Antisense oligonucleotide sequences as inhibitors of microorganisms

Information

  • Patent Grant
  • 6610539
  • Patent Number
    6,610,539
  • Date Filed
    Thursday, July 9, 1998
    26 years ago
  • Date Issued
    Tuesday, August 26, 2003
    21 years ago
Abstract
This invention relates to antisense oligonucleotides which modulate the expression of the ribonucleotide reductase or the secA genes in microorganisms. This invention is also related to methods of using such oligonucleotides in inhibiting the growth of microorganisms. These antisense oligonucleotides are particularly useful in treating pathological conditions in mammals which are mediated by the growth of microorganisms.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to antisense oligonucleotides which modulate the activity of the ribonucleotide reductase genes and the secA genes in microorganisms. This invention is also related to methods of using such compounds in inhibiting the growth of microorganisms.




These antisense oligonucleotides are particularly useful in treating pathological conditions in mammals which are mediated by the growth of microorganisms. Accordingly, this invention also relates to pharmaceutical compositions comprising a pharmaceutically acceptable excipient and an effective amount of a compound of this invention.




These antisense oligonucleotides may also be used as anti-microbial agents for agricultural applications such as crop protection.




2. References




The following publications, patent applications and patents are cited in this application as superscript numbers:




1. Nordlund and Eklund “Structure and function of the


Escherichia coli


ribonucleotide reductase protein R2


”, J. Mol. Biol. (


1993) 232:123-164;




2. Carlson et al., “Primary structure of the


Escherichia coli


ribonucleoside diphosphate reductase operon”,


PNAS USA


(1984) 81:4294-4297;




3. Nilsson et al., “Nucleotide sequence of the gene coding for the large subunit of ribonucleotide reductase of


Escherichia coli


Correction”,


Nucleic Acids Research


(1988) 16:4174;




4. P. Reichard, “The anaerobic ribonucleotide reductase from


Escherichia coli”, J. Biol. Chem


. (1993) 268:8383-8386;




5. Nordlund et al.,


Nature


(1990) 345:593-598;




6. der Blaauwen et al., “Inhibition of preprotein translocation and reversion of the membrane inserted state of secA by a carboxyl terminus binding Mab”,


Biochemistry


(1997) 36:9159-9168;




7. McNicholas et al., “Dual regulation of


Escherichia coli


secA translation by distinct upstream elements”,


J. Mol. Biol


. (1997) 265:128-141;




8. U.S. Pat. No. 5,294,533;




9. Gasparro et al., “Photoactivatable antisense DNA: Suppression of ampicillin resistance in normally resistant


Escherichia coli”, Antisense Research and Development


(1991) 1:117-140;




10. White et al., “Inhibition of the multiple antibiotic resistance (mar) operon in


Escherichia coli


by antisense DNA analogs”,


Antimicrobial Agents and Chemotherapy


(1997) 41:2699-2704;




11. Nielsen et al.,


Science


(1991) 354:1497;




12. Good and Nielsen, “Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA”,


PNAS USA


(1998) 95:2073-2076;




13. Buchardt, deceased, et al., U.S. Pat. No. 5,766,855;




14. Buchardt, deceased, et al., U.S. Pat. No. 5,719,262;




15. U.S. Pat. No. 5,034,506;




16. Altschul, et al., “Basic local alignment search tool”,


J. Mol. Biol


. (1990) 215:403-10;




17. Devereux. et al., “A comprehensive set of sequence analysis programs for the VAX”,


Nucleic Acids Res


. (1984) 12:387-395;




18. Sambrook et al.,


Molecular Cloning: A Laboratory Manual


, Cold Spring Harbor Laboratory, New York (1989, 1992);




19. Ausubel et al.,


Current Protocols in Molecular Biology


, John Wiley and Sons, Baltimore Md. (1989);




20. Chang et al., Somatic Gene Therapy, CRC Press, Ann Arbor Mich. (1995);




21. Vega et al.,


Gene Targeting


, CRC Press, Ann Arbor Mich. (1995);




22


. Vectors: A Survey of Molecular Cloning Vectors and Their Uses


, Butterworths, Boston Mass. (1988)




23. U.S. Pat. No. 5,023,252, issued June 11, 1991




24. Felgner et al., U.S. Pat. No. 5,580,859.




25. U.S. Pat. No. 5,011,472




26


. Remington's Pharmaceutical Sciences


, Mace Publishing Company, Philadelphia Pa. 17


th


ed. (1985);




27. Perbal,


A Practical Guide to Molecular Cloning


, John Wiley & Sons, New York (1988).




28


. PCR Protocols: A Guide To Methods And Applications


, Academic Press, San Diego, Calif. (1990).




29. Dower, W. J.,


Nucleic Acids Res


. (1988) 16:6127;




30. Neuman et al.,


EMBO J


. (1982) 1:841;




31. Taketo A.,


Biochim Biophys. Acta


(1988) 949:318;




32. Miller J. H.


Experiments in Molecular Genetics


, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1972);




33. Horwitz J. P.,


J. Med. Chem


. (1964) 7:574;




34. Mann et al.,


Biochem


.(1991) 30:1939;




35. Olsvik, et al.,


Acta Pathol. Microbiol. Immunol. Scand


. [B] (1982) 90:319;




36. Laemmli, U. K.,


Nature


(1970) 227:680;




37. Choy et al.,


Cancer Res


.(1988) 48:2029;




38. Wright and Anazodo,


Cancer J


. (1988) 8:185-189;




39. Chan et al.,


Biochemistry


(1993) 32:12835-12840;




40. Carpentier P. L.,


Microbiology


4


th


ed. W.B.Saunders Company (1977); and




41. Wright et al.,


Adv. Enzyme Regul


. (1981) 19:105-127.




All of the above publications, patent applications and patents are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent application or patent was specifically and individually indicated to be incorporated by reference in its entirety.




3. State of the Art




Ribonucleotide reductase catalyzes the de novo production of deoxyribonucleotides. The enzyme reduces the four main ribonucleotides to the corresponding deoxyribonucleotides required for DNA synthesis and repair (Wright et al.


41


).




In mammalian and bacterial cells, de novo production of deoxyribonucleotides by ribonucleotide reductase is usually highly regulated on different levels in order to produce the correct amount of deoxyribonucleotides for DNA synthesis. In the DNA viruses, the metabolism of the host cell is directed towards production of viral DNA by virus encoded ribonucleotide reductases (Nordlund and Eklund


1


).




Mammalian cells and many DNA viruses and prokaryotes, have a heterodimeric iron-containing ribonucleotide reductase enzyme of the α


2


β


2


type. For example, ribonucleotide reductase from


E. coli


is a multi-subunit α


2


β


2


enzyme where the two homo-dimeric proteins are denoted R1 and R2. The larger α


2


protein, R1, contains the binding sites for substrate and allosteric effectors and also the redox-active cysteine residues. Protein R1 has a molecular mass of 2×86,000 where each subunit contains 761 residues. The smaller β


2


protein, denoted R2, contains the dinuclear ferric center and a stable free tyrosyl radical necessary for the enzymatic activity. The R2 protein has a molecular mass of 2×43,500, where each subunit contains 375 amino acid residues (Nordlund and Eklund


1


).




The nucleotide sequence of the


E. coli


K-12 DNA comprising the operon for the structural genes of the subunits of ribonucleotide reductase has been determined. The DNA sequence includes a total length of 8557 nucleotides. An open reading frame between nucleotides 3506 and 5834 has been identified as the nrdA gene. An open reading frame between nucleotides 6012 and 7139 encoding a 375-amino acid polypeptide has been identified as the nrdB gene (Carlson et al.


2


, and Nilsson et al.


3


). The sequences of the nrdA and nrdB genes for


E. coli


are shown in

FIGS. 1 and 2

.




In


E. coli


, the synthesis of ribonucleotide reductase is controlled at the level of transcription. The nrdA and nrdB genes direct the synthesis of a 3.2 kilobase polycistronic mRNA. Perturbations in DNA replication, either a shift up in growth conditions or an inhibition of DNA synthesis leads to increased synthesis of nrd MRNA (Carlson et al.


2


).




A separate anaerobic ribonucleotide reductase has also been identified from


E.coli


. The anaerobic


E. coli


reductase has a molecular mass of 145 kD and is a homodimer. The gene for the anaerobic reductase (nrdD) has been cloned and sequenced (P. Reichard


4


).




The ribonucleotide reductase R2 genomic or cDNA sequences are known for several other species such as bacteriophage T4, clam, mouse,


Saccharomyces cerevisiae


, vaccinia, herpes simplex virus types 1 and 2, varicella and Epstein-Barr virus (Nordlund et al.


5


). The sequence of the nrdE and nrdF which code for the ribonucleotide reductase genes of


S. typhimurium


are shown in FIG.


3


. The sequence of the ribonucleotide reductase gene of


Lactococcus lactis


is shown in FIG.


4


.




The secA gene of


E. coli


encodes for one component of a multi-component system for the secretion of proteins across the inner membrane of


E. coli


(der Blaauwen et al.


6


). The complete system consists of the SecB protein, a cytosolic chaperone, the SecA protein, the translocation ATPase and the heterotrimeric integral membrane SecY/SecE/SecG complex, which along with SecA serves as the preprotein channel. SecA protein plays a central role in the secretion process by binding the preprotein, secB protein, anionic phospholipids and SecY/SecE/SecG protein. These interactions allow SecA to recognize soluble preprotein and recruit it to translocation sites in the inner membrane. Once such protein translocation complexes have assembled; further steps require an ATP-driven cycle of insertion and de-insertion of secA protein with the inner membrane, where each cycle appears to be coupled to the translocation of a segment of the preprotein.




SecA is the only component of the secretion apparatus that has been shown to be regulated. SecA is the second gene in the geneX-secA operon and its translation varies over a tenfold range depending on the status of protein secretion in the cell. During protein-export proficient conditions secA auto-represses its translation by binding to a site that overlaps the secA ribosome-binding site of genes-secA RNA. SecA protein can also dissociate a preformed 30 S-tRNA


MET


-genes-secA RNA ternary complex in vitro. However, during a protein export block secA translation increases substantially although the mechanism responsible for this regulatory response has not been elucidated (McNicholas et al.


7


). The sequence of the secA gene of


E. coli


is shown in FIG.


5


.




The secA gene sequence has been identified for a number of other species including


Mycobacterium bovis


(FIG.


6


),


Mycobacterium tuberculosis


(FIG.


7


),


Staphylococcus aureus


(FIG.


8


),


Staphylococcus carnosus


(FIG.


9


),


Bacillus subtilis, Bacillus firnus, Listeria monocytogenes, Mycobacterium smegmatis, Borrelia burgdorferi, P. sativum, S. griseus


, and Synechoccus sp.




Antibiotics are important pharmaceuticals for the treatment of infectious diseases in a variety of animals including man. The tremendous utility and efficacy of antibiotics results from the interruption of bacterial (prokaryotic) cell growth with minimal damage or side effects to the eukaryotic host harboring the pathogenic organisms. In general, antibiotics destroy bacteria by interfering with the DNA replication, DNA to RNA transcription, translation (that is RNA to protein) or cell wall synthesis.




Although bacterial antibiotic resistance has been recognized since the advent of antimicrobial agents, the consequence of the emergence of resistant microorganisms, such resistance was historically controlled by the continued availability of effective alternative drugs. Now, drug resistance has emerged as a serious medical problem in the community, leading to increasing morbidity and mortality. The problem is worsened by the growing number of pathogens resistant to multiple, structurally unrelated drugs. The situation has become so desperate that antibiotics once removed from use because of toxic effects may be prescribed in an attempt to deal with the otherwise untreatable drug resistant bacteria.




Antisense oligonucleotides have been used to decrease the expression of specific genes by inhibiting transcription or translation of the desired gene and thereby achieving a phenotypic effect based upon the expression of that gene (Wright and Anazado


38


). For example, antisense RNA is important in plasmid DNA copy number control, in development of bacteriophage P22. Antisense RNA's have been used experimentally to specifically inhibit in vitro translation of mRNA coding specifically from Drosophila hsp23, to inhibit Rous sarcoma virus replication and to inhibit 3T3 cell proliferation when directed toward the oncogene c-fos. Furthermore, it is not necessary to use the entire antisense MRNA since a short antisense oligonucleotide can inhibit gene expression. This is seen in the inhibition of chloramphenicol acetyltransferase gene expression and in the inhibition of specific antiviral activity to vesicular stomatitus virus by inhibiting the N-protein initiation site. Antisense oligonucleotides directed to the macromolecular synthesis operon of bacteria, containing the rpsU gene, the rpoD gene and the dnaG gene have been used for the detection of bacteria. (U.S. Pat. No. 5,294,533


8


). Furthermore, photoactivatable antisense DNA complementary to a segment of the P-lactamase gene has been used to suppress ampicillin resistance in normally resistant


E. coli


(Gasparro et al.


9


). Antisense DNA analogs have also been used to inhibit the multiple antibiotic resistant (mar) operon in


Escherichia coli


(White et al.


10


).




Accordingly, there is a need to develop antisense oligonucleotides which will act to inhibit the growth of microorganisms.




SUMMARY OF THE INVENTION




This invention is directed to antisense oligonucleotides which modulate the expression of the ribonucleotide reductase and secA genes in microorganisms and pharmaceutical compositions comprising such antisense oligonucleotides. This invention is also related to methods of using such antisense oligonucleotides for inhibiting the growth of microorganisms.




Accordingly, in one of its composition aspects, this invention is directed to an antisense oligonucleotide, which oligonucleotide is nuclease resistant and comprises from about 3 to about 50 nucleotides, which nucleotides are complementary to the ribonucleotide reductase gene or the secA gene of a microorganism. The antisense oligonucleotide may have one or more phosphorothioate internucleotide linkages.




In another of its composition aspects, this invention is directed to an antisense oligonucleotide comprising from about 3 to about 50 nucleotides which is capable of binding to the ribonucleotide reductase gene or the secA gene of a microorganism, wherein the oligonucleotide comprises all or part of a sequence selected from the group consisting of SEQ ID NO:22; SEQ ID NO:43; SEQ ID NO:62; SEQ ID NO:74; SEQ ID NO:75; SEQ ID NO:76; SEQ ID NO:143; SEQ ID NO:145; SEQ ID NO:152; SEQ ID NO:164; SEQ ID NO:176; SEQ ID NO:186; SEQ ID NO:188; SEQ ID NO:189; SEQ ID NO: 191; SEQ ID NO: 192; SEQ ID NO:195; SEQ ID NO:197; SEQ ID NO:206; SEQ ID NO:212; SEQ ID NO:220; SEQ ID NO:229; SEQ ID NO:235; SEQ ID NO:254; SEQ ID NO:261; SEQ ID NO:262; SEQ ID NO:263; SEQ ID NO:264; and SEQ ID NO:265.




In still another of its composition aspects, this invention is directed to a pharmaceutical composition comprising a pharmaceutically acceptable excipient and an effective amount of an antisense oligonucleotide, which oligonucleotide is nuclease resistant and comprises from about 3 to about 50 nucleotides, which nucleotides are complementary to the ribonucleotide reductase gene or the secA gene of a microorganism. The oligonucleotide may be modified, for example, the oligonucleotide may have one or more phosphorothioate internucleotide linkages.




In one of its method aspects, this invention is directed to a method for inhibiting the expression of the ribonucleotide reductase gene in a microorganism having a ribonucleotide reductase gene comprising, administering to said microorganism or to a cell infected with said microorganism an effective amount of an antisense oligonucleotide comprising from at least about 3 nucleotides which are complementary to the ribonucleotide reductase gene of the microorganism under conditions such that the expression of the ribonucleotide reductase gene is inhibited.




In another of its method aspects, this invention is directed to a method for inhibiting the expression of the secA gene in a microorganism having a secA gene, comprising administering to said microorganism an effective amount of an antisense oligonucleotide comprising from at least about 3 nucleotides which are complementary to the secA gene of the microorganism under conditions such that expression of the secA gene is inhibited.




In one of its method aspects, this invention is directed to a method for inhibiting the growth of a microorganism encoding a ribonucleotide reductase gene or a secA gene, which method comprises administering to said microorganism or a cell infected with said microorganism an effective amount of an antisense oligonucleotide comprising from at least about 3 nucleotides which are complementary to either the ribonucleotide reductase gene or the secA gene of the microorganism under conditions such that the growth of the microorganism is inhibited. Preferably, the antisense oligonucleotide is selected from the group consisting of SEQ ID NO:22; SEQ ID NO:43; SEQ ID NO:62; SEQ ID NO:74; SEQ ID NO:75; SEQ ID NO:76; SEQ ID NO:143; SEQ ID NO:145; SEQ ID NO:152; SEQ ID NO:164; SEQ ID NO:176; SEQ ID NO:186; SEQ ID NO:188; SEQ ID NO:189; SEQ ID NO:191; SEQ ID NO:192; SEQ ID NO:195; SEQ ID NO:197; SEQ ID NO:206; SEQ ID NO:212; SEQ ID NO:220; SEQ ID NO:229; SEQ ID NO:235; SEQ ID NO:254; SEQ ID NO:261; SEQ ID NO:262; SEQ ID NO:263; SEQ ID NO:264; and SEQ ID NO:265.




In another of its method aspects, this invention is directed to a method for treating a mammalian pathologic condition mediated by a microorganism, which method comprises identifying a mammal having a pathologic condition mediated by a microorganism having a ribonucleotide reductase gene or a secA gene and administering to said mammal an effective amount of an antisense oligonucleotide comprising from at least about 3 nucleotides which are complementary to either the ribonucleotide reductase gene or the secA gene of the microorganism under conditions such that the growth of the microorganism is inhibited.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is the sequence of the


E. coli


nrdA gene encoding the ribonucleotide reductase R1 subunit [SEQ ID NO:1].





FIG. 2

is the sequence of the


E. coli


nrdB gene encoding the ribonucleotide reductase R2 subunit [SEQ ID NO:2]. The nrdB gene is encoded by nucleotides 7668 to 8798 of SEQ ID NO:2.





FIG. 3

is the sequence of the


S. typhimurium


nrdE and nrdF genes encoding the ribonucleotide reductase subunits [SEQ ID NO:3]. The nrdE gene is encoded by nucleotides 836 to 2980 and the nrdF gene is encoded by nucleotides 2991 to 3950 of SEQ ID NO:3.





FIG. 4

is the sequence of the


Lactococcus lactis


nrdEF operon encoding ribonucleotide reductase [SEQ ID NO:4].





FIG. 5

is the sequence of the


E. coli


secA gene [SEQ ID NO:5].





FIG. 6

is the sequence of the


Mycobacterium bovis


secA gene [SEQ ID NO:6].





FIG. 7

is the sequence of the


Mycobacterium tuberculosis


secA gene [SEQ ID NO:7].





FIG. 8

is the sequence of the


Staphylococcus aureus


secA gene [SEQ ID NO:8].





FIG. 9

is the sequence of the


Staphylococcus carnosus


secA gene [SEQ ID NO:9].





FIG. 10

is the sequence of the bovine herpes virus ribonucleotide reductase small subunit gene [SEQ ID NO:10].





FIG. 11

is the sequence of the Herpes simplex virus type 1 UL39 gene encoding ribonucleotide reductase 1 [SEQ ID NO:11].





FIG. 12

is the sequence of the Herpes simplex type 2 ribonucleotide reductase gene [SEQ ID NO:12]. The ribonucleotide reductase gene is encoded by nucleotides 419 to 3853 of SEQ ID NO:12.





FIG. 13

is the sequence of the equine herpes virus 4 ribonucleotide reductase large subunit and small subunit [SEQ ID NO:13]. The large subunit is encoded by nucleotides 77 to 2446 and the small subunit by nucleotides 2485-3447 of SEQ ID NO:13.





FIG. 14

is a photograph of a Western blot of a polyacrylamide gel of the cellular protein from


E. coli


cells carrying a plasmid containing the mouse ribonucleotide reductase R2 gene after treatment with either 20 μM or 200 μM of oligonucleotide AS-II-626-20.





FIG. 15

is a graph of the inhibition of


E. coli


growth after treatment of


E. coli


cells with ribonculeotide reductase antisense oligonucleotides.





FIG. 16

is a graph of the number of colony forming units/ml of


E. coli


cells after treatment with ribonucleotide reductase antisense oligonucleotides.





FIG. 17

is a photograph of a Western blot of a polyacrylamide gel of cellular protein from


E. coli


cells after treatment with secA antisense oligonucleotides.





FIGS. 18



a


and


18




b


are graphs of the number of colony forming units/ml of


E. coli


cells after treatment with secA antisense oligonucleotides.





FIGS. 19



a-g


are graphs of growth curves of


E. coli


K12 after treatment with antisense oligonucleotides.

FIG. 19



a


shows the growth after treatment with 16 μM or 80 μM of antisense ES799 [SEQ ID NO:195].

FIG. 19



b


shows the growth after treatment with 20 AM of antisense ES1739 [SEQ ID NO:229].

FIG. 19



c


shows the growth after treatment with 80 μM of antisense ES851 [SEQ ID NO:197].

FIG. 19



d


shows the growth after treatment with 80 μM of antisense ES553 [SEQ ID NO:188].

FIG. 19



e


shows the growth after treatment with 80 μM of antisense ES646 [SEQ ID NO:191].

FIG. 19



f


shows the growth after treatment with 80 μM of antisense ES1845 [SEQ ID NO:235].

FIG. 19



g


shows the growth after treatment with 80 μM of antisense ES2537 [SEQ ID NO:254].











DETAILED DESCRIPTION OF THE INVENTION




The present invention provides compounds that inhibit the growth of microbes by inhibiting the expression of a ribonucleotide reductase protein or the secA protein. Without being limited to any theory, the compounds inhibit the expression of the ribonucleotide reductase or the secA protein by inhibiting the transcription of the gene or the translation of the mRNA to protein. Such compounds include antisense oligonucleotides.




Definitions




As used herein, the following terms have the following meanings:




The term “antisense oligonucleotide” as used herein means a nucleotide sequence that is complementary to the MRNA for the desired gene. Preferably, the antisense oligonucleotide is complementary to the MRNA for ribonucleotide reductase or secA.




The term “oligonucleotide” refers to an oligomer or polymer of nucleotide or nucleoside monomers consisting of naturally occurring bases, sugars, and inter-sugar (backbone) linkages. The term also includes modified or substituted oligomers comprising non-naturally occurring monomers or portions thereof, which function similarly. Such modified or substituted oligomers may be preferred over naturally occurring forms because of the properties such as enhanced cellular uptake, or increased stability in the presence of nucleases. The term also includes chimeric oligonucleotides which contain two or more chemically distinct regions. For example, chimeric oligonucleotides may contain at least one region of modified nucleotides that confer beneficial properties (e.g. increased nuclease resistance, increased uptake into cells) or two or more oligonucleotides of the invention may be joined to form a chimeric oligonucleotide.




The antisense oligonucleotides of the present invention may be ribonucleic or deoxyribonucleic acids and may contain naturally occurring or synthetic monomeric bases, including adenine, guanine, cytosine, thymine and uracil. The oligonucleotides may also contain modified bases such as xanthine, hypoxanthine, 2-aminoadenine, 6-methyl, 2-propyl and other alkyl adenines, 5-halo uracil, 5-halo cytosine, 6-aza uracil, 6-aza cytosine and 6-aza thymine, pseudo uracil, 4-thiouracil, 8-halo adenine, 8-aminoadenine, 8-thiol adenine, 8-thiolalkyl adenines, 8-hydroxyl adenine and other 8-substituted adenines, 8-halo guanines, 8-amino guanine, 8-thiol guanine, 8-thioalkyl guanines, 8-hydroxyl guanine and other 8-substituted guanines, other aza and deaza uracils, thymidines, cytosines or guanines, 5-trifluoromethyl uracil and 5-trifluoro cytosine.




The antisense oligonucleotides of the invention may also comprise modified phosphorus oxygen heteroatoms in the phosphate backbone, short chain alkyl or cycloalkyl intersugar linkages or short chain heteroatom or heterocyclic intersugar linkages. For example, the antisense oligonucleotides may contain methyl phosphonates, phosphorothioates, phosphorodithioates, phosphotriesters, and morpholino oligomers. In one embodiment of the invention, the antisense oligonucleotides comprise phosphorothioate bonds linking between the four to six 3′-terminus nucleotides. In another embodiment, the phosphorothioate bonds link all the nucleotides. The antisense oligonucleotides may also have sugar mimetics.




The antisense oligonucleotides of the invention may also comprise nucleotide analogues wherein the structure of the nucleotide is fundamentally altered. An example of such an oligonucleotide analogue is a peptide nucleic acid (PNA) wherein the deoxyribose (or ribose) phosphate backbone in DNA (or RNA) is replaced with a polyamide backbone which is similar to that found in peptides (Nielsen et al.


11


; Good and Nielsen


12


; Buchardt, deceased, et al.


13


, U.S. Pat. No. 5,766,855; Buchardt, deceased, et al.


14


, U.S. Pat. No. 5,719,262). PNA analogues have been shown to be resistant to degradation by enzymes and to have extended lives in vivo and in vitro. PNAs also bind more strongly to a complementary DNA sequence than to a naturally occurring nucleic acid molecule due to the lack of charge repulsion between the PNA strand and the DNA strand.




The oligonucleotides of the present invention may also include other nucleotides comprising polymer backbones, cyclic backbones, or acyclic backbones. For example, the nucleotides may comprise morpholino backbone structures (U.S. Pat. No. 5,034,506


15


).




The oligonucleotides of the present invention are “nuclease resistant” when they have either been modified such that they are not susceptible to degradation by DNA and RNA nucleases or alternatively they have been placed in a delivery vehicle which in itself protects the oligonucleotide from DNA or RNA nucleases. Nuclease resistant oligonucleotides include, for example, methyl phosphonates, phosphorothioates, phosphorodithioates, phosphotriesters, and morpholino oligomers. Suitable delivery vehicles for conferring nuclease resistance include, for example liposomes.




The oligonucleotides of the present invention may also contain groups, such as groups for improving the pharmacokinetic properties of an oligonucleotides, or groups for improving the pharmacodynamic properties of an oligonucleotide. Preferably, the oligonucleotides do not contain reporter groups or labels, such as fluorescent dyes or radioactive labels.




The antisense oligonucleotides may be complementary to the complete ribonucleotide reductase or secA gene including the introns. Preferably, the antisense oligonucleotides are complimentary to the mRNA region from the ribonucleotide reductase gene or the secA gene.




The antisense oligonucleotides may be selected from the sequence complementary to the ribonucletide reductase or secA genes such that the sequence exhibits the least likelihood of showing duplex formation, hair-pin formation, and homooligomer/sequence repeats but has a high to moderate potential to bind to the ribonucleotides reductase gene or the secA gene sequence and contains a GC clamp. These properties may be determined using the computer modeling program OLIGO Primer Analysis Software, Version 5.0 (distributed by National Biosciences, Inc., Plymouth, Minn.). This computer program allows the determination of a qualitative estimation of these five parameters.




Alternatively, the antisense oligonucleotides may also be selected on the basis that the sequence is highly conserved for either the ribonucleotide reductase or the secA genes between two or more microbial species. These properties may be determined using the BLASTN program (Altschul, et al.


16


) of the University of Wisconsin Computer group (GCG) software (Devereux J. et al.


17


) with the National Center for Biotechnology Information (NCBI) databases.




The antisense oligonucleotides generally comprise from at least about 3 nucleotides or nucleotide analogs, preferably from about 3 to about 50 nucleotides or nucleotide analogs, more preferably, from about 7 to about 35 nucleotides or nucleotide analogs, most preferably from about 15 to about 25 nucleotide or nucleotide analogs.




Preferably, the antisense oligonucleotides comprise from 3 to about 50 nucleotides or nucleotide analogs, more preferably from 20 to about 50 nucleotides or nucleotide analogs and further comprise all or part of the sequences set forth in Tables 1, 2, 3, and 4 (below). Preferably, the oligonucleotides complementary to the ribonucleotide reductase gene comprise SEQ ID NOS.: 14 to 157 as shown in Tables 1 and 2. Preferably, the antisense oligonucleotides complementary to the secA gene comprise the SEQ ID NOS.: 158 to 265 as shown in Tables 3 and 4.












TABLE 1











Antisense oligonucleotides that target the


Escherichia coli








K12 ribonucleotide reductase large subunit (R1)



















ΔG






SEQ






Tm




(kcal/






ID No.:




Name




Sequence 5′→3′




(° C.)




mol)


















14




ER1-16




CCGTCGCGCTTTGTCACCAG




61.1




−43.0






15




ER1-24




CTGTGCTACCGTCGCGCTTT




57.8




−42.0






16




ER1-33




TGATGCGCTCTGTGCTACCG




57.2




−40.2






17




ER1-44




TTTGTCGAGATTGAT GCGCT




53.3




−38.7






18




ER1-58




AGAACGCGATGGATTTTGTC




51.7




−38.4






19




ER1-71




TGCCGCCCAATCCAGAACGC




64.6




−46.0






20




ER1-79




AGTCCTTCTGCCGCCCAATC




57.7




−42.2






21




ER1-128




AAACTGAATGTGGGAGCGCA




55.5




−39.8






22




ER1-169




ATAATGGTTTCGTGGATGTC




55.5




−35.4






23




ER1-180




CGGCAGCCTTGATAATGGTT




54.2




−40.6






24




ER1-218




ATACTGATAATCCGGCGCAT




51.4




−39.4






25




ER1-252




TACGCAGGTGGAAGATCGCC




57.3




−41.4






26




ER1-294




GGTCGTACAGCGCAGGCGGC




64.4




−45.9






27




ER1-320




GCCCATCTCGACCATTTTCA




54.7




−39.7






28




ER1-330




TATCGTATTTGCCCATCTCG




50.4




−38.1






29




ER1-423




CGGCAGCATAAGAGAAGGTC




51.6




−38.5






30




ER1-439




CCTTCCAGCTGCTTAACGGC




56.4




−41.9






31




ER1-450




CCAGATATTTGCCTTCCAGC




51.5




−38.8






32




ER1-479




ATAGATTTCGCCGGTCACGC




56.4




−41.8






33




ER1-495




GGAACTGGGCGCTCTCATAG




53.9




−39.7






34




ER1-504




GAATATAAAGGAACTGGGCG




48.5




−38.0






35




ER1-518




GCACGCGGCAACTAGAATAT




52.2




−39.4






36




ER1-529




TTCGAGAACAAGCACGCGGC




60.8




−43.3






37




ER1-543




TTTCACGCGGGTAGTTCGAG




55.2




−40.5






38




ER1-566




ACGCTTCACATATTGCAGGC




52.2




−38.7






39




ER1-584




GGAAACCGCGTCGTAAAAAC




53.9




−40.8






40




ER1-592




TTAAATGTGGAAACCGCGTC




52.7




−39.3






41




ER1-617




CATGATTGGCGTCGGCAGCG




64.0




−44.9






42




ER1-628




CGCACGCCGGACATGATTGG




63.8




−44.6






43




ER1-640




CGAGTCGGGGTACGCACGCC




64.2




−45.8






44




ER1-667




TCGATCAGTACGCAGGAGCT




52.4




−38.1






45




ER1-680




GCTGTCACCGCACTCGATCA




56.9




−39.1






46




ER1-689




GGAATCCAGGCTGTCACCGC




59.0




−41.9






47




ER1-704




GGAGGTGGCGTTGATGGAAT




56.0




−40.6






48




ER1-716




AACAATCGCGCTGGAGGTGG




59.5




−42.7






49




ER1-778




CTACCCAGCGCACGAATACG




55.7




−40.9






50




ER1-817




ATGCAGCCGGTATGGAACGC




59.4




−43.1






51




ER1-829




TTGTAGAACGGAATGCAGCC




52.8




−38.8






52




ER1-846




CCGCTGTCTGGAAATGTTTG




53.1




−38.6






53




ER1-855




AGGATTTCACCGCTGTCTGG




54.0




−39.2






54




ER1-874




CGCACACCGCCCTGAGAGCA




63.9




−44.0






55




ER1-907




CACATCGGGTAGAACAGCGT




52.5




−38.1






56




ER1-925




CTTTCCACTTCCAGATGCCA




52.5




−38.1






57




ER1-964




TTGCCTTCCACACCACGGTT




57.5




−40.8






58




ER1-971




CACGCGGTTGCCTTCCACAC




60.8




−42.5






59




ER1-981




CCATATGACGCACGCGGTTG




59.4




−42.1






60




ER1-1034




TTCACCTTTCAGCAGACGGG




55.0




−39.6






61




ER1-1055




CGGGCTGAACAGGGTGATAT




53.8




−39.6






62




ER1-1059




CGGACGGGCTGAACAGGGTG




62.1




−43.7






63




ER1-1061




GTCGGACGGGCTGAACAGGG




61.2




−43.4






64




ER1-1106




AAACTCTTCCTGATCGGCGA




53.8




−39.7






65




ER1-1148




GCGGATGCTGTCGTCTTTCT




54.3




−39.4






66




ER1-1155




GCTGCTTGCGGATGCTGTCG




61.3




−43.0






67




ER1-1166




GGCTTTCACACGCTGCTTGC




58.2




−41.4






68




ER1-1173




GCTCAACGGCTTTCACACGC




58.0




−41.3






69




ER1-1212




GACCGGTAGACGCACGTTCC




56.7




−40.8






70




ER1-1255




GGGCTATGGGTATTGCAGTG




52.1




−38.7






71




ER1-1259




AAACGGGCTATGGGTATTGC




53.3




−40.7






72




ER1-1265




CGGATCAAACGGGCTATGGG




58.7




−43.4






73




ER1-1311




GGGCTATCTCCAGGCACAGG




55.9




−40.7






74




ER1-1315




GGCAGGGCTATCTCCAGGCA




58.7




−42.5






75




ER1-1320




TGGTCGGCAGGGCTATCTCC




58.6




−42.4






76




ER1-1326




GCGGTTTGGTCGGCAGGGCT




64.9




−47.0






77




ER1-1330




TTCAGCGGTTTGGTCGGCAG




60.5




−43.1






78




ER1-1336




ACGTCGTTCAGCGGTTTGGT




56.8




−40.9






79




ER1-1356




TTTCACCGTTCTCGTCGTTG




53.5




−38.5






80




ER1-1364




CAGCGCGATTTCACCGTTCT




57.5




−41.7






81




ER1-1370




CGTACACAGCGCGATTTCAC




54.2




−38.9






82




ER1-1379




AGCAGACAGCGTACACAGCG




54.0




−38.2






83




ER1-1388




CAGGTTGAAAGCAGACAGCG




53.4




−38.4






84




ER1-1397




AATTGCGCCCAGGTTGAAAG




56.5




−41.9






85




ER1-1407




CCAGGTTATTAATTGCGCCC




53.8




−41.3






86




ER1-1428




TTGCCAGCTCTTCCAGTTCA




53.3




−38.2






87




ER1-1438




ACCGCCAGAATTGCCAGCTC




58.8




−42.5






88




ER1-1451




GTCAAGTGCACGAACCGCCA




59.1




−41.0






89




ER1-1463




ATCCAGCAGCGCGTCAAGTG




58.5




−41.2






90




ER1-1468




TGATAATCCAGCAGCGCGTC




56.1




−40.4






91




ER1-1535




GATCACACCAATACCCAGCG




52.6




−38.1






92




ER1-1561




TCGTTCGCCAGGTAGTAAGC




52.2




−39.0






93




ER1-1570




CGTTTACCGTCGTTCGCCAG




57.9




−42.2






94




ER1-1584




TGCCGTCGGAGTAGCGTTTA




55.8




−41.0






95




ER1-1605




TATGCGTCAGGTTGTTGGCG




56.8




−40.5






96




ER1-1614




CGAAGGTTTTATGCGTCAGG




52.5




−39.3






97




ER1-1688




GTTAAACCACGGGCACGCGC




62.0




−45.0






98




ER1-1705




TTCGCGTAAGTGGTTTCGTT




52.6




−39.3






99




ER1-1731




TATAGGTATCGATCGGCAGG




49.5




−38.0






100




ER1-1777




CAGTCGTAATGCAGCGGCTC




55.8




−40.2






101




ER1-1789




CGCAGAGCTTCCCAGTCGTA




55.4




−40.0






102




ER1-1839




TCAGAGCAGAAAGCGTGGAG




53.0




−38.1






103




ER1-1849




TCGGACGGCATCAGAGCAGA




58.9




−40.9






104




ER1-1874




GGCGTTAGAGATCTGCGAAG




51.8




−38.7






105




ER1-1916




TTTGATGCTGACGTAACCGC




53.7




−39.0






106




ER1-1923




TCGACGCTTTGATGCTGACG




57.1




−40.2






107




ER1-1944




CCTGGCGCAAAATACCGTCT




56.5




−42.0






108




ER1-1957




TAGTCCGGCACCACCTGGCG




62.5




−44.2






109




ER1-1968




GCAGGTGCTCGTAGTCCGGC




59.3




−42.4






110




ER1-1974




CGTCGTGCAGGTGCTCGTAG




56.7




−39.9






111




ER1-1983




GCTCATAGGCGTCGTGCAGG




58.0




−41.4






112




ER1-1992




CCCACAGCAGCTCATAGGCG




58.0




−41.5






113




ER1-2000




CGGCATTTCCCACAGCAGCT




59.7




−42.8






114




ER1-2010




CATCGTTACCCGGCATTTCC




56.5




−41.9






115




ER1-2083




GGATCGTAGTTGGTGTTGGC




51.8




−39.9






116




ER1-2112




TCGGCACTTTTCCTGACGGG




59.5




−42.8






117




ER1-2145




AGGCGGTGAGCAGGTCTTTC




55.7




−40.5






118




ER1-2154




CGAATTTGTAGGCGGTGAGC




54.8




−40.5






119




ER1-2166




GTGTTTTGACCCCGAATTTG




51.9




−38.6






120




ER1-2211




CGTCTTGTGCGTCTTCAGCG




56.8




−40.0






121




ER1-2262




TCTTACATGCGCCGCTTTCG




58.6




−42.8






















TABLE 2











Antisense oligonucleotides that target the


Escherichia coli








K12 ribonucleotide reductase small subunit (R2)



















ΔG






SEQ






Tm




(kcal/






ID No.:




Name




Sequence 5′→3′




(° C.)




mol)









122




ER2-50




CGGCTGACCAAAGAACATCG




55.5




−40.0






123




ER2-60




CCACGTTGACCGGCTGACCA




61.2




−42.2






124




ER2-67




TAGCGAGCCACGTTGACCGG




60.6




−43.2






125




ER2-134




CGGACGCCAGAAGAAAGAGA




54.4




−39.8






126




ER2-144




CAACTTCTTCCGGACGCCAG




57.0




−41.3






127




ER2-168




AATCTATACGGTCGCGGGAG




53.4




−40.5






128




ER2-198




TGTGTTTTTCGTGCTCCGGC




58.3




−41.6






129




ER2-273




GCAATAGCGCCACGTTCGGG




62.1




−45.2






130




ER2-284




AGAAATAAGCGGCAATAGCG




51.8




−40.3






131




ER2-290




CGGAATAGAAATAAGCGGCA




52.4




−40.3






132




ER2-307




ACCCAGGTTTCCAGTTCCGG




57.4




−42.0






133




ER2-350




ATAGGAACGGGAATGAATCG




50.7




−38.8






134




ER2-441




TCCCTTCCGCACGTTTCTGG




59.5




−42.8






135




ER2-498




CGCCCAGCAGATGCCAGTAG




58.0




−41.5






136




ER2-505




GTACCTTCGCCCAGCAGATG




54.6




−39.7






137




ER2-544




CGCAGGCTAACGGTCACAGT




55.2




−39.7






138




ER2-557




TTTCTTCAGCTCGCGCAGGC




60.2




−43.4






139




ER2-640




GCAAATGCGAAGGAACAAGC




54.9




−40.4






140




ER2-655




ATCAATTCGCGTTCTGCAAA




53.4




−39.3






141




ER2-680




GCGAATAATTTTGGCGTTGC




54.9




−41.6






142




ER2-692




GCGGGCAATCAGGCGAATAA




59.5




−44.0






143




ER2-704




CAGGGCTTCGTCGCGGGCAA




66.8




−47.8






144




ER2-714




CGGTCAGGTGCAGGGCTTCG




62.3




−44.0






145




ER2-724




TGCTGGGTGCCGGTCAGGTG




63.6




−43.5






146




ER2-728




CATATGCTGGGTGCCGGTCA




58.8




−41.4






147




ER2-778




GCAATTTCCGCCATCTCAGG




56.8




−41.5






148




ER2-796




TCCTGCTTACACTCTTCGGC




52.1




−38.3






149




ER2-848




ATCCGCCCAGTCTTTCTCCT




54.2




−40.4






150




ER2-857




GAACAGATAATCCGCCCAGT




50.7




−38.1






151




ER2-976




GGGTTGGAGCGCGTCTGGAA




61.8




−44.0






152




ER2-983




CGGGATCGGGTTGGAGCGCG




68.1




−49.1






153




ER2-985




CACGGGATCGGGTTGGAGCG




64.0




−45.6






154




ER2-1045




CTGACTTCCACTTCCTGCGG




54.6




−39.9






155




ER2-1063




TGCCCGACCAGATAAGAACT




51.3




−38.2






156




ER2-1076




TTCCGAGTCAATCTGCCCGA




57.8




−41.2






157




ER2-1092




AATCGTCGGTGTCCACTTCC




53.6




−38.8






















TABLE 3











Antisense Sequences that Target


Escherichia coli


SecA



















ΔG






SEQ






Tm




(kcal/






ID No.:




Name




Sequence 5′→3′




(° C.)




mol)


















158




ES56




GACCACTTTGCGCATCCGGC




62.1




−44.2






159




ES62




GATGTTGACCACTTTGCGCA




54.3




−38.3






160




ES85




ATCTCCGGTTCCATGGCATT




55.5




−40.8






161




ES92




TTTTTCCATCTCCGGTTCCA




54.3




−40.1






162




ES116




CCCTTTCAGTTCTTCGTCGG




53.8




−39.8






163




ES124




GCGGTTTTCCCTTTCAGTTC




52.9




−39.9






164




ES129




ACTCTGCGGTTTTCCCTTTC




52.5




−39.6






165




ES153




CGCCTTTTTCCAGACGTGCA




58.4




−41.9






166




ES158




CACTTCGCCTTTTTCCAGAC




51.5




−38.4






167




ES165




TTTCCAGCACTTCGCCTTTT




54.1




−40.5






168




ES170




CAGATTTTCCAGCACTTCGC




52.5




−38.6






169




ES206




ACTTGCCTCACGTACCACGG




54.9




−39.5






170




ES215




GACGCGCTTACTTGCCTCAC




55.0




−40.1






171




ES230




GTGACGCATACCAAAGACGC




53.1




−38.5






172




ES264




TAAGAACCATACCGCCGAGT




51.5




−39.1






173




ES286




ATTTCGGCGATGCAGCGTTC




59.7




−43.4






174




ES303




TTCCTTCACCGGTACGCATT




54.5




−40.3






175




ES307




GTTTTTCCTTCACCGGTACG




51.4




−38.9






176




ES320




CGTTGCGGTCAGGGTTTTTC




56.8




−41.6






177




ES336




TCAGGTAAGCAGGCAGCGTT




55.0




−40.2






178




ES351




TACCGGTTAGTGCGTTCAGG




52.8




−39.2






179




ES392




TTGCGCCAGGTAGTCGTTGA




56.5




−40.4






180




ES398




GTCACGTTGCGCCAGGTAGT




55.0




−39.5






181




ES418




AGCGGACGGTTGTTTTCGGC




60.8




−44.5






182




ES429




GGAATTCAAACAGCGGACGG




56.7




−41.5






183




ES436




AGGCCAAGGAATTCAAACAG




51.0




−38.4






184




ES448




ATACCGACAGTCAGGCCAAG




51.6




−38.0






185




ES485




TTCGCGCTTTGCCGGTGCTG




65.8




−46.9






186




ES531




AGCCGTATTCGTTGTTCGTA




50.1




−37.9






187




ES544




CGCAGGTAGTCAAAGCCGTA




53.1




−39.5






188




ES553




ATGTTGTCGCGCAGGTAGTC




52.6




−38.1






189




ES556




GCCATGTTGTCGCGCAGGTA




59.2




−41.7






190




ES617




GTCCACTTCGTCCACCAGCG




57.7




−40.4






191




ES646




GGTGTACGCGCTTCATCGAT




55.0




−40.0






192




ES647




CGGTGTACGCGCTTCATCGA




59.3




−42.1






193




ES695




GCGTTTATACATTTCCGAGC




49.5




−38.4






194




ES724




CGGATCAGGTGCGGAATAAT




53.9




−40.4






195




ES799




TTCACCTGGCGAGATTTTTC




51.8




−38.6






196




ES824




CAGCACCAGACCACGTTCGG




58.6




−40.7






197




ES851




GCCCTCTTTCACCAGCAGTT




53.3




−39.1






198




ES866




CCCTTCATCCATGATGCCCT




55.9




−40.6






199




ES889




TTGGCCGGAGAGTACAGAGA




52.2




−38.1






200




ES898




AGCATGATGTTGGCCGGAGA




57.6




−40.9






201




ES922




AGCGCCGCCGTTACGTGGTG




64.6




−46.5






202




ES950




GTCACGGGTAAACAGCGCAT




54.9




−40.0






203




ES1068




CACCTTCTTTCGCTTCCACA




52.8




−38.4






204




ES1097




CAGCGTTTGGTTTTCGTTCT




52.1




−38.9






205




ES1109




GGTGATCGAAGCCAGCGTTT




56.5




−41.2






206




ES1128




GACGGAAGTAGTTCTGGAAG




45.5




−35.0






207




ES1147




CCCGCCAGTTTTTCATACAG




52.3




−39.2






208




ES1152




TCATCCCCGCCAGTTTTTCA




57.5




−41.6






209




ES1218




GAACAACGACGGTATCCAGC




52.0




−38.2






210




ES1328




GCCTTTCGCAGTACGTTCTT




51.4




−38.9






211




ES1350




TAGTACCCACCAGCACCGGC




57.1




−41.4






212




ES1398




CGGCTTTGGTCAGTTCGTTT




54.3




−40.1






213




ES1410




TGTGCTTAATACCGGCTTTG




50.8




−38.6






214




ES1439




GTTGGCGTGGAATTTGGCGT




59.3




−43.0






215




ES1462




GCCTGAGCAACAATCGCCGC




62.4




−44.5






216




ES1515




CTGTACCACGACCCGCCATA




55.6




−40.3






217




ES1518




TATCTGTACCACGACCCGCC




54.7




−40.0






218




ES1545




CTGCCTGCCAGCTACCACCG




60.2




−42.9






219




ES1563




TTTCCAGCGCGGCAACTTCT




59.4




−43.4






220




ES1581




TTTGCTCTGCGGTCGGATTT




57.0




−41.8






221




ES1589




TTTTTCAATTTGCTCTGCGG




53.2




−39.8






222




ES1624




ACCGCATCGTGACGTACCTG




55.7




−39.6






223




ES1629




CCAGTACCGCATCGTGACGT




55.7




−39.6






224




ES1633




GCTTCCAGTACCGCATCGTG




55.5




−40.0






225




ES1655




ACCGATGATATGCAGGCCAC




54.6




−39.6






226




ES1712




ACGACCAGAACGACCGCGCA




63.3




−44.1






227




ES1718




CCCCTGACGACCAGAACGAC




56.6




−40.1






228




ES1722




CATCCCCCTGACGACCAGAA




56.9




−40.4






229




ES1739




GAAACGGGAAGAACCAGCAT




53.1




−39.5






230




ES1748




CGACAGGTAGAAACGGGAAG




51.4




−38.6






231




ES1781




GGAAGCAAAAATACGCATCA




50.6




−38.2






232




ES1785




GGTCGGAAGCAAAAATACGC




53.9




−40.9






233




ES1794




CGGATACTCGGTCGGAAGCA




57.3




−41.7






234




ES1814




ACCCAGTTTACGCATCATGC




52.5




−38.5






235




ES1845




ACGGGTGTTCAATGGCTTCG




57.1




−41.2






236




ES1861




ATCGCTTTAGTCACCCACGG




54.1




−40.0






237




ES1888




CTTTCAACTTTACGCTGGGC




51.9




−39.3






238




ES1892




ACGGCTTTCAACTTTACGCT




51.1




−39.2






239




ES2007




TGGTTTCGCTCACATCGCTG




57.0




−40.0






240




ES2054




GTAGGCATCAATGGTCGCTT




51.7




−38.5






241




ES2084




CCACATTTCTTCCAGCGACT




51.7




−38.0






242




ES2087




ATCCCACATTTCTTCCAGCG




53.9




−39.7






243




ES2191




TCACGCAGCGTCTCTTCATG




54.7




−38.2






244




ES2275




CCTTTCTCGAAGTGACGCAT




51.9




−38.2






245




ES2306




CCACAGGGAGTCAAGCGTTT




54.1




−39.3






246




ES2325




TCGCTGCCAGGTGCTCTTTC




57.7




−41.1






247




ES2330




GTCCATCGCTGCCAGGTGCT




59.7




−41.9






248




ES2339




ACGCAGATAGTCCATCGCTG




52.7




−38.4






249




ES2381




CTTCGGATCTTTCTGTGCGT




51.9




−38.2






250




ES2395




CGTTTGTATTCCTGCTTCGG




52.5




−39.4






251




ES2422




ATCGCTGCAAACATGGAGAA




53.1




−38.5






252




ES2520




CCATACGACGCTGTTGTTCC




52.9




−38.5






253




ES2525




GGCTTCCATACGACGCTGTT




54.2




−40.0






254




ES2537




CGCTAAACGCTCGGCTTCCA




59.9




−44.1






255




ES2555




GCTAAGCTGCTGCATTTGCG




56.2




−41.3






256




ES2619




CTACTTTGCGCTCTCCGGTT




53.8




−40.4






257




ES2626




TTACGTCCTACTTTGCGCTC




50.0




−38.0






258




ES2646




AACCGCACGGGCAAGGATCG




63.6




−45.9






259




ES2651




ACCAGAACCGCACGGGCAAG




61.7




−44.0






260




ES2656




TTTTTACCAGAACCGCACGG




55.1




−41.0






















TABLE 4











Antisense Sequences that Target


E. coli








SecA based on Conserved Sequences



















ΔG






SEQ






Tm




(kcal/






ID No.:




Name




Sequence 5′→3′




(° C.)




mol)









261




ES386




CAGGTAGTCGTTGACGGTAA




47.7




−35.7






262




ES388




CAGGTAGTCGTTGACGGT




45.0




−32.9






263




ES1126




CGGAAGTAGTTCTGGAAGGT




47.6




−36.5






264




ES1702




CGACCGCGCAACTGGTTATC




57.8




−41.9






265




ES2644




CCGCACGGGCAAGGATCGTT




63.6




−45.9














In Tables 1, 2, 3, and 4, the “Tm” is the melting temperature of an oligonucleotide duplex calculated according to the nearest-neighbor thermodynamic values. At this temperature 50% of nucleic acid molecules are in duplex and 50% are denatured. The “ΔG” is the free energy of the oligonucleotide, which is a measurement of an oligonucleotide duplex stability.




The following sequences have been determined to be conserved among species:




ES386 [SEQ ID NO:261] is conserved among


Escherichia coli


and


Mycobacterium tuberculosis;






ES388 [SEQ ID NO:262] is conserved among


Escherichia coli; Mycobacterium tuberculosis


; and


Mycobacterium bovis;






ES553 [SEQ ID NO:188] is conserved among


Escherichia coli, Mycobacterium tuberculosis, Mycobacterium bovis, Streptomyces coelicolor


; and


Streptomyces lividans;






ES556 [SEQ ID NO:189] is conserved among


Escherichia coli, Mycobacterium tuberculosis, Mycobacterium bovis, Streptomyces coelicolor


; and


Streptomyces lividans


; and Synechoccus sp.; and




ES646 [SEQ ID NO:191] is conserved among


Escherichia coli


and


Staphylococcus carnosus;






ES1 126 [SEQ ID NO:263] is conserved among


Escherichia coli


and


Rhodobacter capsulatus


SecA genes.




ES2644 [SEQ ID NO:265] is conserved among


Escherichia coli


SecA gene, MutA (A:T to C:G transversion), and tyrosine-specific transport protein (tyrP) gene.




The term “alkyl” refers to monovalent alkyl groups preferably having from 1 to 20 carbon atoms and more preferably 1 to 6 carbon atoms. This term is exemplified by groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, n-hexyl, and the like.




The term “aryl” refers to an unsaturated aromatic carbocyclic group of from 6 to 14 carbon atoms having a single ring (e.g., phenyl) or multiple condensed (fused) rings (e.g., naphthyl or anthryl). Preferred aryls include phenyl, naphthyl and the like.




The term “cycloalkyl” refers to cyclic alkyl groups of from 3 to 20 carbon atoms having a single cyclic ring or multiple condensed rings. Such cycloalkyl groups include, by way of example, single ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl, and the like, or multiple ring structures such as adamantanyl, and the like.




The term “halo” or “halogen” refers to fluoro, chloro, bromo and iodo and preferably is either fluoro or chloro.




The term “thiol” refers to the grou —SH.




As to any of the above groups which contain one or more substituents, it is understood, of course, that such groups do not contain any substitution or substitution patterns which are sterically impractical and/or synthetically non-feasible. In addition, the compounds of this invention include all stereochemical isomers arising from the substitution of these compounds.




The term “pharmaceutically acceptable salt” refers to salts which retain the biological effectiveness and properties of the antisense oligonucleotides of this invention and which are not biologically or otherwise undesirable. In many cases, the antisense oligonucleotides of this invention are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto.




Pharmaceutically acceptable base addition salts can be prepared from inorganic and organic bases. Salts derived from inorganic bases, include by way of example only, sodium, potassium, lithium, ammonium, calcium and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary and tertiary amines, such as alkyl amines, dialkyl amines, trialkyl amines, substituted alkyl amines, di(substituted alkyl) amines, tri(substituted alkyl) amines, alkenyl amines, dialkenyl amines, trialkenyl amines, substituted alkenyl amines, di(substituted alkenyl) amines, tri(substituted alkenyl) amines, cycloalkyl amines, di(cycloalkyl) amines, tri(cycloalkyl) amines, substituted cycloalkyl amines, disubstituted cycloalkyl amine, trisubstituted cycloalkyl amines, cycloalkenyl amines, di(cycloalkenyl) amines, tri(cycloalkenyl) amines, substituted cycloalkenyl amines, disubstituted cycloalkenyl amine, trisubstituted cycloalkenyl amines, aryl amines, diaryl amines, triaryl amines, heteroaryl amines, diheteroaryl amines, triheteroaryl amines, heterocyclic amines, diheterocyclic amines, triheterocyclic amines, mixed di- and tri-amines where at least two of the substituents on the amine are different and are selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, and the like. Also included are amines where the two or three substituents, together with the amino nitrogen, form a heterocyclic or heteroaryl group.




Examples of suitable amines include, by way of example only, isopropylamine, trimethyl amine, diethyl amine, tri(iso-propyl) amine, tri(n-propyl) amine, ethanolamine, 2-dimethylaminoethanol, tromethamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine, N-alkylglucamines, theobromine, purines, piperazine, piperidine, morpholine, N-ethylpiperidine, and the like. It should also be understood that other carboxylic acid derivatives would be useful in the practice of this invention, for example, carboxylic acid amides, including carboxamides, lower alkyl carboxamides, dialkyl carboxamides, and the like.




Pharmaceutically acceptable acid addition salts may be prepared from inorganic and organic acids. Salts derived from inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. Salts derived from organic acids include acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluene-sulfonic acid, salicylic acid, and the like.




The term “ribonucleotide reductase gene” or the “ribonucleoside diphosphate reductase gene” refers to any gene which encodes a protein that either reduces the four main ribonucleotides to the corresponding deoxyribonucleotides involved in DNA synthesis or encodes a subunit of a multimeric enzyme which reduces the four main ribonucleotides to the corresponding deoxyribonucleotides. Without being limiting, examples of ribonucleotide reductase genes from bacteria include the


E. coli


nrdA, nrdB and nrd D genes; the


S. typhimurium


nrdE and nrdF genes; and the


Lactococcus lactis


nrdEF gene. Examples of the ribonucleotide reductase genes from viruses include the herpes simplex type 1 and 2 ribonucleotide reductases and the bovine and equine herpes simplex ribonucleotide reductases.




The term “secA” refers to an oligonucleotide sequence which encodes a protein having similar properties as those expressed by the


E. coli


secA gene. Without being limiting, examples of secA genes from bacteria include the


Mycobacterium bovis


secA gene; the


Mycobacterium tuberculosis


secA gene, the


Staphylococcus aureus


secA gene and the


Staphylococcus carnosus


secA gene.




The term “microorganism” means a bacteria, fungi or virus having either a ribonucleotide reductase or secA gene. Specifically excluded from this definition is the material parasite, plasmodium.




The term “bacteria” refers to any bacteria encoding either a ribonucleotide reductase gene or a secA gene, including


Escherichi coli, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium smegmatis, Salmonella typhimurium, Thermoplasma acidophilum, Pyrococcusfuriosus, Bacillus subtilis, Bacillus firmus, Lactococcus lactis, Staphylococcus aureus, Staphylococcus carnosus, Listeria monocytogenes, Borrelia burgdorferi, P. sativum, S. griseus


, and Synechoccus sp.




The term “virus” refers to any virus having a ribonucleotide reductase gene. Preferably the virus will be a DNA virus. Examples of suitable viruses include various herpes viruses (such as herpes simplex types 1 and 2, varicella-herpes zoster, cytomegalovirus and Epstein-Barr virus) and the various hepatitis viruses.




The term “complementary to” means that the antisense oligonucleotide sequence is capable of binding to the target sequence, ie the ribonucleotide reductase gene or the secA gene. Preferably the antisense oligonucleotide sequence has at least about 75% identity with the target sequence, preferably at least about 90% identity and most preferably at least about 95% identity with the target sequence allowing for gaps or mismatches of several bases. Identity can be determined, for example, by using the BLASTN program of the University of Wisconsin Computer Group (GCG) software.




The term “inhibiting growth” means a reduction in the growth of the bacteria or viruses of at least 25%, more preferably of at least 50% and most preferably of at least 75%. The reduction in growth can be determined for bacteria by a measuring the optical density of a liquid bacteria culture with a spectrophotometer or by counting the number of colony forming units/ml (CFU/ml) upon plating on culture plates. The reduction in growth can be determined for viruses by measuring the number of plaque forming units/ml upon plating on susceptible cells.




Preparation of the Antisense Oligonucleotides




The antisense oligonucleotides of the present invention may be prepared by conventional and well-known techniques. For example, the oligonucleotides may be prepared using solid-phase synthesis and in particular using commercially available equipment such as the equipment available from Applied Biosystems Canada Inc., Mississauga, Canada. The oligonucleotides may also be prepared by enzymatic digestion of the naturally occurring ribonucleotide reductase or secA gene by methods known in the art.




Isolation and Purification of the Antisense Oligonucleotides




Isolation and purification of the antisense oligonucleotides described herein can be effected, if desired, by any suitable separation or purification such as, for example, filtration, extraction, crystallization, column chromatography, thin-layer chromatography, thick-layer chromatography, preparative low or high-pressure liquid chromatography or a combination of these procedures. However, other equivalent separation or isolation procedures could, of course, also be used.




The invention contemplates a method of evaluating if an antisense oligonucleotide inhibits the growth of a microbe having a ribonucleotide reductase or secA gene. The method comprises selecting the microbe/microorganism having a ribonucleotide reductase or secA gene, administering the antisense oligonucleotide; and comparing the growth of the treated microbe with the growth of an untreated microorganism.




In order for the antisense oligonucleotide to effectively interrupt the expression of the ribonucleotide reductase or secA gene, the antisense oligonucleotide enters the microorganism's cell, in the case of fungal or bacterial cells or enter the mammalian cell having the virus target.




Although oligonucleotides are taken up by bacterial cells, some modification of the oligonucleotides may help facilitate or regulate said uptake. Thus, a carier molecule, for example an amino acid, can be linked to the oligonucleotide. For example, bacteria have multiple transport systems for the recognition and uptake of molecules of leucine. The addition of this amino acid to the oligonucleotide may facilitate the uptake of the oligonucleotide in the bacteria and not substantially interfere with the activity of the antisense oligonucleotide in the bacterial cell.




Other methods are contemplated for facilitating the uptake of the antisense oligonucleotide into bacteria. For example, the addition of other amino acids or peptides or primary amines to the 3′ or 5′ termini of the antisense oligonucleotide may enable utilization of specific transport systems. Addition of lactose to the oligonucleotide by a covalent linkage may also be used to enable transport of the antisense oligonucleotide by lactose permease. Other sugar transport systems are also known to be functional in bacteria and can be utilized in this invention.




With regard to inhibiting the expression of ribonucleotide reductase in DNA viruses, the antisense oligonucleotide is preferably introduced into the cell infected with the DNA virus. The antisense oligonucleotides may be delivered using vectors or liposomes.




An expression vector comprising the antisense oligonucleotide sequence may be constructed having regard to the sequence of the oligonucleotide and using procedures known in the art. The vectors may be selected from plasmids or benign viral vectors depending on the eukaryotic cell and the DNA virus. Phagemids are a specific example of beneficial vectors because they can be used either as plasmids or a bacteriophage vectors. Examples of other vectors include viruses such as bacteriiophages, baculoviruses and retroviruses, DNA viruses, liposomes and other recombination vectors.




Vectors can be constructed by those skilled in the art to contain all the expression elements required to achieve the desired transcription of the antisense oligonucleotide sequences. Therefore, the invention provides vectors comprising a transcription control sequence operatively linked to a sequence which encodes an antisense oligonucleotide. Suitable transcription and translation elements may be derived from a variety of sources, including bacterial, fungal, viral, mammalian or insect genes. Selection of appropriate elements is dependent on the host cell chosen.




Reporter genes may be included in the vector. Suitable reporter genes include β-galactosidase (e.g. lacZ), chloramphenicol, acetyl-transferase, firefly luciferase, or an immunoglobulin or portion thereof. Transcription of the antisense oligonucleotide may be monitored by monitoring for the expression of the reporter gene.




The vectors can be introduced into cells or tissues by any one of a variety of known methods within the art. Such methods can be found generally described in Sambrook et al.


18


; Ausubel et al.


19


; Chang et al.


20


; Vega et al.


21


; and Vectors: A Survey of Molecular Cloning Vectors and Their Uses


22


and include, for example, stable or transient transfection, lipofection, electroporation and infection with recombinant viral vectors.




Introduction of nucleic acids by infection offers several advantages. Higher efficiency and specificity for tissue type can be obtained. Viruses typically infect and propagate in specific cell types. Thus, the virus' specificity may be used to target the vector to specific cell types in vivo or within a tissue or mixed culture of cells. Viral vectors can also be modified with specific receptors or ligands to alter target specificity through receptor mediated events.




Pharmaceutical Formulations




When employed as pharmaceuticals, the antisense oligonucleotides are usually administered in the form of pharmaceutical compositions. These compounds can be administered by a variety of routes including oral, rectal, transdermal, subcutaneous, intravenous, intramuscular, and intranasal. These compounds are effective as both injectable and oral compositions. Such compositions are prepared in a manner well known in the pharmaceutical art and comprise at least one active compound.




This invention also includes pharmaceutical compositions which contain, as the active ingredient, one or more of the antisense oligonucleotides associated with pharmaceutically acceptable carriers. In making the compositions of this invention, the active ingredient is usually mixed with an excipient, diluted by an excipient or enclosed within such a carrier which can be in the form of a capsule, sachet, paper or other container. When the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.




In preparing a formulation, it may be necessary to mill the active compound to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it ordinarily is milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size is normally adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. about 40 mesh.




Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup, and methyl cellulose. The formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents. The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.




The compositions are preferably formulated in a unit dosage form, each dosage containing from about 5 to about 100 mg, more usually about 10 to about 30 mg, of the active ingredient. The term “unit dosage forms” refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient. Preferably, the antisense oligonucleotide is employed at no more than about 20 weight percent of the pharmaceutical composition, more preferably no more than about 15 weight percent, with the balance being pharmaceutically inert carrier(s).




The antisense oligonucleotide is effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. It, will be understood, however, that the amount of the antisense oligonucleotide actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.




For preparing solid compositions such as tablets, the principal active ingredient/antisense oligonucleotide is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention. When referring to these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid preformulation is then subdivided into unit dosage forms of the type described above containing from, for example, 0.1 to about 500 mg of the active ingredient of the present invention.




The tablets or pills of the present invention may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.




The liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as corn oil, cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.




Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra. Preferably the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be inhaled directly from the nebulizing device or the nebulizing device may be attached to a face mask tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices which deliver the formulation in an appropriate manner.




The following formulation examples illustrate representative pharmaceutical compositions of the present invention.




FORMULATION EXAMPLE 1




Hard gelatin capsules containing the following ingredients are prepared:




















Quantity







Ingredient




(mg/capsule)



























Active Ingredient




30.0







Starch




305.0







Magnesium stearate




5.0















The above ingredients are mixed and filled into hard gelatin capsules in 340 mg quantities.




FORMULATION EXAMPLE 2




A tablet formula is prepared using the ingredients below:




















Quantity







Ingredient




(mg/tablet)



























Active Ingredient




25.0







Cellulose, microcrystalline




200.0







Colloidal silicon dioxide




10.0







Stearic acid




5.0















The components are blended and compressed to form tablets, each weighing 240 mg.




FORMULATION EXAMPLE 3




A dry powder inhaler formulation is prepared containing the following components:



















Ingredient




Weight %













Active Ingredient




5







Lactose




95















The active ingredient is mixed with the lactose and the mixture is added to a dry powder inhaling appliance.




FORMULATION EXAMPLE 4




Tablets, each containing 30 mg of active ingredient, are prepared as follows:




















Quantity







Ingredient




(mg/tablet)













Active Ingredient




30.0 mg







Starch




45.0 mg







Microcrystalline cellulose




35.0 mg







Polyvinylpyrrolidone




 4.0 mg







(as 10% solution in sterile water)







Sodium carboxymethyl starch




 4.5 mg







Magnesium stearate




 0.5 mg







Talc




 1.0 mg







Total




 120 mg















The active ingredient, starch and cellulose are passed through a No. 20 mesh U.S. sieve and mixed thoroughly. The solution of polyvinylpyrrolidone is mixed with the resultant powders, which are then passed through a 16 mesh U.S. sieve. The granules so produced are dried at 50° to 60° C. and passed through a 16 mesh U.S. sieve. The sodium carboxymethyl starch, magnesium stearate, and talc, previously passed through a No. 30 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 120 mg.




FORMULATION EXAMPLE 5




Capsules, each containing 40 mg of medicament are made as follows:




















Quantity







Ingredient




(mg/capsule)













Active Ingredient




 40.0 mg







Starch




109.0 mg







Magnesium stearate




 1.0 mg







Total




150.0 mg















The active ingredient, starch, and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 150 mg quantities.




FORMULATION EXAMPLE 6




Suppositories, each containing 25 mg of active ingredient are made as follows:



















Ingredient




Amount













Active Ingredient




  25 mg







Saturated fatty acid glycerides to




2,000 mg















The active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in the saturated fatty acid glycerides previously melted using the minimum heat necessary. The mixture is then poured into a suppository mold of nominal 2.0 g capacity and allowed to cool.




FORMULATION EXAMPLE 7




Suspensions, each containing 50 mg of medicament per 5.0 mL dose are made as follows:



















Ingredient




Amount




























Active Ingredient




50.0




mg







Xanthan gum




4.0




mg







Sodium carboxymethyl cellulose (11%)




50.0




mg







Microcrystalline cellulose (89%)







Sucrose




1.75




g







Sodium benzoate




10.0




mg














Flavor and Color




q.v.















Purified water to




5.0




mL















The active ingredient, sucrose and xanthan gum are blended, passed through a No. 10 mesh U.S. sieve, and then mixed with a previously made solution of the microcrystalline cellulose and sodium carboxymethyl cellulose in water. The sodium benzoate, flavor, and color are diluted with some of the water and added with stirring. Sufficient water is then added to produce the required volume.




FORMULATION EXAMPLE 8




















Quantity







Ingredient




(mg/capsule)













Active Ingredient




 15.0 mg







Starch




407.0 mg







Magnesium stearate




 3.0 mg







Total




425.0 mg















The active ingredient, starch, and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 425.0 mg quantities.




FORMULATION EXAMPLE 9




A formulation may be prepared as follows:



















Ingredient




Quantity




























Active Ingredient




5.0




mg







Corn Oil




1.0




mL















A topical formulation may be prepared as follows:



















Ingredient




Quantity




























Active Ingredient




1-10




g







Emulsifying Wax




30




g







Liquid Paraffin




20




g







White Soft Paraffin




to 100




g















The white soft paraffin is heated until molten. The liquid paraffin and emulsifying wax are incorporated and stirred until dissolved. The active ingredient is added and stirring is continued until dispersed. The mixture is then cooled until solid.




Another preferred formulation employed in the methods of the present invention employs transdermal delivery devices (“patches”). Such transdermal patches may be used to provide continuous or discontinuous infusion of the antisense oligonucleotides of the present invention in controlled amounts. The construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, for example, U.S. Pat. No. 5,023,252


23


, herein incorporated by reference. Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.




Another preferred method of delivery involves “shotgun” delivery of the naked antisense oligonucleotides across the dermal layer. The delivery of “naked” antisense oligonucleotides is well known in the art. See, for example, Felgner et al., U.S. Pat. No. 5,580,859


24


. It is contemplated that the antisense oligonucleotides may be packaged in a lipid vesicle before “shotgun” delivery of the antisense oligonucleotide.




Frequently, it will be desirable or necessary to introduce the pharmaceutical composition to the brain, either directly or indirectly. Direct techniques usually involve placement of a drug delivery catheter into the host's ventricular system to bypass the blood-brain barrier. One such implantable delivery system used for the transport of biological factors to specific anatomical regions of the body is described in U.S. Pat. No. 5,011,472


25


which is herein incorporated by reference.




Indirect techniques, which are generally preferred, usually involve formulating the compositions to provide for drug latentiation by the conversion of hydrophilic drugs into lipid-soluble drugs. Latentiation is generally achieved through blocking of the hydroxy, carbonyl, sulfate, and primary amine groups present on the drug to render the drug more lipid soluble and amenable to transportation across the blood-brain barrier. Alternatively, the delivery of hydrophilic drugs may be enhanced by intra-arterial infusion of hypertonic solutions which can transiently open the blood-brain barrier.




Other suitable formulations for use in the present invention can be found in


Remington's Pharmaceutical Sciences




6


.




The antisense oligonucleotides or the pharmaceutical composition comprising the antisense oligonucleotides may be packaged into convenient kits providing the necessary materials packaged into suitable containers.




Utility




The antisense oligonucleotides of the present invention may be used for a variety of purposes. They may be used to inhibit the expression of the ribonucleotide reductase gene in a microorganism, resulting in the inhibition of growth of that microorganism. They may be used to inhibit the expression of the secA gene in a microorganism, resulting in the inhibition of growth of that microorganism. The oligonucleotides may be used as hybridization probes to detect the presence of the ribonucleotide reductase gene or the secA gene in the microorganism. When so used the oligonucleotides may be labeled with a suitable detectable group (a radioisotope, a ligand, another member of a specific binding pair, for example, biotin). The oligonucleotides may also be used to determine the presence of a particular microorganism in a biological sample. Finally, the oligonucleotides may be used as molecular wight markers.




In order to further illustrate the present invention and advantages thereof, the following specific examples are given but are not meant to limit the scope of the claims in any way.




EXAMPLES




In the examples below, all temperatures are in degrees Celsius (unless otherwise indicated) and all percentages are weight percentages (also unless otherwise indicated).




In the examples below, the following abbreviations have the following meanings. If an abbreviation is not defined, it has its generally accepted meaning:




μM=micromolar




mM=millimolar




M=molar




ml=milliliter




μl=microliter




mg=milligram




μg=microgram




IPTG=isopropyl-β-D-thiogalactoside




PAGE=polyacrylamide gel electrophoresis




PVDF=polyvinylidene difluoride




rpm=revolutions per minute




OD=optical density




CFU=colony forming units




ΔG=free energy, a measurement of oligonucleotide duplex stability




kcal=kilocalories




General Methods in Molecular Biology




Standard molecular biology techniques known in the art and not specifically described were generally followed as in Sambrook et al.


18


; Ausubel et al.


19


; and Perbal


27


.




The antisense oligonucleotides in Tables 1, 2 and 3 were selected from the sequence complementary to the ribonucleotide reductase or secA genes of


E. coli


such that the sequence exhibited the least likelihood of showing one or more of duplex formation, hair-pin formation, and homooligomer/sequence repeats but had a high to moderate potential to bind to the ribonucleotide reductase gene or the secA gene sequence. These properties were determined using the computer modeling program OLIGO Primer Analysis Software, Version 5.0 (distributed by National Biosciences, Inc., Plymouth, Minn.).




The antisense oligonucleotides in Table 4 were selected on the basis that the sequence is highly conserved for the secA genes between two or more microbial species. This property was determined using the BLASTN program (Altschul, et al.


16


) of the University of Wisconsin Computer group (GCG) software (Devereux J. et al.


17


) with the National Center for Biotechnology Information (NCBI) databases.




Phosphorothioate oligonucleotides comprising the desired sequences were specially ordered either from Boston BioSystems, Bedford Mass.; Canadian Life Technologies, Burlington, Canada; Dalton Chemical Laboratories, Inc., North York, Canada; Hybridon, Inc., Milford Mass.; Oligos Etc., or Oligos Therapeutics, Inc., Wilsonvill Oreg.; or TriLink Bio Technologies, San Diego, Calif. Antisense oligonucleotides may also be made by methods known in the art.




Polymerase chain reaction (PCR) was carried out generally as in


PCR Protocols: A Guide To Methods And Applications




28


.




Example 1




Inhibition of Mouse Ribonucleotide Reductase Small Subunit (R2) Expression in


Escherichia coli


by Antisense Oligonucleotide AS-II-626-20




Competent BL21 (DE3) cells carrying a plasmid containing the mouse ribonucleotide reductase R2 gene were used. (Mann et al.


34


) The antisense oligonucleotide, AS-II-626-20, GGCTAAATCGCTCCACCAAG [SEQ ID NO:266] is specifically complementary to the mouse ribonucleotide reductase R2 gene. Approximately 10


10


bacteria/ml were electroporated using a Cell Porator (Gibco BRL, Burlington, Canada) in micro electro-chambers (0.4 cm between the electrodes) at a pulse of 2.4 kV, 4 kΩ with either 20 μM or 200 μM of antisense oligonucleotide AS-II-626-20, following methods described by the manufacturer (Dower W. J.


29


; Neuman et; and Taketo, A.


31


). Control populations were subjected to electroporation but without the antisense oligonucleotide AS-II-626-20.




The bacterial cells were then transferred to Luria-Bertani broth (Miller J. H.


32


) containing 50 μg/ml of ampicillin and 0.4 mM of isopropyl β-D-thiogalactoside (IPTG) (expression inducer) (Horwitz J. P.


33


) to grow at 30° C. on a shaker at 250 rotations per minute (rpm) for 5 hours.




The cells were harvested by centrifugation and treated with 2×sample loading buffer (100 mM Tris[hydroxymethyl′aminomethane, pH 6.8, 200 mM dithiothrietol, 4% sodium dodecyl sulfate, 20% glycerol and 0.015% bromophenol blue) and sonicated (Olsvik, et al.


35


) for 15 seconds. The supernatants were resolved by polyacrylamide gel electrophoresis (PAGE) (Laemmli U.K.


36


).




The ribonucleotide reductase R2 expression was detected by Western blot. The protein gel was blotted onto polyvinylidene difuoride (PVDF) protein sequencing membrane. (Choy et al.


37


). The presence of the mouse ribonucleotide reductase was detected with a rabbit anti-mouse R2 subunit antibody (Chan et al.


39


). The presence of the antibody bound to the ribonucleotide reducatase was detected using a second goat anti-rabbit immunoglobulin linked with horseradish peroxidase (Amersham Life Sciences, Oakville Canada).




The upper panel of

FIG. 14

is a photograph of the Western Blot results. The lower panel of

FIG. 14

is a photograph of the membrane stained with India ink to indicate the level of protein loaded in each lane.




It is clear that administration of either 20 μM or 200 μM AS-II-626-20 resulted in a marked reduction of mouse ribonucleotide reductase gene expression in the


E. coli


cells.




Example 2




Inhibition of Bacteria


Escherichia coli


K12 Growth by Antisense Oligonucleotides ER1-169 and ER2-724 Targeting


E. coli


Ribonucleotide Reductase Large Subunit (R1) and Small Subunit (R2)






E. coli


cells were electroporated by the method set forth in Example 1 with ER1-169 [SEQ ID NO:22] or ER2-724 [SEQ ID NO:145] at the concentrations shown in

FIG. 15

, while the control cells received oligonucleotide AS-II-626-20 [SEQ ID NO:266] (targeting mouse ribonucleotide reductase small subunit).




The


E. coli


cells were then transferred to fresh Luria-Bertani broth (Miller J. H.


32


) to grow at 30° C. on a shaker at 250 rpm for 3 hours. The flasks for the test and the control each contained the same number of bacteria per ml at the start of the experiment. The optical density at 590 nm (OD


590


) of the cultures was measured at the start and at the end of the 3 hours. The inhibition of


E. coli


growth was calculated by comparing the increase in OD


590


values at the start and the end of the 3 hours of the oligonucleotide-treated cultures to the increase of the control cultures at the start and at the end of the 3 hours. (Carpentier P.L.


40


)




The results indicate that ER1-169 [SEQ ID NO:22] and ER2-724 [SEQ ID NO:145] inhibited the growth of


E. coli.






Example 3




Killing of


Escherichia coli


K12 by Antisense Oligonucleotides Targeting the Ribonucleotide Reductase Large Subunit (R1) or the Small Subunit (R2)






E. coli


cells (approximately 2×10


9


were incubated with 20 μM of each of the phosphorothioate oligonucleotides set forth in

FIG. 12

on ice for 45 minutes. A control without oligonucleotides was also incubated for each experiment. Cells were heat shocked by placing them in a 42° C. bath for 45 seconds. (Sambrook J. et al.


18


)




Luria-Bertani (LB) broth (Miller J. H.


32


) was added and the samples were incubated at room temperature for 30 minutes. Dilutions of treated and untreated bacteria were incubated overnight at 37° C. on culture plates containing LB medium, and the number of colonies was counted.




The number of killed bacteria was calculated by subtracting the surviving colony forming units (CFU/ml) of the oligonucleotide-treated bacteria from the CFU/ml of the control.

FIG. 16

shows the number of bacteria killed by treatment with the antisense sequences: ER1-640 [SEQ ID NO:43]; ER1-1059 [SEQ ID NO:62]; ER1-1320 [SEQ ID NO:75]; ER1-1315 [SEQ ID NO:74]; ER1-1326 [SEQ ID NO:76]; ER2-704 [SEQ ID NO:143] and ER2-983 [SEQ ID NO:152].




The results from

FIG. 16

show that antisense oligonucleotides complementary to either the R1 or R2 subunit of ribonucleotide reductase are effective as anti-bacterial agents.




Example 4




Inhibition of the secA Protein Expression in


Escherichia coli


Following Treatment with Antisense Phosphorothioate Oligonucleotides






E. coli


cells were heat shock transformed by the method set forth in Example 3 above with the 80 μM of each of the antisense phosphorothioate oligonucleotides set forth in FIG.


17


.




Luria-Bertani broth was then added to the treated


E. coli


cells and they were allowed to grow at 30° C. on a shaker at 250 rpm for 3 hours.




Approximately the same quantity of treated and untreated bacteria, based on optical density, were washed in phosphate buffered saline, suspended in 2×Laemmli sample buffer (Laemmli U. K.


36


), heated for 5 minutes at 95° C. and subjected to SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis).




The gel was blotted onto polyvinylidene difluoride protein sequencing membrane by the methods set forth in Example 1. A rabbit polyclonal SecA antiserum (der Blaauwen et al.


6


) was used to detect the expression of the


E. coli


secA gene. The presence of bound rabbit antibody was detected using a goat anti-rabbit immunoglobulin (Amersham Life Sciences, Oakville, Canada).





FIG. 17

is a photograph of the Western Blot of


E. coli


cells treated with oligonucleotides ES799 [SEQ ID NO:195] (lane 1); ES1845 [SEQ ID NO:235] (lane 2); and the control (lane 3). When compared to the control, lane 3, the ES799 [SEQ ID NO:195] and ES1845 [SEQ ID NO:235] oligonucleotides clearly decreased the SecA protein levels in the treated


E. coli


cells. The top band in the

FIG. 17

represents SecA. Non-specific background bands appear below the SecA protein band.




It has been found that the antisense oligonucleotides are effective inhibitors of SecA expression in


E. coli.






Example 5




Killing of


Escherichia coli


K12 by Antisense secA Oligonucleotides






E. coli


cells were heat shock transformed by the method described in Example 3 above with either 100 μM or 20 μM of the antisense phosphorothioate oligonucleotides set forth in

FIGS. 18



a


and


18


b




Luria-Bertani (LB) broth (Miller J. H.


32


) was added and the bacterial samples were incubated at room temperature for 30 minutes. Dilutions of treated and untreated bacteria were incubated overnight at 37° C. on culture plates containing LB medium, and the number of colonies was counted.




The number of killed bacteria was calculated by subtracting the surviving colony forming units (CFU/ml) of the oligonucleotide-treated bacteria from the CFU/ml of the control.

FIGS. 18



a


and


18




b


show the number of bacteria killed by treatment with the various antisense sequences. Accordingly, antisense oligonucleotides complementary to the secA gene act to inhibit the growth of


E. coli.






Example 6




Effect of Antisense Oligonucleotides on


Escherichia coli


K12 Growth






E. coli


cells were heat shock transformed by the method described in Example 3 with either 16 μM, 20 μM or 80 μM of each of the antisense phosphorothioate oligonucleotides set forth in

FIGS. 19



a-g.






Equal numbers of the treated


E. coli


cells were then transferred to flasks containing fresh Luria-Bertani broth to grow at 30° C. on a shaker at 250 rpm. The number of bacteria per flask was determined by the turbidity of the cultures at OD


620


taken each hour (Carpentier P.L.


40


).





FIGS. 19



a-g


show the rate of growth of the


E. coli


in each of the flasks after treatment with the various oligonucleotides. When growth curves of the treated and untreated cultures were statistically analyzed, the growth of the antisense treated cultures was found to be significantly inhibited when compared to the control cultures. The statistical p values are found in the FIGURES.







265




1


2286


DNA


Escherichia coli



1
atgaatcaga atctgctggt gacaaagcgc gacggtagca cagagcgcat caatctcgac 60
aaaatccatc gcgttctgga ttgggcggca gaaggactgc ataacgtttc gatttcccag 120
gtcgagctgc gctcccacat tcagttttat gacggtatca agacctctga catccacgaa 180
accattatca aggctgccgc agacctgatc tcccgtgatg cgccggatta tcagtatctc 240
gccgcgcgcc tggcgatctt ccacctgcgt aaaaaagcct acggccagtt tgagccgcct 300
gcgctgtacg accacgtggt gaaaatggtc gagatgggca aatacgataa tcatctgctg 360
gaagactaca cggaagaaga gttcaagcag atggacacct ttatcgatca cgaccgtgat 420
atgaccttct cttatgctgc cgttaagcag ctggaaggca aatatctggt acagaaccgc 480
gtgaccggcg aaatctatga gagcgcccag ttcctttata ttctagttgc cgcgtgcttg 540
ttctcgaact acccgcgtga aacgcgcctg caatatgtga agcgttttta cgacgcggtt 600
tccacattta aaatttcgct gccgacgcca atcatgtccg gcgtgcgtac cccgactcgt 660
cagttcagct cctgcgtact gatcgagtgc ggtgacagcc tggattccat caacgccacc 720
tccagcgcga ttgttaaata cgtttcccag cgtgccggga tcggcatcaa cgccgggcgt 780
attcgtgcgc tgggtagccc gattcgcggt ggtgaagcgt tccataccgg ctgcattccg 840
ttctacaaac atttccagac agcggtgaaa tcctgctctc agggcggtgt gcgcggcggt 900
gcggcaacgc tgttctaccc gatgtggcat ctggaagtgg aaagcctgct ggtgttgaaa 960
aacaaccgtg gtgtggaagg caaccgcgtg cgtcatatgg actacggggt acaaatcaac 1020
aaactgatgt atacccgtct gctgaaaggt gaagatatca ccctgttcag cccgtccgac 1080
gtaccggggc tgtacgacgc gttcttcgcc gatcaggaag agtttgaacg tctgtatacc 1140
aaatatgaga aagacgacag catccgcaag cagcgtgtga aagccgttga gctgttctcg 1200
ctgatgatgc aggaacgtgc gtctaccggt cgtatctata ttcagaacgt tgaccactgc 1260
aatacccata gcccgtttga tccggccatc gcgccagtgc gtcagtctaa cctgtgcctg 1320
gagatagccc tgccgaccaa accgctgaac gacgtcaacg acgagaacgg tgaaatcgcg 1380
ctgtgtacgc tgtctgcttt caacctgggc gcaattaata acctggatga actggaagag 1440
ctggcaattc tggcggttcg tgcacttgac gcgctgctgg attatcagga ttacccgatc 1500
ccggccgcca aacgtggagc gatgggtcgt cgtacgctgg gtattggtgt gatcaacttc 1560
gcttactacc tggcgaacga cggtaaacgc tactccgacg gcagcgccaa caacctgacg 1620
cataaaacct tcgaagccat tcagtattac ctgctgaaag cctctaatga gctggcgaaa 1680
gagcaaggcg cgtgcccgtg gtttaacgaa accacttacg cgaaagggat cctgccgatc 1740
gatacctata agaaagatct ggataccatc gctaatgagc cgctgcatta cgactgggaa 1800
gctctgcgtg agtcaatcaa aacgcacggt ctgcgtaact ccacgctttc tgctctgatg 1860
ccgtccgaga cttcttcgca gatctctaac gccactaacg gtattgaacc gccgcgcggt 1920
tacgtcagca tcaaagcgtc gaaagacggt attttgcgcc aggtggtgcc ggactacgag 1980
cacctgcacg acgcctatga gctgctgtgg gaaatgccgg gtaacgatgg ttatctgcaa 2040
ctggtgggta tcatgcagaa atttatcgat cagtcgatct ctgccaacac caactacgat 2100
ccgtcacgct tcccgtcagg aaaagtgccg atgcagcagt tgctgaaaga cctgctcacc 2160
gcctacaaat tcggggtcaa aacactgtat tatcagaaca cccgtgacgg cgctgaagac 2220
gcacaagacg atctggtgcc gtcaatccag gacgatggct gcgaaagcgg cgcatgtaag 2280
atctga 2286




2


1560


DNA


Escherichia coli



2
ctggtgccgt caatccagga cgatggctgc gaaagcggcg catgtaagat ctgatattga 60
gatgccggat gcggcgtaaa cgccttatcc ggcctacggc tcggtttgta ggcctgataa 120
gacgcgccag cgtcgcatca ggctccgggt gccggatgca gcgtgaacgc cttatccggc 180
ctacggctcg gatttgtagg cctgataaga cgcgccagcg tcgcatcagg cacaggatgc 240
ggcgtaaaat gccttatccg gcattaaact cccaacagga cacactcatg gcatatacca 300
ccttttcaca gacgaaaaat gatcagctca aagaaccgat gttctttggt cagccggtca 360
acgtggctcg ctacgatcag caaaaatatg acatcttcga aaagctgatc gaaaagcagc 420
tctctttctt ctggcgtccg gaagaagttg acgtctcccg cgaccgtata gattaccagg 480
cgctgccgga gcacgaaaaa cacatcttta tcagcaacct gaaatatcag acgctgctgg 540
attccattca gggtcgtagc ccgaacgtgg cgctattgcc gcttatttct attccggaac 600
tggaaacctg ggtcgaaacc tgggcgttct cagaaacgat tcattcccgt tcctatactc 660
atatcattcg taatatcgtt aacgatccgt ctgttgtgtt tgacgatatc gtcaccaacg 720
agcagatcca gaaacgtgcg gaagggatct ccagctatta cgatgagctg atcgaaatga 780
ccagctactg gcatctgctg ggcgaaggta cccacaccgt taacggtaaa actgtgaccg 840
ttagcctgcg cgagctgaag aaaaaactgt atctctgcct gatgagcgtt aacgcgctgg 900
aagcgattcg tttctacgtc agctttgctt gttccttcgc atttgcagaa cgcgaattga 960
tggaaggcaa cgccaaaatt attcgcctga ttgcccgcga cgaagccctg cacctgaccg 1020
gcacccagca tatgctgaat ctgctgcgca gcggcgcgga cgatcctgag atggcggaaa 1080
ttgccgaaga gtgtaagcag gagtgctatg acctgtttgt tcaggcagct caacaggaga 1140
aagactgggc ggattatctg ttccgcgacg gttcgatgat tggtctgaat aaagacattc 1200
tctgccagta cgttgaatac atcaccaata tccgtatgca ggcagtcggt ttggatctgc 1260
cgttccagac gcgctccaac ccgatcccgt ggatcaacac ttggctggtg tctgataacg 1320
tgcaggttgc tccgcaggaa gtggaagtca gttcttatct ggtcgggcag attgactcgg 1380
aagtggacac cgacgatttg agtaacttcc agctctgatg gcccgcgtta ccctgcgcat 1440
cactggcaca caactgctgt gccaggatga acacccttcc cttctggcgg cgctggaatc 1500
ccacaatgtg gcggttgagt accagtgtcg cgaaggttac tgcggctcct gtcgcacacg 1560




3


4594


DNA


Salmonella typhimurium



3
gtgaacgtcg atctggtgcc ggatgcagcg gatacgctcc gggcgcaagg atttcgtcaa 60
ttaccggtgg tgatggcggg cgatttgagc tggtctggct tccgcccgga catgattaac 120
cgtctgcacc cgacacccca cgcggcaaac gcatgagcgc gctcgtctac ttctccagca 180
gctctgaaaa tacgcaccgc tttatgcagc gtctggggct gcctgccacg cgtattccgc 240
tcaatgagcg ggagcgaatt caggtagacg aaccgtacat tctggttgtg ccgtcatacg 300
gcggcggcgg gatggccggt gcggtgccgc gacaggtgat ccgcttttta aatgatgaac 360
acaaccgggc gcgcattcgc ggcgttatcg cctccggtaa tcgcaatttc ggcgatgcct 420
ggggatgcgc tggcgatgtg atagcacaaa aatgcggcgt cccctggctg taccgctttg 480
agctcatggg cacacaacgc gacatcgata atgtccgaaa aggagtaaat gaattttggc 540
aacaactacc ccggagcgcg taatgcagga aaccatggat taccacgccc tgaacgcgat 600
gctgaatctt tacgataaag caggccatat tcagttcgac aaggaccagc aggcgatcga 660
cgccttcttt gccacccacg tccgcccgca ttccgtgacg tttgccagcc agcatgaacg 720
tctggggacg ctggttcggg aagggtatta cgatgacgcc gtcctcgcgc gttacgaccg 780
cgccttcgtc cttcgcctgt tcgagcacgc ccatgccagc ggctttcgct tccagacgtt 840
tcttggcgcc tggaagttct ataccagtta cacgctgaaa accttcgacg gcaaacgtta 900
tctggaacac tttgaagatc gggtgacaat ggtggcgttg acgctggcgc agggtgacga 960
aacgctggcc acccaactga ccgatgaaat gctttctggt cgctttcagc ccgctacccc 1020
gactttttta aattgcggca aacagcagcg tggggaactg gtctcctgct tcctgctccg 1080
tatcgaagac aacatggagt cgatcgggcg ggcggtgaat tcggcgctgc aactctccaa 1140
acgcggcggc ggcgtcgcgt ttttactctc caatctgcgc gaggcgggcg cgccgatcaa 1200
acgcattgag aatcagtctt ccggcgtgat cccggtgatg aaaatgctgg aagacgcgtt 1260
ttcgtatgcc aaccaacttg gcgcgcgcca gggggccggc gcggtttatc tccatgcgca 1320
ccatccggat attctgcgtt ttctggatac caaacgagaa aacgctgacg aaaaaatccg 1380
gatcaaaacg ctctctctcg gcgtggtgat cccggatatc accttccggc tggcgaaaga 1440
aaacgcgcaa atggcgctct tttcgcccta tgacatacaa cgacgctacg gcaaaccgtt 1500
tggcgatatc gccattagcg aacggtacga tgaattaatt gccgatccgc acgtgcgcaa 1560
aacctatatt aacgcccgtg acttttttca aacactggcg gagattcagt tcgaatccgg 1620
gtatccctac atcatgtttg aagatacggt aaaccgcgcg aatcccattg ctggtcgcat 1680
taatatgagc aacctgtgct cagaaatttt acaggtcaat agcgcttccc gttacgacga 1740
taaccttgac tatacccaca tcgggcatga catctcctgc aatctcggct cgctgaatat 1800
cgctcacgtc atggattcac cggacattgg ccgtaccgta gaaaccgcta ttcgcggcct 1860
gacggcggtg tcggacatga gccatatacg cagcgtgccc tcaatagccg ccggtaatgc 1920
cgcctctcat gccatcggtc tgggccagat gaatctgcat ggctatctgg cgagggaagg 1980
tattgcctac ggttcgccgg aggcgttgga tttcaccaat ctctattttt acaccattac 2040
ctggcatgcc gtgcatactt caatgcggct agcccgcgaa cgcggcaaaa ccttcgccgg 2100
atttgcgcag tcgcgctatg ccagcggcga ctattttacg cagtatttac aggacgactg 2160
gcaaccgaaa acagcgaaag tcagggcgct atttgcccgc agcggcatta cgctgcccac 2220
acgagaaatg tggctaaagc tgcgcgacga tgtgatgcgc tatggcatct ataaccaaaa 2280
tttgcaggcg gtgccgccga ccggttcgat ttcttacatt aatcatgcga cctccagcat 2340
tcatccgatt gtggccaaaa ttgagattcg caaagagggc aaaaccgggc gtgtgtatta 2400
ccccgcgccg tttatgacca atgaaaacct ggacatgtat caggatgctt acgatatcgg 2460
tccggaaaaa attattgata cctatgccga ggccacgcgc cacgtcgatc aagggctgtc 2520
gctcaccctg tttttccccg ataccgccac gacccgcgat atcaacaagg cgcagatcta 2580
tgcctggcga aaaggtatta agtccctgta ttacatccgg cttcgccagt tggcgctgga 2640
aggtactgaa attgaaggct gcgtatcctg cgcgctataa ggaaagccat atgaaattat 2700
ctcgtattag cgccatcaac tggaacaaga tccaggacga caaagatctg gaggtatgga 2760
accggctgac cagtaacttc tggctgccgg aaaaagtgcc gttatcgaat gatattccgg 2820
cctggcagac gctgagcgcc gccgaacagc agctcaccat tcgcgtgttt acgggactta 2880
cgctgctcga cactatccag aacatcgcag gcgcgccgtc gttaatggca gatgccatca 2940
cgccgcatga agaggcagtg ctgtcgaaca tcagctttat ggaagcggta cacgcccgct 3000
cttacagttc tattttctcc acgctgtgcc agacgaaaga ggttgatgcc gcctacgcct 3060
ggagcgaaga aaacccaccg cttcagcgta aggcgcagat tattttagct cattacgtca 3120
gcgatgaacc gctaaagaaa aagattgcca gcgtcttttt agagtctttt ctgttctatt 3180
ccggcttctg gttgccgatg tatttctcca gccgcggtaa gctcacgaac actgccgacc 3240
tgattcgttt aatcattcgc gatgaagcgg ttcacggtta ttatattggc tataagtatc 3300
agatagcgct acaaaaacta tcggcaatcg agcgtgaaga gttaaagctt ttcgcgctgg 3360
atttgttgat ggaactgtac gacaacgaaa tccgctacac agaagcgtta tatgcggaaa 3420
ccggctgggt taacgacgtc aaagccttct tgtgctacaa cgccaataaa gccttaatga 3480
acctgggtta tgaggcgtta tttccgccgg agatggcaga cgtgaatccc gcaatccttg 3540
ccgcgctctc gccgaatgcc gacgaaaacc atgatttctt ttccggctca ggttcatctt 3600
atgtgatggg gaaaacagtc gaaaccgaag acgaagactg gaatttttaa ccttacgggc 3660
atgggaaata acgttacatt tcccatgcct ttatttcaag caatagggag tcaaatcgcg 3720
caaatattac aacatgtcct acactcaata cgagtgacat tattcacctg gattccccca 3780
attcaggtgg atttttgctg gttgttccaa aaaatatctc ttcctcccca ttcgcgttca 3840
gcccttatat catgggaaat cacagccgat agcacctcgc aatattcatg ccagaagcaa 3900
attcagggtt gtctcagatt ctgagtatgt tagggtagaa aaaggtaact atttctatca 3960
ggtaacatat cgacataagt aaataacagg aatcattcta ttgcatggca attaaattag 4020
aagtgaagaa tctgtataaa atatttggag agcatccgca gcgtgccttc aaatatattg 4080
aaaagggact atcgaaagag caaatactgg aaaaaacggg gctatcgctt ggcgttaaag 4140
acgccagtct ggccattgaa gaaggcgaga tatttgtcat catgggatta tccggctcgg 4200
gtaaatccac aatggtacgc cttctcaatc gcctgattga acccacccgc ggacaggtac 4260
tgattgacgg cgttgatatt gccaaaatat cagacgctga gcttcgcgag gtgcgcagga 4320
aaaagattgc gatggtcttc cagtcatttg cgctcatgcc gcatatgacc gtgctggata 4380
atacggcatt cggtatggaa ttagcgggca tcgcggcgca agagcgtcgc gaaaaagcgc 4440
tggacgcctt gcgtcaggtg gggcttgaga attacgctca cgcctacccg gatgaacttt 4500
ccggtgggat gcgtcagcgt gttgggcttg cccgcgcgct ggcaatcaac cctgatatct 4560
tattaatgga tgaagcgttt tccgccctcg atcc 4594




4


1033


DNA


Lactococcus lactis



4
gaattcttat tttccctagc tttggattta ttctcacttc ctatgatctt ttattctcga 60
ttattatttt tgctttggca attattatca tttttcgaca taaaacaaac ctcaaaagaa 120
tcaaaaatca ttgtgaatcc cttgtcccct ttggtttaaa cttatcgaga caaaaagaaa 180
aatagcacaa tatattgtgt tgtttttctt tttttacata atttaacact atatctagta 240
tctttaattt gactagatat tttttttacg ctaaataaga ctataaaaac tcgagaaaaa 300
gtcaaggact ttttactccc gtctaaaaaa tatattggcc caaaaggaga tttaaaatgg 360
ttacagttta ttctaaaaac aattgtatgc aatgcaaaat ggtcaaaaaa tggctttctg 420
aacacgaaat tgcatttaac gaaatcaata ttgatgaaca gcctgaattt gtcgaaaaag 480
taattgaaat gggttttcga gctgctcctg taatcacaaa agatgatttc gccttttctg 540
gtttccgtcc ttctgaatta gcaaagttgg cttaatatga aacttgctta tttcagtgtg 600
actggacaaa cgcgtcgttt tgtttctaaa acagacttgc cgaatgtcga aattacacct 660
gacgatgatt tagagatgga cgagcctttc cttttgataa ctccctctta tgctgaagaa 720
tcaccaaccg tttctaaatc aatagacgtt atggactcgg tttttgactt tatggcttat 780
aatgataatt ataaacattg tcgtggaatt atcggcactg gaaatcgtaa ttttgctggc 840
atctatattt ttaccgctaa agaagtttca gcaaaatatc aaattccact tttatatgat 900
tttgagttta atggtacgcc agctgatgtt gctgctgttg aaaaactcgc tgcacagctt 960
gatcaaggag cgaaagtcac ctttaaaaat ccgctgtgat tttttatggc ttcaccctat 1020
ttgagtgaag ctt 1033




5


3811


DNA


Escherichia coli



5
cagctgtact ggcataacga catttatact gtcgtataaa attcgactgg caaatctggc 60
actctctccg gccaggtgaa ccagtcgttt ttttttgaat tttataagag ctataaaaaa 120
cggtgcgaac gctgttttct taagcacttt tccgcacaac ttatcttcat tcgtgctgtg 180
gactgcaggc tttaatgata agatttgtgc gctaaatacg tttgaatatg atcgggatgg 240
caataacgtg agtggaatac tgacgcgctg gcgacagttt ggtaaacgct acttctggcc 300
gcatctctta ttagggatgg ttgcggcgag tttaggtttg cctgcgctca gcaacgccgc 360
cgaaccaaac gcgcccgcaa aagcgacaac ccgcaaccac gagccttcag ccaaagttaa 420
ctttggtcaa ttggccttgc tggaagcgaa cacacgccgc ccgaattcga actattccgt 480
tgattactgg catcaacatg ccattcgcac ggtaatccgt catctttctt tcgcaatggc 540
accgcaaaca ctgcccgttg ctgaagaatc tttgcctctt caggcgcaac atcttgcatt 600
actggatacg ctcagcgcgc tgctgaccca ggaaggcacg ccgtctgaaa agggttatcg 660
cattgattat gcgcatttta ccccacaagc aaaattcagc acgcccgtct ggataagcca 720
ggcgcaaggc atccgtgctg gccctcaacg cctcacctaa caacaataaa cctttacttc 780
attttattaa ctccgcaacg cggggcgttt gagattttat tatgctaatc aaattgttaa 840
ctaaagtttt cggtagtcgt aacgatcgca ccctgcgccg gatgcgcaaa gtggtcaaca 900
tcatcaatgc catggaaccg gagatggaaa aactctccga cgaagaactg aaagggaaaa 960
ccgcagagtt tcgtgcacgt ctggaaaaag gcgaagtgct ggaaaatctg atcccggaag 1020
ctttcgccgt ggtacgtgag gcaagtaagc gcgtctttgg tatgcgtcac ttcgacgttc 1080
agttactcgg cggtatggtt cttaacgaac gctgcatcgc cgaaatgcgt accggtgaag 1140
gaaaaaccct gaccgcaacc ctccctcctt acctgaacgc actaaccggt aaaggcgtgc 1200
acgtagttac cgtcaacgac tacctggcgc aacgtgacgc cgaaaacaac cgtccgctgt 1260
ttgaattcct tggcctgact gtcggtatca acctgccggg catgccagca ccggcaaagc 1320
gcgaagctta cgcagctgac atcacttacg gtaccaacaa cgaatacggc tttgactacc 1380
tgcgcgacaa catggcgttc agccctgaag aacgtgtaca gcgtaaactg cactatgcgc 1440
tggtggacga agtggactcc atcctgatcg atgaagcgcg tacaccgctg atcatttccg 1500
gcccggcaga agacagctcg gaaatgtata aacgcgtgaa taaaattatt ccgcacctga 1560
tccgtcagga aaaagaagac tccgaaacct tccagggcga aggccacttc tcggtggacg 1620
aaaaatctcg ccaggtgaac ctgaccgaac gtggtctggt gctgattgaa gaactgctgg 1680
tgaaagaggg catcatggat gaaggggagt ctctgtactc tccggccaac atcatgctga 1740
tgcaccacgt aacggcggcg ctgcgcgctc atgcgctgtt tacccgtgac gtcgactaca 1800
tcgttaaaga tggtgaagtt atcatcgttg acgaacacac cggtcgtacc atgcagggcc 1860
gtcgctggtc cgatggtctg caccaggctg tggaagcgaa agaaggtgtg cagatccaga 1920
acgaaaacca aacgctggct tcgatcacct tccagaacta cttccgtctg tatgaaaaac 1980
tggcggggat gaccggtact gctgataccg aagctttcga atttagctca atctacaagc 2040
tggataccgt cgttgttccg accaaccgtc caatgattcg taaagatctg ccggacctgg 2100
tctacatgac tgaagcggaa aaaattcagg cgatcattga agatatcaaa gaacgtactg 2160
cgaaaggcca gccggtgctg gtgggtacta tctccatcga aaaatcggag ctggtgtcaa 2220
acgaactgac caaagccggt attaagcaca acgtcctgaa cgccaaattc cacgccaacg 2280
aagcggcgat tgttgctcag gcaggttatc cggctgcggt gactatcgcg accaatatgg 2340
cgggtcgtgg tacagatatt gtgctcggtg gtagctggca ggcagaagtt gccgcgctgg 2400
aaaatccgac cgcagagcaa attgaaaaaa ttaaagccga ctggcaggta cgtcacgatg 2460
cggtactgga agcaggtggc ctgcatatca tcggtaccga gcgtcacgaa tcccgtcgta 2520
tcgataacca gttgcgcggt cgttctggtc gtcaggggga tgctggttct tcccgtttct 2580
acctgtcgat ggaagatgcg ctgatgcgta tttttgcttc cgaccgagta tccggcatga 2640
tgcgtaaact gggtatgaag ccaggcgaag ccattgaaca cccgtgggtg actaaagcga 2700
ttgccaacgc ccagcgtaaa gttgaaagcc gtaacttcga cattcgtaag caactgctgg 2760
aatatgatga cgtggctaac gatcagcgtc gcgccattta ctcccagcgt aacgaactgt 2820
tggatgtcag cgatgtgagc gaaaccatta acagcattcg tgaagatgtg ttcaaagcga 2880
ccattgatgc ctacattcca ccacagtcgc tggaagaaat gtgggatatt ccggggctgc 2940
aggaacgtct gaagaacgat ttcgacctcg atttgccaat tgccgagtgg ctggataaag 3000
aaccagaact gcatgaagag acgctgcgtg acggcattct ggcgcagtcc atcgaagtgt 3060
atcagcgtaa agaagaagtg gttggtgctg agatgatgcg tcacttcgag aaaggcgtca 3120
tgctgcaaac gcttgactcc ctgtggaaag agcacctggc agcgatggac tatctgcgtc 3180
agggtatcca cctgcgtggc tacgcacaga aagatccgaa gcaggaatac aaacgtgaat 3240
cgttctccat gtttgcagcg atgctggagt cgttgaaata tgaagttatc agtacgctga 3300
gcaaagttca ggtacgtatg cctgaagagg ttgaggagct ggaacaacag cgtcgtatgg 3360
aagccgagcg tttagcgcaa atgcagcagc ttagccatca ggatgacgac tctgcagccg 3420
cagctgcact ggcggcgcaa accggagagc gcaaagtagg acgtaacgat ccttgcccgt 3480
gcggttctgg taaaaaatac aagcagtgcc atggccgcct gcaataaaag ctaactgttg 3540
aagtaaaagg cgcaggattc tgcgcctttt ttataggttt aagacaatga aaaagctgca 3600
aattgcggta ggtattattc gcaacgagaa caatgaaatc tttataacgc gtcgcgcagc 3660
agatgcgcac atggcgaata aactggagtt tcccggcggt aaaattgaaa tgggtgaaac 3720
gccggaacag gcggtggtgc gtgaacttca ggaagaagtc gggattaccc cccaacattt 3780
ttcgctattt gaaaaactgg aatatgaatt c 3811




6


4045


DNA


Mycobacterium bovis



6
gatctacggc agaactcgtc gcttggagcg ttcgaccgac catctacctg ttcgacgtcg 60
aactcgacca ctgaacgtaa tcgccgccag cgcaagtcct gtcagcgcgt ggagatcacc 120
gcgcgtgggc gagggccggt ggtgcgaggt gaggcctgcg ccgacagctt ctatgccgcg 180
cttgaatcag cggtcgtcaa actggagagc gtgcgccgcg gtaaggatcg ccgcaaggtg 240
cactacggcg acaaaacccc ggtttcgctg gccgaggcga ccgcggtggt gccagcgccg 300
gagaacggct tcaacaccag accagccgag gcacacgatc acgacggtgc cgtcgtcgag 360
cgggagcctg ggcggatcgt tcgcaccaaa gaacacccgg ccaagccgat gtcggtcgat 420
gacgcgctct accagatgga gctggttgga cacgacttct tcttgttcta cgacaaggac 480
accgaacggc cgtcggtggt ctaccgccgg cacgcctacg actacggctt gatccgtctg 540
gcgtgatcgg cggcgcgcgc cgctcgtcac ctaccatggg agtcgcctta tctaaagact 600
cctacacatg cggggacata gctgtgctgt cgaagttgct gcgccttggc gaaggtcgca 660
tggtcaagcg cctcaagaag gtggcggact atgtcggcac tttgtccgac gatgtcgaga 720
aactcaccga cgccgagctg agggcgaaaa ccgacgagtt caagcggcgg ctggccgacc 780
agaaaaaccc agaaaccctc gacgacctgt tgcccgaggc cttcgccgtg gcccgcgagg 840
ccgcctggcg ggtgctggac cagcggccgt tcgacgtgca ggtgatgggt gcggccgccc 900
tgcacctggg caacgttgcc gagatgaaga ccggtgaagg caagaccctg acctgtgtgt 960
tgcccgctta cctcaatgcg ctggccggca acggcgtgca catcgtcacc gtcaacgact 1020
acctggctaa acgcgacagt gagtggatgg gccgcgtgca ccgcttcctc gggcttcagg 1080
tcggggtgat tttcgccacc atgacacccg atgaacgccg ggtggcctat aacgccgaca 1140
tcacctacgg caccaataac gagtttgggt tcgactacct gcgcgacaac atggcgcact 1200
cactggatga tctggtgcag cgcgggcacc attacgccat tgtcgacgag gtcgattcca 1260
tcctgatcga cgaggcccgc accccgctga tcatctccgg tcccgccgac ggcctccaac 1320
tggtacaccg agttcgccgg ttggcgccgc tgatggaaaa ggacgtccac tacgaggtcg 1380
atctacgcaa acgcaccgtc ggcgtgcacg agaagggtgt ggaattcgtc gaagaccagc 1440
tcggcatcga caacctgtac gaggccgcca actcgccgtt ggtcagctat ctcaacaacg 1500
ctctgaaggc caaagagctg ttcagccgcg acaaggacta catcgtccgc gatggtgagg 1560
tgctcatcgt cgacgagttc accggccggg tgctgatcgg ccgccgctac aacgagggca 1620
tcgaccaggc catcgaggcc aaggagcacg tcgagatcaa ggccgagaac cagacgctgg 1680
ccaccatcac gctgcagaac tacttccggc tctacgacaa gctcgccggc atgaccggca 1740
ccgcccagac ggaggcggcc gagctgcacg agatctacaa gctgggcgtg gtcagcatcc 1800
cgaccaacat gccgatgatc cgtgaagacc agtccgacct gatctacaag accgaggagg 1860
ccaagtacat cgcggtggtc gacgacgtcg ccgagcgcta cgcgaaggga cagccggtgc 1920
tgatcggcac caccagcgtg gagcgctcgg agtatctgtc gcggcagttc accaagcggc 1980
gcatcccgca caatgtgctc aacgccaagt accacgagca agaggcgacc atcatcgcgg 2040
tggcgggccg ccgcggcggc gtcaccgtcg ccaccaacat ggccggtcgc ggcaccgaca 2100
ttgtgctggg cggcaacgtc gactttctca ccgatcagcg gctgcgcgaa cggcctggat 2160
ccggtggaga cgcccgagga gtacgaggcg gcctggcact ccgaactgcc catcgtcaaa 2220
gaggaagcca gcaaggaggc caaggaagta atcgaggccg gcggctgtac gtgctgggca 2280
ccgagcggcc acgagtcgcg gcggatcgac aaccagttgc gtggccggtc cggccgccag 2340
gggaccccgg ggagtcgcgc ttctatttgt cgctgggtga cgagctgatg cgccgcttca 2400
atggcgcggc cttggagacc ttgttgacca ggctgaacct gcccgacgac gtgccgatcg 2460
aagccaagat ggtcacccgg gccatcaaga gcgcccagac ccaggtcgag cagcagaact 2520
ttgaggtccg caagaacgtc ctcaaatacg acgaggtgat gaaccagcag cgcaaggtca 2580
tctacgccga gcgccggcgc atcctcgaag gcgaaaacct caaggaccag gcgctggaca 2640
tggtccgcga tgtcatcacc gcctacgtcg acggcgcgac cggcgaaggc tatgccgaag 2700
attgggatct ggacgcgttg tggacggcac tcaaaaccct ctatccggag gggatcaccg 2760
ccgactcgct gacccgcaag gaccacgaat tcgagcgcga cgatctcacc cgcgaggagt 2820
tgctggaggc actactcaag gacgccgaac gtgcctatgc cgcacgggaa gccgaactcg 2880
aggaaatcgc cggcgagggt gcgatgcgcc agctggaacg caacgtgctg ctcaacgtca 2940
tagaccgtaa gtggcgtgaa cacctctacg agatggacta cctcaaggag ggtatcgggc 3000
tgcgcgcgat ggcgcacggc gatccgttgg tcgagtacca gcgtgagggc tacgacatgt 3060
tcatggccat gctcgacggc atgaaagagg aatcggtcgg cttcctgttc aacgtcaccg 3120
tggaggcggt ccccgccccg ccggttgccc cggctgccga acccgcagag cttgccgaat 3180
tcgccgccgc ggccgcagcc gcgggcagca acgcagcgcg gtcgatggtg gcgcgcgcga 3240
aagagctcca agtgcattac gcgccaaggg tgttgccagc gagtcgcccg ctttgaccta 3300
ttccggtccc gcggaggatg gctcggctca ggtgcagcgc aacggcggtg gagcccacaa 3360
gacgccggcc ggagtgccgg ccggtgctag ccggcgcgag cggcgcgaac gcgcccgccg 3420
acaaggccgc ggcgccaagc cgccgaaatc ggtcaagaag cgttagcgcg taggttgcag 3480
atgggtgtat cggtttctca gttcccagaa gtcacttccc ggcacacccc ggccccggcg 3540
cgcatgcaca tttcgttgca cggcgggcaa ggggttcgct aatctcaccc gttcgtcgac 3600
cttcgtcggc gtcggttctg ctggtagcgg ggttcggcgc tttcctggcg tttctcgact 3660
cgacaatcgt caacatcgcg ttcccggata tccagcgttc cttcccgtcc tacgacatcg 3720
ggagcctgtc ctggattctg aacggctata acatgctctt cgccgccttc atggttgcgg 3780
ccggcaggtt ggccgatttg ctgggccgca gacgacattc ctgtccggtg tgctggtgtt 3840
caccattgcg tccgggctgt gcgccgtcgc cggcagtgtc gagcagttgg tggcgttccg 3900
ggtgctgcag ggcatcgggg ctgcgatact cgtgcctcgt tcgctcgcac tggtcgttga 3960
gggcttcgac cgggccgccg cgcgcacgct atcggcctgt ggggtgcggc ggcagcgatc 4020
cactagttct agagcggcgc accgc 4045




7


1433


DNA


Mycobacterium tuberculosis



7
tcaaacacca gaccagaagg aggcaacacg atcacggacg gtgccgttcg tcgagcggga 60
gcctggggcg gatcgttcgc accaaagaac aacccggcca cgccgatgtc ggtcgatgac 120
gcgctctacc agatggagct ggttggacac gacttcttct tgttctacga caaggacacc 180
gaacggccgt cggtggtcta ccgccggcac gcctacgact acggcttgat ccgtctggcg 240
tcatcggcgg cgcgcgccgc gtcgtcacct accatgggag tcgccttatc taaagactcc 300
tacacatgcg gggacatagc tgtgctgtcg aagttgctgc gccttggcga aggtcgcatg 360
gtcaagcgcc tcaagaaggt ggccgactat gtcggcactt tgtccgacga tgtcgagaaa 420
ctcaccgacg ccgagctgag ggcgaaaacc gacgagttca agcaggctgg ccgaccagaa 480
aaacccagaa accctcgacg acctgttgcc cgaggccttc accgtgcccc gcgagacccg 540
cctgccgggt gctggaccaa cgaccgttcg acgtgcaggt gatgggtacg accgccctgc 600
acctgggcga cgttgccgag atgtagaccg gtgaaggcaa gaccctgacc tgtgttttac 660
ccgcttacct caatgccctg gccgccaacg gcgtgcacgt agttaccgtc aacgactacc 720
tggctaaacg cgacagtgag tggatgggcc gcgtgcaccg cttcctcggg cttcaggtcg 780
gggtgatttt ggccaccatg acacccgatg aacgccgggt ggcctataac gccgacatca 840
cctacggcac caataacgag tttgggttcg actacctgcg cgacaacatg gcgcactcac 900
tggatgatct ggtgcagcgc gggcaccatt acgccattgt cgacgaaggt cgattccatc 960
ctgatcgacg agggcggggc ccccccccca tctccgcccg gggcgcccgc ctccaactgg 1020
ttcaccgagt tcgcccggtt ggcgtgccgc ggctggtttt ggacgtccac tacgaggtcg 1080
atctacgcaa acgcaccgtc ggcgtgcacg agaagggtgt ggaattcgtc gaagaccagc 1140
tcggcatcga caacctgtac gagaccgcca actcgccgtt ggtcagctat ctcaacaacg 1200
ctctgaaggc caaagagctg ttcagccgcg acaaggacta catcgtccgc gatggtgagg 1260
tgctcatcgt cgacgagttc accggccggg tgctgatcgg ccgccgctac aacgagggca 1320
tgcaccaggc catcgaggcc aaggagcacg tcgagatcaa ggccgagaac cagacgctgg 1380
ccaccatcac gctgcagaac tacttccggc tctaggagaa gctcgccggg atg 1433




8


3124


DNA


Staphylococcus aureus



8
tggcttgatt caaactagtg aacaataaat taagtttaaa gcacttgtgt ttttgcacaa 60
gtttttttat actccaaaag caaattatga ctatttcata gttcgataat gtaatttgtt 120
gaatgaaaca tagtgactat gctaatgtta atggatgtat atatttgaat gttaagttaa 180
taatagtatg tcagtctatt gtatagtccg agtcgaaaat cgtaaaatat ttataatata 240
atttattagg aagtataatt gcgtattgag aatatattta ttagtgataa acttgttgac 300
aacagaatgt gaatgaagta tgtcataaat atatttatat tgattctaca aatgagtaaa 360
taagtataat tttctaacta taaatgataa gatatattgt tgtaggccaa acagtttttt 420
agctaaagga gcgaacgaaa tgggattttt atcaaaaatt cttgatggca ataataaaga 480
aattaaacag ttaggtaaac ttgctgataa agtaatcgct ttagaagaaa aaacggcaat 540
tttaactgat gaagaaattc gtaataaaac gaaacaattc caaacagaat tagctgacat 600
tgataatgtc aaaaagcaaa atgattattt acataaaatt ttaccagaag catatgcact 660
tgttagagaa ggctctaaac gtgtattcaa tatgacacca tataaagttc aaattatggg 720
tggtattgca attcataaag gtgatatcgc tgagatgaga acaggtgaag gtaaaacatt 780
aacagcgaca atgccaacat acttaaatgc attagctggt agaggtgttc acgttattac 840
agtcaatgaa tacttatcaa gtgttcaaag tgaagaaatg gctgagttat ataacttctt 900
aggtttgact gtcggattaa acttaaacag taagacgaca gaggaaaaac gtgaagcata 960
cgcacaagac attacttaca gtactaataa tgagctaggt tttgattact tacgagataa 1020
catggtgaat tattctgaag atagggtaat gcgtccatta cattttgcaa tcattgatga 1080
ggtggactca attttaatcg acgaggcacg tacgccatta attatttctg gtgaagctga 1140
aaagtcaacg tcactttata cacaagcaaa tgtttttgcg aaaatgttaa aacaggacga 1200
tgattataaa tacgatgaaa aaacgaaagc tgtacattta acagaacaag gtgcggataa 1260
agctgaacgt atgttcaaag ttgaaaactt atatgatgta caaaatgttg atgttattag 1320
tcatatcaac acagctttac gtgcgcacgt tacattacaa cgtgacgtag actatatggt 1380
tgttgatggc gaagtattaa ttgtcgatca atttacagga cgtacaatgc caggccgtcg 1440
tttctcggaa ggtttacacc aagctattga agcgaaggaa ggcgttcaaa ttcaaaatga 1500
atctaaaact atggcgtcta ttacattcca aaactatttc agaatgtaca ataaacttgc 1560
gggtatgaca ggtacagcta aaactgaaga agaagaattt agaaatattt ataacatgac 1620
agtaactcaa attccgacaa ataaacctgt gcaacgtaac gataagtctg atttaattta 1680
cattagccaa aaaggtaaat ttgatgcagt agtagaagat gttgttgaaa aacacaaggc 1740
agggcaacca gtgctattag gtactgttgc agttgagact tctgaatata tttcaaattt 1800
acttaaaaaa cgtggtatcc gtcatgatgt gttaaatgcg aaaaatcatg aacgtgaagc 1860
tgaaattgtt gcaggcgctg gacaaaaagg tgccgttact attgccacta acatggctgg 1920
tcggggtaca gatatcaaat taggtgaagg cgtagaggaa ttaggcggtt tagcagtaat 1980
aggtacagag cgacatgaat ctcgtcgtat tgatgaccag ttacgtggtc gttctggacg 2040
tcaaggtgat aaaggggata gtcgcttcta tttatcatta caagatgaat taatgattcg 2100
ttttggttct gaacgtttac agaaaatgat gagccgacta ggtttagatg actctacacc 2160
aattgaatca aaaatggtat caagagctgt tgaatcagca caaaaacgtg tagaaggtaa 2220
taacttcgac gcgcgtaaac gtatcttaga atacgatgaa gtattacgta aacaacgtga 2280
aattatctat aacgaaagaa atagtattat tgatgaagaa gacagctctc aagttgtaga 2340
tgcaatgcta cgttcaacgt tacaacgtag tatcaattac tatattaata cagcagatga 2400
cgagcctgaa tatcaaccat tcatcgacta cattaatgac atcttcttac aagaaggtga 2460
cattacagag gatgatatca aaggtaaaga tgctgaagat attttcgaag tcgtttgggc 2520
taagattgaa gcagcatatc aaagtcaaaa agatatctta gaagaacaaa tgaatgagtt 2580
tgagcgtatg attttacttc gttctattga tagccattgg actgatcata tcgacacaat 2640
ggatcaatta cgtcaaggta ttcacttacg ttcttatgca caacaaaatc cattacgtga 2700
ctatcaaaat gaaggtcatg aattatttga tatcatgatg caaaatattg aagaagatac 2760
ttgtaaattc attttaaaat ctgtagtaca agttgaagat aatattgaac gtgaaaaaac 2820
aacagagttt ggtgaagcga agcacgtttc agctgaagat ggtaaagaaa aagtgaaacc 2880
gaaaccaatc gttaaaggcg atcaagttgg tcgtaacgat gattgtccat gtggtagtgg 2940
taaaaaattc aaaaattgcc atggaaaata aatgatataa aataactcct tccaattaaa 3000
cacctatagt ttgtgttatg ggaggagtct ttttatttta caagcgttaa atactttaaa 3060
aaatgtgaag aagttgttaa acgttgttat gtacttagtt ttaaaaaatc ggtttaggca 3120
tatg 3124




9


3589


DNA


Staphylococcus carnosus



9
cttgaacgtt acttcactaa tgtgccgaat gtgaatgcac atgtaaaagt gaaaacttat 60
gcaaattcta gcacaaaatc gaagttacaa ttccgcttaa tgacgtgaca cttcgtgcag 120
aagaaagaaa cgatgattta tgctggaatt gacaagatca ctaacaaatt agaatgtcaa 180
gttcgtaaat acaaaacacg tgtcaatcgt aagaaacgta aagaaagcga acatgaacca 240
ttcccagcaa ctccggaaac tccgccggaa acagctgttg atcatgataa agatgatgaa 300
attgaaatca tccgttctaa acaattcagc ttgaaaccaa tggattctga agaagcggta 360
ttacaaatgg atttacttgg tactgatttc ttcatcttca atgaccgtga aactgatggt 420
acaagcattg tttaccgccg taaagacgga aaatatggtt tgattgaaac tgttgaaaaa 480
ctaatatgtg atatttgaaa gggctcttgc tgcattttct gctgcaagag tttctttttt 540
tgagaaagcc cttattaaga tttgattaat aaaaatacaa ttgattgatt tacacggggt 600
gtccatgtca aaataagagg gatgtattaa gttcataatt gtaatgtgag ctccgatgag 660
tgagcggcat atgattatga tatccatgtg gcacatgatg ttaacaaaaa gagaatgaaa 720
ctgtgagaag tacatcttga taaacacaac taggcagttt attaaaaaat aatgaacagt 780
atcctatgag tttttaagta taaattaagc catataaatg gtaagataaa ttgttgtaag 840
ccaaacagtt tttataccaa aggagcgaac agaatgggtt ttttaacaaa aattgttgac 900
ggcaataaga gagaaatcaa acgcctaagt aagcaagctg acaaagtaat ctcattagaa 960
gaagaaatgt caattcttac tgatgaagaa attagaaata aaacaaaagc attccaagaa 1020
agattgcaag cagaagaaca tgtaagcaaa caagataaaa ttttagaaga aatattacct 1080
gaagcatttg cgcttgtccg tgaaggagct aaacgtgtat ttaatatgac accttatcca 1140
gttcaaatca tgggtggtat cgccattcat aatggtgaca tttcagaaat gagaacaggt 1200
gaaggtaaaa cattaactgc aacgatgccg acttatttaa acgccttagc agcacgtggt 1260
gtgcatgtta ttacagtcaa tgaatacttg gcaagttctc aaagagaaga aatggccgag 1320
ttatataatt tccttggttt atcagtcgga ttgaacttga acagcttatc aacagaacaa 1380
aagcgtgaag cttataatgc agatattacg tatagtacaa ataatgaatt aggcttcgac 1440
tatttacgcg ataacatggt gaattattca gaagaacgtg ttatgcgtcc gcttcatttc 1500
gctatcattg atgaggtcga ctctatttta atcgatgaag cgcgtacacc attgattatt 1560
tcaggggaag ctgaaaaatc aacatctctt tatacacaag caaatgtttt cgctaaaatg 1620
ttaaaagcag aagatgatta taattatgat gaaaaaacaa aatcagtaca attaacagat 1680
caaggtgctg ataaagctga acgtatgttc aagttagata acttatatga tttgaaaaac 1740
gttgatatta tcacgcatat caatacagca ttacgtgcta actatacatt gcaacgcgat 1800
gtagattaca tggttgtaga tggagaagta ttgattgtcg accaatttac aggtcgaaca 1860
atgccaggtc gtcgattctc tgaaggactt caccaagcga ttgaggctaa agaaggggtt 1920
caaattcaaa atgaatctaa aacaatggct tctatcacat tccaaaacta cttccgtatg 1980
tataataaat tagccggtat gacaggtact gctaaaacag aggaagaaga attccgtaac 2040
atttataata tgacagttac acaaattcca acgaaccgtc ctgttcaacg tgaagataga 2100
cctgacttga ttttcatcag ccaaaaaggc aagttcgatg ctgttgttga agatgttgtt 2160
gaaaaacata aaaaaggcca accaattctt ttaggtactg tagcggttga aacaagtgaa 2220
tacatttcac aactattgaa aaaacgcggt gtgcgtcatg atgtcttaaa cgctaaaaac 2280
catgaacgcg aagctgaaat cgtatctaca gcaggtcaaa aaggtgcagt cacaatcgca 2340
acaaacatgg ctggtcgtgg taccgatatt aaattaggcg aaggtgttga agaattaggc 2400
ggccttgctg ttattggtac agaacgtcat gaatcacgcc gtatcgatga tcagttgcgt 2460
ggtcgttctg gacgacaagg tgaccgcgga gaaagccgtt tctatttatc attacaagat 2520
gagttgatgg tacgtttcgg ttctgaacgt ctgcaaaaaa tgatgggccg attaggtatg 2580
gatgactcta caccgattga atcaaaaatg gtatctcgag ctgttgaatc tgcacaaaaa 2640
cgtgttgaag gtaacaactt cgatgcacgt aaacgtatct tagaatacga tgaagtttta 2700
cgtaaacaac gtgaaatcat ttatggtgaa cgtaataata ttatcgattc agaatcaagt 2760
tctgaattag tcattacaat gatacgctct acattagatc gtgcaatcag ttattatgta 2820
aatgaagaat tggaagaaat tgactatgcg ccgtttatta attttgtgga agatgttttc 2880
ttdcacgaag gtgaagtcaa agaagatgaa atcaaaggta aaggtaaaga tcgtgaggat 2940
attttcgata cagtatgggc taaaattgaa aaagcttatg aagcacaaaa agccaatata 3000
cccgaccaat tcaatgaatt cgaacgtatg attttattac gttctattga tggaagatgg 3060
acagaccata tcgatacaat ggatcaatta cgtcaaggta tccatttacg ttcatacggt 3120
caacaaaacc cacttcgcga ctatcaaaat gaagggcacc aactatttga tacaatgatg 3180
gtcaatattg aagaagacgt cagcaaatat atcttgaaat caattatcac agtagatgat 3240
gatattgaac gtgataaagc aaaagaatat caaggacaac atgtatcagc tgaagatgga 3300
aaagaaaaag taaaaccgca accagttgtt aaagataatc acatcggaag aaatgatcct 3360
tgtccatgcg gcagcggtaa aaagtataaa aattgctgcg gtaaatagta agttgtatta 3420
ggaccactgt taaatagctt taagagagat gctcaattga aattgggtta tctttctaag 3480
ggctgtcagc ggtctttttt caatccaaca aaaatatgga tatatgctaa aataatagag 3540
taatctggaa aattaaactg gaattggaga gatatgaaaa tggaattat 3589




10


1242


DNA


Bovine herpes virus



10
cagtcaatgt cgctcttcgt gaccgagcca atggacggaa aggtgcccgc ctcccagatc 60
atgaacctcc tagtgtacgc ctataagaag ggccttaaga cggggctcta ctactgcaag 120
atccgcaagg ccaccaacaa cggcgtcttc acgggcggcg acctcgtgtg ctctgggtgc 180
cacctgtagc gacgcgcgcc gagcgcgatg gccgaggcgg cggacgcggc gaccctcacg 240
cgtaaataca aatactttta cgagaccgag tgccccgacc tagatcactt gcggtcgctc 300
agcgtcgcaa accgctggct ggagaccgag tttcccctag cggacgacgc caaggacgtg 360
gcgcggctca gcggcgccga gctggagttt taccgctttc tgttcgcgtt cctctcggcc 420
gccgatgacc tcgtgaacgt caacctcggg gacctgtccg agctgttcac ccaaaaagac 480
atcctgcatt actatatcga gcaggagtcc atcgaagtgg tgcactcgcg ggtgtacagc 540
gccatacagc tgctgctctt tagaaacgac gcggtggcgc gcgcgggcta cgtagagggc 600
gccctcggcg acccggcggt ccggcgcaag gtggactggc tcgagcggcg cgtggccgcg 660
gcagagtcgg tggccgaaaa gtacgtgctc atgattctaa tcgagggcat ttttttctcc 720
tcctcgtttg cggcgattgc ctacctgcgc acccacaacc ttttcgtcgt gacgtgccaa 780
accaacgacc tcatcagccg cgacgaagcc gtgcacacgg ccgcgtcgtg ctgcatcttc 840
gacaactacc tcggcgggga gcggccgccg ccggcccgca tctacgagct gttccgcgaa 900
gcgtggaaat tgagcgcgag tttatttggt tgcgcgccgc gcggcagtca tatacttgac 960
gtggaggcta tttctgcgta cgtcgagtac agcgcggacc gcctgctcgc tgctatccag 1020
ctgcctcctc tgtttggcac cccgcctcct gggaccgatt ttcctttggc cctgatgact 1080
gccgagaagc acacgaactt ctttgagcgc cgcagcacca actacacagg caccgtaatc 1140
aacgacctgt agggcacccc cgctgccctg ccagagcgcc ccgcctttcc tcctccttct 1200
cacccccacg ccgcgaataa aaaatgttcc atgtcaacga aa 1242




11


3518


DNA


Herpes simplex virus 1



11
tcgagcccgc cgaaacccgc cgcgtctgtt gaaatggcca gccgcccagc cgcatcctct 60
cccgtcgaag cgcgggcccc ggttggggga caggaggccg gcggccccag cgcagccacc 120
cagggggagg ccgccggggc ccctctcgcc cacggccacc acgtgtactg ccagcgagtc 180
aatggcgtga tggtgctttc cgacaagacg cccgggtccg cgtcctaccg catcagcgat 240
agcaactttg tccaatgtgg ttccaactgc accatgatca tcgacggaga cgtggtgcgc 300
gggcgccccc aggacccggg ggccgcggca tcccccgctc ccttcgttgc ggtgacaaac 360
atcggagccg gcagcgacgg cgggaccgcc gtcgtggcat tcgggggaac cccacgtcgc 420
tcggcgggga cgtctaccgg tacccagacg gccgacgtcc ccaccgaggc ccttgggggc 480
ccccctcctc ctccccgctt caccctgggt ggcggctgtt gttcctgtcg cgacacacgg 540
cgccgctctg cggtattcgg gggggagggg gatccagtcg gccccgcgga gttcgtctcg 600
gacgaccggt cgtccgattc cgactcggat gactcggagg acacggactc ggagacgctg 660
tcacacgcct cctcggacgt gtccggcggg gccacgtacg acgacgccct tgactccgat 720
tcgtcatcgg atgactccct gcagatagat ggccccgtgt gtcgcccgtg gagcaatgac 780
accgcgcccc tggatgtttg ccccgggacc cccggcccgg gcgccgacgc cggtggtccc 840
tcagcggtag acccacacgc gccgacgcca gaggccggcg ctggtcttgc ggccgatccc 900
gccgtggccc gggaagacgc ggaggggctt tcggaccccc ggccacgtct gggaacgggc 960
acggcctacc ccgtccccct ggaactcacg cccgagaacg cggaggccgt ggcgcgcttt 1020
ctgggagatg ccgtgaaccg cgaacccgcg ctcatgctgg agtacttttg ccggtgcgcc 1080
cgcgaggaaa ccaagcgtgt cccccccagg acattcggca gcccccctcg cctcacggag 1140
gacgactttg ggcttctcaa ctacgcgctc gtggagatgc agcgcctgtg tctggacgtt 1200
cctccggtcc cgccgaacgc atacatgccc tattatctca gggagtatgt gacgcggctg 1260
gtcaacgggt tcaagccgct ggtgagccgg tccgctcgcc tttaccgcat cctgggggtt 1320
ctggtgcacc tgcggatccg gacccgggag gcctcctttg aggagtggct gcgatccaag 1380
gaagtggccc tggattttgg cctgacggaa aggcttcgcg agcacgaagc ccagctggtg 1440
atcctggccc aggctctgga ccattacgac tgtctgatcc acagcacacc gcacacgctg 1500
gtcgagcggg ggctgcaatc ggccctgaag tatgaggagt tttacctaaa gcgttttggc 1560
gggcactaca tggagtccgt cttccagatg tacacccgca tcgccggctt tttggcctgc 1620
cgggccacgc gcggcatgcg ccacatcgcc ctggggcgag aggggtcgtg gtgggaaatg 1680
ttcaagttct ttttccaccg cctctacgac caccagatcg taccgtcgac ccccgccatg 1740
ctgaacctgg ggacccgcaa ctactacacc tccagctgct acctggtaaa cccccaggcc 1800
accacaaaca aggcgaccct gcgggccatc accagcaacg tcagtgccat cctcgcccgc 1860
aacgggggca tcgggctatg cgtgcaggcg tttaacgact ccggccccgg gaccgccagc 1920
gtcatgcccg ccctcaaggt ccttgactcg ctggtggcgg cgcacaacaa agagagcgcg 1980
cgtccgaccg gcgcgtgcgt gtacctggag ccgtggcaca ccgacgtgcg ggccgtgctc 2040
cggatgaagg gggtcctcgc cggcgaagag gcccagcgct gcgacaatat cttcagcgcc 2100
ctctggatgc cagacctgtt tttcaagcgc ctgattcgcc acctggacgg cgagaagaac 2160
gtcacatgga ccctgttcga ccgggacacc agcatgtcgc tcgccgactt tcacggggag 2220
gagttcgaga agctctacca gcacctcgag gtcatggggt tcggcgagca gatacccatc 2280
caggagctgg cctatggcat tgtgcgcagt gcggccacga ccgggagccc cttcgtcatg 2340
ttcaaagacg cggtgaaccg ccactacatc tacgacaccc agggggcggc catcgccggc 2400
tccaacctct gcaccgagat cgtccatccg gcctccaagc gatccagtgg ggtctgcaac 2460
ctgggaagcg tgaatctggc ccgatgcgtc tccaggcaga cgtttgactt tgggcggctc 2520
cgcgacgccg tgcaggcgtg cgtgctgatg gtgaacatca tgatcgacag cacgctacaa 2580
cccacgcccc agtgcacccg cggcaacgac aacctgcggt ccatgggaat cggcatgcag 2640
ggcctgcaca cggcctgcct gaagctgggg ctggatctgg agtctgccga atttcaggac 2700
ctgaacaaac acatcgccga ggtgatgctg ctgtcggcga tgaagaccag caacgcgctg 2760
tgcgttcgcg gggcccgtcc cttcaaccac tttaagcgca gcatgtatcg cgccggccgc 2820
tttcactggg agcgctttcc ggacgcccgg ccgcggtacg agggcgagtg ggagatgcta 2880
cgccagagca tgatgaaaca cggcctgcgc aacagccagt ttgtcgcgct gatgcccacc 2940
gccgcctcgg cgcagatctc ggacgtcagc gagggctttg cccccctgtt caccaacctg 3000
ttcagcaagg tgacccggga cggcgagacg ctgcgcccca acacgctcct gctaaaggaa 3060
ctggaacgca cgtttagcgg gaagcgcctc ctggaggtga tggacagtct cgacgccaag 3120
cagtggtccg tgccgcaggc gctcccgtgc ctggagccca cccaccccct ccggcgattc 3180
aagaccgcgt ttgactacga ccagaagttg ctgatcgacc tgtgtgcgga ccgcgccccc 3240
tacgtcgacc atagccaatc catgaccctg tatgtcacgg agaaggcgga cgggaccctc 3300
ccagcctcca ccctggtccg ccttctggtc cacgcatata agcgcggact aaaaacaggg 3360
atgtactact gcaaggttcg caaggcgacc aacagcgggg tctttggcgg cgacgacaac 3420
attgtctgca tgagctgcgc gctgtgaccg acaaaccccc tccgcgccag gcccgccgcc 3480
actgtcgtcg ccgtcccaag ctctcccctg ctgccatg 3518




12


5956


DNA


Herpes simplex virus 2



12
gtgtgtttgg cgtgtgtctc tgaaatggcg gaaacccaca tgcaaatggg attcatggac 60
acgttacacc cccctgactc aggagatagg catatcctcc ttagattgac tcagcacacg 120
atcgcacccc acccctgtgt gccggggata aaagccaacg cgcgcggtct gggttaccac 180
aacaggtggg tgcttcgggg acttgacggt cgccactctc ctgcgagccc tcacgtcttc 240
gcccaccgat tcctgttgcg ttcctgtcgg ccggtgctgt cctgtcgaca gattgttggc 300
gactgcccgg gtgattcgtc ggccggtgcg tcctttcggt cgtaccgccc accccgcctc 360
ccacgggccc gccgctgttt ccgttcatcg cgtccgagcc accgtcacct tggttccaat 420
ggccaaccgc cctgccgcat ccgccctcgc cggagcgcgg tctccgtccg aacgacagga 480
accccgggag cccgaggtcg ccccccctgg cggcgaccac gtgttttgca ggaaagtcag 540
cggcgtgatg gtgctttcca gcgatccccc cggccccgcg gcctaccgca ttagcgacag 600
cagctttgtt caatgcggct ccaactgcag tatgataatc gacggagacg tggcgcgcgg 660
tcatttgcgt gacctcgagg gcgctacgtc caccggcgcc ttcgtcgcga tctcaaacgt 720
cgcagccggc ggggatggcc gaaccgccgt cgtggcgctc ggcggaacct cgggcccgtc 780
cgcgactaca tccgtgggga cccagacgtc cggggagttc ctccacggga acccaaggac 840
ccccgaaccc caaggacccc aggctgtccc cccgccccct cctcccccct ttccatgggg 900
ccacgagtgc tgcgcccgtc gcgatgccag gggcggcgcc gagaaggacg tcggggccgc 960
ggagtcatgg tcagacggcc cgtcgtccga ctccgaaacg gaggactcgg actcctcgga 1020
cgaggatacg ggctcgggtt cggagacgct gtctcgatcc tcttcgatct gggccgcagg 1080
ggcgactgac gacgatgaca gcgactccga ctcgcggtcg gacgactccg tgcagcccga 1140
cgttgtcgtt cgtcgcagat ggagcgacgg ccctgccccc gtggcctttc ccaagccccg 1200
gcgccccggc gactcccccg gaaaccccgg cctgggcgcc ggcaccgggc cgggctccgc 1260
gacggacccg cgcgcgtcgg ccgactccga ttccgcggcc cacgccgccg caccccaggc 1320
ggacgtggcg ccggttctgg acagccagcc cactgtggga acggaccccg gctacccagt 1380
ccccctagaa ctcacgcccg agaacgcgga ggcggtggcg cggtttctgg gggacgccgt 1440
cgaccgcgag cccgcgctca tgctggagta cttctgtcgg tgcgcccgcg aggagagcaa 1500
gcgcgtgccc ccacgaacct tcggcagcgc cccccgcctc acggaggacg actttgggct 1560
cctgaactac gcgctcgctg agatgcgacg cctgtgcctg gaccttcccc cggtcccccc 1620
caacgcatac acgccctatc atctgaggga gtatgcgacg cggctggtta acgggttcaa 1680
acccctggtg cggcggtccg cccgcctgta tcgcatcctg gggattctgg ttcacctgcg 1740
catccgtacc cgggaggcct cctttgagga atggatgcgc tccaaggagg tggacctgga 1800
cttcgggctg acggaaaggc ttcgcgaaca cgaggcccag ctaatgatcc tggcccaggc 1860
cctgaacccc tacgactgtc tgatccacag caccccgaac acgctcgtcg agcgggggct 1920
gcagtcggcg ctgaagtacg aagagtttta cctcaagcgc ttcggcgggc actacatgga 1980
gtccgtcttc cagatgtaca cccgcatcgc cgggttcctg gcgtgccggg cgacccgcgg 2040
catgcgccac atcgccctgg ggcgacaggg gtcgtggtgg gaaatgttca agttcttttt 2100
ccaccgcctc tacgaccacc agatcgtgcc gtccaccccc gccatgctga acctcggaac 2160
ccgcaactac tacacgtcca gctgatacct ggtaaacccc caggccacca ctaaccaggc 2220
caccctccgg gccatcaccg gcaacgtgag cgccatcctc gcccgcaacg ggggcatcgg 2280
gctgtgcatg caggcgttca acgacgccag ccccggcacc gccagcatca tgccggccct 2340
gaaggtcctg gactccctgg tggcggcgca caacaaacag agcacgcgcc ccaccggggc 2400
gtgcgtgtac ctggaaccct ggcacagcga cgttcgggcc gtgctcagaa tgaagggcgt 2460
cctcgccggc gaggaggccc agcgctgcga caacatcttc agcgccctct ggatgccgga 2520
cctgttcttc aagcgcctga tccgccacct cgacggcgag aaaaacgtca cctggtccct 2580
gttcgaccgg gacaccagca tgtcgctcgc cgactttcac ggcgaggagt tcgagaagct 2640
gtacgagcac ctcgaggcca tggggttcgg cgaaacgatc cccatccagg acctggcgta 2700
cgccatcgtg cgcagcgcgg ccaccaccgg aagccccttc atcatgttta aggacgcggt 2760
aaacagccac tacatctacg acacgcaagg ggcggccatt gccggctcca acctctgcac 2820
ggagatcgtc cacccgtcct ccaaacgctc cagcggggtc tgcaacctgg gcagcgtgaa 2880
tctggcccga tgcgtctccc ggcggacgtt cgattttggc atgctccgcg acgccgtgca 2940
ggcgtgcgtg ctaatggtta atatcatgat agacagcacg ctgcagccga cgccccagtg 3000
cgcccgcggc cacgacaacc tgcggtccat gggcattggc atgcagggcc tgcacacggc 3060
gtgcctgaag atgggcctgg atctggagtc ggccgagttc cgggacctga acacacacat 3120
cgccgaggtg atgctgctcg cggccatgaa gaccagtaac gcgctgtgcg ttcgcggggc 3180
gcgtcccttc agccacttta agcgcagcat gtaccgggcc ggccgctttc actgggagcg 3240
cttttcgaac gccagcccgc ggtacgaggg cgagtgggag atgctacgcc agagcatgat 3300
gaaacacggc ctgcgcaaca gccagttcat cgcgctcatg cccaccgccg cctcggccca 3360
gatctcggac gtcagccagg gctttgcccc cctgttcacc aacctgttca gcaaggtgac 3420
cagggacggc gagacgctgc gccccaacac gctcttgctg aaggaactcg agcgcacgtt 3480
cggcgggaag cggctcctgg acgcgatgga cgggctcgag gccaagcagt ggtctgtggc 3540
ccaggccctg ccttgcctgg accccgccca ccccctccgg cggttcaaga cggccttcga 3600
ctacgaccag gaactgctga tcgacctgtg tgcagaccgc gccccctatg ttgatcacag 3660
ccaatccatg actctgtatg tcacagagaa ggcggacggg acgctccccg cctccaccct 3720
ggtccgcctt ctcgtccacg catataagcg cggcctgaag acggggatgt actactgcaa 3780
ggttcgcaag gcgaccaaca gcggggtgtt cgccggcgac gacaacatcg tctgcacaag 3840
ctgcgcgctg taagcaacag cgctccgatc ggggtcaggc gtcgctctcg gtcccgcata 3900
tcgccatgga tcccgccgtc tcccccgcga gcaccgaccc cctagatacc cacgcgtcgg 3960
gggccggggc ggccccgatt ccggtgtgcc ccacccccga gcggtacttc tacacctccc 4020
agtgccccga catcaaccac cttcgctccc tcagcatcct gaaccgctgg ctggagaccg 4080
agctcgtgtt cgtcggggac gaggaggacg tctccaagct ctccgagggc gagctcggct 4140
tctaccgctt tctgtttgcc ttcctgtcgg ccgcggacga cctggtgacg gaaaacctgg 4200
gcggcctctc cggcctcttc gaacagaagg acattcttca ctactacgtg gagcaggaat 4260
gcatcgaggt cgtccactcc cgcgtctaca acatcatcca gctggtgctc tttcacaaca 4320
acgaccaggc gcgccgcgcc tatgtggccc gcaccatcaa ccacccggcc attcgcgtca 4380
aggtggactg gctggaggcg cgggtgcggg aatgcgactc gatcccggag aagttcatcc 4440
tcatgatcct catcgagggc gtcttttttg ccgcctcgtt cgccgccatc gcgtacctgc 4500
gcaccaacaa cctcctgcgg gtcacctgcc agtcgaacga cctcatcagc cgccacgagg 4560
ccgtgcatac gacagcctcg tgctacatct acaacaacta cctcgggggc cacgccaagc 4620
ccgaggcggc gcgcgtgtac cggctgtttc gggaggcggt ggatatcgag atcgggttca 4680
tccgatccca ggccccgacg gacagctcta tcctgagtcc gggggccctg gcggccatcg 4740
agaactacgt gcgattcagc gcggatcgcc tgctgggcct gatccatatg cagcccctgt 4800
attccgcccc cgcccccgac gccagctttc ccctcagcct catgtccacc gacaaacaca 4860
ccaacttctt cgagtgccgc agcacctcgt acgccggggc cgtcgtcaac gatctgtgag 4920
ggtctgggcg cccttgtagc gatgtctaac cgaaataaag gggtcgaaac ggactgttgg 4980
gtctccggtg tgattattac gcaggggagg ggggtggcgg ctggggaaag ggaaggaacg 5040
cccgaaacca gagaaaagga ccaaaaggga aacgcgtcca accgataaat caagcgccga 5100
ccagaacccc gagatgcata ataacaaacg attttattac tcttattatt aacaggtcgg 5160
gcatcgggag gggatggggg cgcgcgtttc ctccgttccg gctactcgtc ccagaattta 5220
gccaggacgt ccttgtaaaa cgcgggcggg ggcgcgtggg cccacacctg cgccagaaac 5280
cggtcggcga tgtccggggc ggtgatatga cgagtcacga tggagcgcgc taaatcttcg 5340
tcgcggaggt cctgatagat gggcagtctt tttagaagag tccagggtcc ccgctccttg 5400
gggctgataa gcgatatgac gtacttgacg tatctgtgct ccaccagctc ggcgatggtc 5460
atcggatcgg gcagccagtc cagggcctcc ggggcgtcgt ggatgacgtg gcggcgacgt 5520
ccggcgacat agccgcggtg ttccgcgacc cgctgcgcgt tggggacctg cacgagctcg 5580
ggcggggtga gtatctccga ggaggacgac cgggcgccgt cgcgcggccc accggcgacg 5640
tccgggggct ggaggggggg gtcttcttcg tagtcgtcct cgcccgcgat ctgttgggcc 5700
agaatttcgg tccacgagat gcgcgtctcg aggccgaccg gggccgcggt cagcgtaggc 5760
atgctctcca gggagcgcga gttggcgcgc tcccgccggg ccgcccggcg ggcctgggat 5820
cggctcgggg cggtccagtg acactcgcgc agcacgtcct cgacggacgc gtaggtgtta 5880
ttggggtgca ggtctgtgtg gcagcggacg aacagcgcca ggaactgcgg gtaactcatc 5940
ttgaagtacc ctgcag 5956




13


3678


DNA


Equine herpesvirus 4



13
aaaccactgt tctttacact ttatgctcta gtttttggta atagtgtctt ggaacacttt 60
taccctaaac gaaattatgg ctttggattt tttgagcacc gactgtccac tggggattgt 120
ttccgatatt atatccaacg tgaataccat caaagagtat ggatattcca gcgaattatc 180
aacaacgctg gcacctcgcc cgtctcgaga acaggtgtta gagtatatca ccagagtcgt 240
ggataaactc aagccgctgt gcagagtcga cgaacgcctt tacattgcgt gcggggagct 300
tgtacaccta cgaattaaag cacgcaacac agacctgaaa tattggctaa aatcgtctga 360
gattgatctt agcgatgtcg tggaacaggc catattggaa cacattgact ttgttcagaa 420
aaccctcaac tcgtttgaaa catcggaata ccgagatttg tgttcattag gcctgcaatc 480
tgcgctaaag tatgaagaaa tgtatttagc caaaatgcga ggcggacgtc tagagtccat 540
ggggcaattt tttcttagac ttgcaactac tgctacgcac tatactatgg aacaaccagc 600
aatggctcgc gtgttggtta gcggtgaggt tggctggaca tatattttca gagccttttt 660
tactgcgcta gccggacagg ttgtcattcc ggccacgcca attatgctgt ttggtgggag 720
agactgtggg tctatggcca gctgttattt gctaaacccc agggtaacag atatgaactc 780
tgcaattccg gctcttatgg aagaggttgg acccattttg tgcaaccgag gaggaattgg 840
actgtcttta cagaggttta acactccacc cacagaaggt tgttcacggg gtgtcatggc 900
tctcctaaag ctactagact ctatgaccat ggccattaac agcgacggtg aaagaccaac 960
aggagtgtgt gtttatttcg aaccctggca cgcagacatc cgcgccattt taaatatgcg 1020
cggaatgctg gccagagacg aaactgtgcg ctgcgacaac atctttgctt gtatgtggac 1080
cccagacctg ttttttgacc gctatcaacg gtacgtcgat ggagaaagcg gcataatgtg 1140
gactctgttt gatgatactg catcgcacct ctgccatatg tacggaaatg atttcacacg 1200
ggaatatgag cgcctggagc ggtgtggatt tgggatagac gctattccca tacaggacat 1260
ggcctttatc atagttagaa gtgctgtaat gacaggaagc ccatttttga tgtttaaaga 1320
cgcgtgcaac aggcactacc actttgacat gcggcagaga ggtgcgataa tggggtctaa 1380
tctatgcaca gaaattatcc agcatgccga cgaaacccaa aacggggtgt gtaatctagc 1440
cagcatcaac ctcccaaaat gtctagccct tccacctcca aatattgcag gtgtgccata 1500
ttttgacttc gccgctctgg gccgcgctgc cgcaactgcc acaatttttg tcaatgcgat 1560
gatgtgtgcc agcacatatc caactgttaa atcccagaaa ggcgttgaag aaaaccggtc 1620
gctgggactt ggaattcagg ggctacatac cacgtttttg atgctggacc tggatatggc 1680
atctccagag gcgcaccaac taaacaagca aatagcagaa aggctgttat tgaactctat 1740
gaaggccagc gcaacgctct gcaagctggg tatgcaaccc tttaaagggt ttgaagacag 1800
caagtacagt cggggggaac taccctttga tgcctaccca aatgtaacac taacaaaccg 1860
caacgcctgg cgtagacttc gcactgacat aaaacaatac ggcttgtaca attctcagtt 1920
tgtagcctat atgccaacag tatcttcgtc acaggttacc gagagcagcg aggggttttc 1980
tcctgtttac acaaacctgt ttagcaaagt tactgctacc ggggaagtac tcaggcccaa 2040
tgtactgcta atgcgcacca tcagaagtat ttttccacag gaatgcgcgc gcttacaagc 2100
gctatctacg ctagaagctg cgaaatggtc agttgtggga gcgtttggtg atttgccagt 2160
tggtcacccc ctcagtaagt ttaaaacagc atttgagtac gaccagacta tgctaattaa 2220
catgtgtgct gacagggctg cgtttgtgga ccagagccaa tccatgtctt tgtttataac 2280
tgagcctgct gacggaaaac tccccgcctc cagaattatg aatcttttgg tccacgcata 2340
taaacgcgga cttaaaacag gcatgtacta ctgcaaaatc aagaaggcaa caaacaacgg 2400
agtctttgtt ggcggagacc tagtctgcac cagctgcagc ttgtagggca gcctcgccat 2460
tttgcccagg gcgggaaaat aattatggcc ctcgaaaact ctaaaaaaac agattttgct 2520
gacgagttat tgataaatgc gtatttctat acgccggaat gtcccgatat tgaacaccta 2580
cgcttgttga gcgttgccaa ccgctggctg gatacggacc ttccaatttc tgatgacctc 2640
aaggacgttg ctaaactcgc gccagccgag cgagagtttt accggttttt gtttgccttt 2700
ttatctgctg ctgacgactt ggtaaattta aacctgggag atttatccgc actatttact 2760
caaaaggaca ttcttcacta ctacattgag caagagtcta ttgaagtaac gcactccaga 2820
gtatatagcg ctatacagct tatgttgttt ggaaacgacg caacagcgcg cgctaggtat 2880
gtcgcatctg ttgtcaaaga cgtggccata gacctaaagg tatcttggtt gcaagcaaag 2940
gtgcgagaat gcaaatctgt ggcggaaaag tatattttga tgatattaat agagggcgtt 3000
ttcttcgcgt cgtcctttcc gtccatcgca tatcttcgca cccacaatct ctttgtggta 3060
acctgtcaaa gtaatgattt aattagccgc gacgaagcaa ttcacaccaa cgcctcgtgc 3120
tgtatctaca acaactacct tgggcgtttt gaaaagccag ctccaacgag gatttatgcg 3180
ctgttttctg aggccgtaaa catcgagtgt gaatttttgc tttcccatgc ccccaaaagc 3240
agccacctgt tggacattga agccatcata tgctacgtac gctatagcgc ggacaggctt 3300
ttgggggaaa ttggactatc tccgctgttt aatgctccca aacccccacc aagcttcccc 3360
ctagctttca tgactgtgga aaaacatacc aacttttttg aaaggcgaag caccgcatac 3420
tcgggaactc ttataaacga tctgtaatgt aaaaataaaa actaattttg attcacttat 3480
ttgtcttgtt tgcgtgttgg atgtacgcga tttaaaaaaa tactgagaaa agatactccc 3540
gatttaactt tatttaagac cattgtcttc ggtgtccaca gtcatcccag tagttaacca 3600
acacagtgtt gtaatcagtg ggggtgggaa tgtggttcca aaacatatta gcaagctctc 3660
tgacaatttc gtgttcgg 3678




14


20


DNA


Escherichia coli



14
ccgtcgcgct ttgtcaccag 20




15


20


DNA


Escherichia coli



15
ctgtgctacc gtcgcgcttt 20




16


20


DNA


Escherichia coli



16
tgatgcgctc tgtgctaccg 20




17


20


DNA


Escherichia coli



17
tttgtcgaga ttgatgcgct 20




18


20


DNA


Escherichia coli



18
agaacgcgat ggattttgtc 20




19


20


DNA


Escherichia coli



19
tgccgcccaa tccagaacgc 20




20


20


DNA


Escherichia coli



20
agtccttctg ccgcccaatc 20




21


20


DNA


Escherichia coli



21
aaactgaatg tgggagcgca 20




22


20


DNA


Escherichia coli



22
ataatggttt cgtggatgtc 20




23


20


DNA


Escherichia coli



23
cggcagcctt gataatggtt 20




24


20


DNA


Escherichia coli



24
atactgataa tccggcgcat 20




25


20


DNA


Escherichia coli



25
tacgcaggtg gaagatcgcc 20




26


20


DNA


Escherichia coli



26
ggtcgtacag cgcaggcggc 20




27


20


DNA


Escherichia coli



27
gcccatctcg accattttca 20




28


20


DNA


Escherichia coli



28
tatcgtattt gcccatctcg 20




29


20


DNA


Escherichia coli



29
cggcagcata agagaaggtc 20




30


20


DNA


Escherichia coli



30
ccttccagct gcttaacggc 20




31


20


DNA


Escherichia coli



31
ccagatattt gccttccagc 20




32


20


DNA


Escherichia coli



32
atagatttcg ccggtcacgc 20




33


20


DNA


Escherichia coli



33
ggaactgggc gctctcatag 20




34


20


DNA


Escherichia coli



34
gaatataaag gaactgggcg 20




35


20


DNA


Escherichia coli



35
gcacgcggca actagaatat 20




36


20


DNA


Escherichia coli



36
ttcgagaaca agcacgcggc 20




37


20


DNA


Escherichia coli



37
tttcacgcgg gtagttcgag 20




38


20


DNA


Escherichia coli



38
acgcttcaca tattgcaggc 20




39


20


DNA


Escherichia coli



39
ggaaaccgcg tcgtaaaaac 20




40


20


DNA


Escherichia coli



40
ttaaatgtgg aaaccgcgtc 20




41


20


DNA


Escherichia coli



41
catgattggc gtcggcagcg 20




42


20


DNA


Escherichia coli



42
cgcacgccgg acatgattgg 20




43


20


DNA


Escherichia coli



43
cgagtcgggg tacgcacgcc 20




44


20


DNA


Escherichia coli



44
tcgatcagta cgcaggagct 20




45


20


DNA


Escherichia coli



45
gctgtcaccg cactcgatca 20




46


20


DNA


Escherichia coli



46
ggaatccagg ctgtcaccgc 20




47


20


DNA


Escherichia coli



47
ggaggtggcg ttgatggaat 20




48


20


DNA


Escherichia coli



48
aacaatcgcg ctggaggtgg 20




49


20


DNA


Escherichia coli



49
ctacccagcg cacgaatacg 20




50


20


DNA


Escherichia coli



50
atgcagccgg tatggaacgc 20




51


20


DNA


Escherichia coli



51
ttgtagaacg gaatgcagcc 20




52


20


DNA


Escherichia coli



52
ccgctgtctg gaaatgtttg 20




53


20


DNA


Escherichia coli



53
aggatttcac cgctgtctgg 20




54


20


DNA


Escherichia coli



54
cgcacaccgc cctgagagca 20




55


20


DNA


Escherichia coli



55
cacatcgggt agaacagcgt 20




56


20


DNA


Escherichia coli



56
ctttccactt ccagatgcca 20




57


20


DNA


Escherichia coli



57
ttgccttcca caccacggtt 20




58


20


DNA


Escherichia coli



58
cacgcggttg ccttccacac 20




59


20


DNA


Escherichia coli



59
ccatatgacg cacgcggttg 20




60


20


DNA


Escherichia coli



60
ttcacctttc agcagacggg 20




61


20


DNA


Escherichia coli



61
cgggctgaac agggtgatat 20




62


20


DNA


Escherichia coli



62
cggacgggct gaacagggtg 20




63


20


DNA


Escherichia coli



63
gtcggacggg ctgaacaggg 20




64


20


DNA


Escherichia coli



64
aaactcttcc tgatcggcga 20




65


20


DNA


Escherichia coli



65
gcggatgctg tcgtctttct 20




66


20


DNA


Escherichia coli



66
gctgcttgcg gatgctgtcg 20




67


20


DNA


Escherichia coli



67
ggctttcaca cgctgcttgc 20




68


20


DNA


Escherichia coli



68
gctcaacggc tttcacacgc 20




69


20


DNA


Escherichia coli



69
gaccggtaga cgcacgttcc 20




70


20


DNA


Escherichia coli



70
gggctatggg tattgcagtg 20




71


20


DNA


Escherichia coli



71
aaacgggcta tgggtattgc 20




72


20


DNA


Escherichia coli



72
cggatcaaac gggctatggg 20




73


20


DNA


Escherichia coli



73
gggctatctc caggcacagg 20




74


20


DNA


Escherichia coli



74
ggcagggcta tctccaggca 20




75


20


DNA


Escherichia coli



75
tggtcggcag ggctatctcc 20




76


20


DNA


Escherichia coli



76
gcggtttggt cggcagggct 20




77


20


DNA


Escherichia coli



77
ttcagcggtt tggtcggcag 20




78


20


DNA


Escherichia coli



78
acgtcgttca gcggtttggt 20




79


20


DNA


Escherichia coli



79
tttcaccgtt ctcgtcgttg 20




80


20


DNA


Escherichia coli



80
cagcgcgatt tcaccgttct 20




81


20


DNA


Escherichia coli



81
cgtacacagc gcgatttcac 20




82


20


DNA


Escherichia coli



82
agcagacagc gtacacagcg 20




83


20


DNA


Escherichia coli



83
caggttgaaa gcagacagcg 20




84


20


DNA


Escherichia coli



84
aattgcgccc aggttgaaag 20




85


20


DNA


Escherichia coli



85
ccaggttatt aattgcgccc 20




86


20


DNA


Escherichia coli



86
ttgccagctc ttccagttca 20




87


20


DNA


Escherichia coli



87
accgccagaa ttgccagctc 20




88


20


DNA


Escherichia coli



88
gtcaagtgca cgaaccgcca 20




89


20


DNA


Escherichia coli



89
atccagcagc gcgtcaagtg 20




90


20


DNA


Escherichia coli



90
tgataatcca gcagcgcgtc 20




91


20


DNA


Escherichia coli



91
gatcacacca atacccagcg 20




92


20


DNA


Escherichia coli



92
tcgttcgcca ggtagtaagc 20




93


20


DNA


Escherichia coli



93
cgtttaccgt cgttcgccag 20




94


20


DNA


Escherichia coli



94
tgccgtcgga gtagcgttta 20




95


20


DNA


Escherichia coli



95
tatgcgtcag gttgttggcg 20




96


20


DNA


Escherichia coli



96
cgaaggtttt atgcgtcagg 20




97


20


DNA


Escherichia coli



97
gttaaaccac gggcacgcgc 20




98


20


DNA


Escherichia coli



98
ttcgcgtaag tggtttcgtt 20




99


20


DNA


Escherichia coli



99
tataggtatc gatcggcagg 20




100


20


DNA


Escherichia coli



100
cagtcgtaat gcagcggctc 20




101


20


DNA


Escherichia coli



101
cgcagagctt cccagtcgta 20




102


20


DNA


Escherichia coli



102
tcagagcaga aagcgtggag 20




103


20


DNA


Escherichia coli



103
tcggacggca tcagagcaga 20




104


20


DNA


Escherichia coli



104
ggcgttagag atctgcgaag 20




105


20


DNA


Escherichia coli



105
tttgatgctg acgtaaccgc 20




106


20


DNA


Escherichia coli



106
tcgacgcttt gatgctgacg 20




107


20


DNA


Escherichia coli



107
cctggcgcaa aataccgtct 20




108


20


DNA


Escherichia coli



108
tagtccggca ccacctggcg 20




109


20


DNA


Escherichia coli



109
gcaggtgctc gtagtccggc 20




110


20


DNA


Escherichia coli



110
cgtcgtgcag gtgctcgtag 20




111


20


DNA


Escherichia coli



111
gctcataggc gtcgtgcagg 20




112


20


DNA


Escherichia coli



112
cccacagcag ctcataggcg 20




113


20


DNA


Escherichia coli



113
cggcatttcc cacagcagct 20




114


20


DNA


Escherichia coli



114
catcgttacc cggcatttcc 20




115


20


DNA


Escherichia coli



115
ggatcgtagt tggtgttggc 20




116


20


DNA


Escherichia coli



116
tcggcacttt tcctgacggg 20




117


20


DNA


Escherichia coli



117
aggcggtgag caggtctttc 20




118


20


DNA


Escherichia coli



118
cgaatttgta ggcggtgagc 20




119


20


DNA


Escherichia coli



119
gtgttttgac cccgaatttg 20




120


20


DNA


Escherichia coli



120
cgtcttgtgc gtcttcagcg 20




121


20


DNA


Escherichia coli



121
tcttacatgc gccgctttcg 20




122


20


DNA


Escherichia coli



122
cggctgacca aagaacatcg 20




123


20


DNA


Escherichia coli



123
ccacgttgac cggctgacca 20




124


20


DNA


Escherichia coli



124
tagcgagcca cgttgaccgg 20




125


20


DNA


Escherichia coli



125
cggacgccag aagaaagaga 20




126


20


DNA


Escherichia coli



126
caacttcttc cggacgccag 20




127


20


DNA


Escherichia coli



127
aatctatacg gtcgcgggag 20




128


20


DNA


Escherichia coli



128
tgtgtttttc gtgctccggc 20




129


20


DNA


Escherichia coli



129
gcaatagcgc cacgttcggg 20




130


20


DNA


Escherichia coli



130
agaaataagc ggcaatagcg 20




131


20


DNA


Escherichia coli



131
cggaatagaa ataagcggca 20




132


20


DNA


Escherichia coli



132
acccaggttt ccagttccgg 20




133


20


DNA


Escherichia coli



133
ataggaacgg gaatgaatcg 20




134


20


DNA


Escherichia coli



134
tcccttccgc acgtttctgg 20




135


20


DNA


Escherichia coli



135
cgcccagcag atgccagtag 20




136


20


DNA


Escherichia coli



136
gtaccttcgc ccagcagatg 20




137


20


DNA


Escherichia coli



137
cgcaggctaa cggtcacagt 20




138


20


DNA


Escherichia coli



138
tttcttcagc tcgcgcaggc 20




139


20


DNA


Escherichia coli



139
gcaaatgcga aggaacaagc 20




140


20


DNA


Escherichia coli



140
atcaattcgc gttctgcaaa 20




141


20


DNA


Escherichia coli



141
gcgaataatt ttggcgttgc 20




142


20


DNA


Escherichia coli



142
gcgggcaatc aggcgaataa 20




143


20


DNA


Escherichia coli



143
cagggcttcg tcgcgggcaa 20




144


20


DNA


Escherichia coli



144
cggtcaggtg cagggcttcg 20




145


20


DNA


Escherichia coli



145
tgctgggtgc cggtcaggtg 20




146


20


DNA


Escherichia coli



146
catatgctgg gtgccggtca 20




147


20


DNA


Escherichia coli



147
gcaatttccg ccatctcagg 20




148


20


DNA


Escherichia coli



148
tcctgcttac actcttcggc 20




149


20


DNA


Escherichia coli



149
atccgcccag tctttctcct 20




150


20


DNA


Escherichia coli



150
gaacagataa tccgcccagt 20




151


20


DNA


Escherichia coli



151
gggttggagc gcgtctggaa 20




152


20


DNA


Escherichia coli



152
cgggatcggg ttggagcgcg 20




153


20


DNA


Escherichia coli



153
cacgggatcg ggttggagcg 20




154


20


DNA


Escherichia coli



154
ctgacttcca cttcctgcgg 20




155


20


DNA


Escherichia coli



155
tgcccgacca gataagaact 20




156


20


DNA


Escherichia coli



156
ttccgagtca atctgcccga 20




157


20


DNA


Escherichia coli



157
aatcgtcggt gtccacttcc 20




158


20


DNA


Escherichia coli



158
gaccactttg cgcatccggc 20




159


20


DNA


Escherichia coli



159
gatgttgacc actttgcgca 20




160


20


DNA


Escherichia coli



160
atctccggtt ccatggcatt 20




161


20


DNA


Escherichia coli



161
tttttccatc tccggttcca 20




162


20


DNA


Escherichia coli



162
ccctttcagt tcttcgtcgg 20




163


20


DNA


Escherichia coli



163
gcggttttcc ctttcagttc 20




164


20


DNA


Escherichia coli



164
actctgcggt tttccctttc 20




165


20


DNA


Escherichia coli



165
cgcctttttc cagacgtgca 20




166


20


DNA


Escherichia coli



166
cacttcgcct ttttccagac 20




167


20


DNA


Escherichia coli



167
tttccagcac ttcgcctttt 20




168


20


DNA


Escherichia coli



168
cagattttcc agcacttcgc 20




169


20


DNA


Escherichia coli



169
acttgcctca cgtaccacgg 20




170


20


DNA


Escherichia coli



170
gacgcgctta cttgcctcac 20




171


20


DNA


Escherichia coli



171
gtgacgcata ccaaagacgc 20




172


20


DNA


Escherichia coli



172
taagaaccat accgccgagt 20




173


20


DNA


Escherichia coli



173
atttcggcga tgcagcgttc 20




174


20


DNA


Escherichia coli



174
ttccttcacc ggtacgcatt 20




175


20


DNA


Escherichia coli



175
gtttttcctt caccggtacg 20




176


20


DNA


Escherichia coli



176
cgttgcggtc agggtttttc 20




177


20


DNA


Escherichia coli



177
tcaggtaagc aggcagcgtt 20




178


20


DNA


Escherichia coli



178
taccggttag tgcgttcagg 20




179


20


DNA


Escherichia coli



179
ttgcgccagg tagtcgttga 20




180


20


DNA


Escherichia coli



180
gtcacgttgc gccaggtagt 20




181


20


DNA


Escherichia coli



181
agcggacggt tgttttcggc 20




182


20


DNA


Escherichia coli



182
ggaattcaaa cagcggacgg 20




183


20


DNA


Escherichia coli



183
aggccaagga attcaaacag 20




184


20


DNA


Escherichia coli



184
ataccgacag tcaggccaag 20




185


20


DNA


Escherichia coli



185
ttcgcgcttt gccggtgctg 20




186


20


DNA


Escherichia coli



186
agccgtattc gttgttcgta 20




187


20


DNA


Escherichia coli



187
cgcaggtagt caaagccgta 20




188


20


DNA


Escherichia coli



188
atgttgtcgc gcaggtagtc 20




189


20


DNA


Escherichia coli



189
gccatgttgt cgcgcaggta 20




190


20


DNA


Escherichia coli



190
gtccacttcg tccaccagcg 20




191


20


DNA


Escherichia coli



191
ggtgtacgcg cttcatcgat 20




192


20


DNA


Escherichia coli



192
cggtgtacgc gcttcatcga 20




193


20


DNA


Escherichia coli



193
gcgtttatac atttccgagc 20




194


20


DNA


Escherichia coli



194
cggatcaggt gcggaataat 20




195


20


DNA


Escherichia coli



195
ttcacctggc gagatttttc 20




196


20


DNA


Escherichia coli



196
cagcaccaga ccacgttcgg 20




197


20


DNA


Escherichia coli



197
gccctctttc accagcagtt 20




198


20


DNA


Escherichia coli



198
cccttcatcc atgatgccct 20




199


20


DNA


Escherichia coli



199
ttggccggag agtacagaga 20




200


20


DNA


Escherichia coli



200
agcatgatgt tggccggaga 20




201


20


DNA


Escherichia coli



201
agcgccgccg ttacgtggtg 20




202


20


DNA


Escherichia coli



202
gtcacgggta aacagcgcat 20




203


20


DNA


Escherichia coli



203
caccttcttt cgcttccaca 20




204


20


DNA


Escherichia coli



204
cagcgtttgg ttttcgttct 20




205


20


DNA


Escherichia coli



205
ggtgatcgaa gccagcgttt 20




206


20


DNA


Escherichia coli



206
gacggaagta gttctggaag 20




207


20


DNA


Escherichia coli



207
cccgccagtt tttcatacag 20




208


20


DNA


Escherichia coli



208
tcatccccgc cagtttttca 20




209


20


DNA


Escherichia coli



209
gaacaacgac ggtatccagc 20




210


20


DNA


Escherichia coli



210
gcctttcgca gtacgttctt 20




211


20


DNA


Escherichia coli



211
tagtacccac cagcaccggc 20




212


20


DNA


Escherichia coli



212
cggctttggt cagttcgttt 20




213


20


DNA


Escherichia coli



213
tgtgcttaat accggctttg 20




214


20


DNA


Escherichia coli



214
gttggcgtgg aatttggcgt 20




215


20


DNA


Escherichia coli



215
gcctgagcaa caatcgccgc 20




216


20


DNA


Escherichia coli



216
ctgtaccacg acccgccata 20




217


20


DNA


Escherichia coli



217
tatctgtacc acgacccgcc 20




218


20


DNA


Escherichia coli



218
ctgcctgcca gctaccaccg 20




219


20


DNA


Escherichia coli



219
tttccagcgc ggcaacttct 20




220


20


DNA


Escherichia coli



220
tttgctctgc ggtcggattt 20




221


20


DNA


Escherichia coli



221
tttttcaatt tgctctgcgg 20




222


20


DNA


Escherichia coli



222
accgcatcgt gacgtacctg 20




223


20


DNA


Escherichia coli



223
ccagtaccgc atcgtgacgt 20




224


20


DNA


Escherichia coli



224
gcttccagta ccgcatcgtg 20




225


20


DNA


Escherichia coli



225
accgatgata tgcaggccac 20




226


20


DNA


Escherichia coli



226
acgaccagaa cgaccgcgca 20




227


20


DNA


Escherichia coli



227
cccctgacga ccagaacgac 20




228


20


DNA


Escherichia coli



228
catccccctg acgaccagaa 20




229


20


DNA


Escherichia coli



229
gaaacgggaa gaaccagcat 20




230


20


DNA


Escherichia coli



230
cgacaggtag aaacgggaag 20




231


20


DNA


Escherichia coli



231
ggaagcaaaa atacgcatca 20




232


20


DNA


Escherichia coli



232
ggtcggaagc aaaaatacgc 20




233


20


DNA


Escherichia coli



233
cggatactcg gtcggaagca 20




234


20


DNA


Escherichia coli



234
acccagttta cgcatcatgc 20




235


20


DNA


Escherichia coli



235
acgggtgttc aatggcttcg 20




236


20


DNA


Escherichia coli



236
atcgctttag tcacccacgg 20




237


20


DNA


Escherichia coli



237
ctttcaactt tacgctgggc 20




238


20


DNA


Escherichia coli



238
acggctttca actttacgct 20




239


20


DNA


Escherichia coli



239
tggtttcgct cacatcgctg 20




240


20


DNA


Escherichia coli



240
gtaggcatca atggtcgctt 20




241


20


DNA


Escherichia coli



241
ccacatttct tccagcgact 20




242


20


DNA


Escherichia coli



242
atcccacatt tcttccagcg 20




243


20


DNA


Escherichia coli



243
tcacgcagcg tctcttcatg 20




244


20


DNA


Escherichia coli



244
cctttctcga agtgacgcat 20




245


20


DNA


Escherichia coli



245
ccacagggag tcaagcgttt 20




246


20


DNA


Escherichia coli



246
tcgctgccag gtgctctttc 20




247


20


DNA


Escherichia coli



247
gtccatcgct gccaggtgct 20




248


20


DNA


Escherichia coli



248
acgcagatag tccatcgctg 20




249


20


DNA


Escherichia coli



249
cttcggatct ttctgtgcgt 20




250


20


DNA


Escherichia coli



250
cgtttgtatt cctgcttcgg 20




251


20


DNA


Escherichia coli



251
atcgctgcaa acatggagaa 20




252


20


DNA


Escherichia coli



252
ccatacgacg ctgttgttcc 20




253


20


DNA


Escherichia coli



253
ggcttccata cgacgctgtt 20




254


20


DNA


Escherichia coli



254
cgctaaacgc tcggcttcca 20




255


20


DNA


Escherichia coli



255
gctaagctgc tgcatttgcg 20




256


20


DNA


Escherichia coli



256
ctactttgcg ctctccggtt 20




257


20


DNA


Escherichia coli



257
ttacgtccta ctttgcgctc 20




258


20


DNA


Escherichia coli



258
aaccgcacgg gcaaggatcg 20




259


20


DNA


Escherichia coli



259
accagaaccg cacgggcaag 20




260


20


DNA


Escherichia coli



260
tttttaccag aaccgcacgg 20




261


20


DNA


Escherichia coli



261
caggtagtcg ttgacggtaa 20




262


18


DNA


Escherichia coli



262
caggtagtcg ttgacggt 18




263


20


DNA


Escherichia coli



263
cggaagtagt tctggaaggt 20




264


20


DNA


Escherichia coli



264
cgaccgcgca actggttatc 20




265


20


DNA


Escherichia coli



265
ccgcacgggc aaggatcgtt 20






Claims
  • 1. An antisense oligonucleotide which is nuclease resistant and comprises from about 7 to about 50 nucleotides, which nucleotides are complementary to a ribonucleotide reductase gene or a secA gene of a bacteria and wherein said antisense oligonucleotide has reduced internal duplex formation, reduced hair-pin formation and reduced homooligomer/sequence repeats and comprises at least 7 contiguous nucleotides from a sequence selected from any one of SEQ ID NOs: 14-265.
  • 2. The oligonucleotide of claim 1 comprising one or more phosphorothioate internucleotide linkages.
  • 3. An antisense oligonucleotide which binds to a ribonucleotide reductase gene or a secA gene of a bacteria and comprises from about 20 to about 50 nucleotides and a sequence selected from the group consisting of SEQ ID NO:22; SEQ ID NO:43; SEQ ID NO:62; SEQ ID NO:74; SEQ ID NO:75; SEQ ID NO:76; SEQ ID NO:143; SEQ ID NO:145; SEQ ID NO:152; SEQ ID NO:164; SEQ ID NO:176; SEQ ID NO:186; SEQ ID NO:188; SEQ ID NO:189; SEQ ID NO:191; SEQ ID NO:192; SEQ ID NO:195; SEQ ID NO:197; SEQ ID NO:206; SEQ ID NO:212; SEQ ID NO:220; SEQ ID NO:229; SEQ ID NO:235; SEQ ID NO:254; SEQ ID NO:261; SEQ ID NO:262; SEQ ID NO:263; SEQ ID NO:264; and SEQ ID NO:265.
  • 4. A method of inhibiting the expression of a ribonucleotide reductase gene in a bacteria having a ribonucleotide reductase gene, comprising contacting said bacteria with an effective amount of an antisense oligonucleotide comprising at least about 7 nucleotides which are complementary to the ribonucleotide reductase gene of the bacteria and at least 7 contiguous nucleotides from a sequence selected from any one of SEQ ID NOs:14-157, under conditions such that the expression of the ribonucleotide reductase gene is inhibited and wherein said antisense oligonucleotide has reduced internal duplex formation, reduced hair-pin formation and reduced homooligomer/sequence repeats.
  • 5. The method according to claim 4 wherein the antisense oligonucleotide comprises from about 20 to about 50 nucleotides and comprises a sequence selected from the group consisting of SEQ ID NO:22; SEQ ID NO:43; SEQ ID NO:62; SEQ ID NO:74; SEQ ID NO:75; SEQ ID NO:76; SEQ ID NO:143; SEQ ID NO:145; and SEQ ID NO:152.
  • 6. A method of inhibiting the expression of the secA gene in a bacteria having a secA gene, comprising contacting said bacteria with an effective amount of an antisense oligonucleotide comprising at least about 7 nucleotides which are complementary to the secA gene of the bacteria and at least 7 contiguous nucleotides from a sequence selected from any one of SEQ ID NOs:158-265, under conditions such that the secA gene is inhibited and wherein said antisense oligonucleotide has reduced internal duplex formation, reduced hair-pin formation and reduced homooligomer/sequence repeats.
  • 7. The method according to claim 6 wherein the antisense oligonucleotide comprises from about 20 to about 50 nucleotides and comprises a sequence selected from the group consisting of SEQ ID NO:164; SEQ ID NO:176; SEQ ID NO:186; SEQ ID NO:188; SEQ ID NO:189; SEQ ID NO:191; SEQ ID NO:192; SEQ ID NO:195; SEQ ID NO:197; SEQ ID NO:206; SEQ ID NO:212; SEQ ID NO:220; SEQ ID NO:229; SEQ ID NO:235; SEQ ID NO:254; SEQ ID NO:261; SEQ ID NO:262; SEQ ID NO:263; SEQ ID NO:264; and SEQ ID NO:265.
  • 8. A method of inhibiting the growth of a bacteria having a ribonucleotide reductase gene or a secA gene, which method comprises identifying the bacteria and contacting said bacteria with an effective amount of an antisense oligonucleotide comprising from at least about 7 nucleotides which are complementary to either the ribonucleotide reductase gene or the secA gene of the bacteria and at least 7 contiguous nucleotides from a sequence selected from any one of SEQ ID NOs:14-265, under conditions whereby the growth of the bacteria is inhibited and wherein said antisense oligonucleotide has reduced internal duplex formation, reduced hair-pin formation and reduced homooligomer/sequence repeats.
  • 9. The method according to claim 8 wherein the antisense oligonucleotide comprises from about 20 to about 50 nucleotides and comprises a sequence selected from the group consisting of SEQ ID NO:22; SEQ ID NO:43; SEQ ID NO:62; SEQ ID NO:74; SEQ ID NO:75; SEQ ID NO:76; SEQ ID NO:143; SEQ ID NO:145; SEQ ID NO:152; SEQ ID NO:164; SEQ ID NO:176; SEQ ID NO:186; SEQ ID NO:188; SEQ ID NO:189; SEQ ID NO:191; SEQ ID NO:192; SEQ ID NO:195; SEQ ID NO:197; SEQ ID NO:206; SEQ ID NO:212; SEQ ID NO:220; SEQ ID NO:229; SEQ ID NO:235; SEQ ID NO:254; SEQ ID NO:261; SEQ ID NO:262; SEQ ID NO:263; SEQ ID NO:264; and SEQ ID NO:265.
  • 10. An antisense oligonucleotide which is nuclease resistant and comprises from about 7 to about 50 nucleotides that are complementary to a ribonucleotide reductase gene of a bacteria and at least 7 contiguous nucleotides from a sequence selected from any one of SEQ ID NOs:14-157, with the proviso that the bacteria is not Mycobacterium tuberculosis.
  • 11. The antisense oligonucleotide of claim 10 comprising from about 7 to about 35 nucleotides.
  • 12. The antisense oligonucleotide of claim 10, wherein the antisense oligonucleotide comprises from about 20 to about 50 nucleotides and comprises a sequence selected from the group consisting of SEQ ID NO:22; SEQ ID NO:43; SEQ ID NO:62; SEQ ID NO:74; SEQ ID NO:75; SEQ ID NO:76; SEQ ID NO:143; SEQ ID NO:145; and SEQ ID NO:152.
  • 13. A method of inhibiting the expression of a ribonucleotide reductase gene in a bacteria having a ribonucleotide reductase gene, comprising contacting said bacteria with an effective amount of an antisense oligonucleotide comprising at least about 7 nucleotides which are complementary to the ribonucleotide reductase gene of the bacteria and at least 7 contiguous nucleotides from a sequence selected from any one of SEQ ID NOs:14-157, under conditions such that the expression of the ribonucleotide reductase gene is inhibited with the proviso that the bacteria is not Mycobacterium tuberculosis.
  • 14. The method of claim 13 wherein the oligonucleotide comprises from about 7 to about 35 nucleotides.
  • 15. The method of claim 13 wherein the oligonucleotide comprises from about 20 to about 50 nucleotides and comprises a sequence selected from the group consisting of SEQ ID NO:22; SEQ ID NO:43; SEQ ID NO:62; SEQ ID NO:74; SEQ ID NO:75; SEQ ID NO:76; SEQ ID NO:143; SEQ ID NO:145; and SEQ ID NO:152.
  • 16. An antisense oligonucleotide which is nuclease resistant and comprises from about 7 to about 50 nucleotides that are complementary to a secA gene of a bacteria and at least 7 contiguous nucleotides from a sequence selected from any one of SEQ ID NOs:158-265, with the proviso that the bacteria is not Staphylococcus aureus or Mycobacterium tuberculosis.
  • 17. The antisense oligonucleotide of claim 16 comprising from about 7 to about 35 nucleotides.
  • 18. The antisense oligonucleotide of claim 16 comprising from about 20 to about 50 nucleotides and a sequence selected from the group consisting of SEQ ID NO:164; SEQ ID NO:176; SEQ ID NO:186; SEQ ID NO:188; SEQ ID NO:189; SEQ ID NO:191; SEQ ID NO:192; SEQ ID NO:195; SEQ ID NO:197; SEQ ID NO:206; SEQ ID NO:212; SEQ ID NO:220; SEQ ID NO:229; SEQ ID NO:235; SEQ ID NO:254; SEQ ID NO:261; SEQ ID NO:262; SEQ ID NO:263; SEQ ID NO:264; and SEQ ID NO:265.
  • 19. A method of inhibiting the expression of the secA gene in a bacteria having a secA gene, comprising contacting said bacteria with an effective amount of an antisense oligonucleotide comprising at least about 7 nucleotides which are complementary to the secA gene of the bacteria and at least 7 contiguous nucleotides from a sequence selected from any one of SEQ ID NOs:158-265, under conditions such that the secA gene is inhibited, with the proviso that the bacteria is not Staphylococcus aureus or Mycobacterium tuberculosis.
  • 20. A method of inhibiting the growth of a bacteria having a ribonucleotide reductase gene, which method comprises identifying the bacteria and contacting said bacteria with an effective amount of an antisense oligonucleotide comprising at least about 7 nucleotides which are complementary to the ribonucleotide reductase gene of the bacteria and at least 7 contiguous nucleotides from a sequence selected from any one of SEQ ID NOs:14-157, under conditions whereby the growth of the bacteria is inhibited, with the proviso that the bacteria is not Mycobacterium tuberculosis.
  • 21. A method of inhibiting the growth of a bacteria having a secA gene, which method comprises identifying the bacteria and contacting said bacteria with an effective amount of an antisense oligonucleotide comprising at least about 7 nucleotides which are complementary to the secA gene of the bacteria and at least 7 contiguous nucleotides from a sequence selected from any one of SEQ ID NOs:158-265, under conditions whereby the growth of the bacteria is inhibited, with the proviso that the bacteria is not Staphylococcus aureus or Mycobacterium tuberculosis.
REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. Provisional Application Serial No. 60/052,160, filed Jul. 10, 1997, which application is incorporated herein by reference in its entirety.

US Referenced Citations (3)
Number Name Date Kind
5248670 Draper et al. Sep 1993 A
5834279 Rubin et al. Nov 1998 A
5891678 O'Dwyer et al. Apr 1999 A
Foreign Referenced Citations (1)
Number Date Country
0894857 Feb 1999 EP
Non-Patent Literature Citations (5)
Entry
Branch, A.D. TIBS, vol. 23, Feb. 1998, pp. 45-50.*
Stein, C.A. Nature Biotechnology, vol. 17, Aug. 1999, pp. 751-752.*
Flanagan, W.M. et al. Nature Biotechnology, vol. 17, Jan. 1999, 48-52.*
Crooke, S.T. Chapter 1, in ANTISENSE RESEARCH, AND APPLICATION (ed. Stanley Crooke), Springer-Verlag, New York, 1998, pp. 1-50.*
Barker, R.H., Jr. et al. Proc. Natl. Acad. Sci. USA, vol. 93, pp. 514-518, Jan. 1996.
Provisional Applications (1)
Number Date Country
60/052160 Jul 1997 US