This invention pertains generally to the fabrication of semiconductor devices and, more particularly, to a method and apparatus for generating important chemical species in the deposition, etching, cleaning, and growth of various materials and layers.
It is in general an object of the invention to provide a new and improved chemical generator and method for generating chemical species at or near the location where they are to be used.
Another object of the invention is to provide a chemical generator and method of the above character which are particularly suitable for generating chemical species for use in the fabrication of semiconductor devices.
These and other objects are achieved in accordance with the invention by providing a chemical generator and method for generating a chemical species at or near a point of use such as the chamber of a reactor in which a workpiece such as a semiconductor wafer is to be processed. The species is generated by creating free radicals, and combining the free radicals to form the chemical species at or near the point of use.
As illustrated in
The number of tubes which are required in the generator is dependent upon the chemical species being generated and the reaction by which it is formed, with a separate chamber usually, but hot necessarily, being provided for each type of free radical to be used in the process.
Gases or other precursor compounds from which the free radicals are formed are introduced into the chambers from sources 21–23 or by other suitable means. Such precursors can be in gaseous, liquid and/or solid form, or a combination thereof.
A plasma is formed within the one or more chambers to create the free radicals, and in the embodiment illustrated, the means for generating the plasma includes an induction coil 26 disposed concentrically about the one or more tubes, a radio frequency (RF) power generator 27 connected to the coil by a matching network 28, and a Tesla coil 29 for striking an arc to ignite the plasma. The plasma can, however, be formed by any other suitable means such as RF electrodes or microwaves.
Downstream of, or within, the tubes, the free radicals are recombined to form the desired species. In the embodiment illustrated, a recombination may take place in a chamber 31 which is part of a reactor 32 in which a semiconductor wafer 33 is being processed. Recombination can be promoted by any suitable means such as by cooling 36 and/or by the use of a catalyst 37.
Cooling can be effected in a number of ways, including the circulation of a coolant such as an inert gas, liquid nitrogen, liquid helium or cooled water through tubes or other suitable means in heat exchange relationship with the reacting gases. It can also be effected by passing the gases through an expansion nozzle to lower their temperature, or by the use of either a permanent magnet or an electromagnet to converge and then subsequently expand the plasma to lower its temperature.
A catalyst can be placed either in the cooling zone or downstream of it. It can, for example, be in the form of a thin film deposited on the wall of a chamber or tube through which the reacting gases pass, a gauze placed in the stream of gas, or a packed bed. The important thing is that the catalyst be situated in such a way that all of the gas is able to contact its surface and react with it.
If desired, monitoring equipment such as an optical emission spectrometer can be provided for monitoring parameters such as species profile and steam generation.
In the embodiment illustrated, the chemical generator is integrated with the reactor, and the species produced is formed in close proximity to the wafer being processed. That is the preferred application of the generator, although it can also be used in stand-alone applications as well. It can be added to existing process reactors as well as being constructed as an integral part of new reactors, or as a stand-alone system.
The generator can be employed in a wide variety of applications for generating different species for use in the fabrication of semiconductor devices, some examples of which are given below.
Steam for use in a wet oxidation process for producing SiO2 according to the reaction
Si+H2O→SiO2+H2
can be generated in accordance with the invention by admitting H2 and O2 into one of the plasma generating chambers. The H2 and O2 react to form steam in close proximity to the silicon wafer. If desired, oxygen admitted alone or with N2 and/or Ar can be used to produce ozone (O3) to lower the temperature for oxidation and/or improve device characteristics.
It is known that the use of NO in the oxidation of silicon with O2 can improve the device characteristics of a transistor by improving the interface between silicon and silicon oxide which functions as a barrier to boron. Conventionally, NO is supplied to the reactor chamber from a source such as a cylinder, and since NO is toxic, special precautions must be taken to avoid leaks in the gas lines which connect the source to the reactor. Also, the purity of the NO gas is a significant factor in the final quality of the interface formed between the silicon and the silicon oxide, but it is difficult to produce extremely pure NO.
With the invention, highly pure NO can be produced at the point of use through the reaction
N2+O2→2NO
by admitting N2 and O2 to one of the chambers and striking a plasma. When the plasma is struck, the N2 and O2 combine to form NO in close proximity to the wafer. Thus, NO can be produced only when it is needed, and right at the point of use, thereby eliminating the need for expensive and potentially hazardous gas lines.
NO can also be produced by other reactions such as the cracking of a molecule containing only nitrogen and oxygen, such as N2O. The NO is produced by admitting N2O to the plasma chamber by itself or with O2. If desired, a gas such as Ar can be used as a carrier gas in order to facilitate formation of the plasma.
N2O can be cracked either by itself or with a small amount of O2 to form NO2, which then dissociates to NO and O2. In rapid thermal processing chambers and diffusion furnaces where temperatures are higher than the temperature for complete dissociation of NO2 to NO and O2 (620° C.), the addition of NO2 will assist in the oxidation of silicon for gate applications where it has been found that nitrogen assists as a barrier for boron diffusion. At temperature below 650° C., a catalyst can be used to promote the conversion of NO2 to NO and O2. If desired, nitric acid can be generated by adding water vapor or additional H2 and O2 in the proper proportions.
Similarly, NH3 and O2 can be combined in the plasma chamber to produce NO and steam at the point of use through the reaction
NH3+O2→NO+H2O.
By using these two reagent gases, the efficacy of NO in the wet oxidation process can be mimicked.
It is often desired to include chlorine in an oxidation process because it has been found to enhance oxidation as well as gettering unwanted foreign contaminants. Using any chlorine source such as TCA or DCE, complete combustion can be achieved in the presence of O2, yielding HCl+H2O+CO2. Using chlorine alone with H2 and O2 will also yield HCl and H2O.
When TCA or DCE is used in oxidation processes, it is completely oxidized at temperatures above 700° C. to form HCl and carbon dioxide in reactions such as the following:
C2H3Cl3+2O2→2CO2+3HCl
C2H2Cl2+2O2→2CO2+2HCl
The HCl is further oxidized in an equilibrium reaction:
4HCl+O2→2H2O+Cl2
Decomposition of various organic chlorides with oxygen at elevated temperatures provides chlorine and oxygen-containing reagents for subsequent reactions in, e.g., silicon processing. Such decomposition is generally of the form
CxHyCly+xO2→xCO2+yHCl,
where x and y are typically 2, 3 or 4.
All of the foregoing reactions can be run under either atmospheric or subatmospheric conditions, and the products can be generated with or without a catalyst such as platinum.
The invention can also be employed in the cleaning of quartz tubes for furnaces or in the selective etching or stripping of nitride or polysilicon films from a quartz or silicon oxide layer. This is accomplished by admitting a reactant containing fluorine and chlorine such as a freon gas or liquid, i.e. CxHyFzClq, where
x=1, 2, . . .
y=0, 1, . . .
z=0, 1, . . .
q=0, 1, . . .
and the amount of fluorine is equal to or greater than the amount of chlorine. It is also possible to use a mixture of fluorinated gases (e.g., CHF3, CF4, etc.) and chlorinated liquids (e.g., CHCl3, CCL4, etc.) in a ratio which provides effective stripping of the nitride or polysilicon layer.
Other dielectric films can be formed from appropriate precursor gases. Polysilicon can be formed using SiH4 and H2, or silane alone. The silane may be introduced downstream of the generator to avoid nucleation and particle formation.
Silicon nitride can be formed by using NH3 or N2 with silane (SiH4) or one of the higher silanes, e.g. Si2H6. The silane can be introduced downstream of the generator to avoid nucleation and particle formation.
In addition to gases, the chemical generator is also capable of using liquids and solids as starting materials, so that precursors such as TEOS can be used in the formation of conformal coatings. Ozone and TEOS have been found to be an effective mixture for the deposition of uniform layers.
Metal and metal oxide films can be deposited via various precursors in accordance with the invention. For example, Ta2O5 films which are used extensively in memory devises can be formed by generating a precursor such as TaCl5 via reduction of TaCl5, followed by oxidation of the TaCl5 to form Ta2O5. In a more general sense, the precursor from which the Ta2O5 is generated can be expressed as TaXm, where X is a halogen species, and m is the stoichiometric number.
Copper can be, deposited as a film or an oxide through the reaction
CuCl2+H2→Cu+HCl,
and other metals can be formed in the same way. Instead of a gaseous precursor, a solid precursor such as Cu or another metal can also be used.
With the invention, organic residue from previous process steps can be effectively removed by using O2 to form ozone which is quite effective in the removal of organic contaminants. In addition, reacting H2 with an excess of O2 will produce steam and O2 as well as other oxygen radicals, all of which are effective in eliminating organic residue. The temperature in the chamber should be below about 700° C. if a wafer is present, in order to prevent oxide formation during the cleaning process.
Sulfuric acid, nitric acid and hydrofluoric acid for use in general wafer cleaning are also effectively produced with the invention. Sulfuric acid (H2SO4) is generated by reacting either S, SO or SO2 with H2 and O2 in accordance with reaction such as the following:
S+2.5O2+2H2→H2SO4+H2O
SO+1.5O2+H2→H2SO4
SO2+1.5O2+2H2→H2SO4+H2O
then quickly quenching the free radicals thus formed with or without a catalyst.
Nitric acid (HNO3) is generated by reacting NH3 with H2 and O2, or by a reaction such as the following:
N2+3.5O2+H2→2HNO3+H2O
NH3+2O2→2HNO3+H2O
Hydrofluoric acid is generated by co-reacting H2 and O2 with a compound containing fluorine such as NF3 or CxHyFz, where
x=1, 2, . . .
y=0, 1, . . .
z=1, 2, . . .
Mixed acids can be generated from a single precursor by reactions such as the following:
SF6+4H2+2O2→H2SO4+6HF
NH2+H2+1.5O2→HNO3+HF
2NHF+H2+3O2→2HNO3+2HF
NF3O+2H2+O2→HNO3+3HF
NF2Cl+2H2+1.5O2→HNO3+2HF+HCl
N2F4+3H2+3O2→2HNO3+4HF
N2F4+2H2+3O2→2HNO3+2HF
NF3+2H2+1.5O2→HNO3+3HF
NF2+1.5H2+1.5O2→HNO3+2HF
NF+H2+1.5O2→HNO3+HF
NS+1.5H2+3.5O2→HNO3+H2SO4
2N2OF+2H2+O2→2HNO3+2HF
NOF3+2H2+O2→HNO3+3HF
NOF+H2+O2→HNO3+HF
NOCl+H2+O2→HNO3+HCl
NOBr+H2+O2→HNO3+HBr
NO2Cl+2H2+O2→2HNO3+HCl
S2F1O+7H2+4O2→H2SO4+10HF
S2F2+3H2+4O2→H2SO4+2HF
SF+1.5H2+2O2→H2SO4+HF
SF2+2H2+2O2→H2SO4+2HF
SF3+2.5H2+2O2→H2SO4+3HF
SF4+3H2+2O2→H2SO4+4HF
SF5+3.5H2+2O2→H2SO4+5HF
SF6+4H2+2O2→H2SO4+6HF
SBrF5+4H2+2O2→H2SO4+5HF+HBr
S2Br2+3H2+4O2→2H2SO4+2HBr
SBr2+2H2+2O2→H2SO4+2HBr
SO2F2+2H2+O2→H2SO4+2HF
SOF4+3H2+1.5O2→H2SO4+4HF
SOF2+2H2+1.5O2→H2SO4+2HF
SOF+1.5H2+1.5O2→H2SO4+HF
SO2ClF+2H2+O2→H2SO4+HF+HCl
SOCl2+2H2+1.5O2→H2SO4+2HCl
SOCl+1.5H2+1.5O2→H2SO4+HCl
SOBr2+2H2+1.5O2→H2SO4+2HBrCl
SF2Cl+2.5H2+2O2→H2SO4+2HF+HCl
SClF5+4H2+2O2→H2SO4+5HF+HCl
SO2Cl2+2H2+O2→H2SO4+2HCl
S2Cl+2.5H2+4O2→2H2SO4+HCl
SCl2+2H2+2O2→H2SO4+2HCl
These are but a few examples of the many reactions by which mixed acids can be generated in accordance with the invention. Including more H2 and O2 in the reactions will allow steam to be generated in addition to the mixtures of acids.
In order to devolitize the various resultant products of the reaction of HCl, HF, H2SO4 or HNO3, either H2O or H2 and O2 can be co-injected to form steam so that the solvating action of water will disperse in solution in the products. The temperature of the water must be cool enough so that a thin film of water will condense on the wafer surface. Raising the temperature of the water will evaporate the water solution, and spinning the wafer will further assist in the removal process.
The native oxide which is ever present when a silicon wafer is exposed to the atmosphere can be selectively eliminated by a combination of HF and steam formed by adding a fluorine source such as NF3 or CF4 to the reagent gases H2 and O2. In order for the native oxide elimination to be most effective, the reaction chamber should be maintained at a pressure below one atmosphere.
H2 and O2 can also be reacted to form steam for use in the stripping of photoresist which is commonly used in patterning of silicon wafers in the manufacture of integrated circuits. In addition, other components such as HF, H2SO4 and HNO3 which are also generated with the invention can be used in varying combinations with the steam to effectively remove photoresist from the wafer surface. Hard implanted photoresist as well as residues in vias can also be removed with steam in combination with these acids.
SO3 for use in the stripping of organic photoresist can be generated by adding O2 to SO2. Similarly, as discussed above, N2O can be converted to NO2, a strong oxidizing agent which can also be used in the stripping of photoresist.
Hydrofluoric acid for use in the stripping of photoresist can be generated in situ in accordance with any of the following reactions:
CF4+2H2+O2→CO2+4HF
CF4+1.5O2+3H2→CO2+4HF+H2O
NF3+O2+5H2→N2+6HF+2H2O
It is apparent from the foregoing that a new and improved chemical generator and method have been provided. While only certain presently preferred embodiments have been described in detail, as will be apparent to those familiar with the art, certain changes and modifications can be made without departing from the scope of the invention as defined by the following claims.
This application is a continuation of commonly-own U.S. patent application Ser. No. 09/225,922 filed Jan. 5, 1999, now U.S. Pat. No. 6,579,805.
Number | Name | Date | Kind |
---|---|---|---|
3622493 | Crusco | Nov 1971 | A |
3625846 | Murdoch et al. | Dec 1971 | A |
3652434 | Bar-Nun et al. | Mar 1972 | A |
3657107 | Herriman et al. | Apr 1972 | A |
3658673 | Kugler et al. | Apr 1972 | A |
3869616 | Smars et al. | Mar 1975 | A |
3919397 | Gould | Nov 1975 | A |
3938988 | Othmer | Feb 1976 | A |
3954954 | Davis et al. | May 1976 | A |
4145403 | Fey et al. | Mar 1979 | A |
4266113 | Denton et al. | May 1981 | A |
4351810 | Martinez et al. | Sep 1982 | A |
4390405 | Hahn et al. | Jun 1983 | A |
4482525 | Chen | Nov 1984 | A |
4512868 | Fujimura et al. | Apr 1985 | A |
4739147 | Meyer et al. | Apr 1988 | A |
4766287 | Morrisroe et al. | Aug 1988 | A |
4771015 | Kanai et al. | Sep 1988 | A |
4794230 | Seliskar et al. | Dec 1988 | A |
4812201 | Sakai et al. | Mar 1989 | A |
4812326 | Tsukazaki et al. | Mar 1989 | A |
4849192 | Lyon | Jul 1989 | A |
4883570 | Efthimion et al. | Nov 1989 | A |
4898748 | Kruger et al. | Feb 1990 | A |
4926001 | Alagy et al. | May 1990 | A |
4973773 | Malone | Nov 1990 | A |
5012065 | Rayson et al. | Apr 1991 | A |
5026464 | Mizuno et al. | Jun 1991 | A |
5051557 | Satzger | Sep 1991 | A |
5200595 | Boulos et al. | Apr 1993 | A |
5338399 | Yanagida | Aug 1994 | A |
5403434 | Moslehi | Apr 1995 | A |
5403630 | Matsui et al. | Apr 1995 | A |
5427669 | Drummond | Jun 1995 | A |
5531973 | Sarv | Jul 1996 | A |
5535906 | Drummond | Jul 1996 | A |
5560844 | Boulos et al. | Oct 1996 | A |
5599425 | Lagendijk et al. | Feb 1997 | A |
5607602 | Su et al. | Mar 1997 | A |
5620559 | Kikuchi | Apr 1997 | A |
5652021 | Hunt et al. | Jul 1997 | A |
5665640 | Foster et al. | Sep 1997 | A |
5684581 | French et al. | Nov 1997 | A |
5747935 | Porter et al. | May 1998 | A |
5756402 | Jimbo et al. | May 1998 | A |
5770099 | Rice et al. | Jun 1998 | A |
5827370 | Gu | Oct 1998 | A |
5853602 | Shoji | Dec 1998 | A |
5877471 | Huhn et al. | Mar 1999 | A |
5908566 | Saltzer | Jun 1999 | A |
5917286 | Scholl et al. | Jun 1999 | A |
5935334 | Fong et al. | Aug 1999 | A |
5939886 | Turner et al. | Aug 1999 | A |
5980999 | Goto et al. | Nov 1999 | A |
6007879 | Scholl | Dec 1999 | A |
6029602 | Bhatnagar | Feb 2000 | A |
6046546 | Porter et al. | Apr 2000 | A |
6053123 | Xia | Apr 2000 | A |
6066568 | Kawai et al. | May 2000 | A |
6156667 | Jewett | Dec 2000 | A |
6163006 | Doughty et al. | Dec 2000 | A |
6183605 | Schatz et al. | Feb 2001 | B1 |
6194036 | Babayan et al. | Feb 2001 | B1 |
6197119 | Dozoretz et al. | Mar 2001 | B1 |
6217717 | Drummond et al. | Apr 2001 | B1 |
6222321 | Scholl et al. | Apr 2001 | B1 |
6225592 | Doughty | May 2001 | B1 |
6238514 | Gu | May 2001 | B1 |
6251792 | Collins et al. | Jun 2001 | B1 |
6291938 | Jewett et al. | Sep 2001 | B1 |
6352049 | Yin et al. | Mar 2002 | B1 |
6368477 | Scholl | Apr 2002 | B1 |
6384540 | Porter, Jr. et al. | May 2002 | B1 |
6410880 | Putvinski et al. | Jun 2002 | B1 |
6432260 | Mahoney et al. | Aug 2002 | B1 |
6488745 | Gu | Dec 2002 | B1 |
6494957 | Suzuki | Dec 2002 | B1 |
6521099 | Drummond et al. | Feb 2003 | B1 |
6521792 | Akteries et al. | Feb 2003 | B1 |
6544896 | Xu et al. | Apr 2003 | B1 |
6633017 | Drummond et al. | Oct 2003 | B1 |
20020134244 | Gu | Sep 2002 | A1 |
20030077402 | Amann et al. | Apr 2003 | A1 |
Number | Date | Country |
---|---|---|
56 102577 | Aug 1981 | JP |
5 275392 | Oct 1993 | JP |
6 295907 | Oct 1994 | JP |
7 106593 | Apr 1995 | JP |
10 098038 | Apr 1998 | JP |
WO 9117285 | Nov 1991 | WO |
Number | Date | Country | |
---|---|---|---|
20030153186 A1 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09225922 | Jan 1999 | US |
Child | 10373895 | US |