Ag0


The silver atoms coalesce into silver nanoclusters during the baking process and induce nucleation sites for crystallization of the surrounding glass. If exposed to UV light through a mask, only the exposed regions of the glass will crystallize during subsequent heat treatment.


This heat treatment must be performed at a temperature near the glass transformation temperature (e.g., greater than 465° C. in air for FOTURAN®). The crystalline phase is more soluble in etchants, such as hydrofluoric acid (HF), than the unexposed vitreous, amorphous regions. In particular, the crystalline regions of FOTURAN® are etched about 20 times faster than the amorphous regions in 10% HF, enabling microstructures with wall slopes ratios of about 20:1 when the exposed regions are removed. See T. R. Dietrich et al., “Fabrication technologies for microsystems utilizing photoetchable glass,” Microelectronic Engineering 30, 497 (1996), which is incorporated herein by reference. Preferably, the shaped glass structure contains at least one or more, two or three-dimensional inductive device. The inductive device is formed by making a series of connected loops to form a free-standing inductor. The loops can be either rectangular, circular, elliptical, fractal or other shapes that create and pattern that generates induction. The patterned regions of the APEX® glass can be filled with metal, alloys, composites, glass or other magnetic media, by a number of methods including plating or vapor phase deposition. The magnetic permittivity of the media combined with the dimensions and number of structures (loops, turns or other inductive element) in the device provide the inductance of devices. Depending on the frequency of operation the inductive device design will require different magnetic permittivity materials. At low frequencies, less than 100 MHz devices can use ferrites or other high different magnetic permittivity materials. At higher frequencies >100 MHz high different magnetic permittivity materials can generate eddy currents creating large electrical losses. So at higher frequency operations material such as copper or other similar material is the media of choice for inductive devices. Once the inductive device has been generated the supporting APEX® glass can be left in place or removed to create a free-standing structure. The present invention provides a single material approach for the fabrication of optical microstructures with photo-definable/photopatternable APEX® glass for use in imaging applications by the shaped APEX® glass structures that are used for lenses and includes through-layer or in-layer designs.


Generally, glass ceramics materials have had limited success in microstructure formation plagued by performance, uniformity, usability by others and availability issues. Past glass-ceramic materials have yield etch aspect-ratio of approximately 15:1 in contrast APEX®ß glass has an average etch aspect ratio greater than 50:1. This allows users to create smaller and deeper features. Additionally, our manufacturing process enables product yields of greater than 90% (legacy glass yields are closer to 50%). Lastly, in legacy glass ceramics, approximately only 30% of the glass is converted into the ceramic state, whereas with APEX™ Glass ceramic this conversion is closer to 70%. APEX® composition provides three main mechanisms for its enhanced performance: (1) The higher amount of silver leads to the formation of smaller ceramic crystals which are etched faster at the grain boundaries, (2) the decrease in silica content (the main constituent etched by the HF acid) decreases the undesired etching of unexposed material, and (3) the higher total weight percent of the alkali metals and boron oxide produces a much more homogeneous glass during manufacturing.


The present invention includes a method for fabricating a glass ceramic structure for use in forming inductive structures used in electromagnetic transmission, transformers and filtering applications. The present invention includes an inductive structures created in the multiple planes of a glass-ceramic substrate, such process employing the (a) exposure to excitation energy such that the exposure occurs at various angles by either altering the orientation of the substrate or of the energy source, (b) a bake step and (c) an etch step. Angle sizes can be either acute or obtuse. The curved and digital structures are difficult, if not infeasible to create in most glass, ceramic or silicon substrates. The present invention has created the capability to create such structures in both the vertical as well as horizontal plane for glass-ceramic substrates. The present invention includes a method for fabricating of an inductive structure on or in a glass ceramic. Ceramicization of the glass is accomplished by exposing the entire glass substrate to approximately 20 J/cm2 of 310 nm light. When trying ceramic, users expose all of the material, except where the glass is to remain glass. In one embodiment, the present invention provides a quartz/chrome mask containing a variety of concentric circles with different diameters.


The present invention includes a method for fabricating an inductive device in or on glass ceramic structure electrical microwave and radio frequency applications. The glass ceramic substrate may be a photosensitive glass substrate having a wide number of compositional variations including but not limited to: 60-76 weight % silica; at least 3 weight % K2O with 6 weight %-16 weight % of a combination of K2O and Na2O; 0.003-1 weight % of at least one oxide selected from the group consisting of Ag2O and Au2O; 0.003-2 weight % Cu2O; 0.75 weight %-7 weight % B2O3, and 6-7 weight % Al2O3; with the combination of B2O3; and Al2O3 not exceeding 13 weight %; 8-15 weight % Li2O; and 0.001-0.1 weight % CeO2. This and other varied compositions are generally referred to as the APEX® glass.


The exposed portion may be transformed into a crystalline material by heating the glass substrate to a temperature near the glass transformation temperature. When etching the glass substrate in an etchant such as hydrofluoric acid, the anisotropic-etch ratio of the exposed portion to the unexposed portion is at least 30:1 when the glass is exposed to a broad spectrum mid-ultraviolet (about 308-312 nm) flood lamp to provide a shaped glass structure that have an aspect ratio of at least 30:1, and to create an inductive structure. The mask for the exposure can be of a halftone mask that provides a continuous grey scale to the exposure to form a curved structure for the creation of an inductive structure/device. A digital mask can also be used with the flood exposure and can be used to produce the creation of a inductive structure/device. The exposed glass is then baked typically in a two-step process. Temperature range heated between of 420° C.-520° C. for between 10 minutes to 2 hours, for the coalescing of silver ions into silver nanoparticles and temperature range heated between 520° C.-620° C. for between 10 minutes and 2 hours allowing the lithium oxide to form around the silver nanoparticles. The glass plate is then etched. The glass substrate is etched in an etchant, of HF solution, typically 5% to 10% by volume, wherein the etch ratio of exposed portion to that of the unexposed portion is at least 30:1 when exposed with a broad spectrum mid-ultraviolet flood light, and greater than 30:1 when exposed with a laser, to provide a shaped glass structure with an anisotropic-etch ratio of at least 30:1.


Where the material surrounding the inductive device is converted to ceramic before metal filling. Where the metallic material used to fill the etched structures is metal other than copper (i.e. nickel, iron alloys). Where the surface of the inductive device is coated with a dielectric material. Where the surface of the inductive device is patterned first with a dielectric material and then with a patterned metal.


For embodiments that are surrounded by the ceramic phase: Where the ceramic is etched from one side or both sides to partially or fully remove the glass-ceramic material to partially expose the metal structures. An inductive device consisting of multiple unique inductive components. Said device where different inductive components are selectively plated with different metals into different etched features.

Claims
  • 1. A method to fabricate an inductive device created in or on photo-definable glass comprising the steps of: preparing a photosensitive glass substrate comprising at least silica, lithium oxide, aluminum oxide, and cerium oxide;masking a design layout comprising one or more structures to form one or more electrical conduction paths on the photosensitive glass substrate, wherein the one or more structures comprise one or more curved portions;exposing at least one portion of the photosensitive glass substrate to an activating energy source;exposing the photosensitive glass substrate to a heating phase of at least ten minutes above its glass transition temperature;cooling the photosensitive glass substrate to transform at least part of the exposed photosensitive glass substrate to a ceramic phase to form a glass-ceramic material;etching the glass-ceramic material with an etchant solution to form the one or more structures in the device;coating the one or more structures with one or more metals;coating all or part of the one or more metal-filled structures with a dielectric media;removing all or part of the dielectric media to provide electrical contacts; andwherein the metal is configured to be connected to a circuitry through a surface or buried contact; andwherein the inductive device has a magnetic permeability greater than or equal to copper for frequencies greater than 100 MHz.
  • 2. The method of claim 1, wherein the inductive device stores current and functions as a current storage device.
  • 3. The method of claim 1, wherein the one or more metals are designed to operate as an inductor at selected frequencies.
  • 4. The method of claim 1, further comprising etching the glass-ceramic material from one side or both sides of the glass-ceramic material to partially or fully remove the glass-ceramic material.
  • 5. The method of claim 1, further comprising the step of converting at least a portion of the glass into ceramic and etching away the ceramic to at least partially expose the one or more metal-filled structures or to fully expose the one or more metal-filled structures.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/308,583 filed on Nov. 2, 2016, which is a U.S. 371 National Phase Application from PCT International Serial No. PCT/US2015/029222 filed on May 5, 2015, and entitled “2D and 3D Inductors Antenna and Transformers Fabricating Photoactive Substrates,” and claims benefit of U.S. Provisional Application Ser. No. 61/988,615, filed on May 5, 2014.

US Referenced Citations (256)
Number Name Date Kind
2515937 Stookey Dec 1943 A
2515943 Stookey Jan 1949 A
2515940 Stookey Jul 1950 A
2515941 Stookey Jul 1950 A
2628160 Stookey Feb 1953 A
2684911 Stookey Jul 1954 A
2971853 Stookey Feb 1961 A
3281264 Cape et al. Oct 1966 A
3292115 Rosa Dec 1966 A
3904991 Ishli et al. Sep 1975 A
3985531 Grossman Oct 1976 A
3993401 Strehlow Nov 1976 A
4029605 Kosiorek Jun 1977 A
4413061 Kumar Nov 1983 A
4444616 Fujita et al. Apr 1984 A
4514053 Borelli et al. Apr 1985 A
4537612 Borelli et al. Aug 1985 A
4611882 Ushida Sep 1986 A
4647940 Traut et al. Mar 1987 A
4692015 Loce et al. Sep 1987 A
4788165 Fong et al. Nov 1988 A
4942076 Panicker et al. Jul 1990 A
5078771 Wu Jan 1992 A
5147740 Robinson Sep 1992 A
5212120 Araujo et al. May 1993 A
5215610 Dipaolo et al. Jun 1993 A
5312674 Haertling May 1994 A
5352996 Kawaguchi Oct 1994 A
5371466 Arakawa et al. Dec 1994 A
5374291 Yabe et al. Dec 1994 A
5395498 Gombinsky et al. Mar 1995 A
5409741 Laude Apr 1995 A
5733370 Chen et al. Mar 1998 A
5779521 Muroyama et al. Jul 1998 A
5850623 Carman, Jr. et al. Dec 1998 A
5902715 Tsukamoto et al. May 1999 A
5919607 Lawandy et al. Jul 1999 A
5998224 Rohr et al. Dec 1999 A
6046641 Chawla et al. Apr 2000 A
6066448 Wohlstadter et al. May 2000 A
6094336 Weekamp Jul 2000 A
6136210 Biegelsen et al. Oct 2000 A
6171886 Ghosh Jan 2001 B1
6258497 Kropp et al. Jul 2001 B1
6287965 Kang et al. Sep 2001 B1
6329702 Gresham et al. Dec 2001 B1
6373369 Huang et al. Apr 2002 B2
6383566 Zagdoun May 2002 B1
6417754 Bernhardt et al. Jul 2002 B1
6485690 Pfost et al. Nov 2002 B1
6495411 Mei Dec 2002 B1
6511793 Cho et al. Jan 2003 B1
6514375 Kijima Feb 2003 B2
6562523 Wu et al. Feb 2003 B1
6678453 Bellman et al. Jan 2004 B2
6686824 Yamamoto et al. Feb 2004 B1
6771860 Trezza et al. Aug 2004 B2
6783920 Livingston et al. Aug 2004 B2
6824974 Pisharody et al. Nov 2004 B2
6830221 Janson et al. Dec 2004 B1
6843902 Penner et al. Jan 2005 B1
6875544 Sweatt et al. Apr 2005 B1
6932933 Halvajian et al. Aug 2005 B2
6977722 Wohlstadter et al. Dec 2005 B2
7033821 Kim et al. Apr 2006 B2
7064045 Yang Jun 2006 B2
7132054 Kravitz et al. Nov 2006 B1
7179638 Anderson Feb 2007 B2
7277151 Ryu et al. Oct 2007 B2
7306689 Okubora et al. Dec 2007 B2
7326538 Pitner et al. Feb 2008 B2
7407768 Yamazaki et al. Aug 2008 B2
7410763 Su et al. Aug 2008 B2
7439128 Divakaruni Oct 2008 B2
7470518 Chiu et al. Dec 2008 B2
7497554 Okuno Mar 2009 B2
7603772 Farnsworth et al. Oct 2009 B2
7915076 Ogawa Mar 2011 B2
7948342 Long May 2011 B2
8062753 Schreder et al. Nov 2011 B2
8076162 Flemming et al. Dec 2011 B2
8096147 Flemming et al. Jan 2012 B2
8361333 Flemming et al. Jan 2013 B2
8492315 Flemming et al. Jul 2013 B2
8709702 Flemming et al. Apr 2014 B2
9385083 Herrault et al. Jul 2016 B1
9449753 Kim Sep 2016 B2
9635757 Chen et al. Apr 2017 B1
9755305 Desclos et al. Sep 2017 B2
9819991 Rajagopalan et al. Nov 2017 B1
9843083 Cooper et al. Dec 2017 B2
10070533 Flemming et al. Sep 2018 B2
11524807 Gentili et al. Dec 2022 B2
20010051584 Harada et al. Dec 2001 A1
20020015546 Bhagavatula Feb 2002 A1
20020086246 Lee Jul 2002 A1
20020100608 Fushie et al. Aug 2002 A1
20030025227 Daniell Feb 2003 A1
20030107459 Takahashi et al. Jun 2003 A1
20030124716 Hess et al. Jul 2003 A1
20030135201 Gonnelli Jul 2003 A1
20030143802 Chen et al. Jul 2003 A1
20030156819 Pruss et al. Aug 2003 A1
20030174944 Dannoux Sep 2003 A1
20030228682 Lakowicz et al. Dec 2003 A1
20030231076 Takeuchi et al. Dec 2003 A1
20030231830 Hikichi Dec 2003 A1
20040008391 Bowley et al. Jan 2004 A1
20040020690 Parker et al. Feb 2004 A1
20040058504 Kellar et al. Mar 2004 A1
20040104449 Yoon Jun 2004 A1
20040155748 Steingroever Aug 2004 A1
20040171076 Dejneka et al. Sep 2004 A1
20040184705 Shimada et al. Sep 2004 A1
20040198582 Borrelli et al. Oct 2004 A1
20040227596 Nguyen et al. Nov 2004 A1
20050089901 Porter et al. Apr 2005 A1
20050105860 Oono May 2005 A1
20050111162 Osaka et al. May 2005 A1
20050118779 Ahn Jun 2005 A1
20050150683 Farnworth et al. Jul 2005 A1
20050170670 King et al. Aug 2005 A1
20050194628 Kellar et al. Sep 2005 A1
20050212432 Neil et al. Sep 2005 A1
20050277550 Brown et al. Dec 2005 A1
20060092079 Rochemont May 2006 A1
20060118965 Matsui Jun 2006 A1
20060147344 Ahn et al. Jul 2006 A1
20060158300 Korony et al. Jul 2006 A1
20060159916 Dubrow et al. Jul 2006 A1
20060171033 Shreder et al. Aug 2006 A1
20060177855 Utermohlen et al. Aug 2006 A1
20060188907 Lee et al. Aug 2006 A1
20060193214 Shimano et al. Aug 2006 A1
20060201201 Fushie et al. Sep 2006 A1
20060283948 Naito Dec 2006 A1
20070023386 Kravitz et al. Feb 2007 A1
20070034910 Shie Feb 2007 A1
20070120263 Gabric et al. May 2007 A1
20070121263 Liu et al. May 2007 A1
20070155021 Zhang et al. Jul 2007 A1
20070158787 Chanchani Jul 2007 A1
20070248126 Liu et al. Oct 2007 A1
20070254490 Jain Nov 2007 A1
20070267708 Courcimault Nov 2007 A1
20070272829 Nakagawa et al. Nov 2007 A1
20070279837 Chow et al. Dec 2007 A1
20070290782 Yokoyama Dec 2007 A1
20070296520 Hosokawa et al. Dec 2007 A1
20080042785 Yagisawa Feb 2008 A1
20080079565 Koyama Apr 2008 A1
20080136572 Ayasi et al. Jun 2008 A1
20080174976 Satoh et al. Jul 2008 A1
20080182079 Mirkin et al. Jul 2008 A1
20080223603 Kim et al. Sep 2008 A1
20080226228 Tamura Sep 2008 A1
20080231402 Jow et al. Sep 2008 A1
20080245109 Flemming et al. Oct 2008 A1
20080291442 Lawandy Nov 2008 A1
20080305268 Norman et al. Dec 2008 A1
20080316678 Ehrenberg et al. Dec 2008 A1
20090029185 Lee et al. Jan 2009 A1
20090075478 Matsui Mar 2009 A1
20090130736 Collis et al. May 2009 A1
20090170032 Takahashi et al. Jul 2009 A1
20090182720 Cain et al. Jul 2009 A1
20090200540 Bjoerk et al. Aug 2009 A1
20090243783 Fouquet et al. Oct 2009 A1
20090290281 Nagamoto et al. Nov 2009 A1
20100009838 Muraki Jan 2010 A1
20100022416 Flemming et al. Jan 2010 A1
20100044089 Shibuya et al. Feb 2010 A1
20100059265 Myung-Soo Mar 2010 A1
20100194511 Kobayashi Aug 2010 A1
20100237462 Beker et al. Sep 2010 A1
20110003422 Katragadda Jan 2011 A1
20110045284 Matsukawa et al. Feb 2011 A1
20110065662 Rinsch et al. Mar 2011 A1
20110084371 Rotay et al. Apr 2011 A1
20110086606 Chen et al. Apr 2011 A1
20110108525 Chien et al. May 2011 A1
20110114496 Dopp et al. May 2011 A1
20110115051 Kim et al. May 2011 A1
20110170273 Helvajian Jul 2011 A1
20110195360 Flemming Aug 2011 A1
20110217657 Flemming et al. Sep 2011 A1
20110284725 Goldberg Nov 2011 A1
20110304999 Yu et al. Dec 2011 A1
20120080612 Grego Apr 2012 A1
20120161330 Hlad et al. Jun 2012 A1
20130001770 Liu Jan 2013 A1
20130015467 Krumbein et al. Jan 2013 A1
20130015578 Thacker et al. Jan 2013 A1
20130105941 Vanslette et al. May 2013 A1
20130119401 D'Evelyn et al. May 2013 A1
20130142998 Flemming et al. Jun 2013 A1
20130143381 Kikukawa Jun 2013 A1
20130183805 Wong et al. Jul 2013 A1
20130207745 Yun Aug 2013 A1
20130209026 Doany et al. Aug 2013 A1
20130233202 Cao et al. Sep 2013 A1
20130278568 Lasiter et al. Oct 2013 A1
20130308906 Zheng et al. Nov 2013 A1
20130337604 Ozawa et al. Dec 2013 A1
20140002906 Shibuya Jan 2014 A1
20140035540 Ehrenberg Feb 2014 A1
20140035892 Shenoy Feb 2014 A1
20140035935 Shenoy et al. Feb 2014 A1
20140070380 Chiu et al. Mar 2014 A1
20140104284 Shenoy et al. Apr 2014 A1
20140104288 Shenoy et al. Apr 2014 A1
20140144681 Pushparaj et al. May 2014 A1
20140145326 Lin et al. May 2014 A1
20140169746 Hung et al. Jun 2014 A1
20140203891 Yazaki Jul 2014 A1
20140247269 Berdy et al. Sep 2014 A1
20140272688 Dillion Sep 2014 A1
20140306653 Hirobe Oct 2014 A1
20140367695 Barlow Dec 2014 A1
20150035638 Stephanou Feb 2015 A1
20150048901 Rogers Feb 2015 A1
20150071593 Kanke Mar 2015 A1
20150210074 Chen et al. Jul 2015 A1
20150228712 Yun Aug 2015 A1
20150263429 Vahidpour et al. Sep 2015 A1
20150277047 Flemming et al. Oct 2015 A1
20160048079 Lee et al. Feb 2016 A1
20160152505 Fushie Jun 2016 A1
20160181211 Kamgaing et al. Jun 2016 A1
20160185653 Fushie Jun 2016 A1
20160254579 Mills Sep 2016 A1
20160265974 Erte et al. Sep 2016 A1
20160268665 Sherrer et al. Sep 2016 A1
20160320568 Haase Nov 2016 A1
20160380614 Abbott et al. Dec 2016 A1
20170003421 Flemming et al. Jan 2017 A1
20170077892 Thorup Mar 2017 A1
20170094794 Flemming et al. Mar 2017 A1
20170098501 Flemming et al. Apr 2017 A1
20170213762 Gouk Jul 2017 A1
20170370870 Fomina et al. Dec 2017 A1
20180310399 Nair et al. Oct 2018 A1
20180315811 Cho et al. Nov 2018 A1
20180323485 Gnanou et al. Nov 2018 A1
20190280079 Bouvier et al. Jul 2019 A1
20200060513 To et al. Feb 2020 A1
20200066443 Lu et al. Feb 2020 A1
20200119255 Then et al. Apr 2020 A1
20200168536 Link et al. May 2020 A1
20200211985 Pietambaram et al. Jul 2020 A1
20200227470 Then et al. Jul 2020 A1
20200235020 Boek Jul 2020 A1
20200252074 Healy et al. Aug 2020 A1
20200275558 Fujita Aug 2020 A1
20210013303 Chen et al. Jan 2021 A1
20210271275 Kim et al. Sep 2021 A1
Foreign Referenced Citations (83)
Number Date Country
1562831 Apr 2004 CN
105047558 Nov 2015 CN
105938928 Sep 2016 CN
210668058 Jun 2020 CN
102004059252 Jan 2006 DE
0311274 Dec 1989 EP
0507719 Oct 1992 EP
0685857 Dec 1995 EP
0949648 Oct 1999 EP
1487019 Dec 2004 EP
1683571 Jun 2006 EP
619779 Mar 1949 GB
1407151 Sep 1975 GB
56-155587 Dec 1981 JP
61149905 Jul 1986 JP
61231529 Oct 1986 JP
62202840 Sep 1987 JP
63-128699 Jun 1988 JP
08026767 Jun 1988 JP
H393683 Apr 1991 JP
05139787 Jun 1993 JP
08179155 Dec 1994 JP
10007435 Jan 1998 JP
10-199728 Jul 1998 JP
10199728 Jul 1998 JP
11344648 Dec 1999 JP
2000114818 Apr 2000 JP
2000228615 Aug 2000 JP
2001033664 Feb 2001 JP
2001206735 Jul 2001 JP
2001284533 Oct 2001 JP
2005-302987 Oct 2005 JP
2005302987 Oct 2005 JP
2005215644 Nov 2005 JP
2006032982 Feb 2006 JP
2006179564 Jun 2006 JP
2006324489 Nov 2006 JP
2008252797 Oct 2008 JP
2011192836 Sep 2011 JP
2012079960 Apr 2012 JP
2013062473 Apr 2013 JP
2013217989 Oct 2013 JP
2014241365 Dec 2014 JP
2015028651 Feb 2015 JP
2015028651 Feb 2015 JP
H08026767 Jan 2016 JP
2018200912 Dec 2018 JP
2021145131 Sep 2021 JP
1020040001906 Jan 2004 KR
1020050000923 Jan 2005 KR
20060092643 Aug 2006 KR
100941691 Feb 2010 KR
101167691 Jul 2012 KR
101519760 May 2015 KR
2005027606 Mar 2005 WO
2007088058 Aug 2007 WO
2008119080 Oct 2008 WO
2008154931 Dec 2008 WO
2009029733 Mar 2009 WO
2009062011 May 2009 WO
2009126649 Oct 2009 WO
2010011939 Jan 2010 WO
2011100445 Aug 2011 WO
2011100445 Aug 2011 WO
2011109648 Sep 2011 WO
2012078213 Jun 2012 WO
2014062226 Jan 2014 WO
2014043267 Mar 2014 WO
2014062311 Apr 2014 WO
2014193525 Dec 2014 WO
2015108648 Jul 2015 WO
2015112903 Jul 2015 WO
2015171597 Nov 2015 WO
2017132280 Aug 2017 WO
2017147511 Aug 2017 WO
2017177171 Oct 2017 WO
2018200804 Jan 2018 WO
2018209422 Nov 2018 WO
2019010045 Jan 2019 WO
2019118761 Jun 2019 WO
2019136024 Jul 2019 WO
2019199470 Oct 2019 WO
2019231947 Dec 2019 WO
Non-Patent Literature Citations (90)
Entry
European Search Report and Supplemental European Search Report for EP 19861556.9 dated Jan. 18, 2022, 9 pp.
European Search Report and Supplemental European Search Report for EP 19905255.6 dated Jul. 26, 2022, 8 pp.
OPTICS 101, “What is a Halogen Lamp?”, Apr. 25, 2014, p. 1-2.
European Search Report and Supplemental European Search Report for EP 18889385.3 dated Dec. 2, 2020, 8 pp.
European Search Report and Supplemental European Search Report for EP 18898912.3 dated Feb. 2, 2021, 10 pp.
Green, S., “Heterogeneous Integration of DARPA: Pathfinding and Progress in Assembly Approaches,” viewed on and retrieved from the Internet on Feb. 26, 2021, <URL:https://web.archive.org/web/20181008153224/https://www.ectc.net/files/68/Demmin%20Darpa.pdf>, published Oct. 8, 2018 per the Wayback Machine.
International Search Report and Written Opinion for PCT/US2020/54394 dated Jan. 7, 2021 by the USPTO, 15 pp.
European Search Report and Supplemental European Search Report for EP 19784673.6 dated Feb. 2, 2021, 8 pp.
European Search Report and Supplemental European Search Report for EP 19811031.4 dated Feb. 26, 2021, 7 pp.
Dang, et al. “Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink,” IEEE Electron Device etters, vol. 27, No. 2, pp. 117-119, 2006.
Dietrich, T.R., et al., “Fabrication Technologies for Microsystems Utilizing Photoetchable Glass,” Microelectronic Engineering 30, (1996), pp. 407-504.
Extended European Search Report 15741032.5 dated Aug. 4, 2017, 11 pp.
Extended European Search Report 15789595.4 dated Mar. 31, 2017, 7 pp.
Extended European Search Report 17744848.7 dated Oct. 30, 2019, 9 pp.
Extended European Search Report 17757365.6 dated Oct. 14, 2019, 14 pp.
Geddes, et al., “Metal-Enhanced Fluorescence” J Fluorescence, (2002), 12:121-129.
Gomez-Morilla, et al. “Micropatterning of Foturan photosensitive glass following exposure to MeV proton beams” Journal of Micromechanics and Microengineering, vol. 15, 2005, pp. 706-709, DOI:10.1088/0960-1317/15/4/006.
Intel Corporation, “Intel® 82566 Layout Checklist (version 1.0)”, 2006.
International Search Report and Written Opinion for PCT/US2008/058783 dated Jul. 1, 2008, 15 pp.
International Search Report and Written Opinion for PCT/US2008/074699 dated Feb. 26, 2009, 11 pp.
International Search Report and Written Opinion for PCT/US2009/039807 dated Nov. 24, 2009, 13 pp.
International Search Report and Written Opinion for PCT/US2009/051711 dated Mar. 5, 2010, 15 pp.
International Search Report and Written Opinion for PCT/US2011/024369 dated Mar. 25, 2011, 13 pp.
International Search Report and Written Opinion for PCT/US2013/059305 dated Jan. 10, 2014, 6 pp.
International Search Report and Written Opinion for PCT/US2015/012758 dated Apr. 8, 2015, 11 pp.
International Search Report and Written Opinion for PCT/US2015/029222 dated Jul. 22, 2015, 9 pp.
International Search Report and Written Opinion for PCT/US2017/019483 dated May 19, 2017, 11 pp.
International Search Report and Written Opinion for PCT/US2017/026662 dated Jun. 5, 2017, 11 pp.
International Search Report and Written Opinion for PCT/US2018/029559 dated Aug. 3, 2018, 9 pp.
International Search Report and Written Opinion for PCT/US2018/039841 dated Sep. 20, 2018 by Australian Patent Office, 12 pp.
International Search Report and Written Opinion for PCT/US2018/065520 dated Mar. 20, 2019 by Australian Patent Office, 11 pp.
International Search Report and Written Opinion for PCT/US2018/068184 dated Mar. 19, 2019 by Australian Patent Office, 11 pp.
International Search Report and Written Opinion for PCT/US2019/024496 dated Jun. 20, 2019 by Australian Patent Office, 9 pp.
International Search Report and Written Opinion for PCT/US2019/34245 dated Aug. 9, 2019 by Australian Patent Office, 10 pp.
International Search Report and Written Opinion for PCT/US2019/50644 dated Dec. 4, 2019 by USPTO, 9 pp.
International Technology Roadmap for Semiconductors, 2007 Edition, “Assembly and Packaging,” 9 pages.
Kamagaing, et al., “Investigation of a photodefinable glass substrate for millimeter-wave radios on package,” Proceeds of the 2014 IEEE 64th Electronic Components and Technology Conference, May 27, 2014, pp. 1610-1615.
Akowicz, et al; “Advances in Surface-Enhanced Fluorescence”, J Fluorescence, (2004), 14:425-441.
Lewis, Sr., “Hawley's Condensed Chemical Dictionary.” 13th ed, 1997, John Wiley and Sons. p. 231.
Lin, C.H., et al., “Fabrication of Microlens Arrays in Photosensitive Glass by Femtosecond Laser Direct Writing,” Appl Phys A (2009) 97:751-757.
Livingston, F.E., et al., “Effect of Laser Parameters on the Exposure and Selective Etch Rate in Photostructurable Glass,” SPIE vol. 4637 (2002); pp. 404-412.
Lyon, L.A., et al., “Raman Spectroscopy,” Anal Chem (1998), 70:341R-361R.
Papapolymerou, I., et al., “Micromachined patch antennas,” IEEE Transactions on Antennas and Propagation, vol. 46, No. 2, 1998, pp. 275-283.
Perro, A., et al., “Design and synthesis of Janus micro- and nanoparticles,” J Mater Chem (2005), 15:3745-3760.
Quantum Leap, “Liquid Crystal Polymer (LCP) LDMOS Packages,” Quantum Leap Datasheet, (2004), mlconnelly.com/QLPKG.Final_LDMOS_DataSheet.pdf, 2 pages.
Scrantom, Charles Q., “LTCC Technology—Where We Are and Where We're Going—IV,” Jun. 2000, 12 pages.
TechNote #104, Bangs Laboratories, www.bangslabs.com/technotes/104.pdf, “Silica Microspheres”.
TechNote #201, Bangs Laboratories, www.bangslabs.com/technotes/201.pdf, “Working with Microspheres”.
TechNote #205, Bangs Laboratories, www.bangslabs.com/technotes/205.pdf, “Covalent Coupling”.
Wang, et al. “Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing” Applied Physics A, vol. 88, 2007, pp. 699-704, DOI:10.1007/S00339-007-4030-9.
Zhang, H., et al., “Biofunctionalized Nanoarrays of Inorganic Structures Prepared by Dip-Pen Nanolithography,” Nanotechnology (2003), 14:1113-1117.
Zhang, H., et al., Synthesis of Hierarchically Porous Silica and Metal Oxide Beads Using Emulsion—Templated Polymer Scaffolds, Chem Mater (2004), 16:4245-4256.
Chou, et al., “Design and Demonstration of Micro-mirrors and Lenses for Low Loss and Low Cost Single-Mode Fiber Coupling in 3D Glass Photonic Interposers,” 2016 IEEE 66th Electronic Components and Technology Conference, May 31-Jun. 3, 7 pp.
European Search Report and Supplemental European Search Report for EP 18828907 dated Mar. 25, 2020, 11 pp.
International Search Report and Written Opinion for PCT/US2019/068586 dated Mar. 12, 2020 by USPTO, 10 pp.
International Search Report and Written Opinion for PCT/US2019/068590 dated Mar. 5, 2020 by USPTO, 9 pp.
International Search Report and Written Opinion for PCT/US2019/068593 dated Mar. 16, 2020 by USPTO, 8 pp.
Topper, et al., “Development of a high density glass interposer based on wafer level packaging technologies,” 2014 IEEE 64th Electronic Components and Technology Conference, May 27, 2014, pp. 1498-1503.
Aslan, et al., “Metal-Enhanced Fluorescence: an emerging tool in biotechnology” Current opinion in Biotechnology (2005), 16:55-62.
Azad, I., et al., “Design and Performance Analysis of 2.45 GHz Microwave Bandpass Filter with Reduced Harmonics,” International Journal of Engineering Research and Development (2013), 5(11):57-67.
Bakir, Muhannad S., et al., “Revolutionary Nanosilicon Ancillary Technologies for Ultimate-Performance Gigascale Systems,” IEEE 2007 Custom Integrated Circuits Conference (CICC), 2007, pp. 421-428.
Beke, S., et al., “Fabrication of Transparent and Conductive Microdevices,” Journal of Laser Micro/Nanoengineering (2012), 7(1):28-32.
Brusberg, et al. “Thin Glass Based Packaging Technologies for Optoelectronic Modules” Electronic Components and Technology Conference, May 26-29, 2009, pp. 207-212, DOI:10.1109/ECTC.2009.5074018, pp. 208-211; Figures 3, 8.
Cheng, et al. “Three-dimensional Femtosecond Laser Integration in Glasses” The Review of Laser Engineering, vol. 36, 2008, pp. 1206-1209, Section 2, Subsection 3.1.
Chowdhury, et al., “Metal-Enhanced Chemiluminescence”, J Fluorescence (2006), 16:295-299.
Crawford, Gregory P., “Flexible Flat Panel Display Technology,” John Wiley and Sons, NY, (2005), 9 pages.
International Search Report and Written Opinion for PCT/US2020/28474 dated Jul. 17, 2020 by the USPTO, 7 pp.
Grine, F et al., “High-Q Substrate Integrated Waveguide Resonator Filter With Dielectric Loading,” IEEE Access vol. 5, Jul. 12, 2017, pp. 12526-12532.
Hyeon, I-J, et al., “Millimeter-Wave Substrate Integrated Waveguide Using Micromachined Tungsten-Coated Through Glass Silicon Via Structures,” Micromachines, vol. 9, 172 Apr. 9, 2018, 9 pp.
International Search Report and Written Opinion for PCT/US2020/026673 dated Jun. 22, 2020, by the USPTO, 13 pp.
Mohamedelhassan, A., “Fabrication of Ridge Waveguides in Lithium Niobate,” Independent thesis Advanced evel, KTH, School of Engineering Sciences, Physics, 2012, 68 pp.
Muharram, B., Thesis from University of Calgary Graduate Studies, “Substrate-Integrated Waveguide Based Antenna in Remote Respiratory Sensing,” 2012, 97 pp.
International Search Report and Written Opinion for PCT/US2021/21371 dated May 20, 2021 by the USPTO, 10 pp.
Extended European Search Report for EP 19906040.1 dated Feb. 4, 2022, 16 pp.
Extended European Search Report for EP 20792242.8 dated May 3, 2022, 10 pp.
Kim, Dongsu, et al., “A Compact and Low-profile GaN Power Amplifier Using Interposer-based MMCI Technology,” 2014 IEEE 16th Electronics Packaging Technology Conference, pp. 672-675.
International Search Report and Written Opinion for PCT/US2021/27499 dated Jun. 16, 2021 by the USPTO, 7 pp.
European Search Report and Supplemental European Search Report for EP 19905255.6 dated Aug. 4, 2022, 8 pp.
European Search Report and Supplemental European Search Report for EP 20783596.8 dated Oct. 26, 2022, 13 pp.
European Search Report and Supplemental European Search Report for EP 20877664.1 dated Oct. 28, 2022, 10 pp.
Flemming, J.H., et al., “Cost Effective 3D Glass Microfabrication for Advanced RF Packages,” Microwave Journal, Apr. 14, 2014, 12 pp.
Foster, T., “High-Q RF Devices in APEX Glass,” Jun. 21, 2018, https://nanopdf.com/download/high-q-rf-devices-in-apex-glass_pdf, retrieved on Oct. 3, 2022, 8 pp.
International Search Report and Written Opinion for PCT/US2022/31993 dated Sep. 9, 2022 by the USPTO, 9 pp.
International Search Report and Written Opinion for PCT/US2022/29442 dated Oct. 6, 2022 by the USPTO, 20 pp.
International Search Report and Written Opinion for PCT/US2022/42516 dated Feb. 3, 2023 by the USPTO, 22 pp.
International Search Report and Written Opinion for PCT/US2023/010118 dated Apr. 5, 2023 by the USPTO, 12 pp.
Supplementary European Search Repor for EP 21768296.2 dated May 5, 2023, 10 pp.
European Search Report and Supplemental European Search Report for EP 21787618.4 dated Jul. 28, 2023, 10 pp.
International Search Report and Written Opinion for PCT/US2023/064364 dated Sep. 27, 2023, by USPTO 11 ps.
International Search Report and Written Opinion for PCT/US2023/17311 dated Aug. 14, 2023 by the USPTO, 16 pp.
Related Publications (1)
Number Date Country
20200243248 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
61988615 May 2014 US
Continuations (1)
Number Date Country
Parent 15308583 US
Child 16850571 US