1. Field of the Invention
This invention relates to a method of fabrication of semiconductor devices, and more particularly, to a method of providing extra metal routing in a gate portion of semiconductor devices.
2. Description of the Related Art
Combining both embedded DRAM memory and other components, such as high speed logic circuits, onto a single chip is often useful. In many embodiments, the DRAM memory components are fabricated in a central array portion of a semiconductor device while the logic circuits are fabricated in periphery portions of the semiconductor device. In some embodiments, faster speed is achieved, and bandwidth and capacitance problems are reduced when incorporating both memory and logic components on a single memory device, or chip.
In a typical memory device having both memory (array components) and logic (periphery components), the memory device often includes one or more local interconnects formed above the memory or logic components. The local interconnect may include metal routing between components of the memory device, either in the array or the periphery. Above the local interconnects, additional layers containing additional circuitry, such as logic components, memory contacts, or metal routing, may be formed. In some embodiments, a metal layer above the local interconnects comprises many of the metal routings used by the memory device.
As the density of components on a single memory device increases, the metal routing in the metal layer of the memory device also becomes increasingly dense and difficult to fabricate. Accordingly, there is an increasing need for systems and methods of incorporating additional routing in a memory device without increasing the size of the memory device.
In one embodiment, a method of forming additional metal routing in a semiconductor device comprising a memory array and a peripheral array comprises the steps of forming a plurality of transistors in at least one of the memory array and the peripheral array, wherein nitride caps are formed above each of the transistors, etching a portion of selected nitride caps, and depositing a metal film in the etched-away portions of the selected nitride caps in order to form additional metal routing.
In another embodiment, a semiconductor device comprises one or more gate structures each having a nitride cap, a metallization layer comprising metal routing, additional metal routing embedded in a selected group of the nitride caps, wherein the selected group of nitride caps are each partially etched in order to form a cavity in which a metal is deposited in order to form the extra metal routing, and one or more contacts between the metal routing in the metallization layer and the additional metal routing embedded in the nitride caps.
In another embodiment, a semiconductor device comprises a semiconductor substrate having an upper surface, a plurality of electronic devices formed on the semiconductor substrate, the plurality of electronic devices including at least a plurality of transistors, wherein the plurality of transistors includes a gate stack extending above the upper surface of the substrate, a gate conductor that interconnects the gates stacks of the plurality of transistors, wherein the gate conductor is surrounded by a protective isolation structure, a global insulative layer overlying the substrate, the plurality of electronic devices, and the gate conductor, at least one conductor layer having a plurality of conductive elements formed therein to interconnect selected ones of the plurality of electronic devices, wherein the conductive layer is formed in the global insulative layer so as to be positioned above the plurality of electronic devices, and a plurality of supplemental conductive elements formed in the protective isolation structure of the gate conductors, wherein the plurality of supplemental conductive elements are selectively coupled to the plurality of conductive elements in order to provide additional interconnection between the plurality of electronic devices without increasing a density of the conductive elements in the at least one conductor layer.
Embodiments of the invention will now be described with reference to the accompanying Figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner, simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described.
As discussed above, semiconductor memory devices, such as DRAM memory devices, for example, may include one or more metal layers above a local interconnect of the DRAM memory that make contact to lower gate regions of the memory device through vias in one or more insulating layers. However, due to the reduction in size of semiconductor components and increased circuit density, the density of the metal routing in these upper metal layers is becoming increasingly difficult to fabricate. As described in further detail below, by providing extra metal layers in lower memory regions, such as transistor gate regions, that may be coupled to the upper metal layers, the spacing requirements of the metal routing in the upper metal layers may be eased, while maintaining the size of the semiconductor device. In addition, the extra metal routing formed in the gate regions of the memory devices may be disposed parallel to other metal contacts and coupled to either end of the other metal contacts, such as buried digit lines, in order to reduce a resistance of the other metal contacts.
In one embodiment, each of the transistors 122A, 122P comprises a number of layers that are fabricated in any of a number of well known manners. In the exemplary transistors 122A, 122P, a gate oxide layer 123 comprising silicon dioxide, for example, is formed on the substrate 102. A layer 124 may be formed on the gate oxide layer 123. In one embodiment, the layer 124 comprises a doped polysilicon, which provides a wordline for the array transistors 122A. In exemplary
As illustrated in
Although described herein with respect to the periphery portion of a semiconductor device, extra metal routing may also be embedded into nitride caps of transistors in the array portion of semiconductor devices. Thus, additional metal routing may be implemented according to the systems and methods described herein in any portion of a semiconductor device.
The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.
This application is a divisional of U.S. patent application Ser. No. 11/331,951 filed Jan. 13, 2006 which is hereby incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
5798551 | Kikushima et al. | Aug 1998 | A |
5893734 | Jeng et al. | Apr 1999 | A |
5933725 | Kirsch et al. | Aug 1999 | A |
6107189 | Wald | Aug 2000 | A |
6281059 | Cheng et al. | Aug 2001 | B1 |
6326270 | Lee et al. | Dec 2001 | B1 |
6518153 | Lin et al. | Feb 2003 | B1 |
6551878 | Clampitt et al. | Apr 2003 | B2 |
6569758 | Jorger et al. | May 2003 | B2 |
6649510 | Lee | Nov 2003 | B2 |
6677650 | Fischer et al. | Jan 2004 | B2 |
6693025 | Tang et al. | Feb 2004 | B2 |
6730581 | Suguro | May 2004 | B2 |
6784472 | Iriyama et al. | Aug 2004 | B2 |
6784503 | Shimizu et al. | Aug 2004 | B2 |
6797600 | Manning | Sep 2004 | B2 |
7056794 | Ku et al. | Jun 2006 | B2 |
7355880 | Jin et al. | Apr 2008 | B1 |
7859112 | McDaniel et al. | Dec 2010 | B2 |
20020017692 | Shimizu et al. | Feb 2002 | A1 |
20030064562 | Kim et al. | Apr 2003 | A1 |
20030119292 | Lee et al. | Jun 2003 | A1 |
20030183822 | Lane et al. | Oct 2003 | A1 |
20030216038 | Madhukar et al. | Nov 2003 | A1 |
20040171247 | Cho et al. | Sep 2004 | A1 |
20050224886 | Doyle et al. | Oct 2005 | A1 |
20060065939 | Doczy et al. | Mar 2006 | A1 |
20070037343 | Colombo et al. | Feb 2007 | A1 |
20070262451 | Rachmady et al. | Nov 2007 | A1 |
20110147858 | Lim et al. | Jun 2011 | A1 |
20110248359 | Hwang et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
1 148 545 | Oct 2001 | EP |
2371146 | Jul 2002 | GB |
11-026757 | Jan 1999 | JP |
10-0291009 | Aug 2001 | KR |
2002-0018610 | Mar 2002 | KR |
329548 | Apr 1998 | TW |
WO 9635234 | Nov 1996 | WO |
Entry |
---|
Partial International Search Report for corresponding PCT/US2007/000410, filed May 1, 2007. |
Translation of Office Action for corresponding ROC Pat Appl. No. 096101315 dated Apr. 19, 2010. |
Office Action dated Apr. 20, 2012 for corresponding JP Application No. 2008-550356. |
Search Report/Written Opinion dated Jun. 6, 2013 for corresponding EP Application 07 709 601.4-1552. |
Office Action dated Sep. 16, 2013 for corresponding KR Application No. 10-2008-7019809. |
Number | Date | Country | |
---|---|---|---|
20110086470 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11331951 | Jan 2006 | US |
Child | 12972232 | US |