The invention relates generally to coatings for plastic vessels, e.g., containers, to reduce or prevent static charge on the vessels. More particularly, the invention relates to use of vapor deposition coatings on plastic containers to reduce attraction of charged particles to the containers, in order to decrease particulate contamination.
An important consideration in manufacturing packaging for regulated products, e.g., pharmaceuticals, is to ensure that the pharmaceutical product to be contained within a package is substantially free of contaminants. Therefore, processes for manufacturing and filling pharmaceutical packages with product, are typically performed under clean room conditions.
One cause of potential contamination is particulates. Particulate contamination may originate from various sources, which may be generally divided into two categories: (1) intrinsic contaminants; and (2) extrinsic contaminants. Intrinsic contaminants are product and process related or generated particulates, for example, laser etching residues, filter media, clean room uniform fibers, rubber and plastic particles from filter housing, and needle shields. Extrinsic contamination comes from sources unrelated to product or process, for example, hair, skin cells, pollen, clothing fibers, salt and soil.
While filtration systems and good manufacturing practices can limit the surface and airborne particulate count in an area where containers are being manufactured or filled, these things do not always reduce particulate count on the container surfaces to acceptable levels. One particular challenge is presented by static charges of manufactured plastic containers, which tend to attract charged particles. Even if the airborne/surface particulate count is relatively low, a plastic container with a strong static charge can act as a magnet of sorts to attract particulate contaminants and cause them to adhere to the container.
Attempted solutions to this problem include use of antistatic additives for polymers, such as ethoxylated alkylamines, ethoxylated alkyl amides, glycerol stearates, fatty acid esters, esters or ethers of polyols and sodium alkyl sulfonates. The amounts of such additives in polymers typically vary from 0.1% to 3% by weight. While these additives are somewhat effective in reducing the static charges of plastic articles or vessels that incorporate them, the additives are mobile in the polymer matrix and tend to bloom to the surface. Additives that bloom to the surface can contaminate the surface and the contents, especially liquid contents, of a container made from a polymer with such additives.
There is therefore a need for plastic articles or vessels that are treated to reduce their static charge without the use of typical antistatic additives, which may themselves be a source of contamination. Likewise, there is a need for methods of treating plastic articles or vessels to reduce their static charge without the use of typical antistatic additives.
Accordingly, in one aspect, the invention is a method of reducing static charge of a plastic vessel. The method includes providing a PECVD coating of SiCOH, SiOx or SiOH to an external support surface of the vessel. The PECVD coating reduces static charge of the coated vessel compared to a reference container that is essentially identical to the coated vessel except that the reference container is uncoated.
A “vessel” in the context of the present invention can be any type of vessel with at least one opening and a wall defining an interior surface. The term “at least” in the context of the present invention means “equal or more” than the integer following the term. Thus, a vessel in the context of the present invention has one or more openings. One or two openings, like the openings of a sample tube (one opening) or a syringe barrel (two openings) are generally contemplated, although vessels with many openings (e.g., microtiter plates) are within the scope of the invention. If the vessel has two openings, they can be of same or different size. If there is more than one opening, one opening can be used for the gas inlet for a PECVD coating method according to an aspect of the invention, while the other openings are either capped or open. A vessel according to the present invention can be, for example, a sample tube, e.g. for collecting or storing biological fluids like blood or urine, a parenteral container, such as a cartridge or syringe (or a part thereof, for example a syringe barrel) for storing or delivering a biologically active compound or composition, e.g. a medicament or pharmaceutical composition, a vial for storing biological materials or biologically active compounds or compositions, a pipe, e.g. a catheter for transporting biological materials or biologically active compounds or compositions, or a cuvette for holding fluids, e.g. for holding biological materials or biologically active compounds or compositions, or secondary packaging (e.g., vial trays). Vessels of other types are also contemplated. A vessel can be of any shape, a vessel having a substantially cylindrical wall adjacent to at least one of its open ends being preferred. Generally, in optional embodiments, the interior wall of the vessel is cylindrically shaped, like, e.g. in a sample tube, syringe barrel or vial.
In the present disclosure, “thermoplastic material” is defined as including polymeric resin compositions. In certain embodiments, the polymeric resin compositions can be injection moldable resin compositions, which are preferred because injection molded containers can be made inexpensively, with narrow tolerances and a high level of automation. Several specific examples of the polymers from which thermoplastic compositions can be made, any of which are contemplated for any embodiment, are: an olefin polymer; polypropylene (PP); polyethylene (PE); cyclic olefin copolymer (COC); cyclic olefin polymer (COP); polymethylpentene; polyester; polyethylene terephthalate; polyethylene naphthalate; polybutylene terephthalate (PBT); polyvinylidene chloride (PVdC); polyvinyl chloride (PVC); polycarbonate; polylactic acid; polystyrene; hydrogenated polystyrene; polycyclohexylethylene (PCHE); epoxy resin; nylon; polyurethane polyacrylonitrile; polyacrylonitrile (PAN); an ionomeric resin; Surlyn® ionomeric resin; or a combination of any two or more of the foregoing.
In vessels according to the present invention such as containers (e.g., laboratory ware, parenteral containers or vials), a chemical vapor deposition coating is applied directly or indirectly on a support surface of the vessel. In the non-limiting exemplary embodiment of a plastic (in this case, COP) vial according to the present invention shown in
The coatings 16, 22 are preferably applied using a vapor deposition process. While various vapor deposition processes may be used, a preferred example of a vapor deposition process for use according to the present invention is plasma enhanced chemical vapor deposition (PECVD). PECVD apparatus and methods for depositing any of the coatings defined in this specification, for example the coatings comprising silicon, oxygen, and optionally carbon identified in this specification, are disclosed, for example, in WO2013/071,138, published May 16, 2013, which is incorporated here by reference.
The antistatic surface 24 formed by the PECVD coating 22 optionally can have many different properties and advantages, depending on how it is applied and the materials of the external support surface 14 and the coating 22. Some advantages that can be realized in certain embodiments of the technology are provided here. The disclosed or claimed technology is not limited, however, to embodiments implementing one or more of these advantages and features.
An optional advantage realized in certain embodiments is that the contact surface 18 and antistatic surface 24 formed by the PECVD coatings 16, 22 have improved cleanliness, defined as reduced levels of foreign substances such as particulates, compared to the support surfaces 12, 14 before application of the coatings 16, 22, or compared to a reference vessel or container that is uncoated but otherwise essentially the same (in terms of size, shape, materials and conditions of the ambient environment it is exposed to). Another optional advantage realized in certain embodiments is that the contact surface 18 and antistatic surface 24 formed by the PECVD coating 16, 22 have reduced particulates and optionally enhanced scratch resistance compared to the support surfaces 12, 14 before application of the chemical vapor deposition coating 22, or compared to a reference vessel or container that is uncoated but otherwise at least essentially the same. As discussed further herein, it is contemplated that the coating 22 and antistatic surface 24 have antistatic properties that reduce the vial's propensity to attract particulate contaminants. Optionally, the coating 16 and contact surface 18 also have antistatic properties that reduce the vial's propensity to attract particulate contaminants.
Optionally, instead of a single PECVD coating on a support surface of a vessel, a coating or layer set may be applied thereon. For example, as shown in the alternative vial 30 embodiment of
Optionally, a single PECVD coating 42 having antistatic properties may be applied to the external support surface 46 of the vial 30. The coating 42 has an antistatic surface 48. Alternatively, a vial includes only a single PECVD coating on its internal support surface and its external support surface, or, alternatively, is uncoated on its internal support surface and is only coated with a single antistatic coating on the external support surface. If a single coating is applied to the external support surface (or internal support surface), the coating may optionally be SiOx or SiOH, or SiCOH. Optionally, the vapor deposited coating 42 has a thickness of 1 nm to 1000 nm, optionally 1 nm to 900 nm, optionally 1 nm to 800 nm, optionally 1 nm to 700 nm, optionally 1 nm to 600 nm, optionally 5 nm to 500 nm, optionally 5 nm to 400 nm, optionally 5 nm to 300 nm, optionally 5 nm to 200 nm, optionally 5 nm to 100 nm, optionally 10 nm to 100 nm, optionally 10 nm to 75 nm, optionally 10 nm to 50 nm.
Properties of various coatings or layers are now described with reference to
Optionally, the tie coating or layer 34 comprises SiOxCy or SiNxCy, preferably can be composed of, comprise, or consist essentially of SiOxCy, wherein x is from about 0.5 to about 2.4 and y is from about 0.6 to about 3. The atomic ratios of Si, O, and C in the tie coating or layer 34 optionally can be: Si 100: O50-150: C 90-200 (i.e. x=0.5 to 1.5, y=0.9 to 2); Si 100: O70-130: C 90-200 (i.e. x=0.7 to 1.3, y=0.9 to 2); Si 100: O80-120: C90-150 (i.e. x=0.8 to 1.2, y=0.9 to 1.5); Si 100: O90-120: C 90-140 (i.e. x=0.9 to 1.2, y=0.9 to 1.4); or Si 100: O92-107: C 116-133 (i.e. x=0.92 to 1.07, y=1.16 to 1.33). The atomic ratio can be determined by XPS. Taking into account the H atoms, which are not measured by XPS, the tie coating or layer 34 may thus in one aspect have the formula SiwOxCyHz (or its equivalent SiOxCy), for example where w is 1, x is from about 0.5 to about 2.4, y is from about 0.6 to about 3, and z is from about 2 to about 9. Typically, tie coating or layer 34 would hence contain 36% to 41% carbon normalized to 100% carbon plus oxygen plus silicon.
Optionally, the tie coating or layer can be similar or identical in composition with the pH protective coating or layer 38 described elsewhere in this specification, although this is not a requirement.
Optionally, the tie coating or layer 34 is on average between 5 and 200 nm (nanometers), optionally between 5 and 100 nm, optionally between 5 and 20 nm thick. These thicknesses are not critical. Commonly but not necessarily, the tie coating or layer 34 will be relatively thin, since its function is to change the surface properties of the substrate. Optionally, the tie coating or layer is applied by PECVD, for example of a precursor feed comprising octamethylcyclotetrasiloxane (OMCTS), tetramethyldisiloxane (TMDSO), or hexamethyldisiloxane (HMDSO).
A barrier coating or layer 36 optionally can be deposited by plasma enhanced chemical vapor deposition (PECVD) or other chemical vapor deposition processes on the vessel of a pharmaceutical package, for example a thermoplastic package, to prevent oxygen, carbon dioxide, or other gases from entering the vessel, the barrier coating 36 optionally being effective to reduce the ingress of atmospheric gas into vial 30 compared to an uncoated reference vial or container, and/or to prevent leaching of the pharmaceutical material into or through the vial wall.
The barrier coating or layer 36 optionally can be applied directly or indirectly to the thermoplastic wall 50 of the vial 30 (for example the tie coating or layer 34 can be interposed between them) so that in the filled vial 30, the barrier coating or layer 36 is located between the internal support surface 32 of the wall 50 and the interior of the vial 30 that is adapted to contain a fluid, e.g., liquid contents 20, to be stored. The barrier coating or layer 36 of SiOx is supported by the thermoplastic wall 50. The barrier coating or layer 36, as described elsewhere in this specification, or in U.S. Pat. No. 7,985,188, can be used in any embodiment.
The barrier layer 36 optionally is characterized as an “SiOx” coating, and contains silicon, oxygen, and optionally other elements, in which x, the ratio of oxygen to silicon atoms, is from about 1.5 to about 2.9, or 1.5 to about 2.6, or about 2. One suitable barrier composition is one where x is 2.3, for example.
Optionally, the barrier coating or layer 36 is from 2 to 1000 nm thick, optionally from 4 nm to 500 nm thick, optionally between 10 and 200 nm thick, optionally from 20 to 200 nm thick, optionally from 20 to 30 nm thick, and comprises SiOx, wherein x is from 1.5 to 2.9. For example, the barrier coating or layer such as 36 of any embodiment can be applied at a thickness of at least 2 nm, or at least 4 nm, or at least 7 nm, or at least 10 nm, or at least 20 nm, or at least 30 nm, or at least 40 nm, or at least 50 nm, or at least 100 nm, or at least 150 nm, or at least 200 nm, or at least 300 nm, or at least 400 nm, or at least 500 nm, or at least 600 nm, or at least 700 nm, or at least 800 nm, or at least 900 nm. The barrier coating or layer can be up to 1000 nm, or at most 900 nm, or at most 800 nm, or at most 700 nm, or at most 600 nm, or at most 500 nm, or at most 400 nm, or at most 300 nm, or at most 200 nm, or at most 100 nm, or at most 90 nm, or at most 80 nm, or at most 70 nm, or at most 60 nm, or at most 50 nm, or at most 40 nm, or at most 30 nm, or at most 20 nm, or at most 10 nm, or at most 5 nm thick.
Ranges of from 4 nm to 500 nm thick, optionally from 7 nm to 400 nm thick, optionally from 10 nm to 300 nm thick, optionally from 20 nm to 200 nm thick, optionally from 20 to 30 nm thick, optionally from 30 nm to 100 nm thick are contemplated. Specific thickness ranges composed of any one of the minimum thicknesses expressed above, plus any equal or greater one of the maximum thicknesses expressed above, are expressly contemplated.
The thickness of the SiOx or other barrier coating or layer can be measured, for example, by transmission electron microscopy (TEM), and its composition can be measured by X-ray photoelectron spectroscopy (XPS).
Optionally, the barrier coating or layer 36 is effective to reduce the ingress of atmospheric gas into the vial 30 compared to a reference vial or container without a barrier coating or layer. Optionally, the barrier coating or layer 36 provides a barrier to oxygen that has permeated the wall 50. Optionally, the barrier coating or layer 36 is a barrier to extraction of the composition of the wall 50 by the contents 20 of the lumen vial 30. Optionally, the barrier coating or layer 36 functions to dissipate static charge of the vial 30, e.g., to reduce the vial's propensity to attract particulate contaminants.
Certain barrier coatings or layers 36 such as SiOx as defined here have been found to have the characteristic of being subject to being measurably diminished in barrier improvement factor in less than six months as a result of attack by certain relatively high pH contents of the coated vessel as described elsewhere in this specification, particularly where the barrier coating or layer directly contacts the contents. The inventors have found that barrier layers or coatings of SiOx are eroded or dissolved by some fluids, for example aqueous compositions having a pH above about 5. Since coatings applied by chemical vapor deposition can be very thin—tens to hundreds of nanometers thick—even a relatively slow rate of erosion can remove or reduce the effectiveness of the barrier layer in less time than the desired shelf life of a product package. This is particularly a problem for aqueous fluid pharmaceutical, diagnostic or biological compositions, since many of them have a pH of roughly 7, or more broadly in the range of 4 to 8, alternatively from 5 to 9, similar to the pH of blood and other human or animal fluids. The higher the pH of the contents of a coated container (e.g. the vial 30), the more quickly it erodes or dissolves the SiOx coating. Optionally, this problem can be addressed by protecting the barrier coating or layer 36, or other pH sensitive material, with a pH protective coating or layer 38.
The pH protective coating or layer 38 optionally provides protection of the underlying barrier coating or layer 36 against contents 20 of the vial 30 having a pH from 4 to 8, including where a surfactant is present. For a prefilled pharmaceutical package, for example, that is in contact with the contents of the package from the time it is manufactured to the time it is used, the pH protective coating or layer 38 optionally prevents or inhibits attack of the barrier coating or layer 36 sufficiently to maintain an effective oxygen barrier over the intended shelf life of the prefilled syringe. The rate of erosion, dissolution, or leaching (different names for related concepts) of the pH protective coating or layer 38, if directly contacted by a fluid, is less than the rate of erosion of the barrier coating or layer 36, if directly contacted by the fluid having a pH of from 5 to 9. The pH protective coating or layer 38 is effective to isolate a fluid (e.g., 20) having a pH between 5 and 9 from the barrier coating or layer 36, at least for sufficient time to allow the barrier coating to act as a barrier during the shelf life of the pharmaceutical package or other vessel, e.g., the vial 30.
The inventors have further found that certain pH protective coatings or layers of SiOxCy or SiNxCy formed from polysiloxane precursors, which pH protective coatings or layers have a substantial organic component, do not erode quickly when exposed to fluids, and in fact erode or dissolve more slowly when the fluids have pHs within the range of 4 to 8 or 5 to 9. For example, at pH 8, the dissolution rate of a pH protective coating or layer made from the precursor octamethylcyclotetrasiloxane, or OMCTS, is quite slow. These pH protective coatings or layers of SiOxCy or SiNxCy can therefore be used to cover a barrier layer of SiOx, retaining the benefits of the barrier layer by protecting it from the fluid in the pharmaceutical package. The protective layer is applied over at least a portion of the SiOx layer to protect the SiOx layer from contents stored in a vessel, where the contents otherwise would be in contact with the SiOx layer. The pH protective coating or layer 38 optionally is effective to keep the barrier coating or layer 36 at least substantially undissolved as a result of attack by the fluid 20 for a period of at least six months.
The pH protective coating or layer 38 can be composed of, comprise, or consist essentially of SiwOxCyHz (or its equivalent SiOxCy) or SiwNxCyHz or its equivalent SiNxCy), each as defined previously, preferably SiOxCy, wherein x is from about 0.5 to about 2.4 and y is from about 0.6 to about 3. The atomic ratios of Si, O, and C in the pH protective coating or layer 286 optionally can be: Si 100: O 50-150: C 90-200 (i.e. x=0.5 to 1.5, y=0.9 to 2); Si 100: O 70-130: C 90-200 (i.e. x=0.7 to 1.3, y=0.9 to 2); Si 100: O 80-120: C 90-150 (i.e. x=0.8 to 1.2, y=0.9 to 1.5); Si 100: O 90-120: C 90-140 (i.e. x=0.9 to 1.2, y=0.9 to 1.4); or Si 100: 0 92-107: C 116-133 (i.e. x=0.92 to 1.07, y=1.16 to 1.33); or Si 100: O 80-130: C 90-150.
The thickness of the pH protective coating or layer as applied optionally is between 10 and 1000 nm; alternatively from 10 nm to 900 nm; alternatively from 10 nm to 800 nm; alternatively from 10 nm to 700 nm; alternatively from 10 nm to 600 nm; alternatively from 10 nm to 500 nm; alternatively from 10 nm to 400 nm; alternatively from 10 nm to 300 nm; alternatively from 10 nm to 200 nm; alternatively from 10 nm to 100 nm; alternatively from 10 nm to 50 nm; alternatively from 20 nm to 1000 nm; alternatively from 50 nm to 1000 nm; alternatively from 50 nm to 800 nm; optionally from 50 to 500 nm; optionally from 100 to 200 nm; alternatively from 100 nm to 700 nm; alternatively from 100 nm to 200 nm; alternatively from 300 to 600 nm. The thickness does not need to be uniform throughout the vessel, and will typically vary from the preferred values in portions of a vessel.
Optionally, the pH protective coating or layer 38 is at least coextensive with the barrier coating or layer 36. The pH protective coating or layer 38 alternatively can be less extensive than the barrier coating, as when the fluid does not contact or seldom is in contact with certain parts of the barrier coating absent the pH protective coating or layer. The pH protective coating or layer 38 alternatively can be more extensive than the barrier coating, as it can cover areas that are not provided with a barrier coating.
The pH protective coating or layer 38 optionally can be applied by plasma enhanced chemical vapor deposition (PECVD) of a precursor feed comprising an acyclic siloxane, a monocyclic siloxane, a polycyclic siloxane, a polysilsesquioxane, a monocyclic silazane, a polycyclic silazane, a polysilsesquioxane, a silatrane, a silquasilatrane, a silproatrane, an azasilatrane, an azasilquasiatrane, an azasilproatrane, or a combination of any two or more of these precursors. Some particular, non-limiting precursors contemplated for such use include octamethylcyclotetrasiloxane (OMCTS).
In the presence of a fluid composition having a pH between 5 and 9 contained in the vial 30, the calculated shelf life of the vessel vial is more than six months at a storage temperature of 4° C. Optionally, the rate of erosion of the pH protective coating or layer 38, if directly contacted by a fluid composition having a pH of 8, is less than 20% optionally less than 15%, optionally less than 10%, optionally less than 7%, optionally from 5% to 20%, optionally 5% to 15%, optionally 5% to 10%, optionally 5% to 7%, of the rate of erosion of the barrier coating or layer 38, if directly contacted by the same fluid composition under the same conditions. Optionally, the fluid composition removes the pH protective coating or layer 38 at a rate of 1 nm or less of pH protective coating or layer thickness per 44 hours of contact with the fluid composition.
PECVD apparatus, a system and precursor materials suitable for applying any of the PECVD coatings or layers described in this specification, specifically including the tie coating or layer 34, the barrier coating or layer 36, or the pH protective coating or layer 38, are described in U.S. Pat. No. 7,985,188 and PCT Pub. WO2014164928, which are incorporated herein by reference in their entireties.
Other precursors and methods can be used to apply the pH protective coating or layer or passivating treatment. For example, hexamethylene disilazane (HMDZ) can be used as the precursor. HMDZ has the advantage of containing no oxygen in its molecular structure. This passivation treatment is contemplated to be a surface treatment of the SiOx barrier layer with HMDZ. To slow down and/or eliminate the decomposition of the silicon dioxide coatings at silanol bonding sites, the coating must be pas sivated. It is contemplated that passivation of the surface with HMDZ (and optionally application of a few mono layers of the HMDZ-derived coating) will result in a toughening of the surface against dissolution, resulting in reduced decomposition. It is contemplated that HMDZ will react with the —OH sites that are present in the silicon dioxide coating, resulting in the evolution of NH3 and bonding of S—(CH3)3 to the silicon (it is contemplated that hydrogen atoms will be evolved and bond with nitrogen from the HMDZ to produce NH3).
In one aspect, the present invention is a method for applying a PEVCD coating that dissipates charge build up on a plastic vessel or article, including a film or container. According to some embodiments, and while not being limited by the following theory, it is preferred that an antistatic coating is hydrophilic so that water vapor from the environment would be attracted to the antistatic coated surface of the vessel. The water molecules would bond with the antistatic coated surface through hydrogen bonding. The water hydration layer would be an effective surface to dissipate charge due to its conductive properties and thus reduced surface resistance.
In one embodiment, the antistatic coating is a PECVD applied silicon oxide coating on the vessel, for example, an external support surface of a container. It is preferred that a silicon oxide coating according to the present invention is not a dense and high barrier oxide. High barrier oxides are highly cross-linked networks of siloxane (i.e. Si—O) bonds with few to no terminating bonds in the network. Terminating bonds such as silanol (SiOH), silane (Si—H), carboxyl, carbonyl (C═O) and aliphatic bonds (—CH3) would be eliminated to form a dense matrix. In the case of antistatic coatings, polar terminating bonds are desirable because of their strong affinity for water. The invention, therefore, according to one aspect, is a silicon oxide coating loaded with silanol bonds or other polar groups. These silicone oxides are not expected to have high barrier due to their low cross-link density. It is contemplated that an external support surface of a plastic container with a silicon oxide antistatic coating according to the present invention, would reduce the attraction of charged particulates to the container, thus reducing contamination.
One benefit of embodiments of the invention is that while the antistatic coating may provide similar antistatic properties of known antistatic additives (e.g., as described above) in polymeric materials, such additives are mobile in the polymer matrix and bloom to the surface, thus causing contamination. Antistatic coatings according to aspects of the invention are permanently and covalently bonded to the underlying polymer material. Such permanently bonded surface coatings are advantageous in that they are immobile and do not serve as a source of contamination like antistatic additives. Ultimately, the reduction of static charge reduces the vessel's affinity for visible and sub-visible particulates, which are contaminants that affect product yield loss.
Optionally, an anti-static coating according to an aspect of the invention also provides resistance to scratch (particularly if applied to thicknesses in micrometers). The coating also optionally provides a clean surface (e.g. substantially free of particulates and resistance to mar and dirt) and additional barrier for air permeation.
Various aspects of the invention will be illustrated in more detail with reference to the following Examples, but it should be understood that the present invention is not deemed to be limited thereto.
A study was conducted to evaluate static loading potential and static dissipation on vial surfaces. 5 ml vials were studied, including the following groups: (Group 1) uncoated COP vials; (Group 2) glass vials; (Group 3) COP vials with internal trilayer coating set; (Group 4) internally uncoated COP vials with external SiO2 coating; (Group 5) internally uncoated COP vials with external SiOH or SiCOH coating; (Group 6) COP vials with internal trilayer coating set and with external SiO2 coating; and (Group 7) COP vials with internal trilayer coating set and with external SiOH coating.
Static was dissipated from parts and work surface with a Static Clean 300 mm static bar prior to loading. Parts static loading was achieved via a ˜500 mm stroke across a cut piece of silk/polyester fabric and readings were taken from parts hand placed onto a cut piece of ceramic (insulator). Readings were taken with a grounded static meter at a distance of ˜3 cm. The results are as follows:
As the foregoing data show, uncoated COP has significant static loading potential and glass, which is an insulator, does not. The Applicants contemplated that incorporating glass-like insulation via PECVD coatings on external surfaces of a plastic substrate, e.g., as described above, would facilitate static charge dissipation of the coated substrate (e.g., vial). As the data show, surprisingly, externally coated vials (Groups 4 through 7) dissipate static charge much more quickly and to a significantly greater degree, compared to uncoated COP (Group 1) and even COP vials with a trilayer but without an external antistatic coating (Group 3). It is therefore contemplated that materials with an external antistatic coating (e.g., vials of Groups 4 through 7) are far less prone to attract charged particles, and hence less prone to particulate contamination, than uncoated plastic vessels (Group 1) and the trilayer vials without an external antistatic coating (Group 3).
While the invention has been described in detail and with reference to specific examples thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
This application is a U.S. National Phase of International Application No. PCT/US2015/022189 filed Mar. 24, 2015, which claims priority to U.S. Provisional Patent Application No. 61/971,975 filed Mar. 28, 2014, which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/022189 | 3/24/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/148471 | 10/1/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3274267 | Chow | Sep 1966 | A |
3297465 | Connell | Jan 1967 | A |
3355947 | Karlby | Dec 1967 | A |
3442686 | Jones | May 1969 | A |
3448614 | Muger | Jun 1969 | A |
3590634 | Pasternak | Jul 1971 | A |
3838598 | Tomkins | Oct 1974 | A |
3957653 | Blecher | May 1976 | A |
4111326 | Percarpio | Sep 1978 | A |
4134832 | Heimreid | Jan 1979 | A |
4136794 | Percapio | Jan 1979 | A |
4162528 | Maldonado | Jul 1979 | A |
4168330 | Kaganowicz | Sep 1979 | A |
4186840 | Percarpio | Feb 1980 | A |
4187952 | Percarpio | Feb 1980 | A |
4226333 | Percarpio | Oct 1980 | A |
4289726 | Potoczky | Sep 1981 | A |
4290534 | Percarpio | Sep 1981 | A |
4293078 | Percarpio | Oct 1981 | A |
4338764 | Percarpio | Jul 1982 | A |
4391128 | McWorter | Jul 1983 | A |
4392218 | Plunkett, Jr. | Jul 1983 | A |
4422896 | Class | Dec 1983 | A |
4452679 | Dunn | Jun 1984 | A |
4478873 | Masso | Oct 1984 | A |
4481229 | Suzuki | Nov 1984 | A |
4483737 | Mantei | Nov 1984 | A |
4484479 | Eckhardt | Nov 1984 | A |
4486378 | Hirata | Dec 1984 | A |
4522510 | Rosencwaig | Jun 1985 | A |
4524089 | Haque | Jun 1985 | A |
4524616 | Drexel | Jun 1985 | A |
4552791 | Hahn | Nov 1985 | A |
4576204 | Smallborn | Mar 1986 | A |
4609428 | Fujimura | Sep 1986 | A |
4610770 | Saito | Sep 1986 | A |
4648107 | Latter | Mar 1987 | A |
4648281 | Morita | Mar 1987 | A |
4652429 | Konrad | Mar 1987 | A |
4664279 | Obrist | May 1987 | A |
4667620 | White | May 1987 | A |
4668365 | Foster | May 1987 | A |
4683838 | Kimura | Aug 1987 | A |
4697717 | Grippi | Oct 1987 | A |
4703187 | Hofling | Oct 1987 | A |
4716491 | Ohno | Dec 1987 | A |
4721553 | Saito | Jan 1988 | A |
4725481 | Ostapchenko | Feb 1988 | A |
4741446 | Miller | May 1988 | A |
4756964 | Kincaid | Jul 1988 | A |
4767414 | Williams | Aug 1988 | A |
4778721 | Sliemers | Oct 1988 | A |
4799246 | Fischer | Jan 1989 | A |
4808453 | Romberg | Feb 1989 | A |
4809876 | Tomaswick | Mar 1989 | A |
4824444 | Nomura | Apr 1989 | A |
4841776 | Kawachi | Jun 1989 | A |
4842704 | Collins | Jun 1989 | A |
4844986 | Karakelle | Jul 1989 | A |
4846101 | Montgomery | Jul 1989 | A |
4853102 | Tateishi | Aug 1989 | A |
4869203 | Pinkhasov | Sep 1989 | A |
4872758 | Miyazaki | Oct 1989 | A |
4874497 | Matsuoka | Oct 1989 | A |
4880675 | Mehta | Nov 1989 | A |
4883686 | Doehler | Nov 1989 | A |
4886086 | Etchells | Dec 1989 | A |
4894256 | Gartner | Jan 1990 | A |
4894510 | Nakanishi | Jan 1990 | A |
4897285 | Wilhelm | Jan 1990 | A |
4926791 | Hirose | May 1990 | A |
4948628 | Montgomery | Aug 1990 | A |
4973504 | Romberg | Nov 1990 | A |
4991104 | Miller | Feb 1991 | A |
4999014 | Gold | Mar 1991 | A |
5000994 | Romberg | Mar 1991 | A |
5016564 | Nakamura | May 1991 | A |
5021114 | Saito | Jun 1991 | A |
5028566 | Lagendijk | Jul 1991 | A |
5030475 | Ackermann | Jul 1991 | A |
5032202 | Tsai | Jul 1991 | A |
5039548 | Hirose | Aug 1991 | A |
5041303 | Wertheimer | Aug 1991 | A |
5042951 | Gold | Aug 1991 | A |
5044199 | Drexel | Sep 1991 | A |
5064083 | Alexander | Nov 1991 | A |
5067491 | Taylor | Nov 1991 | A |
5079481 | Moslehi | Jan 1992 | A |
5082542 | Moslehi | Jan 1992 | A |
5084356 | Deak | Jan 1992 | A |
5085904 | Deak | Feb 1992 | A |
5099881 | Nakajima | Mar 1992 | A |
5113790 | Geisler | May 1992 | A |
5120966 | Kondo | Jun 1992 | A |
5131752 | Yu | Jul 1992 | A |
5144196 | Gegenwart | Sep 1992 | A |
5147678 | Foerch | Sep 1992 | A |
5154943 | Etzkorn | Oct 1992 | A |
5189446 | Barnes | Feb 1993 | A |
5192849 | Moslehi | Mar 1993 | A |
5198725 | Chen | Mar 1993 | A |
5203959 | Hirose | Apr 1993 | A |
5204141 | Roberts | Apr 1993 | A |
5209882 | Hattori | May 1993 | A |
5216329 | Pelleteir | Jun 1993 | A |
5224441 | Felts | Jul 1993 | A |
5225024 | Hanley | Jul 1993 | A |
5232111 | Burns | Aug 1993 | A |
5252178 | Moslehi | Oct 1993 | A |
5260095 | Affinito | Nov 1993 | A |
5266398 | Hioki | Nov 1993 | A |
5271274 | Khuri-Yakub | Dec 1993 | A |
5272417 | Ohmi | Dec 1993 | A |
5272735 | Bryan | Dec 1993 | A |
5275299 | Konrad | Jan 1994 | A |
5286297 | Moslehi | Feb 1994 | A |
5292370 | Tsai | Mar 1994 | A |
5294011 | Konrad | Mar 1994 | A |
5294464 | Geisler | Mar 1994 | A |
5297561 | Hulon | Mar 1994 | A |
5298587 | Hu | Mar 1994 | A |
5300901 | Krummel | Apr 1994 | A |
5302266 | Grabarz | Apr 1994 | A |
5308649 | Babacz | May 1994 | A |
5314561 | Komiya | May 1994 | A |
5320875 | Hu | Jun 1994 | A |
5321634 | Obata | Jun 1994 | A |
5330578 | Sakama | Jul 1994 | A |
5333049 | Ledger | Jul 1994 | A |
5338579 | Ogawa et al. | Aug 1994 | A |
5346579 | Cook | Sep 1994 | A |
5354286 | Mesa | Oct 1994 | A |
5356029 | Hogan | Oct 1994 | A |
5361921 | Burns | Nov 1994 | A |
5364665 | Felts | Nov 1994 | A |
5364666 | Williams | Nov 1994 | A |
5372851 | Ogawa et al. | Dec 1994 | A |
5374314 | Babacz | Dec 1994 | A |
5378510 | Thomas | Jan 1995 | A |
5381228 | Brace | Jan 1995 | A |
5395644 | Affinito | Mar 1995 | A |
5396080 | Hannotiau | Mar 1995 | A |
5397956 | Araki | Mar 1995 | A |
5409782 | Murayama | Apr 1995 | A |
5413813 | Cruse | May 1995 | A |
5423915 | Murata | Jun 1995 | A |
5429070 | Campbell | Jul 1995 | A |
5433786 | Hu | Jul 1995 | A |
5434008 | Felts | Jul 1995 | A |
5439736 | Nomura | Aug 1995 | A |
5440446 | Shaw | Aug 1995 | A |
5443645 | Otoshi | Aug 1995 | A |
5444207 | Sekine | Aug 1995 | A |
5449432 | Hanawa | Sep 1995 | A |
5452082 | Sanger | Sep 1995 | A |
5468520 | Williams | Nov 1995 | A |
5470388 | Goedicke | Nov 1995 | A |
5472660 | Fortin | Dec 1995 | A |
5485091 | Verkuil | Jan 1996 | A |
5486701 | Norton | Jan 1996 | A |
5494170 | Burns | Feb 1996 | A |
5494712 | Hu | Feb 1996 | A |
5495958 | Konrad | Mar 1996 | A |
5508075 | Roulin | Apr 1996 | A |
5510155 | Williams | Apr 1996 | A |
5513515 | Mayer | May 1996 | A |
5514276 | Babock | May 1996 | A |
5521351 | Mahoney | May 1996 | A |
5522518 | Konrad | Jun 1996 | A |
5531060 | Fayet | Jul 1996 | A |
5531683 | Kriesel | Jul 1996 | A |
5536253 | Haber | Jul 1996 | A |
5543919 | Mumola | Aug 1996 | A |
5545375 | Tropsha | Aug 1996 | A |
5547508 | Affinito | Aug 1996 | A |
5547723 | Williams | Aug 1996 | A |
5554223 | Imahashi | Sep 1996 | A |
5555471 | Xu | Sep 1996 | A |
5565248 | Piester | Oct 1996 | A |
5569810 | Tsuji | Oct 1996 | A |
5571366 | Ishii | Nov 1996 | A |
5578103 | Araujo | Nov 1996 | A |
5591898 | Mayer | Jan 1997 | A |
5593550 | Stewart | Jan 1997 | A |
5597456 | Maruyama | Jan 1997 | A |
5616369 | Williams | Apr 1997 | A |
5620523 | Maeda | Apr 1997 | A |
5632396 | Burns | May 1997 | A |
5633711 | Nelson | May 1997 | A |
5643638 | Otto | Jul 1997 | A |
5652030 | Delperier | Jul 1997 | A |
5654054 | Tropsha | Aug 1997 | A |
5656141 | Betz | Aug 1997 | A |
5658438 | Givens | Aug 1997 | A |
5665280 | Tropsha | Sep 1997 | A |
5667840 | Tingey | Sep 1997 | A |
5674321 | Pu | Oct 1997 | A |
5677010 | Esser | Oct 1997 | A |
5679412 | Kuehnle | Oct 1997 | A |
5679413 | Petrmichl | Oct 1997 | A |
5683771 | Tropsha | Nov 1997 | A |
5686157 | Harvey | Nov 1997 | A |
5690745 | Grunwald | Nov 1997 | A |
5691007 | Montgomery | Nov 1997 | A |
5693196 | Stewart | Dec 1997 | A |
5699923 | Burns | Dec 1997 | A |
5702770 | Martin | Dec 1997 | A |
5704983 | Thomas et al. | Jan 1998 | A |
5716683 | Harvey | Feb 1998 | A |
5718967 | Hu | Feb 1998 | A |
5721027 | Frisk | Feb 1998 | A |
5725909 | Shaw | Mar 1998 | A |
5733405 | Taki | Mar 1998 | A |
5736207 | Walther | Apr 1998 | A |
5737179 | Shaw | Apr 1998 | A |
5738233 | Burns | Apr 1998 | A |
5738920 | Knors | Apr 1998 | A |
5744360 | Hu | Apr 1998 | A |
5750892 | Huang | May 1998 | A |
5763033 | Tropsha | Jun 1998 | A |
5766362 | Montgomery | Jun 1998 | A |
5769273 | Sasaki | Jun 1998 | A |
5779074 | Burns | Jul 1998 | A |
5779716 | Cano | Jul 1998 | A |
5779802 | Borghs | Jul 1998 | A |
5779849 | Blalock | Jul 1998 | A |
5788670 | Reinhard | Aug 1998 | A |
5792940 | Ghandhi | Aug 1998 | A |
5798027 | Lefebvre | Aug 1998 | A |
5800880 | Laurent | Sep 1998 | A |
5807343 | Tucker | Sep 1998 | A |
5807605 | Tingey | Sep 1998 | A |
5812261 | Nelson | Sep 1998 | A |
5814257 | Kawata | Sep 1998 | A |
5814738 | Pinkerton | Sep 1998 | A |
5820603 | Tucker | Oct 1998 | A |
5823373 | Sudo | Oct 1998 | A |
5824198 | Williams | Oct 1998 | A |
5824607 | Trow | Oct 1998 | A |
5833752 | Martin | Nov 1998 | A |
5837888 | Mayer | Nov 1998 | A |
5837903 | Weingand | Nov 1998 | A |
5840167 | Kim | Nov 1998 | A |
5849368 | Hostettler | Dec 1998 | A |
5853833 | Sudo | Dec 1998 | A |
5855686 | Rust | Jan 1999 | A |
5861546 | Sagi | Jan 1999 | A |
5871700 | Konrad | Feb 1999 | A |
5877895 | Shaw | Mar 1999 | A |
5880034 | Keller | Mar 1999 | A |
5888414 | Collins | Mar 1999 | A |
5888591 | Gleason | Mar 1999 | A |
5897508 | Konrad | Apr 1999 | A |
5900284 | Hu | May 1999 | A |
5900285 | Walther | May 1999 | A |
5902461 | Xu | May 1999 | A |
5904952 | Lopata | May 1999 | A |
5913140 | Roche | Jun 1999 | A |
5914189 | Hasz | Jun 1999 | A |
5919328 | Tropsha | Jul 1999 | A |
5919420 | Niermann | Jul 1999 | A |
5935391 | Nakahigashi | Aug 1999 | A |
5945187 | Buch-Rasmussen | Aug 1999 | A |
5951527 | Sudo | Sep 1999 | A |
5952069 | Tropsha | Sep 1999 | A |
5955161 | Tropsha | Sep 1999 | A |
5961911 | Hwang | Oct 1999 | A |
5968620 | Harvey | Oct 1999 | A |
5972297 | Niermann | Oct 1999 | A |
5972436 | Walther | Oct 1999 | A |
5985103 | Givens | Nov 1999 | A |
6001429 | Martin | Dec 1999 | A |
6009743 | Mayer | Jan 2000 | A |
6013337 | Knors | Jan 2000 | A |
6017317 | Newby | Jan 2000 | A |
6018987 | Mayer | Feb 2000 | A |
6020196 | Hu | Feb 2000 | A |
6027619 | Cathey | Feb 2000 | A |
6032813 | Niermann | Mar 2000 | A |
6035717 | Carodiskey | Mar 2000 | A |
6050400 | Taskis | Apr 2000 | A |
6051151 | Keller | Apr 2000 | A |
6054016 | Tuda | Apr 2000 | A |
6054188 | Tropsha | Apr 2000 | A |
6068884 | Rose | May 2000 | A |
6077403 | Kobayashi | Jun 2000 | A |
6081330 | Nelson | Jun 2000 | A |
6082295 | Lee | Jul 2000 | A |
6083313 | Venkatraman et al. | Jul 2000 | A |
6085927 | Kusz | Jul 2000 | A |
6090081 | Sudo | Jul 2000 | A |
6106678 | Shufflebotham | Aug 2000 | A |
6110395 | Gibson, Jr. | Aug 2000 | A |
6110544 | Yang | Aug 2000 | A |
6112695 | Felts | Sep 2000 | A |
6116081 | Ghandhi | Sep 2000 | A |
6117243 | Walther | Sep 2000 | A |
6118844 | Fischer | Sep 2000 | A |
6124212 | Fan | Sep 2000 | A |
6125687 | McClelland | Oct 2000 | A |
6126640 | Tucker | Oct 2000 | A |
6136275 | Niermann | Oct 2000 | A |
6139802 | Niermann | Oct 2000 | A |
6143140 | Wang | Nov 2000 | A |
6149982 | Plester | Nov 2000 | A |
6153269 | Gleason | Nov 2000 | A |
6156152 | Ogino | Dec 2000 | A |
6156399 | Spallek | Dec 2000 | A |
6156435 | Gleason | Dec 2000 | A |
6160350 | Sakemi | Dec 2000 | A |
6161712 | Savitz | Dec 2000 | A |
6163006 | Doughty | Dec 2000 | A |
6165138 | Miller | Dec 2000 | A |
6165542 | Jaworowski | Dec 2000 | A |
6165566 | Tropsha | Dec 2000 | A |
6171670 | Sudo | Jan 2001 | B1 |
6175612 | Sato | Jan 2001 | B1 |
6177142 | Felts | Jan 2001 | B1 |
6180185 | Felts | Jan 2001 | B1 |
6180191 | Felts | Jan 2001 | B1 |
6188079 | Juvinall | Feb 2001 | B1 |
6189484 | Yin | Feb 2001 | B1 |
6190992 | Sandhu | Feb 2001 | B1 |
6193853 | Yumshtyk | Feb 2001 | B1 |
6196155 | Setoyama | Mar 2001 | B1 |
6197166 | Moslehi | Mar 2001 | B1 |
6200658 | Walther | Mar 2001 | B1 |
6200675 | Neerinck | Mar 2001 | B1 |
6204922 | Chalmers | Mar 2001 | B1 |
6210791 | Skoog | Apr 2001 | B1 |
6213985 | Niedospial | Apr 2001 | B1 |
6214422 | Yializis | Apr 2001 | B1 |
6217716 | Fai Lai | Apr 2001 | B1 |
6223683 | Plester | May 2001 | B1 |
6236459 | Negandaripour | May 2001 | B1 |
6245190 | Masuda | Jun 2001 | B1 |
6248219 | Wellerdieck | Jun 2001 | B1 |
6248397 | Ye | Jun 2001 | B1 |
6251792 | Collins | Jun 2001 | B1 |
6254983 | Namiki | Jul 2001 | B1 |
6261643 | Hasz | Jul 2001 | B1 |
6263249 | Stewart | Jul 2001 | B1 |
6271047 | Ushio | Aug 2001 | B1 |
6276296 | Plester | Aug 2001 | B1 |
6277331 | Konrad | Aug 2001 | B1 |
6279505 | Plester | Aug 2001 | B1 |
6284986 | Dietze | Sep 2001 | B1 |
6306132 | Moorman | Oct 2001 | B1 |
6308556 | Sagi | Oct 2001 | B1 |
6322661 | Bailey, III | Nov 2001 | B1 |
6331174 | Reinhard et al. | Dec 2001 | B1 |
6346596 | Mallen | Feb 2002 | B1 |
6348967 | Nelson | Feb 2002 | B1 |
6350415 | Niermann | Feb 2002 | B1 |
6351075 | Barankova | Feb 2002 | B1 |
6352629 | Wang | Mar 2002 | B1 |
6354452 | DeSalvo et al. | Mar 2002 | B1 |
6355033 | Moorman | Mar 2002 | B1 |
6365013 | Beele | Apr 2002 | B1 |
6375022 | Zurcher | Apr 2002 | B1 |
6376028 | Laurent | Apr 2002 | B1 |
6379757 | Iacovangelo | Apr 2002 | B1 |
6382441 | Carano | May 2002 | B1 |
6394979 | Sharp | May 2002 | B1 |
6396024 | Doughty | May 2002 | B1 |
6399944 | Vasilyev | Jun 2002 | B1 |
6402885 | Loewenhardt | Jun 2002 | B2 |
6410926 | Munro | Jun 2002 | B1 |
6413645 | Graff | Jul 2002 | B1 |
6432494 | Yang | Aug 2002 | B1 |
6432510 | Kim | Aug 2002 | B1 |
6470650 | Iohwasser | Oct 2002 | B1 |
6471822 | Yin | Oct 2002 | B1 |
6475622 | Namiki | Nov 2002 | B2 |
6482509 | Buch-Rasmussen et al. | Nov 2002 | B2 |
6486081 | Ishikawa | Nov 2002 | B1 |
6500500 | Okamura | Dec 2002 | B1 |
6503579 | Murakami | Jan 2003 | B1 |
6518195 | Collins | Feb 2003 | B1 |
6524448 | Brinkmann | Feb 2003 | B2 |
6539890 | Felts | Apr 2003 | B1 |
6544610 | Minami | Apr 2003 | B1 |
6551267 | Cohen | Apr 2003 | B1 |
6558679 | Flament-Garcia et al. | May 2003 | B2 |
6562189 | Quiles | May 2003 | B1 |
6565791 | Laurent | May 2003 | B1 |
6582426 | Moorman | Jun 2003 | B2 |
6582823 | Sakhrani et al. | Jun 2003 | B1 |
6584828 | Sagi | Jul 2003 | B2 |
6595961 | Hetzler | Jul 2003 | B2 |
6597193 | Lagowski | Jul 2003 | B2 |
6599569 | Humele | Jul 2003 | B1 |
6599594 | Walther | Jul 2003 | B1 |
6602206 | Niermann | Aug 2003 | B1 |
6616632 | Sharp | Sep 2003 | B2 |
6620139 | Plicchi | Sep 2003 | B1 |
6620334 | Kanno | Sep 2003 | B2 |
6623861 | Martin | Sep 2003 | B2 |
6638403 | Inaba | Oct 2003 | B1 |
6638876 | Levy | Oct 2003 | B2 |
6645354 | Gorokhovsky | Nov 2003 | B1 |
6651835 | Iskra | Nov 2003 | B2 |
6652520 | Moorman | Nov 2003 | B2 |
6656540 | Sakamoto | Dec 2003 | B2 |
6658919 | Chatard | Dec 2003 | B2 |
6662957 | Zurcher | Dec 2003 | B2 |
6663601 | Hetzler | Dec 2003 | B2 |
6670200 | Ushio | Dec 2003 | B2 |
6673199 | Yamartino | Jan 2004 | B1 |
6680091 | Buch-Rasmussen et al. | Jan 2004 | B2 |
6680621 | Savtchouk | Jan 2004 | B2 |
6683308 | Itagaki | Jan 2004 | B2 |
6684683 | Potyrailo | Feb 2004 | B2 |
6702898 | Hosoi | Mar 2004 | B2 |
6706412 | Yializis | Mar 2004 | B2 |
6746430 | Lubrecht | Jun 2004 | B2 |
6749078 | Iskra | Jun 2004 | B2 |
6752899 | Singh | Jun 2004 | B1 |
6753972 | Hirose | Jun 2004 | B1 |
6757056 | Meeks | Jun 2004 | B1 |
6764714 | Wei | Jul 2004 | B2 |
6765466 | Miyata | Jul 2004 | B2 |
6766682 | Engle | Jul 2004 | B2 |
6774018 | Mikhael | Aug 2004 | B2 |
6796780 | Chatard | Sep 2004 | B1 |
6800852 | Larson | Oct 2004 | B2 |
6808753 | Rule | Oct 2004 | B2 |
6810106 | Sato | Oct 2004 | B2 |
6815014 | Gabelnick | Nov 2004 | B2 |
6818310 | Namiki | Nov 2004 | B2 |
6827972 | Darras | Dec 2004 | B2 |
6837954 | Carano | Jan 2005 | B2 |
6844075 | Saak | Jan 2005 | B1 |
6853141 | Hoffman | Feb 2005 | B2 |
6858259 | Affinito | Feb 2005 | B2 |
6863731 | Elsayed-Ali | Mar 2005 | B2 |
6864773 | Perrin | Mar 2005 | B2 |
6866656 | Tingey | Mar 2005 | B2 |
6872428 | Yang | Mar 2005 | B2 |
6876154 | Appleyard | Apr 2005 | B2 |
6885727 | Tamura | Apr 2005 | B2 |
6887578 | Gleason | May 2005 | B2 |
6891158 | Larson | May 2005 | B2 |
6892567 | Morrow | May 2005 | B1 |
6899054 | Bardos | May 2005 | B1 |
6905769 | Komada | Jun 2005 | B2 |
6910597 | Iskra | Jun 2005 | B2 |
6911779 | Madocks | Jun 2005 | B2 |
6919107 | Schwarzenbach | Jul 2005 | B2 |
6919114 | Darras | Jul 2005 | B1 |
6933460 | Vanden Brande | Aug 2005 | B2 |
6946164 | Huang | Sep 2005 | B2 |
6952949 | Moore | Oct 2005 | B2 |
6960393 | Yializis | Nov 2005 | B2 |
6962671 | Martin | Nov 2005 | B2 |
6965221 | Lipcsei | Nov 2005 | B2 |
6981403 | Ascheman | Jan 2006 | B2 |
6989675 | Kesil | Jan 2006 | B2 |
6995377 | Darr | Feb 2006 | B2 |
7029755 | Terry | Apr 2006 | B2 |
7029803 | Becker | Apr 2006 | B2 |
7039158 | Janik | May 2006 | B1 |
7052736 | Wei | May 2006 | B2 |
7052920 | Ushio | May 2006 | B2 |
7059268 | Russell | Jun 2006 | B2 |
7067034 | Bailey, III | Jun 2006 | B2 |
7074501 | Czeremuszkin | Jul 2006 | B2 |
7098453 | Ando | Aug 2006 | B2 |
7109070 | Behle | Sep 2006 | B2 |
7112352 | Schaepkens | Sep 2006 | B2 |
7112541 | Xia | Sep 2006 | B2 |
7115310 | Jacoud | Oct 2006 | B2 |
7118538 | Konrad | Oct 2006 | B2 |
7119908 | Nomoto | Oct 2006 | B2 |
7121135 | Moore | Oct 2006 | B2 |
7130373 | Omote | Oct 2006 | B2 |
7150299 | Hertzler | Dec 2006 | B2 |
7160292 | Moorman | Jan 2007 | B2 |
7180849 | Hirokane | Feb 2007 | B2 |
7183197 | Won | Feb 2007 | B2 |
7188734 | Konrad | Mar 2007 | B2 |
7189218 | Lichtenberg | Mar 2007 | B2 |
7189290 | Hama | Mar 2007 | B2 |
7193724 | Isei | Mar 2007 | B2 |
7198685 | Hetzler | Apr 2007 | B2 |
7206074 | Fujimoto | Apr 2007 | B2 |
7244381 | Chatard | Jul 2007 | B2 |
7253892 | Semersky | Aug 2007 | B2 |
7286242 | Kim | Oct 2007 | B2 |
7288293 | Koulik | Oct 2007 | B2 |
7297216 | Hetzler | Nov 2007 | B2 |
7297640 | Xie | Nov 2007 | B2 |
7300684 | Boardman | Nov 2007 | B2 |
7303789 | Saito | Dec 2007 | B2 |
7303790 | Delaunay | Dec 2007 | B2 |
7306852 | Komada | Dec 2007 | B2 |
7332227 | Hardman | Feb 2008 | B2 |
7338576 | Ono | Mar 2008 | B2 |
7339682 | Aiyer | Mar 2008 | B2 |
7344766 | Sorensen | Mar 2008 | B1 |
7348055 | Chappa | Mar 2008 | B2 |
7348192 | Mikami | Mar 2008 | B2 |
7362425 | Meeks | Apr 2008 | B2 |
7381469 | Moelle | Jun 2008 | B2 |
7390573 | Korevaar | Jun 2008 | B2 |
7399500 | Bicker | Jul 2008 | B2 |
7404278 | Wittland | Jul 2008 | B2 |
7405008 | Domine | Jul 2008 | B2 |
7409313 | Ringermacher | Aug 2008 | B2 |
7411685 | Takashima | Aug 2008 | B2 |
RE40531 | Graff | Oct 2008 | E |
7431989 | Sakhrani | Oct 2008 | B2 |
7438783 | Miyata | Oct 2008 | B2 |
7444955 | Boardman | Nov 2008 | B2 |
7455892 | Goodwin | Nov 2008 | B2 |
7480363 | Lasiuk | Jan 2009 | B2 |
7488683 | Kobayashi | Feb 2009 | B2 |
7494941 | Kasahara | Feb 2009 | B2 |
7507378 | Reichenbach | Mar 2009 | B2 |
7513953 | Felts | Apr 2009 | B1 |
7520965 | Wei | Apr 2009 | B2 |
7521022 | Konrad | Apr 2009 | B2 |
7534615 | Havens | May 2009 | B2 |
7534733 | Bookbinder | May 2009 | B2 |
RE40787 | Martin | Jun 2009 | E |
7541069 | Tudhope | Jun 2009 | B2 |
7552620 | DeRoos | Jun 2009 | B2 |
7553529 | Sakhrani | Jun 2009 | B2 |
7555934 | DeRoos | Jul 2009 | B2 |
7569035 | Wilmot | Aug 2009 | B1 |
7571122 | Howes | Aug 2009 | B2 |
7579056 | Brown | Aug 2009 | B2 |
7586824 | Hirokane | Aug 2009 | B2 |
7582868 | Jiang | Sep 2009 | B2 |
7595097 | Iacovangelo | Sep 2009 | B2 |
7608151 | Tudhope | Oct 2009 | B2 |
7609605 | Hirokane | Oct 2009 | B2 |
7618686 | Colpo | Nov 2009 | B2 |
7624622 | Mayer | Dec 2009 | B1 |
7625494 | Honda | Dec 2009 | B2 |
7641636 | Moesli | Jan 2010 | B2 |
7645696 | Dulkin | Jan 2010 | B1 |
7648481 | Geiger | Jan 2010 | B2 |
7648762 | Sohn | Jan 2010 | B2 |
7682816 | Kim | Mar 2010 | B2 |
7694403 | Moulton | Apr 2010 | B2 |
7699933 | Lizenberg | Apr 2010 | B2 |
7704683 | Wittenberg | May 2010 | B2 |
7713638 | Moelle | May 2010 | B2 |
7736689 | Chappa | Jun 2010 | B2 |
7740610 | Moh | Jun 2010 | B2 |
7744567 | Glowacki | Jun 2010 | B2 |
7744790 | Behle | Jun 2010 | B2 |
7745228 | Schwind | Jun 2010 | B2 |
7745547 | Auerbach | Jun 2010 | B1 |
7749914 | Honda | Jul 2010 | B2 |
7754302 | Yamaski | Jul 2010 | B2 |
7766882 | Sudo | Aug 2010 | B2 |
7780866 | Miller | Aug 2010 | B2 |
7785862 | Kim | Aug 2010 | B2 |
7790475 | Galbraith | Sep 2010 | B2 |
7798993 | Lim | Sep 2010 | B2 |
7803305 | Ahern | Sep 2010 | B2 |
7807242 | Sorensen | Oct 2010 | B2 |
7810448 | Behle | Oct 2010 | B2 |
7811384 | Bicker | Oct 2010 | B2 |
7815922 | Chaney | Oct 2010 | B2 |
7846293 | Iwasaki | Dec 2010 | B2 |
7854889 | Perot | Dec 2010 | B2 |
7867366 | McFarland | Jan 2011 | B1 |
7901783 | Rose | Mar 2011 | B2 |
7905866 | Haider | Mar 2011 | B2 |
7922880 | Pradhan | Apr 2011 | B1 |
7922958 | D'Arrigo | Apr 2011 | B2 |
7926446 | Behle | Apr 2011 | B2 |
7931955 | Behle | Apr 2011 | B2 |
7932678 | Madocks | Apr 2011 | B2 |
7934613 | Sudo | May 2011 | B2 |
7943205 | Schaepkens | May 2011 | B2 |
7947337 | Kuepper | May 2011 | B2 |
7955986 | Hoffman | Jun 2011 | B2 |
7960043 | Harris | Jun 2011 | B2 |
7964438 | Roca I Cabarrocas | Jun 2011 | B2 |
7967945 | Glukhoy | Jun 2011 | B2 |
7975646 | Rius | Jul 2011 | B2 |
7985188 | Felts | Jul 2011 | B2 |
8025915 | Haines | Sep 2011 | B2 |
8038858 | Bures | Oct 2011 | B1 |
8039524 | Chappa | Oct 2011 | B2 |
8056719 | Porret | Nov 2011 | B2 |
8062266 | McKinnon | Nov 2011 | B2 |
8066854 | Storey | Nov 2011 | B2 |
8067070 | Klein | Nov 2011 | B2 |
8070917 | Tsukamoto | Dec 2011 | B2 |
8075995 | Zhao | Dec 2011 | B2 |
8092605 | Shannon | Jan 2012 | B2 |
8101246 | Fayet | Jan 2012 | B2 |
8197452 | Harding | Jun 2012 | B2 |
8227025 | Lewis | Jul 2012 | B2 |
8258486 | Avnery | Sep 2012 | B2 |
8268410 | Moelle | Sep 2012 | B2 |
8273222 | Wei | Sep 2012 | B2 |
8277025 | Nakazawa | Oct 2012 | B2 |
8313455 | DiGregorio | Nov 2012 | B2 |
8323166 | Haines | Dec 2012 | B2 |
8389958 | Vo-Dinh | Mar 2013 | B2 |
8397667 | Behle | Mar 2013 | B2 |
8409441 | Wilt | Apr 2013 | B2 |
8418650 | Goto | Apr 2013 | B2 |
8435605 | Aitken et al. | May 2013 | B2 |
8450113 | Luepke | May 2013 | B2 |
8475886 | Chen et al. | Jul 2013 | B2 |
8512796 | Felts | Aug 2013 | B2 |
8524331 | Honda | Sep 2013 | B2 |
8592015 | Bicker | Nov 2013 | B2 |
8603638 | Liu | Dec 2013 | B2 |
8618509 | Vo-Dinh | Dec 2013 | B2 |
8623324 | Diwu | Jan 2014 | B2 |
8633034 | Trotter | Jan 2014 | B2 |
8747962 | Bicker | Jun 2014 | B2 |
8802603 | D'Souza | Aug 2014 | B2 |
8816022 | Zhao | Aug 2014 | B2 |
9067706 | Joergensen | Jun 2015 | B2 |
9068565 | Alarcon | Jun 2015 | B2 |
9192725 | Kawamura | Nov 2015 | B2 |
20010000279 | Daniels | Apr 2001 | A1 |
20010021356 | Konrad | Sep 2001 | A1 |
20010038894 | Komada | Nov 2001 | A1 |
20010042510 | Plester | Nov 2001 | A1 |
20010043997 | Uddin | Nov 2001 | A1 |
20020006487 | O'Connor | Jan 2002 | A1 |
20020007796 | Gorokhovsky | Jan 2002 | A1 |
20020070647 | Ginovker | Jun 2002 | A1 |
20020117114 | Ikenaga | Aug 2002 | A1 |
20020125900 | Savtchouk | Sep 2002 | A1 |
20020130100 | Smith | Sep 2002 | A1 |
20020130674 | Logowski | Sep 2002 | A1 |
20020141477 | Akahori | Oct 2002 | A1 |
20020153103 | Madocks | Oct 2002 | A1 |
20020155218 | Meyer | Oct 2002 | A1 |
20020170495 | Nakamura | Nov 2002 | A1 |
20020176947 | Darras | Nov 2002 | A1 |
20020182101 | Koulik | Dec 2002 | A1 |
20020185226 | Lea | Dec 2002 | A1 |
20020190207 | Levy | Dec 2002 | A1 |
20030010454 | Bailey, III | Jan 2003 | A1 |
20030013818 | Hakuta | Jan 2003 | A1 |
20030029837 | Trow | Feb 2003 | A1 |
20030031806 | Jinks | Feb 2003 | A1 |
20030046982 | Chartard | Mar 2003 | A1 |
20030058413 | Barnhurst | Mar 2003 | A1 |
20030102087 | Ito | Jun 2003 | A1 |
20030119193 | Hess | Jun 2003 | A1 |
20030148028 | Kimura et al. | Aug 2003 | A1 |
20030159654 | Arnold | Aug 2003 | A1 |
20030215652 | O'Connor | Nov 2003 | A1 |
20030219547 | Arnold | Nov 2003 | A1 |
20030232150 | Arnold | Dec 2003 | A1 |
20040024371 | Plicchi | Feb 2004 | A1 |
20040039401 | Chow | Feb 2004 | A1 |
20040040372 | Plester | Mar 2004 | A1 |
20040045811 | Wang | Mar 2004 | A1 |
20040050744 | Hama | Mar 2004 | A1 |
20040055538 | Gorokhovsky | Mar 2004 | A1 |
20040071960 | Weber | Apr 2004 | A1 |
20040082917 | Hetzler | Apr 2004 | A1 |
20040084151 | Kim | May 2004 | A1 |
20040125913 | Larson | Jul 2004 | A1 |
20040135081 | Larson | Jul 2004 | A1 |
20040149225 | Weikart | Aug 2004 | A1 |
20040175961 | Olsen | Sep 2004 | A1 |
20040177676 | Moore | Sep 2004 | A1 |
20040195960 | Czeremuszkin | Oct 2004 | A1 |
20040206309 | Bera | Oct 2004 | A1 |
20040217081 | Konrad | Nov 2004 | A1 |
20040247948 | Behle | Dec 2004 | A1 |
20040267194 | Sano | Dec 2004 | A1 |
20050000962 | Crawford | Jan 2005 | A1 |
20050010175 | Beedon | Jan 2005 | A1 |
20050019503 | Komada | Jan 2005 | A1 |
20050037165 | Ahern | Feb 2005 | A1 |
20050039854 | Matsuyama | Feb 2005 | A1 |
20050045472 | Nagata | Mar 2005 | A1 |
20050057754 | Smith | Mar 2005 | A1 |
20050073323 | Kohno | Apr 2005 | A1 |
20050075611 | Heltzer | Apr 2005 | A1 |
20050075612 | Lee | Apr 2005 | A1 |
20050161149 | Yokota | Jul 2005 | A1 |
20050169803 | Betz | Aug 2005 | A1 |
20050190450 | Becker | Sep 2005 | A1 |
20050196629 | Bariatinsky | Sep 2005 | A1 |
20050199571 | Geisler | Sep 2005 | A1 |
20050206907 | Fujimoto | Sep 2005 | A1 |
20050211383 | Miyata | Sep 2005 | A1 |
20050223988 | Behle | Oct 2005 | A1 |
20050227002 | Lizenberg | Oct 2005 | A1 |
20050227022 | Domine | Oct 2005 | A1 |
20050229850 | Behle | Oct 2005 | A1 |
20050233077 | Lizenberg | Oct 2005 | A1 |
20050233091 | Kumar | Oct 2005 | A1 |
20050236346 | Whitney | Oct 2005 | A1 |
20050260504 | Becker | Nov 2005 | A1 |
20050284550 | Bicker | Dec 2005 | A1 |
20060005608 | Kutzhoffer | Jan 2006 | A1 |
20060013997 | Kuepper | Jan 2006 | A1 |
20060014309 | Sachdev | Jan 2006 | A1 |
20060024849 | Zhu | Feb 2006 | A1 |
20060042755 | Holmberg | Mar 2006 | A1 |
20060046006 | Bastion | Mar 2006 | A1 |
20060051252 | Yuan | Mar 2006 | A1 |
20060051520 | Behle | Mar 2006 | A1 |
20060076231 | Wei | Apr 2006 | A1 |
20060086320 | Lizenberg | Apr 2006 | A1 |
20060099340 | Behle | May 2006 | A1 |
20060121222 | Audrich | Jun 2006 | A1 |
20060121613 | Havens | Jun 2006 | A1 |
20060121623 | He | Jun 2006 | A1 |
20060127699 | Moelle | Jun 2006 | A1 |
20060135945 | Bankiewicz | Jun 2006 | A1 |
20060138326 | Jiang | Jun 2006 | A1 |
20060150909 | Behle | Jul 2006 | A1 |
20060169026 | Kage | Aug 2006 | A1 |
20060178627 | Geiger | Aug 2006 | A1 |
20060183345 | Nguyen | Aug 2006 | A1 |
20060192973 | Aiyer | Aug 2006 | A1 |
20060196419 | Tudhope | Sep 2006 | A1 |
20060198903 | Storey | Sep 2006 | A1 |
20060198965 | Tudhope | Sep 2006 | A1 |
20060200078 | Konrad | Sep 2006 | A1 |
20060200084 | Ito | Sep 2006 | A1 |
20060210425 | Mirkarimi | Sep 2006 | A1 |
20060228497 | Kumar | Oct 2006 | A1 |
20060260360 | Dick | Nov 2006 | A1 |
20070003441 | Wohleb | Jan 2007 | A1 |
20070009673 | Fukazawa et al. | Jan 2007 | A1 |
20070017870 | Belov | Jan 2007 | A1 |
20070048456 | Keshner | Mar 2007 | A1 |
20070049048 | Rauf | Mar 2007 | A1 |
20070051629 | Donlik | Mar 2007 | A1 |
20070065680 | Schultheis | Mar 2007 | A1 |
20070076833 | Becker | Apr 2007 | A1 |
20070102344 | Konrad | May 2007 | A1 |
20070110907 | Brown | May 2007 | A1 |
20070123920 | Inokuti | May 2007 | A1 |
20070148326 | Hatings | Jun 2007 | A1 |
20070166187 | Song | Jul 2007 | A1 |
20070184657 | Iijima | Aug 2007 | A1 |
20070187229 | Aksenov | Aug 2007 | A1 |
20070187280 | Haines | Aug 2007 | A1 |
20070205096 | Nagashima | Sep 2007 | A1 |
20070215009 | Shimazu | Sep 2007 | A1 |
20070215046 | Lupke | Sep 2007 | A1 |
20070218265 | Harris | Sep 2007 | A1 |
20070224236 | Boden | Sep 2007 | A1 |
20070229844 | Holz | Oct 2007 | A1 |
20070231655 | Ha | Oct 2007 | A1 |
20070232066 | Bicker | Oct 2007 | A1 |
20070235890 | Lewis | Oct 2007 | A1 |
20070243618 | Hatchett | Oct 2007 | A1 |
20070251458 | Mund | Nov 2007 | A1 |
20070258894 | Melker et al. | Nov 2007 | A1 |
20070259184 | Martin | Nov 2007 | A1 |
20070281108 | Weikart | Dec 2007 | A1 |
20070281117 | Kaplan | Dec 2007 | A1 |
20070287950 | Kjeken | Dec 2007 | A1 |
20070287954 | Zhao | Dec 2007 | A1 |
20070298189 | Straemke | Dec 2007 | A1 |
20080011232 | Ruis | Jan 2008 | A1 |
20080017113 | Goto | Jan 2008 | A1 |
20080023414 | Konrad | Jan 2008 | A1 |
20080027400 | Harding | Jan 2008 | A1 |
20080045880 | Kjeken | Feb 2008 | A1 |
20080050567 | Kawashima | Feb 2008 | A1 |
20080050932 | Lakshmanan | Feb 2008 | A1 |
20080053373 | Mund | Mar 2008 | A1 |
20080069970 | Wu | Mar 2008 | A1 |
20080071228 | Wu | Mar 2008 | A1 |
20080210550 | Mund | Mar 2008 | A1 |
20080081184 | Kubo | Apr 2008 | A1 |
20080090039 | Klein | Apr 2008 | A1 |
20080093245 | Periasamy | Apr 2008 | A1 |
20080102206 | Wagner | May 2008 | A1 |
20080109017 | Herweck | May 2008 | A1 |
20080110852 | Kuroda | May 2008 | A1 |
20080113109 | Moelle | May 2008 | A1 |
20080118734 | Goodwin | May 2008 | A1 |
20080131628 | Abensour | Jun 2008 | A1 |
20080131638 | Hutton | Jun 2008 | A1 |
20080139003 | Pirzada | Jun 2008 | A1 |
20080144185 | Wang et al. | Jun 2008 | A1 |
20080145271 | Kidambi | Jun 2008 | A1 |
20080187681 | Hofrichter | Aug 2008 | A1 |
20080202414 | Yan | Aug 2008 | A1 |
20080206477 | Leontaris | Aug 2008 | A1 |
20080220164 | Bauch | Sep 2008 | A1 |
20080223815 | Konrad | Sep 2008 | A1 |
20080233355 | Henze | Sep 2008 | A1 |
20080260966 | Hanawa | Oct 2008 | A1 |
20080277332 | Liu | Nov 2008 | A1 |
20080289957 | Takigawa | Nov 2008 | A1 |
20080292806 | Wei | Nov 2008 | A1 |
20080295772 | Park | Dec 2008 | A1 |
20080303131 | Mcelerea | Dec 2008 | A1 |
20080312607 | Delmotte | Dec 2008 | A1 |
20080314318 | Han | Dec 2008 | A1 |
20090004091 | Kang | Jan 2009 | A1 |
20090004363 | Keshner | Jan 2009 | A1 |
20090017217 | Hass | Jan 2009 | A1 |
20090022981 | Yoshida | Jan 2009 | A1 |
20090029402 | Papkovsky | Jan 2009 | A1 |
20090031953 | Ingle | Feb 2009 | A1 |
20090032393 | Madocks | Feb 2009 | A1 |
20090039240 | Van Nijnatten | Feb 2009 | A1 |
20090053491 | Laboda | Feb 2009 | A1 |
20090061237 | Gates | Mar 2009 | A1 |
20090065485 | O'Neill | Mar 2009 | A1 |
20090069790 | Yokley | Mar 2009 | A1 |
20090081797 | Fadeev | Mar 2009 | A1 |
20090099512 | Digregorio | Apr 2009 | A1 |
20090104392 | Takada | Apr 2009 | A1 |
20090117268 | Lewis | May 2009 | A1 |
20090117389 | Amberg-Schwab | May 2009 | A1 |
20090122832 | Feist | May 2009 | A1 |
20090134884 | Bosselmann | May 2009 | A1 |
20090137966 | Rueckert | May 2009 | A1 |
20090142227 | Fuchs | Jun 2009 | A1 |
20090142514 | O'Neill | Jun 2009 | A1 |
20090147719 | Rak | Jun 2009 | A1 |
20090149816 | Hetzler | Jun 2009 | A1 |
20090155490 | Bicker | Jun 2009 | A1 |
20090162571 | Haines | Jun 2009 | A1 |
20090166312 | Giraud | Jul 2009 | A1 |
20090176031 | Armellin | Jul 2009 | A1 |
20090214801 | Higashi | Aug 2009 | A1 |
20090220948 | Oviso et al. | Sep 2009 | A1 |
20090263668 | David | Oct 2009 | A1 |
20090274851 | Goudar | Nov 2009 | A1 |
20090280268 | Glukhoy | Nov 2009 | A1 |
20090297730 | Glukhoy | Dec 2009 | A1 |
20090306595 | Shih | Dec 2009 | A1 |
20090326517 | Bork | Dec 2009 | A1 |
20100021998 | Sanyal | Jan 2010 | A1 |
20100028238 | Maschwitz | Feb 2010 | A1 |
20100034985 | Krueger | Feb 2010 | A1 |
20100075077 | Bicker et al. | Mar 2010 | A1 |
20100086808 | Nagata | Apr 2010 | A1 |
20100089097 | Brack | Apr 2010 | A1 |
20100104770 | Goudar | Apr 2010 | A1 |
20100105208 | Winniczek | Apr 2010 | A1 |
20100132762 | Graham, Jr. | Jun 2010 | A1 |
20100145284 | Togashi | Jun 2010 | A1 |
20100149540 | Boukherroub | Jun 2010 | A1 |
20100174239 | Yodfat | Jul 2010 | A1 |
20100174245 | Halverson | Jul 2010 | A1 |
20100178490 | Cerny | Jul 2010 | A1 |
20100186740 | Lewis | Jul 2010 | A1 |
20100190036 | Komvopoulos | Jul 2010 | A1 |
20100193461 | Boutroy | Aug 2010 | A1 |
20100195471 | Hirokane | Aug 2010 | A1 |
20100204648 | Stout | Aug 2010 | A1 |
20100230281 | Park | Sep 2010 | A1 |
20100231194 | Bauch | Sep 2010 | A1 |
20100237545 | Haury | Sep 2010 | A1 |
20100273261 | Chen | Oct 2010 | A1 |
20100275847 | Yamasaki | Nov 2010 | A1 |
20100279397 | Crawford | Nov 2010 | A1 |
20100298738 | Felts | Nov 2010 | A1 |
20100298779 | Hetzler | Nov 2010 | A1 |
20110037159 | Mcelerea | Feb 2011 | A1 |
20110046570 | Stout | Feb 2011 | A1 |
20110056912 | Magsuyama | Mar 2011 | A1 |
20110065798 | Hoang | Mar 2011 | A1 |
20110079582 | Yonesu | Apr 2011 | A1 |
20110093056 | Kaplan | Apr 2011 | A1 |
20110111132 | Wei | May 2011 | A1 |
20110117202 | Bourke, Jr. | May 2011 | A1 |
20110117288 | Honda | May 2011 | A1 |
20110137263 | Ashmead | Jun 2011 | A1 |
20110152820 | Chattaraj | Jun 2011 | A1 |
20110159101 | Kurdyumov et al. | Jun 2011 | A1 |
20110160662 | Stout | Jun 2011 | A1 |
20110160663 | Stout | Jun 2011 | A1 |
20110174220 | Laure | Jul 2011 | A1 |
20110186537 | Rodriguez San Juan et al. | Aug 2011 | A1 |
20110220490 | Wei | Sep 2011 | A1 |
20110253674 | Chung | Oct 2011 | A1 |
20110313363 | D'Souza et al. | Dec 2011 | A1 |
20110319758 | Wang | Dec 2011 | A1 |
20110319813 | Kamen | Dec 2011 | A1 |
20120003497 | Handy | Jan 2012 | A1 |
20120004339 | Chappa | Jan 2012 | A1 |
20120021136 | Dzengeleski | Jan 2012 | A1 |
20120031070 | Slough | Feb 2012 | A1 |
20120035543 | Kamen | Feb 2012 | A1 |
20120052123 | Kurdyumov et al. | Mar 2012 | A9 |
20120053530 | Zhao | Mar 2012 | A1 |
20120058351 | Zhao | Mar 2012 | A1 |
20120065612 | Stout | Mar 2012 | A1 |
20120097527 | Kodaira | Apr 2012 | A1 |
20120097870 | Leray | Apr 2012 | A1 |
20120108058 | Ha | May 2012 | A1 |
20120123345 | Felts | May 2012 | A1 |
20120149871 | Saxena | May 2012 | A1 |
20120141913 | Lee | Jun 2012 | A1 |
20120143148 | Zhao | Jun 2012 | A1 |
20120171386 | Bicker | Jul 2012 | A1 |
20120174239 | Anderson et al. | Jul 2012 | A1 |
20120175384 | Greter | Jul 2012 | A1 |
20120183954 | Diwu | Jul 2012 | A1 |
20120205374 | Klumpen | Aug 2012 | A1 |
20120231182 | Stevens | Sep 2012 | A1 |
20120234720 | Digregorio | Sep 2012 | A1 |
20120252709 | Felts | Oct 2012 | A1 |
20130041241 | Felts | Feb 2013 | A1 |
20130046375 | Chen | Feb 2013 | A1 |
20130057677 | Weil | Mar 2013 | A1 |
20130072025 | Singh | Mar 2013 | A1 |
20130081953 | Bruna et al. | Apr 2013 | A1 |
20130190695 | Wu | Jul 2013 | A1 |
20130209704 | Krueger | Aug 2013 | A1 |
20130264303 | Andersen et al. | Oct 2013 | A1 |
20130296235 | Alarcon | Nov 2013 | A1 |
20140010969 | Bicker | Jan 2014 | A1 |
20140052076 | Zhao | Feb 2014 | A1 |
20140054803 | Chen | Feb 2014 | A1 |
20140099455 | Stanley | Apr 2014 | A1 |
20140110297 | Trotter | Apr 2014 | A1 |
20140147654 | Walther | May 2014 | A1 |
20140151320 | Chang | Jun 2014 | A1 |
20140151370 | Chang | Jun 2014 | A1 |
20140177053 | Cadet | Jun 2014 | A1 |
20140187666 | Aizenberg | Jul 2014 | A1 |
20140190846 | Belt | Jul 2014 | A1 |
20140221934 | Janvier | Aug 2014 | A1 |
20140251856 | Larsson | Sep 2014 | A1 |
20140251859 | Weikart et al. | Sep 2014 | A1 |
20140305830 | Bicker | Oct 2014 | A1 |
20150105734 | Bryant | Apr 2015 | A1 |
20150165125 | Foucher | Jun 2015 | A1 |
20150224263 | Dugand | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
414209 | Oct 2006 | AT |
504533 | Jun 2008 | AT |
2002354470 | May 2007 | AU |
2085805 | Dec 1992 | CA |
2277679 | Jul 1997 | CA |
2355681 | Jul 2000 | CA |
2571380 | Jul 2006 | CA |
2718253 | Sep 2009 | CA |
2268719 | Aug 2010 | CA |
2879732 | Jan 2014 | CA |
1245439 | Feb 2000 | CN |
2546041 | Apr 2003 | CN |
1436104 | Aug 2003 | CN |
1639775 | Jul 2005 | CN |
1711310 | Dec 2005 | CN |
2766863 | Mar 2006 | CN |
1898172 | Jan 2007 | CN |
101035630 | Sep 2007 | CN |
201002786 | Jan 2008 | CN |
101147813 | Mar 2008 | CN |
201056331 | May 2008 | CN |
102027159 | Apr 2011 | CN |
102036814 | Apr 2011 | CN |
102414343 | Apr 2012 | CN |
102581274 | Jul 2012 | CN |
102917805 | Feb 2013 | CN |
1147836 | Apr 1969 | DE |
1147838 | Apr 1969 | DE |
3632748 | Apr 1988 | DE |
3908418 | Sep 1990 | DE |
4214401 | Mar 1993 | DE |
4204082 | Aug 1993 | DE |
4316349 | Nov 1994 | DE |
4438359 | May 1996 | DE |
19707645 | Aug 1998 | DE |
19830794 | Jan 2000 | DE |
19912737 | Jun 2000 | DE |
10010831 | Sep 2001 | DE |
10154404 | Jun 2003 | DE |
10201110 | Oct 2003 | DE |
10242698 | Mar 2004 | DE |
10246181 | Apr 2004 | DE |
10353540 | May 2004 | DE |
102004017236 | Oct 2005 | DE |
102006061585 | Feb 2008 | DE |
102008023027 | Nov 2009 | DE |
0121340 | Oct 1984 | EP |
0221005 | May 1987 | EP |
0275965 | Jul 1988 | EP |
0284867 | Oct 1988 | EP |
0306307 | Mar 1989 | EP |
0329041 | Aug 1989 | EP |
0343017 | Nov 1989 | EP |
0396919 | Nov 1990 | EP |
0482613 | Oct 1991 | EP |
0484746 | Oct 1991 | EP |
0495447 | Jul 1992 | EP |
0520519 | Dec 1992 | EP |
0535810 | Apr 1993 | EP |
0375778 | Sep 1993 | EP |
0571116 | Nov 1993 | EP |
0580094 | Jan 1994 | EP |
0603717 | Jun 1994 | EP |
0619178 | Oct 1994 | EP |
0645470 | Mar 1995 | EP |
0667302 | Aug 1995 | EP |
0697378 | Feb 1996 | EP |
0709485 | May 1996 | EP |
0719877 | Jul 1996 | EP |
0728676 | Aug 1996 | EP |
0787824 | Aug 1997 | EP |
0787828 | Aug 1997 | EP |
0814114 | Dec 1997 | EP |
0251812 | Jan 1998 | EP |
0833366 | Apr 1998 | EP |
0879611 | Nov 1998 | EP |
0940183 | Sep 1999 | EP |
0962229 | Dec 1999 | EP |
0992610 | Apr 2000 | EP |
1119034 | Jul 2001 | EP |
0954272 | Mar 2002 | EP |
1245694 | Oct 2002 | EP |
1388594 | Jan 2003 | EP |
1317937 | Jun 2003 | EP |
1365043 | Nov 2003 | EP |
1367145 | Dec 2003 | EP |
1388593 | Feb 2004 | EP |
1439241 | Jul 2004 | EP |
1447459 | Aug 2004 | EP |
1990639 | Feb 2005 | EP |
1510595 | Mar 2005 | EP |
1522403 | Apr 2005 | EP |
1901067 | Aug 2005 | EP |
1507894 | Dec 2005 | EP |
1507723 | Mar 2006 | EP |
1630250 | Mar 2006 | EP |
1653192 | May 2006 | EP |
1728723 | Dec 2006 | EP |
1810758 | Jul 2007 | EP |
1356260 | Dec 2007 | EP |
1870117 | Dec 2007 | EP |
1881088 | Jan 2008 | EP |
1921015 | May 2008 | EP |
1507887 | Jul 2008 | EP |
1415018 | Oct 2008 | EP |
1756565 | Jul 2009 | EP |
2199264 | Nov 2009 | EP |
1388594 | Jan 2010 | EP |
2178109 | Apr 2010 | EP |
1507895 | Jul 2010 | EP |
2218465 | Aug 2010 | EP |
2243751 | Oct 2010 | EP |
2251671 | Nov 2010 | EP |
2261185 | Dec 2010 | EP |
2369038 | Sep 2011 | EP |
1960279 | Oct 2011 | EP |
2444771 | Apr 2012 | EP |
2602354 | Jun 2013 | EP |
2639330 | Sep 2013 | EP |
3381444 | Oct 2018 | EP |
891892 | Nov 1942 | FR |
752822 | Jul 1956 | GB |
1363762 | Aug 1974 | GB |
1513426 | Jun 1978 | GB |
1566251 | Apr 1980 | GB |
2210826 | Jun 1989 | GB |
2231197 | Nov 1990 | GB |
2246794 | Feb 1992 | GB |
2246795 | Feb 1992 | GB |
2387964 | Oct 2003 | GB |
1304783 | Mar 2001 | IT |
1310330 | Feb 2002 | IT |
56027330 | Mar 1981 | JP |
58154602 | Sep 1983 | JP |
59087307 | May 1984 | JP |
59154029 | Sep 1984 | JP |
S61183462 | Aug 1986 | JP |
S62180069 | Aug 1987 | JP |
S62290866 | Dec 1987 | JP |
63124521 | May 1988 | JP |
1023105 | Jan 1989 | JP |
H01225775 | Sep 1989 | JP |
1279745 | Nov 1989 | JP |
2501490 | May 1990 | JP |
3183759 | Aug 1991 | JP |
H03260065 | Nov 1991 | JP |
H03271374 | Dec 1991 | JP |
4000373 | Jan 1992 | JP |
4000374 | Jan 1992 | JP |
4000375 | Jan 1992 | JP |
4014440 | Jan 1992 | JP |
H04124273 | Apr 1992 | JP |
H0578844 | Mar 1993 | JP |
05-006688 | Apr 1993 | JP |
H05263223 | Oct 1993 | JP |
6010132 | Jan 1994 | JP |
6289401 | Oct 1994 | JP |
7041579 | Feb 1995 | JP |
7068614 | Mar 1995 | JP |
7126419 | May 1995 | JP |
7-304127 | Nov 1995 | JP |
8025244 | Jan 1996 | JP |
8084773 | Apr 1996 | JP |
H08296038 | Nov 1996 | JP |
9005038 | Jan 1997 | JP |
10008254 | Jan 1998 | JP |
10-130844 | May 1998 | JP |
11-108833 | Apr 1999 | JP |
11106920 | Apr 1999 | JP |
H11256331 | Sep 1999 | JP |
11344316 | Dec 1999 | JP |
2000064040 | Feb 2000 | JP |
2000109076 | Apr 2000 | JP |
2001033398 | Feb 2001 | JP |
2001231841 | Aug 2001 | JP |
2002177364 | Jun 2002 | JP |
2002206167 | Jul 2002 | JP |
2002371364 | Dec 2002 | JP |
2003171771 | Jun 2003 | JP |
2003-268550 | Sep 2003 | JP |
2003294431 | Oct 2003 | JP |
2003305121 | Oct 2003 | JP |
2004002928 | Jan 2004 | JP |
2004008509 | Jan 2004 | JP |
2004043789 | Feb 2004 | JP |
2004100036 | Apr 2004 | JP |
2004156444 | Jun 2004 | JP |
2004168359 | Jun 2004 | JP |
2004169087 | Jun 2004 | JP |
2004203682 | Jul 2004 | JP |
2004-253683 | Sep 2004 | JP |
2004307935 | Nov 2004 | JP |
2005035597 | Feb 2005 | JP |
2005043285 | Feb 2005 | JP |
2005132416 | May 2005 | JP |
2005160888 | Jun 2005 | JP |
2005-200044 | Jul 2005 | JP |
2005200044 | Jul 2005 | JP |
2005-241524 | Sep 2005 | JP |
2005271997 | Oct 2005 | JP |
2005290561 | Oct 2005 | JP |
2006-064416 | Mar 2006 | JP |
2006111967 | Apr 2006 | JP |
2006160268 | Jun 2006 | JP |
2006-224992 | Aug 2006 | JP |
2006249577 | Sep 2006 | JP |
2007050898 | Mar 2007 | JP |
2007231386 | Sep 2007 | JP |
2007246974 | Sep 2007 | JP |
2008174793 | Jul 2008 | JP |
2009-062620 | Mar 2009 | JP |
2009062620 | Mar 2009 | JP |
2009079298 | Apr 2009 | JP |
2009084203 | Apr 2009 | JP |
2009185330 | Aug 2009 | JP |
2010155134 | Jul 2010 | JP |
2010270117 | Dec 2010 | JP |
2012210315 | Nov 2012 | JP |
2012526921 | Nov 2012 | JP |
2013233716 | Nov 2013 | JP |
5362941 | Dec 2013 | JP |
10-2005-0100367 | Oct 2005 | KR |
10-2006-0029694 | Apr 2006 | KR |
10-0685594 | Feb 2007 | KR |
1530913 | Dec 1989 | SU |
200703536 | Jan 2007 | TW |
WO9324243 | Dec 1993 | WO |
WO9400247 | Jan 1994 | WO |
WO9426497 | Nov 1994 | WO |
WO9524275 | Sep 1995 | WO |
WO9711482 | Mar 1997 | WO |
WO9713802 | Apr 1997 | WO |
WO98-27926 | Jul 1998 | WO |
WO9845871 | Oct 1998 | WO |
WO9917334 | Apr 1999 | WO |
WO9941425 | Aug 1999 | WO |
WO9945984 | Sep 1999 | WO |
WO9945985 | Sep 1999 | WO |
WO9947192 | Sep 1999 | WO |
WO9950471 | Oct 1999 | WO |
WO0038566 | Jul 2000 | WO |
WO0104668 | Jan 2001 | WO |
WO0125788 | Apr 2001 | WO |
WO0154816 | Aug 2001 | WO |
WO0156706 | Aug 2001 | WO |
WO0170403 | Sep 2001 | WO |
WO0222192 | Mar 2002 | WO |
WO0243116 | May 2002 | WO |
WO0249925 | Jun 2002 | WO |
WO02056333 | Jul 2002 | WO |
WO02072914 | Sep 2002 | WO |
WO03033426 | Sep 2002 | WO |
WO2076709 | Oct 2002 | WO |
02100928 | Dec 2002 | WO |
WO03014415 | Feb 2003 | WO |
WO03038143 | May 2003 | WO |
WO03040649 | May 2003 | WO |
WO03044240 | May 2003 | WO |
2004044039 | May 2004 | WO |
WO2005035147 | Apr 2005 | WO |
WO2005052555 | Jun 2005 | WO |
WO2005094214 | Oct 2005 | WO |
WO2005103605 | Nov 2005 | WO |
WO2006012281 | Feb 2006 | WO |
WO2006017186 | Feb 2006 | WO |
WO2006027568 | Mar 2006 | WO |
WO2006029743 | Mar 2006 | WO |
WO2006044254 | Apr 2006 | WO |
WO2006048650 | May 2006 | WO |
WO2006048276 | May 2006 | WO |
WO2006048277 | May 2006 | WO |
WO2006069774 | Jul 2006 | WO |
WO2006097113 | Sep 2006 | WO |
2006121556 | Nov 2006 | WO |
WO2006135755 | Dec 2006 | WO |
WO2007028061 | Mar 2007 | WO |
WO2007035741 | Mar 2007 | WO |
WO2007036544 | Apr 2007 | WO |
WO2007081814 | Jul 2007 | WO |
WO2007089216 | Aug 2007 | WO |
WO2007112328 | Oct 2007 | WO |
WO2007120507 | Oct 2007 | WO |
WO2007133378 | Nov 2007 | WO |
WO2007134347 | Nov 2007 | WO |
WO2008014438 | Jan 2008 | WO |
WO2008024566 | Feb 2008 | WO |
WO2008040531 | Apr 2008 | WO |
WO2008047541 | Apr 2008 | WO |
WO2005051525 | Jun 2008 | WO |
WO2008067574 | Jun 2008 | WO |
WO2008071458 | Jun 2008 | WO |
WO2008093335 | Aug 2008 | WO |
2008121478 | Oct 2008 | WO |
WO2009015862 | Feb 2009 | WO |
WO2009020550 | Feb 2009 | WO |
WO2009021257 | Feb 2009 | WO |
WO2009030974 | Mar 2009 | WO |
WO2009030975 | Mar 2009 | WO |
WO2009030976 | Mar 2009 | WO |
WO2009031838 | Mar 2009 | WO |
WO2009040109 | Apr 2009 | WO |
WO2009053947 | Apr 2009 | WO |
WO2009112053 | Sep 2009 | WO |
WO2009117032 | Sep 2009 | WO |
WO2009118361 | Oct 2009 | WO |
WO2009158613 | Dec 2009 | WO |
WO2010047825 | Apr 2010 | WO |
WO2010095011 | Aug 2010 | WO |
WO2010132579 | Nov 2010 | WO |
WO2010132581 | Nov 2010 | WO |
WO2010132584 | Nov 2010 | WO |
WO2010132585 | Nov 2010 | WO |
WO2010132589 | Nov 2010 | WO |
WO2010132591 | Nov 2010 | WO |
WO2010034004 | Nov 2010 | WO |
WO2010132579 | Nov 2010 | WO |
WO2010132579 | Nov 2010 | WO |
WO2010132589 | Nov 2010 | WO |
WO2010132591 | Nov 2010 | WO |
WO2011029628 | Mar 2011 | WO |
WO2011059823 | May 2011 | WO |
WO2011007055 | Jun 2011 | WO |
WO2011080543 | Jul 2011 | WO |
WO2011082296 | Jul 2011 | WO |
WO2011090717 | Jul 2011 | WO |
WO2011143329 | Nov 2011 | WO |
WO2011143509 | Nov 2011 | WO |
WO2011143509 | Nov 2011 | WO |
WO2011137437 | Nov 2011 | WO |
WO2011143329 | Nov 2011 | WO |
WO2011159975 | Dec 2011 | WO |
WO2012003221 | Jan 2012 | WO |
WO2012009653 | Jan 2012 | WO |
WO2012166515 | Dec 2012 | WO |
WO2013045671 | Apr 2013 | WO |
WO2013071138 | May 2013 | WO |
WO2013071138 | May 2013 | WO |
WO2013106588 | Jul 2013 | WO |
WO2013170044 | Nov 2013 | WO |
WO2013170052 | Nov 2013 | WO |
2014-005728 | Jan 2014 | WO |
WO2014008138 | Jan 2014 | WO |
WO2014012039 | Jan 2014 | WO |
WO2014012052 | Jan 2014 | WO |
WO2014012072 | Jan 2014 | WO |
WO2014012078 | Jan 2014 | WO |
WO2014012079 | Jan 2014 | WO |
WO2014014641 | Jan 2014 | WO |
WO2014059012 | Apr 2014 | WO |
WO2014071061 | May 2014 | WO |
WO2014078666 | May 2014 | WO |
WO2014085346 | Jun 2014 | WO |
WO2014085348 | Jun 2014 | WO |
WO2014134577 | Sep 2014 | WO |
WO2014144926 | Sep 2014 | WO |
WO2014164928 | Oct 2014 | WO |
WO2015049972 | Apr 2015 | WO |
WO2016057068 | Apr 2016 | WO |
WO2016094387 | Jun 2016 | WO |
Entry |
---|
US 5,645,643 A, 07/1997, Thomas (withdrawn) |
Patent Cooperation Treaty, Written Opinion of the International Searching Authority with International Search Report in Application No. PCT/US2012/064489, dated Jan. 25, 2013. |
Danish Patent and Trademark Office, Singapore Written Opinion, in Application No. 201108308-6, dated Dec. 6, 2012. |
Danish Patent and Trademark Office, Singapore Search Report, in Application No. 201108308-6, dated Dec. 12, 2012. |
Tao, Ran et al., Condensationand Polymerization of Supersaturated Monomer Vapor, ACS Publications, 2012 American Chemical Society, ex.doi.org/10.1021/la303462q/Langmuir 2012, 28, 16580-16587. |
State Intellectual Property Office of Teh People's Republic of China, Notification of First Office Action in Application No. 201080029201.4, dated Mar. 37, 2013. (15 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/040380, dated Sep. 3, 2013. (13 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/040368, dated Oct. 21, 2013. (21 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/048709, dated Oct. 2, 2013. (7 pages). |
Coclite A.M. et al., “On the relationship between the structure and the barrier performance of plasma deposited silicon dioxide-like films”, Surface and Coatings Technology, Elsevier, Amsterdam, NL, vol. 204, No. 24, Sep. 15, 2010 (Sep. 15, 2010), pp. 4012-4017, XPO27113381, ISSN: 0257-8972 [retrieved on Jun. 16, 2010] abstract, p. 4014, right-hand column—p. 4015, figures 2, 3. |
Brunet-Bruneau A. et al., “Microstructural characterization of ion assisted Sio2 thin films by visible and infrared ellipsometry”, Journal of Vacuum Science and Technology: Part A, AVS/AIP, Melville, NY, US, vol. 16, No. 4, Jul. 1, 1998 (Jul. 1, 1998), pp. 2281-2286, XPO12004127, ISSN: 0734-2101, DOI: 10.1116/1.581341, p. 2283, right-hand column—p. 2284, left-hand column, figures 2, 4. |
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2010249031, dated Mar. 13, 2014. (4 pages). |
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2013202893, dated Mar. 13, 2014. (4 pages). |
European Patent Office, Communication pursuant to Article 93(3) EPC, in Application No. 11 731 554.9 dated Apr. 15, 2014. (7 pages). |
PCT, Notification Concerning Transmittal of International Preliminary Report on Patentability, in International application No. PCT/US2012/064489, dated May 22, 2014. (10 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/071750, dated Apr. 4, 2014. (13 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2014/019684, dated May 23, 2014. (16 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2014/023813, dated May 22, 2014. (11 pages). |
European Patent Office, Communication pursuant to Article 94(3) EPC, in Application No. 11 736 511.4, dated Mar. 28, 2014. |
PCT, Notification Concerning Transmittal of International Preliminary Report on Patentability, in International application No. PCT/US2011/042387, dated Jan. 17, 2013. (7 pages). |
State Intellectual Property Office of the People's Republic of China, Notification of the First Office Action, in Application No. 201180032145.4, dated Jan. 30, 2014. (16 pages). |
PCT, Notification Concerning Transmittal of International Preliminary Report on Patentability, in International application No. PCT/US2011/044215, dated Jan. 31, 2013. (14 pages). |
Da Silva Sobrinho A S et al., “Transparent barrier coatings on polyethylene terephthalate by single-and dual-frequency plasma-enhanced chemical vapor deposition”, Journal of Vacuum Science and Technology; Part A, AVS/AIP, Melville, NY, US, vol. 16, No. 6, Nov. 1, 1998 (Nov. 1, 1998), pp. 3190-3198, XP01200471, ISSN: 0734-2101, DOI: 10.1116/1.581519 (9 pages). |
State Intellectual Property Office of the People's Republic of China, Notification of the Third Office Action, in Application No. 201080029201.4, dated Jul. 7, 2014 (15 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2014/029531, dated Jun. 20, 2014 (12 pages). |
State Intellectual Property Office of the People's Republic of China, Notification of the Third Office Action, with translation, in Application No. 201080029199.0, dated Jun. 27, 2014 (19 pages). |
Intellectual Property Office of Singapore, Invitation to Respond to Written Opinion, in Application No. 2012083077, dated Jun. 30, 2014 (12 pages). |
PCT, Notification of Transmittal of International Preliminary Report on Patentability, in International application No. PCT/US13/40368, dated Jul. 16, 2014 (6 pages). |
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2012318242, dated Apr. 30, 2014. (6 pages). |
State Intellectual Property Office of the People's Republic of China, Notification of the First Office Action, in Application No. 201180023461.5, dated May 21, 2014. (25 pages). |
European Patent Office, Communication pursuant to Article 94(3) EPC, in Application No. 10162758.6 dated May 27, 2014. (7 pages). |
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2011252925, dated Sep. 6, 2013 (3 pages). |
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/USUS13/048709, dated Sep. 30, 2014 (4 pages). |
PCT, Notification of Transmittal of the International Preliminary Report on Patentability, in International application No. PCT/USUS13/048709, dated Oct. 15, 2014 (7 pages). |
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/USUS13/064121, dated Nov. 19, 2014 (8 pages). |
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/USUS13/064121, dated Nov. 21, 2014 (7 pages). |
Intellectual Property Corporation of Malaysia, Substantive Examintion Adverse Report (section 30(1)/30(2)), in Application No. PI 2011005486, dated Oct. 31, 2014 (3 pages). |
Patent Office of the Russian Federation, Official Action, in Application No. 2011150499, dated Sep. 25, 2014 (4 pages). |
Instituto Mexicano de la Propiedad Indutrial, Official Action, in Appilcation No. MX/a/2012/013129, dated Sep. 22, 2014 (5 pages). |
Australian Government, Patent Examination Report No. 2 in Application No. 2010249031 dated Apr. 21, 2015. |
Japanese Patent Office, Notice of Reasons for Refusal in application No. 2013-510276, dated Mar. 31, 2015. |
Bose, Sagarika and Constable, Kevin, Advanced Delivery Devices, Design & Evaluation of a Polymer-Based Prefillable Syringe for Biopharmaceuticals With Improved Functionality & Performance, JR Automation Technologies, May 2015. |
Hopwood J Ed—CRC Press: “Plasma-assisted deposition”, Aug. 17, 1997 (Aug. 17, 1997), Handbook of Nanophase Materials, Chapter 6, pp. 141-197, XP008107730, ISBN: 978-0-8247-9469-9. |
PCT, Written Opinion of the International Preliminary Examining Authority, International application No. PCT/SU2013/071752, dated May 6, 2015. |
Hlobik, Plastic Pre-Fillable Syringe Systems (http://www.healthcarepackaging.com/package-type/Containers/plastic-prefillablesyringe-systems, Jun. 8, 2010). |
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/US2013/071750, dated Jan. 20, 2015 (9 pages). |
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/US2013/064121, dated Nov. 21, 2014 (7 pages). |
Japanese Patent Office, Decision of Rejection in Application No. 2012-510983, dated Jan. 20, 2015 (4 pages). |
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2010249033, dated Dec. 19, 2014 (7 pages). |
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2011252925, dated Dec. 2, 2014 (3 pages). |
State Intellectual Property Office of the People's Republic of China, Notification of the Fourth Office Action in Application No. 201080029199.0, dated Mar. 18, 2015 (15 pages). |
Reh, et al., Evaluation of stationary phases for 2-dimensional HPLC of Proteins—Validation of commercial RP-columns, Published by Elsevier B.V., 2000. |
European Patent Office, Communication pursuant to Article 94(3) EPC, in Application No. 13 726 337.2, dated Dec. 2, 2016 (6 pages). |
International Search Report and Written Opinion corresponding to International Patent Application No. PCT/US2015/022189, dated May 26, 2015. |
Hanlon, Adriene Lepiane, Pak, Chung K., Pawlikowski, Beverly A., Decision on Appeal, Appeal No. 2005-1693, U.S. Appl. No. 10/192,333, dated Sep. 30, 2005. |
Arganguren, Mirta I., Macosko, Christopher W., Thakkar, Bimal, and Tirrel, Matthew, “Interfacial Interactions in Silica Reinforced Silicones,” Materials Research Society Symposium Proceedings, vol. 170, 1990, pp. 303-308. |
patent Cooperation Treaty, International Preliminary Examining Authority, Notification of Transmittal of International Preliminary Report on Patentability, in international application No. PCT/US2011/036097, dated Nov. 13, 2012. |
Allison, H.L., The Real Markets for Transparent Barrier Films, 37th Annual Technical Conference Proceedings, 1994, ISBN 1-878068-13-X, pp. 458. |
Bailey, R. et al., Thin-Film Multilayer Capacitors Using Pyrolytically Deposited Silicon Dioxide, IEEE Transactions on Parts, Hybrids, and Packaging, vol. PHP-12, No. 4, Dec. 1976, pp. 361-364. |
Banks, B.A., et al., Fluoropolymer Filled SiO2 Coatings; Properties and Potential Applications, Society of Vacuum Coaters, 35th Annual Technical Conference Proceedings, 1992, ISBN 1-878068-11-3, pp. 89-93. |
Baouchi, W., X-Ray Photoelectron Spectroscopy Study of Sodium Ion Migration through Thin Films of SiO2 Deposited on Sodalime Glass, 37th Annual Technical Conference Proceedings, 1994, ISBN 1-878068-13-X, pp. 419-422. |
Boebel, F. et al., Simultaneous In Situ Measurement of Film Thickness and Temperature by Using Multiple Wavelengths Pyrometric Interferometry (MWPI), IEEE Transaction on Semiconductor Manufacturing, vol. 6, No. 2, May 1993, , pp. 112-118. |
Bush, V. et al., The Evolution of Evacuated Blood Collection Tubes, BD Diagnostics—Preanalytical Systems Newsletter, vol. 19, No. 1, 2009. |
Chahroudi, D., Deposition Technology for Glass Barriers, 33rd Annual Technical Conference Proceedings, 1990, ISBN 1-878068-09-1, pp. 212-220. |
Chahroudi, D., et al., Transparent Glass Barrier Coatings for Flexible Film Packaging, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings, 1991, ISBN 1-878068-10-5, pp. 130-133. |
Chahroudi, D., Glassy Barriers from Electron Beam Web Coaters, 32nd Annual Technical Conference Proceedings, 1989, pp. 29-39. |
Czeremuszkin, G. et al., Ultrathin Silicon-Compound Barrier Coatings for Polymeric Packaging Materials: An Industrial Perspective, Plasmas and Polymers, vol. 6, Nos. 1/2, Jun. 2001, pp. 107-120. |
Ebihara, K. et al., Application of the Dielectric Barrier Discharge to Detect Defects in a Teflon Coated Metal Surface, 2003 J. Phys. D: Appl. Phys. 36 2883-2886, doi: 10.1088/0022-3727/36/23/003, IOP Electronic Journals, http://www.iop.org/EJ/abstract/0022-3727/36/23/003, printed Jul. 14, 2009. |
Egitto, F.D., et al., Plasma Modification of Polymer Surfaces, Society of Vacuum Coaters, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 10-21. |
Erlat, A.G. et al., SIOx Gas Barrier Coatings on Polymer Substrates: Morphology and Gas Transport Considerations, ACS Publications, Journal of Physical Chemistry, published Jul. 2, 1999, http://pubs.acs.org/doi/abs/10.1021/jp990737e, printed Jul. 14, 2009. |
Fayet, P., et al., Commercialism of Plasma Deposited Barrier Coatings for Liquid Food Packaging, 37th Annual Technical Conference Proceedings, 1995, ISBN 1-878068-13-X, pp. 15-16. |
Felts, J., Hollow Cathode Based Multi-Component Depositions, Vacuum Technology & Coating, Mar. 2004, pp. 48-55. |
Felts, J.T., Thickness Effects on Thin Film Gas Barriers: Silicon-Based Coatings, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings, 1991, ISBN 1-878068-10-5, pp. 99-104. |
Felts, J.T., Transparent Barrier Coatings Update: Flexible Substrates, Society of Vacuum Coaters, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 324-331. |
Felts, J.T., Transparent Gas Barrier Technologies, 33rd Annual Technical Conference Proceedings, 1990, ISBN 1-878068-09-1, pp. 184-193. |
Finson, E., et al., Transparent SiO2 Barrier Coatings: Conversion and Production Status, 37th Annual Technical Conference Proceedings, 1994, ISBN 1-878068-13-X, pp. 139-143. |
Flaherty, T. et al., Application of Spectral Reflectivity to the Measurement of Thin-Film Thickness, Opto-Ireland 2002: Optics and Photonics Technologies and Applications, Proceedings of SPIE vol. 4876, 2003, pp. 976-983. |
Hora, R., et al., Plasma Polymerization: A New Technology for Functional Coatings on Plastics, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 51-55. |
Izu, M., et al., High Performance Clear CoatTM Barrier Film, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 333-340. |
Jost, S., Plasma Polymerized Organosilicon Thin Films on Reflective Coatings, 33rd Annual Technical Conference Proceedings, 1990, ISBN 1-878068-09-1, pp. 344-346. |
Kaganowicz, G., et al., Plasma-Deposited Coatings—Properties and Applications, 23rd Annual Technical Conference Proceedings, 1980, pp. 24-30. |
Kamineni, V. et al., Thickness Measurement of Thin Metal Films by Optical Metrology, College of Nanoscale Science and Engineering, University of Albany, Albany, NY. |
Klemberg-Sapieha, J.E., et al., Transparent Gas Barrier Coatings Produced by Dual Frequency PECVD, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 445-449. |
Krug, T., et al., New Developments in Transparent Barrier Coatings, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 302-305. |
Kuhr, M. et al., Multifunktionsbeschichtungen für innovative Applikationen von Kunststoff-Substraten, HiCotec Smart Coating Solutions. |
Kulshreshtha, D.S., Specifications of a Spectroscopic Ellipsometer, Department of Physics & Astrophysics, University of Delhi, Delhi-110007, Jan. 16, 2009. |
Krug, T.G., Transparent Barriers for Food Packaging, 33rd Annual Technical Conference Proceedings, 1990, ISBN 1-878068-09-1, pp. 163-169. |
Lee, K. et al., The Ellipsometric Measurements of a Curved Surface, Japanese Journal of Applied Physics, vol. 44, No. 32, 2005, pp. L1015-L1018. |
Lelait, L. et al., Microstructural Investigations of EBPVD Thermal Barrier Coatings, Journal De Physique IV, Colloque C9, supplément au Journal de Physique III, vol. 3, Dec. 1993, pp. 645-654. |
Masso, J.D., Evaluation of Scratch Resistant and Antireflective Coatings for Plastic Lenses, 32nd Annual Technical Conference Proceedings, 1989, p. 237-240. |
Misiano, C., et al., New Colourless Barrier Coatings (Oxygen & Water Vapor Transmission Rate) on Plastic Substrates, 35th Annual Technical Conference Proceedings, 1992, ISBN 1-878068-11-3, pp. 28-40. |
Misiano, C., et al., Silicon Oxide Barrier Improvements on Plastic Substrate, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings, 1991, ISBN 1-878068-10-5, pp. 105-112. |
Mount, E., Measuring Pinhole Resistance of Packaging, Corotec Corporation website, http://www.convertingmagazine.com, printed Jul. 13, 2009. |
Murray, L. et al., The Impact of Foil Pinholes and Flex Cracks on the Moisture and Oxygen Barrier of Flexible Packaging. |
Nelson, R.J., et al., Double-Sided QLF® Coatings for Gas Barriers, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings, 1991, ISBN 1-878068-10-5, pp. 113-117. |
Nelson, R.J., Scale-Up of Plasma Deposited SiOx Gas Diffusion Barrier Coatings, 35th Annual Technical Conference Proceedings, 1992, ISBN 1-878068-11-3, pp. 75-78. |
Novotny, V. J., Ultrafast Ellipsometric Mapping of Thin Films, IBM Technical Disclosure Bulletin, vol. 37, No. 02A, Feb. 1994, pp. 187-188. |
Rüger, M., Die Pulse Sind das Plus, PICVD-Beschichtungsverfahren. |
Schultz, A. et al., Detection and Identification of Pinholes in Plasma-Polymerised Thin Film Barrier Coatings on Metal Foils, Surface & Coatings Technology 200, 2005, pp. 213-217. |
Stchakovsky, M. et al., Characterization of Barrier Layers by Spectroscopic Ellipsometry for Packaging Applications, Horiba Jobin Yvon, Application Note, Spectroscopic Ellipsometry, SE 14, Nov. 2005. |
Teboul, E., Thi-Film Metrology: Spectroscopic Ellipsometer Becomes Industrial Thin-Film Tool, LaserFocusWorld, http://www.laserfocusworld.com/display_article, printed Jul. 14, 2009. |
Teyssedre, G. et al., Temperature Dependence of the Photoluminescence in Poly(Ethylene Terephthalate) Films, Polymer 42, 2001, pp. 8207-8216. |
Tsung, L. et al., Development of Fast CCD Cameras for In-Situ Electron Microscopy, Microsc Microanal 14(Supp 2), 2008. |
Wood, L. et al., A Comparison of SiO2 Barrier Coated Polypropylene to Other Coated Flexible Substrates, 35th Annual Technical Conference Proceedings, 1992, ISBN 1-878068-11-3, pp. 59-62. |
Yang, et al., Microstructure and tribological properties of SiOx/DLC films grown by PECVD, Surface and Coatings Technology, vol. 194, Issue 1, Apr. 20, 2005, pp. 128-135. |
AN 451, Accurate Thin Film Measurements by High-Resoluiton Transmission Electron Microscopy (HRTEM), Evans Alalytical Group, Version 1.0, Jun. 12, 2008, pp. 1-2. |
Benefits of TriboGlide, TriboGlide Silicone-Free Lubrication Systems, http://www.triboglide.com/benfits.htm, printed Aug. 31, 2009. |
Coating Syringes, http://www.triboglide.com/syringes.htm, printed Aug. 31, 2009. |
Coating/Production Process, http://www.triboglide.com/process.htm, printed Aug. 31, 2009. |
Munich Exp, Materialica 2005: Fundierte Einblicke in den Werkstofsektor, Seite 1, von 4, ME095-6. |
Schott Developing Syringe Production in United States, Apr. 14, 2009, http://www.schott.com/pharmaceutical_packaging, printed Aug. 31, 2009. |
Sterile Prefillable Glass and Polymer Syringes, Schott forma vitrum, http://www.schott.com/pharmaceutical_packaging. |
Transparent and recyclingfähig, neue verpackung, Dec. 2002, pp. 54-57. |
European Patent Office, Communication with European Search Report, in Application No. 10162758.6, dated Aug. 19, 2010. |
Griesser, Hans J., et al., Elimination of Stick-Slip of Elastomeric Sutures by Radiofrequency Glow Discharge Deposited Coatings, Biomed Mater. Res. Appl Biomater, 2000, vol. 53, 235-243, John Wiley & Sons, Inc. |
European Patent Office, Communication with extended Search Report, in Application No. EP 10162761.0, dated Feb. 10, 2011. |
European Patent Office, Communication with partial Search Report, in Application No. EP 10162758.6, dated Aug. 19, 2010. |
European Patent Office, Communication with extended Search Report, in Application No. EP 10162758.6, dated Dec. 21, 2010. |
Yang, et al., Microstructure and tribological properties of SiOx/DLC films grown by PECVD, Surface and Coatings Technology, vol. 194 (2005), Apr. 20, 2005, pp. 128-135. |
European Patent Office, Communication with extended European search report, in Application No. EP10162756.0, dated Nov. 17, 2010. |
Prasad, G.R. et al., “Biocompatible Coatings with Silicon and Titanium Oxides Deposited by PECVD”, 3rd Mikkeli International Industrial Coating Seminar, Mikkeli, Finland, Mar. 16-18, 2006. |
European Patent Office, Communication with extended European search report, in Application No. EP10162757.8, dated Nov. 10, 2010. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034568, dated Jan. 21, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034571, dated Jan. 26, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034576, dated Jan. 25, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034577, dated Jan. 21, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034582, dated Jan. 24, 2011. |
European Patent Office, Communication with Extended Search Report, in Application No. EP 10162755.2, dated Nov. 9, 2010. |
European Patent Office, Communication with Extended Search Report, in Application No. EP 10162760.2, dated Nov. 12, 2010. |
PCT, Written Opinion of the International Searching Authority with International Search Report in Application No. PCT/US2010/034586, dated Mar. 15, 2011. |
Shimojima, Atsushi et al., Structure and Properties of Multilayered Siloxane-Organic Hybrid Films Prepared Using Long-Chain Organotrialkoxysilanes Containing C=C Double Bonds, Journal of Materials Chemistry, 2007, vol. 17, pp. 658-663, © The Royal Society of Chemistry, 2007. |
Sone, Hayato et al., Picogram Mass Sensor Using Resonance Frequency Shift of Cantilever, Japanese Journal of Applied Physics, vol. 43, No. 6A, 2004, pp. 3648-3651, © The Japan Society of Applied Physics. |
Sone, Hayato et al., Femtogram Mass Sensor Using Self-Sensing Cantilever for Allergy Check, Japanese Journal of Applied Physics, vol. 45, No. 3B, 2006, pp. 2301-2304, © The Japan Society of Applied Physics. |
Mallikarjunan, Anupama et al, The Effect of Interfacial Chemistry on Metal Ion Penetration into Polymeric Films, Mat. Res. Soc. Symp. Proc. vol. 734, 2003, © Materials Research Society. |
Schonher, H., et al., Friction and Surface Dynamics of Polymers on the Nanoscale by AFM, STM and AFM Studies on (Bio)molecular Systems: Unravelling the Nanoworld. Topics in Current Chemistry, 2008, vol. 285, pp. 103-156, © Springer-Verlag Berlin Heidelberg. |
Lang, H.P., Gerber, C., Microcantilever Sensors, STM and AFM Studies on (Bio)molecular Systems: Unravelling the Nanoworld. Topics in Current Chemistry, 2008, vol. 285, pp. 1-28, © Springer-Verlag Berlin Heidelberg. |
Korean Patent Office, Office Action dated Jun. 21, 2016 in Patent Application No. 10-2011-7028713. |
Mexican Patent Office, Office Action dated Jun. 7, 2016 in Patent Application No. MX/a/2011/012038 (3 pages). |
Japanese Patent Office, Notice of Reasons for Refusal, Patent Application No. 2013-510276, dated Mar. 8, 2016 (15 pages). |
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in Application No. PCT/US2010/034576, dated Sep. 14, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in Application No. PCT/US2010/034568, dated Sep. 14, 2011. |
Patent Cooperation Treaty, International Search Report and Written Opinion, in Application No. PCT/US2011/036358, dated Sep. 9, 2011. |
Patent Cooperation Treaty, International Search Report and Written Opinion, in Application No. PCT/US2011/036340, dated Aug. 1, 2011. |
Macdonald, Gareth, “West and Daikyo Seiko Launch Ready Pack”, http://www.in-pharmatechnologist.com/Packaging/West-and-Daikyo-Seiko-launch-Ready-Pack, 2 pages, retrieved from the internet Sep. 22, 2011. |
Kumer, Vijai, “Development of Terminal Sterilization Cycle for Pre-Filled Cyclic Olefin Polymer (COP) Syringes”, http://abstracts.aapspharmaceutica.com/ExpoAAPS09/CC/forms/attendee/index.aspx?content=sessionInfo&sessionId=401, 1 page, retrieved from the internet Sep. 22, 2011. |
Quinn, F.J., “Biotech Lights Up the Glass Packaging Picture”, http://www.pharmaceuticalcommerce.com/frontEnd/main.php?idSeccion=840, 4 pages, retrieved from the internet Sep. 21, 2011. |
Wen, Zai-Qing et al., Distribution of Silicone Oil in Prefilled Glass Syringes Probed with Optical and Spectroscopic Methods, PDA Journal of Pharmaceutical Science and Technology 2009, 63, pp. 149-158. |
ZebraSci—Intelligent Inspection Products, webpage, http://zebrasci.com/index.html, retrieved from the internet Sep. 30, 2011. |
Google search re “cyclic olefin polymer resin” syringe OR vial, http://www.google.com/search?sclient=psy-ab&hl=en&lr=&source=hp&q=%22cyclic+olefin+polymer+resin%22+syringe+OR+vial&btnG=Search&pbx=1&oq=%22cyclic+olefin+polymer+resin%22+syringe+OR+vial&aq, 1 page, retrieved from the internet Sep. 22, 2011. |
Taylor, Nick, “West to Add CZ Vials as Glass QC Issues Drive Interest”, ttp://twitter.com/WestPharma/status/98804071674281986, 2 pages, retrieved from the internet Sep. 22, 2011. |
Patent Cooperation Treaty, International Preliminary Examining Authority, Notification of Transmittal of International Preliminary Report on Patentability, in international application No. PCT/US2010/034571, dated Jun. 13, 2011. |
Patent Cooperation Treaty, International Preliminary Examining Authority, Written Opinion of the International Preliminary Examining Authority, in international application No. PCT/US2010/034586, dated Aug. 23, 2011. |
Patent Cooperation Treaty, International Preliminary Examining Authority, Written Opinion of the International Preliminary Examining Authority, in international application No. PCT/US2010/034568, dated May 30, 2011. |
Silicone Oil Layer, Contract Testing, webpage, http://www.siliconization.com/downloads/siliconeoillayercontracttesting.pdf, retrieved from the internet Oct. 28, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in PCT/US2010/034577, dated Nov. 24, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in PCT/US2010/034582, dated Nov. 24, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in PCT/US2010/034586, dated Dec. 20, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2011/036097, dated Dec. 29, 2011. |
“Oxford instruments plasmalab 80plus”, XP55015205, retrieved from the Internet on Dec. 20, 2011, URL:http://www.oxfordplasma.de/pdf_inst/plas_80.pdf. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2011/044215, dated Dec. 29, 2011. |
European Patent Office, Communication pursuant to Article 94(3) EPC, in Application No. 10 162 758.6-1234, dated May 8, 2012 (6 pages). |
Sahagian, Khoren; Larner, Mikki; Kaplan, Stephen L., “Altering Biological Interfaces with Gas Plasma: Example Applications”, Plasma Technology Systems, Belmont, CA, in SurFACTS in Biomaterials, Surfaces in Biomaterials Foundation, Summer 2013, 18(3), p. 1-5. |
Daikyo Cyrystal Zenith Insert Needle Syringe System, West Delivering Innovative Services, West Pharmaceutical Services, Inc., 2010. |
Daikyo Crystal Zenigh Syringes, West Pharmaceutical Services, Inc., www. WestPFSsolutions.com, #5659, 2011. |
Zhang, Yongchao and Heller, Adam, Reduction of the Nonspecific Binding of a Target Antibody and of Its Enzyme-Labeled Detection Probe Enabling Electrochemical Immunoassay of Antibody through the 7 pg/mL—100 ng/mL (40 fM-400 pM) Range, Department of Chemical Engineering and Texas Materials Institute, University of Texas at Austin, Anal. Chem. 2005, 7, 7758-7762. (6 pages). |
Principles and Applications of Liquid Scintillation Counting, LSC Concepts—Fundamentals of Liquid Scintillation Counting, National Diagnostics, 2004, pp. 1-15. |
Chikkaveeraiah, Bhaskara V. and Rusling, Dr. James, Non Specific Binding (NSB) in Antigen-Antibody Assays, University of Connecticut, Spring 2007. (13 pages) |
Sahagian, Khoren; Larner, Mikki; Kaplan, Stephen L., “Cold Gas Plasma in Surface Modification of Medical Plastics”, Plasma Technology Systems, Belmont, CA, Publication pending. Presented at SPE Antec Medical Plastics Division, Apr. 23, 2013, Ohio. |
Lipman, Melissa, “Jury Orders Becton to Pay $114M in Syringe Antitrust Case”, © 2003-2013, Portfolio Media, Inc., Law360, New York (Sep. 20, 2013, 2:53 PM ET), http://www.law360.com/articles/474334/print?section=ip, [retrieved Sep. 23, 2013]. |
Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Birefringence, page last modified Sep. 18, 2013 at 11:39. [retrieved on Oct. 8, 2013]. (5 pages). |
Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Confocal_microscopy, page last modified Aug. 28, 2013 at 11:12. [retrieved on Oct. 8, 2013]. (4 pages). |
Wang, Jun et al., “Fluorocarbon thin film with superhydrophobic property prepared by pyrolysis of hexafluoropropylene oxide”, Applied Surface Science, vol. 258, 2012, pp. 9782-9784 (4 pages). |
Wang, Hong et al., “Ozone-Initiated Secondary Emission Rates of Aldehydes from Indoor surfaces in Four Homes”, American Chemical Society, Environmental Science & Technology, vol. 40, No. 17, 2006, pp. 5263-5268 (6 pages). |
Lewis, Hilton G. Pryce, et al., “HWCVD of Polymers: Commercialization and Scale-Up”, Thin Solid Films 517, 2009, pp. 3551-3554. |
Wolgemuth, Lonny, “Challenges With Prefilled Syringes: The Parylene Solution”, Frederick Furness Publishing, www.ongrugdelivery.com, 2012, pp. 44-45. |
History of Parylene (12 pages). |
SCS Parylene HTX brochure, Stratamet Thin Film Corporation, Fremont, CA, 2012, retrieved from the Internet Feb. 13, 2013, http://www.stratametthinfilm.com/parylenes/htx. (2 pages). |
SCS Parylene Properties, Specialty Coating Systems, Inc., Indianapolis, IN, 2011. (12 pages). |
Werthheimer, M.R., Studies of the earliest stages of plasma-enhanced chemical vapor deposition of SiO2 on polymeric substrates, Thin Solid Films 382 (2001) 1-3, and references therein, United States Pharmacopeia 34. In General Chapters <1>, 2001. |
Gibbins, Bruce and Warner, Lenna, The Role of Antimicrobial Silver Nanotechnology, Medical Device & Diagnostic Industry, Aug. 205, pp. 2-6. |
MTI CVD Tube Furnace w Gas Delivery & Vacuum Pump, http://mtixtl.com/MiniCVDTubeFurnace2ChannelsGasVacuum-OTF-1200X-S50-2F.aspx (2 pages). |
Lab-Built HFPO CVD Coater, HFPO Decomp to Give Thin Fluorocarbon Films, Applied Surface Science 2012 258 (24) 9782. |
Technical Report No. 10, Journal of Parenteral Science and Technology, 42, Supplement 1988, Parenteral Formulation of Proteins and Peptides: Stability and Stabilizers, Parenteral Drug Association, 1988. |
Technical Report No. 12, Journal of Parenteral Science and Technology, 42, Supplement 1988, Siliconization of Parenteral Drug Packaging Components, Parenteral Drug Association, 1988. |
European Patent Office, Communication under Rule 71(3) EPC, in Application No. 10 162 760.2-1353, dated Oct. 5, 2013. (366 pages). |
Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Difluorocarbene, page last modified Feb. 20, 2012 at 14:41. [retrieved on Sep. 7, 2012]. (4 pages). |
O'Shaughnessy, W.S., et al., “Initiated Chemical Vapor Deposition of a Siloxane Coating for Insulation of Neutral Probes”, Thin Solid Films 517 (2008) 3612-3614. (3 pages). |
Denler, et al., Investigations of SiOx-polymer “interphases” by glancing angle RBS with Li+ and Be+ ions, Nuclear Instruments and Methods in Physical Research B 208 (2003) 176-180, United States Pharmacopeia 34. In General Chapters <1>, 2003. |
PCT, Invitation to Pay Additional Fees and Annex to Form PCT/ISA/206 Communication relating to the results of the partial international search in International application No. PCT/US2013/071750, dated Feb. 14, 2014. (6 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/62247, dated Dec. 30, 2013. (13 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/043642, dated Dec. 5, 2013. (21 pages). |
Japanese Patent Office, Notice of Reason(s) for Rejection in Patent application No. 2012-510983, dated Jan. 7, 2014. (6 pages). |
Chinese Patent Office, Notification of the Second Office Action in Application No. 201080029199.0, dated Jan. 6, 2014. (26 pages). |
Chinese Patent Office, Notification of the First Office Action in Application No. 201180023474.2, dated Dec. 23, 2013. (18 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/067852, dated Jan. 22, 2014. (9 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/064121, dated Mar. 24, 2014. (8 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/070325, dated Mar. 24, 2014. (16 pages). |
P.G. Pai, S.S. Chao, and Y Takagi, “Infrared Spectroscopic Study of SiOx Films Produced by Plasma Enhanced Chemical Vapor Deposition”,Journal of Vacuum Science & Technology A: Vacuum Surfaces and Films, Jun. 1986, p. 689-694; retrieved on Jun. 1, 2014 (7 pages). |
C. Weikart and T. Smith, The Dow Chemical Company, “Microwave Plasma Barrier Coating Technology or PET Beverages Containers”, Society of Vacuum Coaters, 46th Annual Technical Conference Proceedings, ISSN 0737-5921, pp. 486-490, 2003 (5 pages). |
C. Weikart, T. Fisk, and M. Larive, The Dow Chemical Company; T. Glass, H. Pham, and A. Taha, The Dow Chemical Company, J. Felts, Nano Scale Surface Systems, Inc.; “Advances in PECVD Banier Coating Development for ISBM PP Containers”, Society of Vacuum Coaters, 51st Annual Technical Conference Proceedings, ISSN 0737-5921, pp. 569-573, Apr. 19-24, 2008 (5 pages). |
C. Weikart, H. Yasuda, “Modification, Degradation, and Stability of Polymeric Surfaces Treated with Reactive Plasmas”, Journal of Polymer Science: Part A: Polymer Chemistry, vol. 38, 3028-3042, John Wiley & Sons, Inc., 2000 (15 pages). |
L. Martinu, O. Zabeida, and J.E. Klemberg-Sapieha, “Plasma-Enhanced Chemical Vapor Deposition of Functional Coatings”, Handbook of Deposition Technologies for Films and Coating, Chapter 9, pp. 392-464, 2010. |
Number | Date | Country | |
---|---|---|---|
20170175263 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
61971975 | Mar 2014 | US |