This disclosure relates generally to information handling systems, and more particularly to an apparatus and method for testing a high-speed serial attached SCSI protocol link.
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
Serial attached small computer system interface (SAS) is a serial point-to-point topology commonly used in server and storage environments. A problem in both environments is the testing of high-speed protocol links without degrading the signal. In many serial point-to-point topologies, breaking out the link to a protocol analyzer is not a challenging feat. For example, a protocol analyzer can be easily connected to a host controller or a hard drive.
In the SAS topology, point-to-point links running between chips on the same board are common. Moreover, even the smallest stub on the line can have dramatic effects on the signal quality and overall robustness of the platform. A more complex solution must be found for breaking out links that normally would not route to an off board connector.
It will be appreciated that for simplicity and clarity of illustration, elements illustrated in the Figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements are exaggerated relative to other elements. Embodiments incorporating teachings of the present disclosure are shown and described with respect to the drawings presented herein, in which:
The use of the same reference symbols in different drawings indicates similar or identical items.
The following description in combination with the Figures is provided to assist in understanding the teachings disclosed herein. The following discussion will focus on specific implementations and embodiments of the teachings. This focus is provided to assist in describing the teachings and should not be interpreted as a limitation on the scope or applicability of the teachings.
The circuit board 10 includes a plurality of SAS expander chips 12 and a plurality of breakout connectors 14, 16, 18 and 20. Transmit and receive (TX/RX) circuitry 22, 24, 26 and 28, as is well known in the art, interconnects the SAS expander chips 12 and pins near the breakout connectors. Further details of one example of such pins are shown in U.S. Patent Application Publication No. 2004/0196062, the disclosure of which is hereby incorporated by reference.
To insert a protocol analyzer in series such as for testing, the inner pads 40 and 42 are depopulated, i.e. the electrical connection between them is broken. Instead, the two outer pairs of pads 38, 40 and 42, 44 are populated, i.e. an electrical connection is established between them such as with capacitors. This operation establishes electrical communication with the pads 46 and 48, and thus the breakout connectors 14 and 16 are in series with the SAS expander chips 12 such that the protocol analyzer may be easily and usefully engaged.
Without the breakout links, it would be impossible to debug an issue between the two on board SAS devices. This solution does not add any cost to the board and preserves the entire signal integrity of the link while providing an easy method to view the protocol transactions of the link. Although only a few exemplary embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the embodiments of the present disclosure. Accordingly, all such modifications are intended to be included within the scope of the embodiments of the present disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.
Number | Name | Date | Kind |
---|---|---|---|
5443390 | Kokkosoulis et al. | Aug 1995 | A |
5513259 | Pettit | Apr 1996 | A |
5642217 | Carbone et al. | Jun 1997 | A |
6106307 | Goslicki et al. | Aug 2000 | A |
6248663 | Bixler et al. | Jun 2001 | B1 |
20040196062 | Fuller et al. | Oct 2004 | A1 |
20050108452 | Loffink et al. | May 2005 | A1 |
20050289263 | Ramsey et al. | Dec 2005 | A1 |
20060075155 | Fuller et al. | Apr 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080008435 A1 | Jan 2008 | US |