This invention is related in general to digital processing architectures and more specifically to the use of an adaptable data path using register files to efficiently implement digital signal processing operations.
Digital Signal Processing (DSP) calculations require many iterations of fast multiply-accumulate and other operations. Typically, the actual operations are accomplished by “functional units” such as multipliers, adders, accumulators, shifters, etc. The functional units obtain values, or operands, from a fast main memory such as Random Access Memory (RAM). The DSP system can be included within a chip that resides in a device such as a consumer electronic device, computer, etc.
The design of a DSP chip can be targeted for specific DSP applications. For example, in a cellular telephone, a DSP chip may be optimized for Time-Division Multiple Access (TDMA) processing. A Voice-Over-Internet Protocol (VOIP) application may require vocoding operations, and so on. It is desirable for a chip manufacturer to provide a single chip design that can be adapted to different DSP applications. Such a chip is often described as an adaptable, or configurable, design.
One aspect of an adaptable design for a DSP chip includes allowing flexible and configurable routing between the different functional units, memory and other components such as registers, input/output and other resources on the chip. A traditional approach to providing flexible routing uses a data bus. Such an approach is shown in
In
Values can also be provided between functional unit blocks by using the data path bus. Another resource is register file 60 provided on data path bus 36 by register file interface 50. Register file 60 includes a bank of fast registers, or fast RAM. Register file interface 50 allows values from data path bus 36 to be exchanged with the register file. Typically, any register or memory location within register file 60 can be placed on data path bus 36 within the same amount of time (e.g., a single cycle). One way to do this is to provide an address to a location in the register file, either on the data path bus, itself or by using a separate set of address lines. This approach is very flexible in that any value in a component of a functional unit block can be transferred to any location within the register file and vice versa.
However, a drawback with the approach of
Thus, it is desirable to provide an interconnection scheme for digital processor applications that improves over one or more of the above, or other, shortcomings in the prior art.
The present invention uses dedicated groups of configurable data path lines to transfer data values from a main memory to functional units. Each group of data path lines includes a register file dedicated for storage for each group of lines. Functional units can obtain values from, and store values to, main memory and can transfer values among the registers and among other functional units by using the dedicated groups of data path lines and a data address generator (DAG).
DAG circuitry interfaces each group of datapath lines to a main memory bus. Each DAG is controllable to select a value of varying bit width from the memory bus, or to select a value from another group of data path lines. In a preferred embodiment, eight groups of 16 data path lines are used. Each group includes a register file of eight 16-bit words on each group of 16 data path lines. Registers can hold a value onto their associated group of data path lines so that the value is available at a later time on the lines without the need to do a later data fetch.
In one embodiment the invention provides a data path circuit in a digital processing device, wherein the data path circuit is coupled to a memory bus for obtaining values from a memory, the data path circuit comprising a first plurality of data lines; a first data address generator for coupling the first plurality of data lines to the memory bus so that a value from the memory transferred by the memory bus can be placed onto the first plurality of data lines; one or more functional units for performing a digital operation coupled to the plurality of data lines; and a register coupled to the first plurality of data lines, wherein the register selectively stores a value from the first plurality of data lines so that the value is selectively available on the first plurality of data lines.
Another aspect of the invention provides both general and direct data paths between array multipliers and accumulators. Banks of accumulators are coupled to the groups of configurable data path lines and are also provided with direct lines to the multipliers. An embodiment of the invention provides a digital processing system comprising a multiplier; an accumulator; a configurable data path coupled to the multiplier and the accumulator; and a direct data path coupled between the multiplier and the accumulator.
A preferred embodiment of the invention is incorporated into a node referred to as a Adaptable Node (RXN) in a adaptive computing engine (ACE) manufactured by Quicksilver, Inc., of San Jose, Calif. Details of the ACE engine and RXN node can be found in the priority and related patent applications reference above. Aspects of the invention described herein are adaptable for use with any generalized digital processing system, such as a system adapted for digital signal processing or other types of processing.
In
Each group of 32 lines includes two subgroups of 16 lines each. Each subgroup is connected to a register file of eight 16-bit words. For example, DAG 120 is connected to register files 180 and 182. DAG 122 is connected to register files 184 and 186. Similarly, DAGs 124 and 126 are connected to register files 188, 190 and 192, 194, respectively. Naturally, other embodiments can use any number of DAGs, groups, and subgroups register files. Although specific bit widths, numbers of lines, components, etc., and specific connectivity are described, many variations are possible and are within the scope of the invention. Although the DAGs play a major role in the preferred embodiment, other embodiments can use other types of interfacing to the main memory bus. Although the DAGs provide a high degree of configurable routing options (as discussed below), other embodiments can vary in the degree of configurability, and in the specific configuration options and control methods. In some cases, simple registers, register files, multiplexers or other components might be used in place of the DAGs of the present invention.
The use of register files on each of the discrete subgroup lines simplifies the interconnection architecture from that of the more generalized bus and multiport register file shown in
Groups of data path lines 200 are used to transfer data from memory bus 110 to functional units within blocks 130 and 132, and also to transfer data among the functional units, themselves. The functional unit blocks are essentially the same so only block 130 is discussed in detail. Functional units include Programmable Array Multipliers (PAMs) 140, accumulators (and shift registers) 150, data cache 160 and Arithmetic/Logic Units (ALUs) 170 and 172. Naturally, the functional units used in any specific embodiment can vary in number and type from that shown in
Functional units are connected to the data path line groups via multiplexers and demultiplexers such as 210 and 220, respectively. Inputs and Outputs (I/Os) from the functional units can, optionally, use multiplexing to more than one subgroup of data path lines; or an I/O can be connected directly to one subgroup. A preferred embodiment uses pipeline registers between I/O ports and data path lines, as shown by boxes labeled “p” in
Table I, below, shows DAG operations. The configuration of the data path from cycle to cycle is set by a control word, or words obtained from the main memory bus in accordance with controller modules such as a hardware task manager, scheduler and other processes and components not shown in
For dag-op: 0x00 to 0x0A, 0x0C and 0x12 the DAG operation format of Table II applies. The address field is divided into action and context as shown.
Action
The ‘action’ field describes the address modification/generation process using a set of registers (base, limit, index and delta) pointed to by the ‘context’ field.
Context
The ‘context’ field is used to point at a specific DAG setting (base, limit, index and delta) on which an ‘action’ is performed or a DAG register is accessed (II)
For convenience, an ACTION function is defined according to the action table—ACTION (action, context) where ‘action’ and ‘context’ refer to the DAG operation fields. This function is used in the individual DAG operation descriptions.
(II) For dag-op: 0x0D to 0x11 the following DAG operation format applies:
The ‘dag-reg’ field is used to identify a specific 16-bit register (base or limit or index or delta) within a DAG ‘context’ as specified by the dag-reg table (below)
For operations 0x0E and 0x0F, the dag-reg field is used to address 2 DAG registers—base and limit or index and delta or a write buffer location. In this case, the ‘dag-reg’ table is as follows:
(III) For dag-op: 0x0B, 0x13, 0x14, and 0x16 the following DAG operation format applies:
The address field in this case is unused, which is represented as “0” in the RXN.
(IV) For dag-op: 0x15 the following DAG operation format applies;
The ‘T-frl/brl’ field is used to choose between the translation frl and the translation brl
The T-frl and T-brl each have 5 32-bit locations. The ‘idx’ field is used to address these five locations
Pred
The universal ‘pred’ field along with the ‘s’ bit determines whether a DAG operation is executed or not executed. When a DAG operation is ‘not executed’ due to its predication, the last executed DAG operation executes again.
Although the invention has been discussed with respect to specific embodiments thereof, these embodiments are merely illustrative, and not restrictive, of the invention. For example, although the node has been described as part of an adaptive computing machine, or environment, aspects of the filter node design, processing and functions can be used with other types of systems. In general, the number of lines and specific interconnections can vary in different embodiments. Specific components, e.g., the data address generator, can be implemented in different ways in different designs. Components may be omitted, substituted or implemented with one or more of the same or different components. For example, a data address generator can be substituted with a general register, or it can be a different component responsive to a control word. Many variations are possible.
Thus, the scope of the invention is to be determined solely by the claims.
This application is a continuation of U.S. application Ser. No. 11/800,577, filed May 3, 2007, which is a continuation of U.S. application Ser. No. 10/626,833, filed Jul. 23, 2003, which claims the benefit of U.S. Provisional Application No. 60/422,063, filed Oct. 28, 2002, each of the aforementioned applications are incorporated by reference herein. This application is related to the following co-pending U.S. Patent Applications that are each incorporated by reference as if set forth in full in this application: “Input Pipeline Registers For A Node In An Adaptive Computing Engine,” Ser. No. 10/626,479, filed Jul. 23, 2003; “Cache For Instruction Set Architecture Using Indexes To Achieve Compression”, Ser. No. 11/628,083, filed Jul. 24, 2003; “Method For Ordering Operations For Scheduling By A Modulo Scheduler For Processors With A Large Number Of Function Units And Reconfigurable Data Paths”, Ser. No. 10/146,857, filed on May 15, 2002; “Uniform Interface For A Functional Node In An Adaptive Computing Engine”, Ser. No. 10/443,554, filed on May 21, 2003; “Hardware Task Manager For Adaptive Computing”, Ser. No. 10/443,501, filed on May 21, 2003; and “Adaptive Integrated Circuitry With Heterogeneous And Reconfigurable Matrices Of Diverse And Adaptive Computational Units Having Fixed, Application Specific Computational Elements”, Ser. No. 09/815,122, filed on Mar. 22, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3409175 | Byrne | Nov 1968 | A |
3666143 | Weston | May 1972 | A |
3938639 | Birrell | Feb 1976 | A |
3949903 | Benasutti et al. | Apr 1976 | A |
3960298 | Birrell | Jun 1976 | A |
3967062 | Dobias | Jun 1976 | A |
3991911 | Shannon et al. | Nov 1976 | A |
3995441 | McMillin | Dec 1976 | A |
4076145 | Zygiel | Feb 1978 | A |
4143793 | McMillin et al. | Mar 1979 | A |
4172669 | Edelbach | Oct 1979 | A |
4174872 | Fessler | Nov 1979 | A |
4181242 | Zygiel et al. | Jan 1980 | A |
RE30301 | Zygiel | Jun 1980 | E |
4218014 | Tracy | Aug 1980 | A |
4222972 | Caldwell | Sep 1980 | A |
4237536 | Enelow et al. | Dec 1980 | A |
4252253 | Shannon | Feb 1981 | A |
4302775 | Widergren et al. | Nov 1981 | A |
4333587 | Fessler et al. | Jun 1982 | A |
4354613 | Desai et al. | Oct 1982 | A |
4377246 | McMillin et al. | Mar 1983 | A |
4393468 | New | Jul 1983 | A |
4413752 | McMillin et al. | Nov 1983 | A |
4458584 | Annese et al. | Jul 1984 | A |
4466342 | Basile et al. | Aug 1984 | A |
4475448 | Shoaf et al. | Oct 1984 | A |
4509690 | Austin et al. | Apr 1985 | A |
4520950 | Jeans | Jun 1985 | A |
4549675 | Austin | Oct 1985 | A |
4553573 | McGarrah | Nov 1985 | A |
4560089 | McMillin et al. | Dec 1985 | A |
4577782 | Fessler | Mar 1986 | A |
4578799 | Scholl et al. | Mar 1986 | A |
RE32179 | Sedam et al. | Jun 1986 | E |
4633386 | Terepin | Dec 1986 | A |
4658988 | Hassell | Apr 1987 | A |
4694416 | Wheeler et al. | Sep 1987 | A |
4711374 | Gaunt et al. | Dec 1987 | A |
4713755 | Worley, Jr. et al. | Dec 1987 | A |
4719056 | Scott | Jan 1988 | A |
4726494 | Scott | Feb 1988 | A |
4747516 | Baker | May 1988 | A |
4748585 | Chiarulli et al. | May 1988 | A |
4760525 | Webb | Jul 1988 | A |
4760544 | Lamb | Jul 1988 | A |
4765513 | McMillin et al. | Aug 1988 | A |
4766548 | Cedrone et al. | Aug 1988 | A |
4781309 | Vogel | Nov 1988 | A |
4800492 | Johnson et al. | Jan 1989 | A |
4811214 | Nosenchuck et al. | Mar 1989 | A |
4824075 | Holzboog | Apr 1989 | A |
4827426 | Patton et al. | May 1989 | A |
4850269 | Hancock et al. | Jul 1989 | A |
4856684 | Gerstung | Aug 1989 | A |
4901887 | Burton | Feb 1990 | A |
4921315 | Metcalfe et al. | May 1990 | A |
4930666 | Rudick | Jun 1990 | A |
4932564 | Austin et al. | Jun 1990 | A |
4936488 | Austin | Jun 1990 | A |
4937019 | Scott | Jun 1990 | A |
4960261 | Scott et al. | Oct 1990 | A |
4961533 | Teller et al. | Oct 1990 | A |
4967340 | Dawes | Oct 1990 | A |
4974643 | Bennett et al. | Dec 1990 | A |
4982876 | Scott | Jan 1991 | A |
4993604 | Gaunt et al. | Feb 1991 | A |
5007560 | Sassak | Apr 1991 | A |
5021947 | Campbell et al. | Jun 1991 | A |
5040106 | Maag | Aug 1991 | A |
5044171 | Farkas | Sep 1991 | A |
5090015 | Dabbish et al. | Feb 1992 | A |
5129549 | Austin | Jul 1992 | A |
5139708 | Scott | Aug 1992 | A |
5156301 | Hassell et al. | Oct 1992 | A |
5156871 | Goulet et al. | Oct 1992 | A |
5165575 | Scott | Nov 1992 | A |
5190083 | Gupta et al. | Mar 1993 | A |
5190189 | Zimmer et al. | Mar 1993 | A |
5193151 | Jain | Mar 1993 | A |
5193718 | Hassell et al. | Mar 1993 | A |
5202993 | Tarsy et al. | Apr 1993 | A |
5203474 | Haynes | Apr 1993 | A |
5240144 | Feldman | Aug 1993 | A |
5261099 | Bigo et al. | Nov 1993 | A |
5263509 | Cherry et al. | Nov 1993 | A |
5269442 | Vogel | Dec 1993 | A |
5280711 | Motta et al. | Jan 1994 | A |
5297400 | Benton et al. | Mar 1994 | A |
5301100 | Wagner | Apr 1994 | A |
5303846 | Shannon | Apr 1994 | A |
5335276 | Thompson et al. | Aug 1994 | A |
5339428 | Burmeister et al. | Aug 1994 | A |
5343716 | Swanson et al. | Sep 1994 | A |
5361362 | Benkeser et al. | Nov 1994 | A |
5368198 | Goulet | Nov 1994 | A |
5379343 | Grube et al. | Jan 1995 | A |
5381546 | Servi et al. | Jan 1995 | A |
5381550 | Jourdenais et al. | Jan 1995 | A |
5388212 | Grube et al. | Feb 1995 | A |
5392960 | Kendt et al. | Feb 1995 | A |
5437395 | Bull et al. | Aug 1995 | A |
5450557 | Kopp et al. | Sep 1995 | A |
5454406 | Rejret et al. | Oct 1995 | A |
5465368 | Davidson et al. | Nov 1995 | A |
5479055 | Eccles | Dec 1995 | A |
5490165 | Blakeney, II et al. | Feb 1996 | A |
5491823 | Ruttenberg | Feb 1996 | A |
5507009 | Grube et al. | Apr 1996 | A |
5515519 | Yoshioka et al. | May 1996 | A |
5517600 | Shimokawa | May 1996 | A |
5519694 | Brewer et al. | May 1996 | A |
5522070 | Sumimoto | May 1996 | A |
5530964 | Alpert et al. | Jun 1996 | A |
5534796 | Edwards | Jul 1996 | A |
5542265 | Rutland | Aug 1996 | A |
5553755 | Bonewald et al. | Sep 1996 | A |
5555417 | Odnert et al. | Sep 1996 | A |
5560028 | Sachs et al. | Sep 1996 | A |
5560038 | Haddock | Sep 1996 | A |
5570587 | Kim | Nov 1996 | A |
5572572 | Kawan et al. | Nov 1996 | A |
5590353 | Sakakibara et al. | Dec 1996 | A |
5594657 | Cantone et al. | Jan 1997 | A |
5600810 | Ohkami | Feb 1997 | A |
5600844 | Shaw et al. | Feb 1997 | A |
5602833 | Zehavi | Feb 1997 | A |
5603043 | Taylor et al. | Feb 1997 | A |
5607083 | Vogel et al. | Mar 1997 | A |
5608643 | Wichter et al. | Mar 1997 | A |
5611867 | Cooper et al. | Mar 1997 | A |
5623545 | Childs et al. | Apr 1997 | A |
5625669 | McGregor et al. | Apr 1997 | A |
5626407 | Westcott | May 1997 | A |
5630206 | Urban et al. | May 1997 | A |
5635940 | Hickman et al. | Jun 1997 | A |
5646544 | Iadanza | Jul 1997 | A |
5646545 | Trimberger et al. | Jul 1997 | A |
5647512 | Assis Mascarenhas de Oliveira et al. | Jul 1997 | A |
5667110 | McCann et al. | Sep 1997 | A |
5684793 | Kiema et al. | Nov 1997 | A |
5684980 | Casselman | Nov 1997 | A |
5687236 | Moskowitz et al. | Nov 1997 | A |
5694613 | Suzuki | Dec 1997 | A |
5694794 | Jerg et al. | Dec 1997 | A |
5699328 | Ishizaki et al. | Dec 1997 | A |
5701482 | Harrison et al. | Dec 1997 | A |
5704053 | Santhanam | Dec 1997 | A |
5706191 | Bassett et al. | Jan 1998 | A |
5706976 | Purkey | Jan 1998 | A |
5712996 | Schepers | Jan 1998 | A |
5720002 | Wang | Feb 1998 | A |
5721693 | Song | Feb 1998 | A |
5721854 | Ebicioglu et al. | Feb 1998 | A |
5732563 | Bethuy et al. | Mar 1998 | A |
5734808 | Takeda | Mar 1998 | A |
5737631 | Trimberger | Apr 1998 | A |
5742180 | DeHon et al. | Apr 1998 | A |
5742821 | Prasanna | Apr 1998 | A |
5745366 | Highma et al. | Apr 1998 | A |
RE35780 | Hassell et al. | May 1998 | E |
5751295 | Becklund et al. | May 1998 | A |
5754227 | Fukuoka | May 1998 | A |
5758261 | Wiedeman | May 1998 | A |
5768561 | Wise | Jun 1998 | A |
5778439 | Trimberger et al. | Jul 1998 | A |
5784636 | Rupp | Jul 1998 | A |
5787237 | Reilly | Jul 1998 | A |
5790817 | Asghar et al. | Aug 1998 | A |
5791517 | Avital | Aug 1998 | A |
5791523 | Oh | Aug 1998 | A |
5794062 | Baxter | Aug 1998 | A |
5794067 | Kadowaki | Aug 1998 | A |
5802055 | Krein et al. | Sep 1998 | A |
5818603 | Motoyama | Oct 1998 | A |
5822308 | Weigand et al. | Oct 1998 | A |
5822313 | Malek et al. | Oct 1998 | A |
5822360 | Lee et al. | Oct 1998 | A |
5828858 | Athanas et al. | Oct 1998 | A |
5829085 | Jerg et al. | Nov 1998 | A |
5835753 | Witt | Nov 1998 | A |
5838165 | Chatter | Nov 1998 | A |
5845815 | Vogel | Dec 1998 | A |
5860021 | Klingman | Jan 1999 | A |
5862961 | Motta et al. | Jan 1999 | A |
5870427 | Teidemann, Jr. et al. | Feb 1999 | A |
5873045 | Lee et al. | Feb 1999 | A |
5881106 | Cartier | Mar 1999 | A |
5884284 | Peters et al. | Mar 1999 | A |
5886537 | Macias et al. | Mar 1999 | A |
5887174 | Simons et al. | Mar 1999 | A |
5889816 | Agrawal et al. | Mar 1999 | A |
5890014 | Long | Mar 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5892961 | Trimberger | Apr 1999 | A |
5894473 | Dent | Apr 1999 | A |
5901884 | Goulet et al. | May 1999 | A |
5903886 | Heimlich et al. | May 1999 | A |
5907285 | Toms et al. | May 1999 | A |
5907580 | Cummings | May 1999 | A |
5910733 | Bertolet et al. | Jun 1999 | A |
5912572 | Graf, III | Jun 1999 | A |
5913172 | McCabe et al. | Jun 1999 | A |
5917852 | Butterfield et al. | Jun 1999 | A |
5920801 | Thomas et al. | Jul 1999 | A |
5931918 | Row et al. | Aug 1999 | A |
5933642 | Greenbaum et al. | Aug 1999 | A |
5933855 | Rubinstein | Aug 1999 | A |
5940438 | Poon et al. | Aug 1999 | A |
5949415 | Lin et al. | Sep 1999 | A |
5950011 | Albrecht et al. | Sep 1999 | A |
5950131 | Vilmur | Sep 1999 | A |
5951674 | Moreno | Sep 1999 | A |
5953322 | Kimball | Sep 1999 | A |
5956518 | DeHon et al. | Sep 1999 | A |
5956967 | Kim | Sep 1999 | A |
5959811 | Richardson | Sep 1999 | A |
5959881 | Trimberger et al. | Sep 1999 | A |
5963048 | Harrison et al. | Oct 1999 | A |
5966534 | Cooke et al. | Oct 1999 | A |
5970254 | Cooke et al. | Oct 1999 | A |
5987105 | Jenkins et al. | Nov 1999 | A |
5987611 | Freund | Nov 1999 | A |
5991302 | Berl et al. | Nov 1999 | A |
5991308 | Fuhrmann et al. | Nov 1999 | A |
5993739 | Lyon | Nov 1999 | A |
5999734 | Willis et al. | Dec 1999 | A |
6005943 | Cohen et al. | Dec 1999 | A |
6006249 | Leong | Dec 1999 | A |
6016395 | Mohamed | Jan 2000 | A |
6021186 | Suzuki et al. | Feb 2000 | A |
6021492 | May | Feb 2000 | A |
6023742 | Ebeling et al. | Feb 2000 | A |
6023755 | Casselman | Feb 2000 | A |
6028610 | Deering | Feb 2000 | A |
6036166 | Olson | Mar 2000 | A |
6039219 | Bach et al. | Mar 2000 | A |
6041322 | Meng et al. | Mar 2000 | A |
6041970 | Vogel | Mar 2000 | A |
6046603 | New | Apr 2000 | A |
6047115 | Mohan et al. | Apr 2000 | A |
6052600 | Fette et al. | Apr 2000 | A |
6055314 | Spies et al. | Apr 2000 | A |
6056194 | Kolls | May 2000 | A |
6059840 | Click, Jr. | May 2000 | A |
6061580 | Altschul et al. | May 2000 | A |
6073132 | Gehman | Jun 2000 | A |
6076174 | Freund | Jun 2000 | A |
6078736 | Guccione | Jun 2000 | A |
6085740 | Ivri et al. | Jul 2000 | A |
6088043 | Kelleher et al. | Jul 2000 | A |
6091263 | New et al. | Jul 2000 | A |
6091765 | Pietzold, III et al. | Jul 2000 | A |
6094065 | Tavana et al. | Jul 2000 | A |
6094726 | Gonion et al. | Jul 2000 | A |
6111893 | Volftsun et al. | Aug 2000 | A |
6111935 | Hughes-Hartogs | Aug 2000 | A |
6115751 | Tam et al. | Sep 2000 | A |
6120551 | Law et al. | Sep 2000 | A |
6122670 | Bennett et al. | Sep 2000 | A |
6138693 | Matz | Oct 2000 | A |
6141283 | Bogin et al. | Oct 2000 | A |
6150838 | Wittig et al. | Nov 2000 | A |
6154494 | Sugahara et al. | Nov 2000 | A |
6157997 | Oowaki et al. | Dec 2000 | A |
6175854 | Bretscher | Jan 2001 | B1 |
6175892 | Sazzad et al. | Jan 2001 | B1 |
6181981 | Varga et al. | Jan 2001 | B1 |
6185418 | MacLellan et al. | Feb 2001 | B1 |
6192070 | Poon et al. | Feb 2001 | B1 |
6192255 | Lewis et al. | Feb 2001 | B1 |
6192388 | Cajolet | Feb 2001 | B1 |
6195788 | Leaver et al. | Feb 2001 | B1 |
6198924 | Ishii et al. | Mar 2001 | B1 |
6199181 | Rechef et al. | Mar 2001 | B1 |
6202130 | Scales, III et al. | Mar 2001 | B1 |
6219697 | Lawande et al. | Apr 2001 | B1 |
6219756 | Kasamizugami | Apr 2001 | B1 |
6219780 | Lipasti | Apr 2001 | B1 |
6223222 | Fijolek et al. | Apr 2001 | B1 |
6226387 | Tewfik et al. | May 2001 | B1 |
6230307 | Davis et al. | May 2001 | B1 |
6237029 | Master et al. | May 2001 | B1 |
6246883 | Lee | Jun 2001 | B1 |
6247125 | Noel-Baron et al. | Jun 2001 | B1 |
6249251 | Chang et al. | Jun 2001 | B1 |
6258725 | Lee et al. | Jul 2001 | B1 |
6263057 | Silverman | Jul 2001 | B1 |
6266760 | DeHon et al. | Jul 2001 | B1 |
6272579 | Lentz et al. | Aug 2001 | B1 |
6281703 | Furuta et al. | Aug 2001 | B1 |
6282627 | Wong et al. | Aug 2001 | B1 |
6289375 | Knight et al. | Sep 2001 | B1 |
6289434 | Roy | Sep 2001 | B1 |
6289488 | Dave et al. | Sep 2001 | B1 |
6292822 | Hardwick | Sep 2001 | B1 |
6292827 | Raz | Sep 2001 | B1 |
6292830 | Taylor et al. | Sep 2001 | B1 |
6301653 | Mohamed et al. | Oct 2001 | B1 |
6305014 | Roediger et al. | Oct 2001 | B1 |
6311149 | Ryan et al. | Oct 2001 | B1 |
6321985 | Kolls | Nov 2001 | B1 |
6346824 | New | Feb 2002 | B1 |
6347346 | Taylor | Feb 2002 | B1 |
6349394 | Brock et al. | Feb 2002 | B1 |
6353841 | Marshall et al. | Mar 2002 | B1 |
6356994 | Barry et al. | Mar 2002 | B1 |
6359248 | Mardi | Mar 2002 | B1 |
6360256 | Lim | Mar 2002 | B1 |
6360259 | Bradley | Mar 2002 | B1 |
6360263 | Kurtzberg et al. | Mar 2002 | B1 |
6363411 | Dugan et al. | Mar 2002 | B1 |
6366999 | Drabenstott et al. | Apr 2002 | B1 |
6377983 | Cohen et al. | Apr 2002 | B1 |
6378072 | Collins et al. | Apr 2002 | B1 |
6381735 | Hunt | Apr 2002 | B1 |
6385751 | Wolf | May 2002 | B1 |
6405214 | Meade, II | Jun 2002 | B1 |
6408039 | Ito | Jun 2002 | B1 |
6410941 | Taylor et al. | Jun 2002 | B1 |
6411612 | Halford et al. | Jun 2002 | B1 |
6421372 | Bierly et al. | Jul 2002 | B1 |
6421809 | Wuytack et al. | Jul 2002 | B1 |
6430624 | Jamtgaard et al. | Aug 2002 | B1 |
6433578 | Wasson | Aug 2002 | B1 |
6434590 | Blelloch et al. | Aug 2002 | B1 |
6438737 | Morelli et al. | Aug 2002 | B1 |
6456996 | Crawford, Jr. et al. | Sep 2002 | B1 |
6459883 | Subramanian et al. | Oct 2002 | B2 |
6473609 | Schwartz et al. | Oct 2002 | B1 |
6507947 | Schreiber et al. | Jan 2003 | B1 |
6510138 | Pannell | Jan 2003 | B1 |
6510510 | Garde | Jan 2003 | B1 |
6538470 | Langhammer et al. | Mar 2003 | B1 |
6556044 | Langhammer et al. | Apr 2003 | B2 |
6563891 | Eriksson et al. | May 2003 | B1 |
6570877 | Kloth et al. | May 2003 | B1 |
6577678 | Scheuermann | Jun 2003 | B2 |
6587684 | Hsu et al. | Jul 2003 | B1 |
6590415 | Agrawal et al. | Jul 2003 | B2 |
6601086 | Howard et al. | Jul 2003 | B1 |
6601158 | Abbott et al. | Jul 2003 | B1 |
6604085 | Kolls | Aug 2003 | B1 |
6606529 | Crowder, Jr. et al. | Aug 2003 | B1 |
6615333 | Hoogerbrugge et al. | Sep 2003 | B1 |
6618434 | Heidari-Bateni et al. | Sep 2003 | B2 |
6640304 | Ginter et al. | Oct 2003 | B2 |
6653859 | Sihlbom et al. | Nov 2003 | B2 |
6662260 | Wertheim et al. | Dec 2003 | B1 |
6675265 | Barroso et al. | Jan 2004 | B2 |
6691148 | Zinky et al. | Feb 2004 | B1 |
6711617 | Bantz et al. | Mar 2004 | B1 |
6718182 | Kung | Apr 2004 | B1 |
6721286 | Williams et al. | Apr 2004 | B1 |
6721884 | De Oliveira Kastrup Pereira et al. | Apr 2004 | B1 |
6732354 | Ebeling et al. | May 2004 | B2 |
6735621 | Yoakum et al. | May 2004 | B1 |
6738744 | Kirovski et al. | May 2004 | B2 |
6748360 | Pitman et al. | Jun 2004 | B2 |
6754470 | Hendrickson et al. | Jun 2004 | B2 |
6760587 | Holtzman et al. | Jul 2004 | B2 |
6766163 | Sharma et al. | Jul 2004 | B1 |
6778212 | Deng et al. | Aug 2004 | B1 |
6785341 | Walton et al. | Aug 2004 | B2 |
6819140 | Yamanaka et al. | Nov 2004 | B2 |
6823448 | Roth et al. | Nov 2004 | B2 |
6829633 | Gelfer et al. | Dec 2004 | B2 |
6832250 | Coons et al. | Dec 2004 | B1 |
6836839 | Master et al. | Dec 2004 | B2 |
6865664 | Budrovic et al. | Mar 2005 | B2 |
6871236 | Fishman et al. | Mar 2005 | B2 |
6883084 | Donohoe | Apr 2005 | B1 |
6894996 | Lee | May 2005 | B2 |
6901440 | Bimm et al. | May 2005 | B1 |
6912515 | Jackson et al. | Jun 2005 | B2 |
6985517 | Matsumoto et al. | Jan 2006 | B2 |
6986021 | Master et al. | Jan 2006 | B2 |
6988139 | Jervis et al. | Jan 2006 | B1 |
7032229 | Flores et al. | Apr 2006 | B1 |
7044741 | Leem | May 2006 | B2 |
7082456 | Mani-Meitav et al. | Jul 2006 | B2 |
7139910 | Ainsworth et al. | Nov 2006 | B1 |
7142731 | Toi | Nov 2006 | B1 |
7249242 | Ramchandran | Jul 2007 | B2 |
20010003191 | Kovacs et al. | Jun 2001 | A1 |
20010023482 | Wray | Sep 2001 | A1 |
20010029515 | Mirsky | Oct 2001 | A1 |
20010034795 | Moulton et al. | Oct 2001 | A1 |
20010039654 | Miyamoto | Nov 2001 | A1 |
20010048713 | Medlock et al. | Dec 2001 | A1 |
20010048714 | Jha | Dec 2001 | A1 |
20010050948 | Ramberg et al. | Dec 2001 | A1 |
20020010848 | Kamano et al. | Jan 2002 | A1 |
20020013799 | Blaker | Jan 2002 | A1 |
20020013937 | Ostanevich et al. | Jan 2002 | A1 |
20020015435 | Rieken | Feb 2002 | A1 |
20020015439 | Kohli et al. | Feb 2002 | A1 |
20020023210 | Tuomenoksa et al. | Feb 2002 | A1 |
20020024942 | Tsuneki et al. | Feb 2002 | A1 |
20020024993 | Subramanian et al. | Feb 2002 | A1 |
20020031166 | Subramanian et al. | Mar 2002 | A1 |
20020032551 | Zakiya | Mar 2002 | A1 |
20020035623 | Lawande et al. | Mar 2002 | A1 |
20020041581 | Aramaki | Apr 2002 | A1 |
20020042907 | Yamanaka et al. | Apr 2002 | A1 |
20020061741 | Leung et al. | May 2002 | A1 |
20020069282 | Reisman | Jun 2002 | A1 |
20020072830 | Hunt | Jun 2002 | A1 |
20020078337 | Moreau et al. | Jun 2002 | A1 |
20020083305 | Renard et al. | Jun 2002 | A1 |
20020083423 | Ostanevich et al. | Jun 2002 | A1 |
20020087829 | Snyder et al. | Jul 2002 | A1 |
20020089348 | Langhammer | Jul 2002 | A1 |
20020101909 | Chen et al. | Aug 2002 | A1 |
20020107905 | Roe et al. | Aug 2002 | A1 |
20020107962 | Richter et al. | Aug 2002 | A1 |
20020119803 | Bitterlich et al. | Aug 2002 | A1 |
20020120672 | Butt et al. | Aug 2002 | A1 |
20020138716 | Master et al. | Sep 2002 | A1 |
20020141489 | Imaizumi | Oct 2002 | A1 |
20020147845 | Sanchez-Herrero et al. | Oct 2002 | A1 |
20020159503 | Ramachandran | Oct 2002 | A1 |
20020162026 | Neuman et al. | Oct 2002 | A1 |
20020168018 | Scheuermann | Nov 2002 | A1 |
20020181559 | Heidari-Bateni et al. | Dec 2002 | A1 |
20020184291 | Hogenauer | Dec 2002 | A1 |
20020184498 | Qi | Dec 2002 | A1 |
20020191790 | Anand et al. | Dec 2002 | A1 |
20020199090 | Wilson | Dec 2002 | A1 |
20030007606 | Suder et al. | Jan 2003 | A1 |
20030012270 | Zhou et al. | Jan 2003 | A1 |
20030018446 | Makowski et al. | Jan 2003 | A1 |
20030018700 | Giroti et al. | Jan 2003 | A1 |
20030023830 | Hogenauer | Jan 2003 | A1 |
20030026242 | Jokinen et al. | Feb 2003 | A1 |
20030030004 | Dixon et al. | Feb 2003 | A1 |
20030046421 | Horvitz et al. | Mar 2003 | A1 |
20030061260 | Rajkumar | Mar 2003 | A1 |
20030061311 | Lo | Mar 2003 | A1 |
20030063656 | Rao et al. | Apr 2003 | A1 |
20030076815 | Miller et al. | Apr 2003 | A1 |
20030099223 | Chang et al. | May 2003 | A1 |
20030102889 | Master et al. | Jun 2003 | A1 |
20030105949 | Master et al. | Jun 2003 | A1 |
20030110485 | Lu et al. | Jun 2003 | A1 |
20030142818 | Raghunathan et al. | Jul 2003 | A1 |
20030154357 | Master et al. | Aug 2003 | A1 |
20030163723 | Kozuch et al. | Aug 2003 | A1 |
20030172138 | McCormack et al. | Sep 2003 | A1 |
20030172139 | Srinivasan et al. | Sep 2003 | A1 |
20030200538 | Ebeling et al. | Oct 2003 | A1 |
20030212684 | Meyer et al. | Nov 2003 | A1 |
20040006584 | Vandeweerd | Jan 2004 | A1 |
20040010645 | Scheuermann et al. | Jan 2004 | A1 |
20040015970 | Scheuermann | Jan 2004 | A1 |
20040025159 | Scheuermann et al. | Feb 2004 | A1 |
20040057505 | Valio | Mar 2004 | A1 |
20040062300 | McDonough et al. | Apr 2004 | A1 |
20040081248 | Parolari | Apr 2004 | A1 |
20040093479 | Ramchandran | May 2004 | A1 |
20040168044 | Ramchandran | Aug 2004 | A1 |
20050166038 | Wang et al. | Jul 2005 | A1 |
20050198199 | Dowling | Sep 2005 | A1 |
20060031660 | Master et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
100 18 374 | Oct 2001 | DE |
0 301 169 | Feb 1989 | EP |
0 166 586 | Jan 1991 | EP |
0 236 633 | May 1991 | EP |
0 478 624 | Apr 1992 | EP |
0 479 102 | Apr 1992 | EP |
0 661 831 | Jul 1995 | EP |
0 668 659 | Aug 1995 | EP |
0 690 588 | Jan 1996 | EP |
0 691 754 | Jan 1996 | EP |
0 768 602 | Apr 1997 | EP |
0 817 003 | Jan 1998 | EP |
0 821 495 | Jan 1998 | EP |
0 866 210 | Sep 1998 | EP |
0 923 247 | Jun 1999 | EP |
0 926 596 | Jun 1999 | EP |
1 056 217 | Nov 2000 | EP |
1 061 437 | Dec 2000 | EP |
1 061 443 | Dec 2000 | EP |
1 126 368 | Aug 2001 | EP |
1 150 506 | Oct 2001 | EP |
1 189 358 | Mar 2002 | EP |
2 067 800 | Jul 1981 | GB |
2 237 908 | May 1991 | GB |
62-249456 | Oct 1987 | JP |
63-147258 | Jun 1988 | JP |
4-51546 | Feb 1992 | JP |
7-064789 | Mar 1995 | JP |
7066718 | Mar 1995 | JP |
10233676 | Sep 1998 | JP |
10254696 | Sep 1998 | JP |
11296345 | Oct 1999 | JP |
2000315731 | Nov 2000 | JP |
2001-053703 | Feb 2001 | JP |
WO 8905029 | Jun 1989 | WO |
WO 8911443 | Nov 1989 | WO |
WO 9100238 | Jan 1991 | WO |
WO 9313603 | Jul 1993 | WO |
WO 9511855 | May 1995 | WO |
WO 9633558 | Oct 1996 | WO |
WO 9832071 | Jul 1998 | WO |
WO 9903776 | Jan 1999 | WO |
WO 9921094 | Apr 1999 | WO |
WO 9926860 | Jun 1999 | WO |
WO 9965818 | Dec 1999 | WO |
WO 0019311 | Apr 2000 | WO |
WO 0065855 | Nov 2000 | WO |
WO 0069073 | Nov 2000 | WO |
WO 0111281 | Feb 2001 | WO |
WO 0122235 | Mar 2001 | WO |
WO 0176129 | Oct 2001 | WO |
WO 0212978 | Feb 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20090327541 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
60422063 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11800577 | May 2007 | US |
Child | 12556894 | US | |
Parent | 10626833 | Jul 2003 | US |
Child | 11800577 | US |