Information
-
Patent Grant
-
6454927
-
Patent Number
6,454,927
-
Date Filed
Monday, June 26, 200024 years ago
-
Date Issued
Tuesday, September 24, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Konrad, Raynes, Victor & Mann
-
CPC
-
US Classifications
Field of Search
US
- 205 101
- 205 123
- 204 274
- 204 2751
-
International Classifications
-
Abstract
A system is provided in which a smaller flow of deposition solution is diverted from a larger flow of deposition solution flowing on an electro-chemical deposition tool platform. The smaller flow is diverted to a dosing unit which may be on a separate platform. The dosing unit in one embodiment comprises a pressurized flow line.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to deposition of a metal layer onto a wafer or other substrate. More particularly, the present invention relates to an electro-chemical deposition system for forming a metal layer on a substrate.
2. Background of the Related Art
Sub-quarter micron, multi-level metallization is one of the key technologies for the next generation of ultra large scale integration (ULSI). The multilevel interconnects that lie at the heart of this technology require planarization of interconnect features formed in high aspect ratio apertures, including contacts, vias, lines and other features. Reliable formation of these interconnect features is very important to the success of ULSI and to the continued effort to increase circuit density and quality on individual substrates and die.
As circuit densities increase, the widths of vias, contacts and other features, as well as the dielectric materials between them, decrease to less than 250 nanometers, whereas the thickness of the dielectric layers remains substantially constant, with the result that the aspect ratios for the features, i.e., their height divided by width, increases. Many traditional deposition processes, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), have difficulty filling structures where the aspect ratio exceeds 4:1, and particularly where it exceeds 10:1. Therefore, there is a great amount of ongoing effort being directed at the formation of void-free, nanometer-sized features having high aspect ratios wherein the ratio of feature height to feature width can be 4:1 or higher. Additionally, as the feature widths decrease, the device current remains constant or increases, which results in an increased current density in the feature.
Elemental aluminum (Al) and its alloys have been the traditional metals used to form lines and plugs in semiconductor processing because of aluminum's perceived low electrical resistivity, its superior adhesion to silicon dioxide (SiO
2
), its ease of patterning, and the ability to obtain it in a highly pure form. However, aluminum has a higher electrical resistivity than other more conductive metals such as copper, and aluminum also can suffer from electromigration leading to the formation of voids in the conductor.
Copper and its alloys have lower resistivities than aluminum and significantly higher electromigration resistance as compared to aluminum. These characteristics are important for supporting the higher current densities experienced at high levels of integration and increase device speed. Copper also has good thermal conductivity and is available in a highly pure state. Therefore, copper is becoming a choice metal for filling sub-quarter micron, high aspect ratio interconnect features on semiconductor substrates.
Despite the desirability of using copper for semiconductor device fabrication, choices of fabrication methods for depositing copper into very high aspect ratio features, such as a 4:1, having 0.35 micron (or less) wide vias are limited. As a result of these process limitations, plating, which had previously been limited to the fabrication of lines on circuit boards, is now being used to fill vias and contacts on semiconductor devices.
Metal electroplating is generally known and can be achieved by a variety of techniques. A typical method generally comprises physical vapor depositing a barrier layer over the feature surfaces, physical vapor depositing a conductive metal seed layer, preferably copper, over the barrier layer, and then electroplating a conductive metal over the seed layer to fill the structure/feature. Finally, the deposited layers and the dielectric layers are planarized, such as by chemical mechanical polishing (CMP), to define a conductive interconnect feature.
FIG. 1
is a flow circuit schematic diagram of a prior art electrochemical plating system
100
for depositing copper or other metals on a wafer or other substrate. The plating system
100
includes an electroplating tool platform
102
which has one or more electroplating cells
104
in which an electrolyte containing the material to be deposited, is circulated through each cell, to deposit the deposition material onto a wafer disposed within the cell
104
. The deposition material is added to the electrolyte typically in the form of a chemical composition such as, for example, copper sulfate. The process of adding the deposition chemical to the electrolyte is often referred to as “dosing” and is usually performed by an electrolyte replenishment platform such as that indicated at
106
.
The electrolyte replenishment platform
106
, also often referred to as a “chemical cabinet,” typically includes a large tank
108
in which the deposition chemical is mixed with the electrolyte. An analyzer
110
analyzes the chemical composition of the electrolyte and indicates whether additional deposition chemical or other chemicals should be added to the electrolyte in the tank
108
to maintain a desired composition of the electrolyte.
The electrolyte replenishment platform
106
typically includes a pump
112
to pump the electrolyte from the main tank
108
though a supply line
114
to the electroplating tool platform
102
. To provide a sufficient flow of electrolyte to the cells
104
of the electroplating tool platform
102
, the supply line
124
is often relatively large. For example, to provide a flow of 30 gallons per minute from the electrolyte replenishment platform
106
to the electroplating tool platform
102
, the supply line
124
often has an inner diameter of 1 inch (25 mm) in many systems. Moreover, to save valuable clean room space adjacent to the electroplating tool platform
102
, the electrolyte replenishment platform
106
is often located a relatively large distance from the platform
102
, including being located on another floor of the factory. Hence, many systems have a second, booster pump
116
positioned on the electroplating tool platform
102
to provide sufficient head pressure to the plating cells
104
.
Prior to admitting the electrolyte into the cells
104
, many electroplating tool platforms have one or more filters
118
positioned upstream of the inlets to the cells
104
, to filter the electrolyte from the electrolyte replenishment platform
106
. Positioned downstream of the cells
104
, the electroplating tool platform often has one or more intermediate holding tanks
120
to collect the flow of electrolyte from the cells
104
. The electrolyte is then pumped by yet another pump
122
, via a return line
124
, back to the main tank
108
of the electrolyte replenishment platform
106
for analyzing and dosing if needed. Another filter or set of filters
126
is often provided on the electrolyte replenishment platform
106
to filter the electrolyte before it is admitted to the main tank
108
of the electrolyte replenishment platform
106
.
To maintain the quality of the deposition onto the substrate in the cells, it is often desirable to closely control the temperature of the electrolyte to facilitate the desired chemical reaction in the electrolytic cells
104
. In many systems such as that shown in
FIG. 1
, the main holding tank
108
of the electrolyte replenishment platform
106
typically has a chiller unit installed in the tank
108
to cool the electrolyte to the desired temperature prior to recirculating the electrolyte back into the cells
104
.
The intermediate holding tanks
120
and the main holding tank
108
also usually have various sensors to monitor the electrolyte levels in the tanks. To avoid a potential overflow of hazardous electrolyte from the tanks, the flow rates by the various pumps
112
,
116
and
122
are controlled to lower an excessive level of electrolyte in one tank and pump the excess to the other tank.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a flow circuit schematic diagram of a prior art electrochemical plating system.
FIG. 2
is a perspective view of an electroplating system in accordance with one embodiment of the inventions.
FIG. 3
is a mechanical schematic view of the electroplating system of FIG.
2
.
FIG. 4
is a fluid flow circuit schematic diagram of the electroplating system of
FIGS. 2 and 3
.
FIGS. 5A and 5B
are fluid flow schematic diagrams showing the reservoir-cell recirculation circuit of the electroplating tool platform of
FIG. 4
in greater detail.
FIG. 5C
is a fluid flow schematic diagram showing the reservoir-dosing system recirculation circuit of
FIG. 4
in greater detail.
FIG. 6
is a fluid flow schematic diagram of a dosing system platform in accordance with an alternative embodiment.
SUMMARY OF THE ILLUSTRATED EMBODIMENTS
In one illustrated embodiment of the present inventions, a method and apparatus for electroplating semiconductor substrates is provided which comprises recirculating electrolyte between an electrolyte reservoir and at least one electrolytic plating cell through a reservoir-cell fluid recirculation circuit disposed in an electroplating tool platform; and recirculating electrolyte between the reservoir and a dosing unit through a reservoir-dosing unit fluid recirculation circuit which couples a dosing system platform to the electroplating tool platform. The electrolyte is dosed in the dosing system platform with additives using the dosing unit.
As explained in greater detail below, in one embodiment, the majority of the electro-chemical deposition solution, which in this embodiment is an electrolyte, recirculates locally in the electroplating tool platform. A relatively small flow of electrolyte may be diverted to the dosing system platform to be analyzed and dosed as needed. In addition, dosing may be achieved in a pressurized flow line rather than in an unpressurized reservoir or holding tank. As a consequence of these and other features discussed below, the complexity of the overall system can be substantially reduced and the reliability increased.
It should be understood that the preceding is merely a brief summary of one embodiment of the present inventions and that numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit or scope of the inventions. The preceding summary, therefore, is not meant to limit the scope of the inventions. Rather, the scope of the inventions is to be determined only by the appended claims and their equivalents.
DETAILED DESCRIPTION OF THE DRAWINGS
FIG. 2
is a perspective view of an electro-chemical deposition system
150
in accordance with one embodiment of the inventions.
FIG. 3
is a mechanical schematic view of the electro-chemical deposition system of FIG.
2
. Referring to both
FIGS. 2 and 3
, the electro-chemical deposition system
150
includes an electroplating tool platform
152
and a dosing system platform
154
, which doses an electro-chemical deposition solution for the electroplating tool platform
152
. As explained in greater detail below, in one embodiment, the majority of the electro-chemical deposition solution, which in this embodiment is an electrolyte, recirculates locally in the electroplating tool platform
152
. A relatively small flow of electrolyte is diverted to the dosing system platform
154
to be analyzed and dosed as needed. In addition, dosing may be achieved in a pressurized flow line rather than in an unpressurized reservoir or holding tank. As a consequence of these and other features discussed below, the complexity of the overall system
150
can be substantially reduced and the reliability increased.
In the illustrated embodiment, the electroplating tool platform
152
generally comprises a loading station
210
, a thermal anneal chamber
211
, a spin-rinse-dry (SRD) station
212
and a mainframe
214
. Preferably, the electroplating tool platform
152
is enclosed in a clean environment using panels such as plexiglass panels. The mainframe
214
generally comprises a mainframe transfer station
216
and a plurality of processing stations
218
. Each processing station
218
includes one or more processing cells
220
.
An architecture system and method in accordance with the present invention is applicable to a variety of electro-chemical deposition systems and electro-chemical deposition processes. Thus, the electro-chemical deposition system may utilize a variety of different types of electro-chemical deposition cells. An example of a suitable fountain type electroplating cell is described in copending application Ser. No. 09/263,126, filed Mar. 5, 1999 and entitled “Apparatus for Electro-Chemical Deposition of Copper Metallization with the Capability of In-Situ Thermal Annealing” and assigned to the assignee of the present application. Similarly, the electro-chemical deposition system may utilize a variety of different electro-chemical deposition solutions including electrolytes.
The dosing system platform
154
receives a relatively small flow of electrolyte via flow lines
222
from the electroplating tool platform
152
to dose with the appropriate chemicals prior to returning the electrolyte to the electroplating tool platform
152
. The dosing system platform
154
may be positioned adjacent the electroplating tool platform
152
or at a substantial distance from the electroplating tool platform
152
such as on another floor of the factory. The electroplating tool platform
152
also includes a control system
223
a
, typically comprising a programmable microprocessor. The control system
223
a
may control the dosing system platform
154
as well, either as a complete controller or in combination with another controller
223
b
disposed on the dosing system platform
154
. The controller
223
b
, like the controller
223
a
typically comprises a programmable microprocessor.
The loading station
210
preferably includes one or more wafer cassette receiving areas
224
, one or more loading station transfer robots
228
and at least one wafer orientor
230
. The number and positions of the wafer cassette receiving areas, loading station transfer robots
228
and wafer orientors included in the loading station
210
can be configured according to the desired throughput of the system. As shown for one embodiment in
FIGS. 2 and 3
, the loading station
210
includes two wafer cassette receiving areas
224
, two loading station transfer robots
228
and one wafer orientor
230
. A wafer cassette
232
containing wafers
234
is loaded onto the wafer cassette receiving area
224
to introduce wafers
234
into the electroplating tool platform. The loading station transfer robot
228
transfers wafers
234
between the wafer cassette
232
and the wafer orientor
230
. The loading station transfer robot
228
comprises a typical transfer robot commonly known in the art. The wafer orientor
230
positions each wafer
234
in a desired orientation to ensure that the wafer is properly processed. The loading station transfer robot
228
also transfers wafers
234
between the loading station
210
and the SRD (spin-rinse-dry) station
212
and between the loading station
210
and the thermal anneal chamber
211
.
FIG. 4
shows a fluid flow circuit schematic diagram of the electro-chemical deposition system
150
of
FIGS. 2 and 3
. Referring to
FIGS. 2-4
, the electroplating tool platform
152
includes a main reservoir or holding tank
250
for the electrolyte. The main reservoir
250
is coupled by a first fluid recirculation circuit
252
, which recirculates the electrolyte from the reservoir
250
to the electrolytic cells
220
and back to the main reservoir
250
of the electroplating tool platform
152
. It should be appreciated that, in this embodiment, the electrolyte recirculates between the main reservoir and the processing cells
220
while remaining primarily in the electroplating tool platform
152
. By recirculating locally in this reservoir-cell recirculation circuit
252
, the complexity of the overall system can be substantially reduced.
To achieve this, it has been recognized by the present inventors that a relatively small flow of electrolyte may be diverted from the electroplating tool platform
152
and directed by a second fluid recirculation circuit
260
to the dosing system platform
154
to be dosed and returned to the reservoir
250
of the electroplating tool platform
152
. In this manner, the electrolyte flowing through the processing cells
220
circulates primarily through the reservoir-cell recirculation circuit
252
of the electroplating tool platform
152
. However, by diverting a relatively small flow through the reservoir-dosing system recirculation circuit
260
to the dosing system platform
154
, the electrolyte flowing through the processing cells may be maintained at the desired chemical composition by the dosing system platform
154
.
In another feature of the illustrated embodiments, the dosing system platform
154
has a dosing unit
262
, which does not require any dosing reservoir on the dosing system platform
154
during normal dosing operations. Instead, as explained in greater detail below, the dosing unit
262
of the illustrated embodiment is primarily a pressurized flow line
264
having a plurality of inlets
266
for each fluid chemical to be added to the flow of electrolyte flowing through the flow line
264
of the dosing unit
262
. As a consequence, the complexity of the system may be substantially reduced.
For example, the electro-chemical deposition system
150
of the illustrated embodiment has only a single pump
280
, which is disposed in the electroplating tool platform
152
. Since the dosing system platform
154
does not utilize an unpressurized reservoir for dosing, a pump which would be used to pump electrolyte from such a dosing reservoir may be eliminated. It is believed that the single pump
280
disposed in the electroplating tool platform
152
is sufficient to recirculate the electrolyte through the primary recirculation circuit
252
of the electroplating tool platform
152
and to recirculate the lesser flow of electrolyte through the secondary recirculation circuit
260
coupling the dosing system platform
154
to the electroplating tool platform
152
.
Because the flow of electrolyte flowing the reservoir-dosing system recirculation circuit
260
may be relatively small (such as 0.1-5 gallons per minute (0.38-18.9 liters), for example), the supply and return lines of the recirculation circuit
260
may be made relatively small (such as a ¾ inch (19 mm) inner diameter, for example). By comparison, the supply and return lines of the primary recirculation circuit
252
may be on the order of 1½ inch (38 mm) inner diameter or larger, to provide an electrolyte flow of 30 gallons (113.5 liters) per minute, for example, depending upon the size and number of processing cells in the tool platform
152
.
For example, the average flow cross-sectional area of the primary recirculation circuit
252
may be 100-300% larger than that of the reservoir-dosing system recirculation circuit
260
, to provide an average flow rate in the primary recirculation circuit
252
that is 600-3000% larger than that of the reservoir-dosing system recirculation circuit
260
. The relative sizes of the recirculation circuits will of course depend upon the particular application. However, reducing the size of the supply and return lines of the recirculation circuit
260
is particularly convenient should the dosing system platform
154
be located a large distance (such as 20 feet (6 meters) for example) or even on a different floor from the electroplating tool platform
152
.
For example, the dosing system platform
154
may be separated from the electroplating tool platform by 1-50 meters (3.3-164 feet) or more. Notwithstanding a large separation between the dosing system platform
154
and the electroplating tool platform
152
, it is believed that an additional boost pump such as the pump
116
of the prior art system, for pumping the electrolyte from a chemical cabinet may be eliminated in many applications of an electroplating system in accordance with the present invention. However, in some applications, particularly those having a very large separation between the two platforms, a booster pump may be appropriate.
Still further, by eliminating a dosing reservoir from the dosing platform, the need for complex controls to balance the electrolyte level of such a dosing reservoir with the electrolyte level of a reservoir in the tool platform can be reduced or eliminated. Instead, if desired, the electro-chemical deposition system
150
may utilize a single reservoir
250
during plating operations such that the volume of the system may be readily fixed at a particular level. As a consequence, the controls may be substantially simplified.
In addition, the reservoir-cell recirculation circuit
252
has a filter or set of filters
282
and
324
disposed in the electroplating tool platform
152
. It is believed that these filters are sufficient to filter the electrolyte such another set of filters disposed in the dosing system platform
154
to filter the electrolyte flowing through the secondary recirculation circuit
260
may be avoided if desired.
FIGS. 5A and 5B
are schematic diagrams showing the reservoir-cell recirculation circuit
252
of the electroplating tool platform
152
in greater detail. As depicted therein, the reservoir-cell recirculation circuit
252
includes a main supply line
300
(FIG.
5
A), which couples a drain outlet
250
a
of the main reservoir
250
to the inlet of the pump
280
which pumps a flow of electrolyte from the main reservoir
250
to the array of processing cells
220
(
FIG. 5B
) via the supply line
300
. The pump speed and activation time is controlled by the controller
223
a
(FIGS.
2
and
3
), which monitors the flow through the supply line
300
. A pressure sensor
302
and a flow meter
304
coupled to the supply line
300
provide output signals to the controller
223
a
, which are indicative of the pressure and flow rate, respectively, of electrolyte through the supply line
300
. The main filter
282
is also disposed in the main supply line to filter the electrolyte being pumped to the array of processing cells
220
(FIG.
5
B). A bleed indicated generally at
306
bleeds bubbles from the filter
282
and vents into the main reservoir
250
. The main supply line
300
also includes suitable shut-off and control valves
310
a
, which may be controlled manually or by the controller
223
a.
Referring now to
FIG. 5B
, in the illustrated embodiment, the main supply line
300
of the reservoir-cell recirculation circuit
252
of the electroplating tool platform
152
includes two branched supply lines
300
a
, each of which includes two branched supply lines
300
b
. Each supply line
300
a
has a control and/or shut off valve
310
b
. Each supply line
300
b
supplies a flow of electrolyte to the inlet of one of the processing cells
220
of the array. To control the electrolyte flow rate into the inlet
220
a
of each processing cell, each processing cell supply line
300
b
includes a control loop comprising a control valve
312
and a flow meter
314
. The flow rate control loop for each processing cell
220
may be controlled by the controller
223
a
or manually, if desired.
The reservoir-cell recirculation circuit
252
further includes a plurality of return lines
320
, each of which is coupled to an electrolyte discharge outlet
220
b
of an associated processing cell
220
. Each return line
320
may have a shutoff and/or control valve
310
c
and a filter
324
to filter the electrolyte being discharged from the associated processing cell
220
. The outlet of each filter
324
is coupled to the main reservoir
250
. In this manner, the recirculation circuit
252
provides a complete circuit for recirculating the electrolyte from the main reservoir
250
to the array of processing cells and back to the main reservoir. In the illustrated embodiment, the electrolyte flow remains substantially local within the electroplating tool platform
152
while flowing in the reservoir-cell recirculation circuit
252
.
In addition to the return lines
320
, other return lines feed into the main reservoir
250
. More specifically, each filter
324
of the array of processing cells
220
has a bypass line
326
with an associated shut-off control valve
310
d
which permits the flow of electrolyte to bypass the filter
324
and return to the main reservoir
250
should it be desired. An anode bypass line
220
b
exchanges fresh electrolyte across the anode surface of the cell. The supply line
300
b
for each processing cell
220
is coupled to a bypass line
328
with an associated shut-off control valve
310
e
, which permits the flow of electrolyte to bypass the associated processing cell and return to the main reservoir
250
. Also, the main supply line
300
is coupled to a bypass line
330
with an associated pressure drop valve
310
f
, which permits the flow of electrolyte to bypass the processing cells and return to the main reservoir
250
.
The reservoir-dosing system recirculation circuit
260
includes a dosing system supply line
350
(
FIG. 5A
) having an inlet coupled to an outlet
352
of the main supply line
300
of the reservoir-cell recirculation circuit
252
. As shown in
FIG. 5C
, the dosing system supply line
350
diverts a small flow of electrolyte from the main supply line
300
to an inlet
264
a
of the dosing system flow line
264
of the dosing unit
262
, and thus provides a pressurized flow of electrolyte through the dosing system flow line
264
. The dosing unit
262
includes a plurality of additive supply lines
360
, each of which is coupled to one of a plurality of inlets
266
of the dosing system flow line
264
. Each additive supply line
360
is coupled to one of a plurality of source tanks
364
(
FIG. 3
) to provide the various constituent chemicals of the desired electrolyte to the dosing system flow line
264
. In the illustrated embodiment, an additive supply line
360
is provided for each of the constituents, copper sulfate CuSO
4
, sulfuric acid H
2
SO
4
, and hydrochloric acid HCl. The particular additives may vary, depending upon the desired electro-chemical solution and the desired electro-chemical deposition process.
The reservoir-dosing system recirculation circuit
260
further includes a dosing system return line
380
having an inlet coupled to an outlet
264
b
of the dosing system flow line
265
. As shown in
FIG. 5A
, the dosing system return line
380
is coupled to the main reservoir
250
of the electroplating tool platform
102
. In this manner, the recirculation circuit
260
provides a complete circuit for recirculating the electrolyte from the main reservoir
250
to the dosing unit
262
of the dosing system platform
154
and back to the main reservoir. In the illustrated embodiment, the electrolyte remains pressurized within the dosing system platform
154
while flowing in the dosing unit
262
. The electrolyte does not become unpressurized until it flows back into the unpressurized reservoir
250
of the tool platform
102
. The electrolyte in the reservoir-dosing recirculation unit circuit
260
is pressurized by the pump
280
which is shared with the reservoir-cell recirculation circuit
252
.
As shown in
FIG. 5C
, the chemical composition of the electrolyte flowing through the reservoir-dosing system recirculation circuit
260
is analyzed by an analyzer
400
disposed in the dosing system platform
154
. The reservoir-dosing system recirculation circuit
260
includes an analyzer sample supply line
402
coupled to the supply line
350
through a controller
403
, which diverts a small sample flow of electrolyte from the supply line
350
to the analyzer
400
for chemical analysis. An analyzer sample return line
404
returns the sample flow of electrolyte to the return line
380
at a point downstream of the dosing unit
262
. In the illustrated embodiment, the sample flow of electrolyte through the sample supply line
402
, the analyzer
400
and the sample return line
404
remains pressurized.
The supply line
300
has a pressure drop
406
which may be set at a particular value (such as 1 gallon (3.8 liters) per minute, for example) to provide the desired flow into the sample supply line
402
. A bypass line
408
continues the flow of pressurized electrolyte to the sample return line
404
.
The analyzer
400
of the illustrated embodiment is a titration and CBS type analyzer (“Bantam” model) and is manufactured by Parker Technology. Other commercially available analyzers may be used as well. The analyzer
400
has a syringe to withdraw a sample from the sample flow for analysis. The analyzer
400
is electrically coupled to one or more of the controllers
223
a
and
223
b
and provides electrical signals to the appropriate controller, which are representative of the chemical analysis of the sample drawn from the electrolyte flowing through the analyzer. In response the controller, as needed, opens the appropriate control valves
410
(
FIG. 3
) coupled to the additive inlets
266
to admit the appropriate quantities of additives to mix with the flow of electrolyte flowing through the dosing flow line
264
of the dosing unit
262
to achieve the desired chemical composition of the electrolyte in the system
150
. The control valves
410
may include appropriate flow meters to measure the flow of additive in the associated additive inlet to provide a suitable flow control loop for each additive inlet
266
.
Because a pressurized flow line is used to perform dosing rather than a large reservoir, the size or footprint of the dosing system platform
154
may be substantially reduced as compared to many prior chemical cabinets. Furthermore, a single dosing system platform
154
′ may be used to dose and/or analyze the electrolyte from a plurality of electroplating tool platforms
152
a
-
152
c
as shown in
FIG. 6
while maintain a relatively small footprint. The dosing system platform
154
′ may use one set of additive sources
364
(
FIG. 3
) to supply the additives for each of the dosing units of the platform
154
′. A single analyzer
400
may be used to analyze the electrolyte from each of the tool platforms or alternatively, separate analyzers may be disposed on the platform
154
′ for use with the electrolyte from each tool if more complete separation of the flow lines is desired.
The reservoir
250
of the tool platform
152
further has a heat exchanger
500
which is coupled by supply and return lines
502
to a chiller unit
504
. It is believed that the primary source of undesirable heating of the electrolyte is the pump or pumps of the system. In a system in accordance with the present invention, the size and number of pumps may be reduced because most of the electrolyte circulates locally on the electroplating tool platform
152
. The need to overcome a large head loss resulting from shuttling most or all of the system electrolyte to and from a remote chemical cabinet can be reduced or eliminated. As a consequence, the drop in pump horsepower which the system may require can reduce the system cooling requirements at the same time. Moreover, it is believed that the electrolyte temperature may be more effectively controlled in many applications because the heat exchanger is located close to the point of delivery to the processing cells. In one embodiment, the reservoir
250
(and associated heat exchanger
500
) may be located immediately adjacent to the processing cells
220
. Alternatively, the reservoir
250
may be spaced less than 1 or 2 meters (3.3 or 6.6 feet) from the processing cells but is preferably spaced less than 5 meters (16.4 feet) from the processing cells to reduce pumping needs and increase temperature control accuracy. Of course, the actual distance may vary depending upon the particular application.
The dosing system platform
154
has a maintenance reservoir
600
(
FIG. 5
c
) and associated maintenance plumbing indicated generally at
602
. The reservoir
600
is not intended to be used during dosing but to provide a drain receptacle to permit the dosing system to be repaired or otherwise serviced when not in operation. Similarly, the plating tool platform
152
has maintenance plumbing indicated generally at
604
,
606
and
608
which is generally not used during plating but provide a drain system for servicing the plating platform when not in operation.
Although various embodiments which incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings.
Claims
- 1. An electroplating system for use in connection with a plurality of sources of additives, for electroplating semiconductor substrates, comprising:at least one electrolytic plating cell; an electrolyte reservoir; a reservoir-cell fluid recirculation circuit fluidically coupled to said reservoir and said cell and adapted to recirculate electrolyte between said reservoir and said cell; a dosing unit coupled to said plurality of sources and adapted to dose electrolyte with said additives; and a reservoir-dosing unit fluid recirculation circuit fluidically coupled to said reservoir and said dosing unit and adapted to recirculate electrolyte between said reservoir and said dosing unit.
- 2. The system of claim 1 wherein said dosing unit comprises a fluid line coupled to said reservoir-dosing unit fluid recirculation circuit and adapted to provide a flow of electrolyte under pressure, said dosing unit fluid line having a plurality of inlets, each inlet being coupled to a source of an additive.
- 3. The system of claim 1 wherein said reservoir-cell fluid recirculation circuit includes a reservoir-cell supply line fluidically coupling said reservoir to said cell and adapted to provide a flow of electrolyte from said reservoir to said cell and wherein said reservoir-cell fluid recirculation circuit further includes a cell-reservoir return line fluidically coupling said cell to said reservoir and adapted to provide a flow of electrolyte from said cell to said reservoir.
- 4. The system of claim 3 wherein said reservoir-dosing unit fluid recirculation circuit includes a reservoir-dosing unit supply line fluidically coupling said reservoir to said dosing unit and adapted to provide a flow of electrolyte from said reservoir to said dosing unit and wherein said reservoir-dosing unit fluid recirculation circuit further includes a dosing unit-reservoir return line fluidically coupling said dosing unit to said reservoir and adapted to provide a flow of electrolyte from said dosing unit to said reservoir.
- 5. The system of claim 4 wherein said reservoir-cell supply line has a first outlet fluidically coupled to said cell and wherein said reservoir-cell supply line has a second outlet fluidically connected to said reservoir-dosing unit supply line of said reservoir-dosing unit fluid recirculation circuit.
- 6. The system of claim 4 further comprising an analyzer unit coupled to said reservoir and adapted to analyze a chemical composition of said electrolyte; and a reservoir analyzer fluid recirculation circuit fluidically coupled to said reservoir and said analyzer unit and adapted to recirculate electrolyte between said reservoir and said analyzer unit.
- 7. The system of claim 6 wherein said reservoir-analyzer fluid recirculation circuit includes a supply line fluidically coupling said reservoir to said analyzer unit and adapted to provide a flow of electrolyte from said reservoir to said analyzer unit and wherein said reservoir-analyzer fluid recirculation circuit includes a return line fluidically coupling said analyzer unit to said reservoir and adapted to provide a flow of electrolyte from said analyzer unit to said reservoir.
- 8. The system of claim 7 wherein said reservoir-dosing unit supply line of said reservoir-dosing unit fluid recirculation circuit has a first outlet coupled to said dosing unit and a second outlet coupled to said supply line of said reservoir-analyzer fluid recirculation circuit and wherein said reservoir-dosing unit return line of said reservoir-dosing unit fluid recirculation circuit has an inlet coupled to said return line of said reservoir-analyzer fluid recirculation circuit.
- 9. The system of claim 8 wherein said reservoir-dosing unit supply line first outlet coupled to said dosing unit is downstream of said reservoir-dosing unit supply line outlet coupled to said supply line of said reservoir-analyzer fluid recirculation circuit and wherein said reservoir-dosing unit return inlet coupled to said return line of said reservoir-analyzer fluid recirculation circuit is upstream of said reservoir-dosing unit supply line outlet coupled to said dosing unit.
- 10. The system of claim 1 further comprising a heat exchanger thermally coupled to said reservoir and adapted to chill electrolyte within said reservoir.
- 11. The system of claim 10 wherein said heat exchanger is positioned within said reservoir and contacting said electrolyte within said reservoir.
- 12. The system of claim 1 wherein said reservoir-cell fluid recirculation circuit defines a first average flow cross-sectional area and said reservoir-dosing unit fluid recirculation circuit defines a second average flow cross-sectional area which is smaller than said first average flow cross-sectional area.
- 13. The system of claim 12 wherein said first average flow cross-sectional area is 100-300% larger than said second average flow cross-sectional area.
- 14. The system of claim 1 wherein said reservoir-cell fluid recirculation circuit defines a first average flow rate and said reservoir-dosing unit fluid recirculation circuit defines a second average flow rate which is smaller than said first average flow rate.
- 15. The system of claim 14 wherein said first average flow rate is 600-3000% larger than said second average flow rate.
- 16. The system of claim 1 wherein said reservoir has an electrolyte outlet and said cell has an electrolyte inlet, and said reservoir-cell fluid recirculation circuit includes a reservoir-cell supply line fluidically connecting said reservoir outlet to said cell inlet and adapted to provide a flow of electrolyte from said reservoir outlet to said cell inlet and wherein said reservoir-cell supply line does not exceed 5 meters.
- 17. The system of claim 16 wherein said reservoir-cell supply line does not exceed 2 meters.
- 18. The system of claim 1 wherein said reservoir has an outlet and said dosing unit has an inlet and said reservoir-dosing unit fluid recirculation circuit includes a reservoir-dosing unit supply line fluidically connecting said reservoir outlet to said dosing unit inlet and adapted to provide a flow of electrolyte from said reservoir outlet to said dosing unit inlet and wherein said reservoir-dosing unit supply line exceeds 1 meters.
- 19. The system of claim 18 wherein said reservoir-dosing unit supply line exceeds 50 meters.
- 20. The system of claim 1 further comprising a single pump shared by said reservoir-cell fluid recirculation circuit and said reservoir-dosing unit fluid recirculation circuit.
- 21. The system of claim 1 wherein said electrolytic plating cell; said electrolyte reservoir; and said reservoir-cell fluid recirculation circuit are disposed in a tool platform and said dosing unit is disposed in a remote dosing platform and said reservoir-dosing unit fluid recirculation circuit fluidically couples said remote platform to said first platform.
- 22. The system of claim 21 further comprising a second tool platform wherein said remote platform has a second dosing unit, said system further comprising a second reservoir-dosing unit fluid circuit fluidically coupling said second dosing unit of said remote dosing platform to the reservoir of said second tool platform.
- 23. A method of electroplating semiconductor substrates, comprising:recirculating electrolyte between an electrolyte reservoir and at least one electrolytic plating cell through a reservoir-cell fluid recirculation circuit fluidically coupled to said reservoir and said cell; recirculating electrolyte between said reservoir and a dosing unit through a reservoir-dosing unit fluid recirculation circuit fluidically coupled to said reservoir and said dosing unit; and dosing electrolyte in said reservoir-dosing unit fluid recirculation circuit with additives using said dosing unit.
- 24. The method of claim 23 wherein said dosing comprises flowing electrolyte through a pressurized fluid line coupled to said reservoir-dosing unit fluid recirculation circuit, and adding additives through a plurality of inlets to said dosing unit fluid line.
- 25. The method of claim 23 wherein said reservoir-cell fluid recirculating includes flowing electrolyte through a reservoir-cell supply line from said reservoir to said cell and wherein said reservoir-cell fluid recirculating further includes flowing electrolyte through a cell-reservoir return line from said cell to said reservoir.
- 26. The method of claim 25 wherein said reservoir-dosing unit fluid recirculating includes flowing electrolyte through a reservoir-dosing unit supply line from said reservoir to said dosing unit and wherein said reservoir-dosing unit fluid recirculating further includes flowing electrolyte through a dosing unit-reservoir return line from said dosing unit to said reservoir.
- 27. The method of claim 26 wherein said reservoir-dosing unit fluid recirculating further includes diverting a flow of electrolyte from said reservoir-cell supply line to said reservoir-dosing unit supply line of said reservoir-dosing unit fluid recirculation circuit.
- 28. The method of claim 26 further comprising diverting a sample flow of electrolyte from said reservoir-dosing unit supply line, through a sample supply line to an analyzer unit, analyzing the chemical composition of a sample from said sample flow of electrolyte using said analyzer unit and returning said sample flow of electrolyte from said analyzer unit through a sample return line to said reservoir-dosing unit return line.
- 29. The method of claim 28 wherein said sample flow diverting diverts said sample flow from said reservoir-dosing unit supply line upstream of said dosing unit and wherein said sample flow returning returns said sample flow to said dosing unit-reservoir return line downstream of said dosing unit.
- 30. The method of claim 23 further comprising chilling said electrolyte within said reservoir using a heat exchanger thermally coupled to said reservoir.
- 31. The method of claim 30 wherein said heat exchanger is positioned within said reservoir and contacting said electrolyte within said reservoir.
- 32. The method of claim 23 wherein said reservoir-cell fluid recirculation circuit defines a first average flow cross-sectional area and said reservoir-dosing unit fluid recirculation circuit defines a second average flow cross-sectional area which is smaller than said first average flow cross-sectional area.
- 33. The method of claim 32 wherein said first average flow cross-sectional area is 100-300% larger than said second average flow cross-sectional area.
- 34. The method of claim 23 wherein said reservoir-cell fluid recirculating circulates at a first average flow rate and said reservoir-dosing unit fluid recirculating circulates at a second average flow rate which is smaller than said first average flow rate.
- 35. The method of claim 34 wherein said first average flow rate is 600-3000% larger than said second average flow rate.
- 36. The method of claim 23 wherein said reservoir-cell fluid recirculating recirculates electrolyte a distance which does not exceed 5 meters.
- 37. The method of claim 36 wherein said reservoir-cell supply line does not exceed 2 meters.
- 38. The method of claim 23 wherein said reservoir-dosing unit fluid recirculating recirculates electrolyte a distance which exceeds 1 meter.
- 39. The method of claim 38 wherein said reservoir-dosing unit supply line exceeds 50 meters.
- 40. The method of claim 23 wherein said reservoir-cell fluid recirculating and said reservoir-dosing unit fluid recirculating utilizes a single pump shared by said reservoir-cell fluid recirculation circuit and said reservoir-dosing unit fluid recirculation circuit.
- 41. The method of claim 23 wherein said reservoir is the only reservoir used during electroplating and dosing operations.
- 42. A dosing system for use in connection with a plurality of sources of additives, and for dosing an electrolyte in an electroplating system having at least one electrolytic plating cell and an electrolyte reservoir, comprising:a fluid line coupled to said reservoir and adapted to provide a flow of electrolyte under pressure, said fluid line having a plurality of inlets, each inlet being coupled to a source of an additive wherein additives are added to said flow of electrolyte through said fluid line.
- 43. The system of claim 42 further comprising an analyzer unit coupled to said reservoir and adapted to analyze a chemical composition of electrolyte; and a plurality of control valves, each control valve being adapted to control the flow of an additive through a fluid line inlet to said flow of electrolyte in response to said analyzer unit.
- 44. A method of dosing electrolyte for electroplating semiconductor substrates, comprising:directing a flow of pressurized electrolyte through a pressurized flow line coupled to an electrolyte reservoir; and dosing the pressurized flow of electrolyte in said pressurized flow line with additives through a plurality of inlets coupled to said pressurized flow line.
- 45. The method of claim 44 further comprising diverting a sample flow of electrolyte from said pressurized flow of electrolyte to an analyzer unit, analyzing the chemical composition of said sample flow of electrolyte using said analyzer unit and returning said sample flow of electrolyte from said analyzer unit to said pressurized flow of electrolyte.
- 46. The method of claim 45 wherein said dosing comprises controlling an inlet valve coupled to a flow line inlet to admit an additive in response to said analyzer unit.
US Referenced Citations (5)
Number |
Name |
Date |
Kind |
5368715 |
Hurley et al. |
Nov 1994 |
A |
5858196 |
Ikenaga |
Jan 1999 |
A |
6113769 |
Uzoh et al. |
Sep 2000 |
A |
6113771 |
Landau et al. |
Sep 2000 |
A |
6136163 |
Cheung et al. |
Oct 2000 |
A |
Foreign Referenced Citations (3)
Number |
Date |
Country |
0952242 |
Oct 1999 |
EP |
9954527 |
Oct 1999 |
WO |
9954920 |
Oct 1999 |
WO |