In liquid application apparatuses used in a semiconductor fabrication process, real-time monitoring and/or observing an applied liquid on a wafer are one of the key factors to control uniformity of a liquid application process. As the semiconductor industry has progressed into nanometer process in pursuit of higher device density, higher performance, and lower costs, there is a need to more precisely monitor the status of an applied liquid on a wafer and/or a nozzle in real-time.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale and are used for illustration purposes only. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of the disclosure. Specific embodiments or examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, dimensions of elements are not limited to the disclosed range or values, but may depend upon process conditions and/or desired properties of the device. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Various features may be arbitrarily drawn in different scales for simplicity and clarity.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly. In addition, the term “made of” may mean either “comprising” or “consisting of.”
In a semiconductor manufacturing operation, various wet processes using liquids, such as water or various chemicals (acid, base, solvent, etc.) are used. For example, a lithography process uses a photo resist coating operation and a resist developing operation. Other wet processes include a wet cleaning operation and a wet etching operation. In these wet operations, a liquid is applied on a wafer from a nozzle while a wafer is rotating. Some of the key factors to control applying a liquid from the nozzle include monitoring droplet leakage from the nozzle and monitoring liquid behavior on a wafer. Although it is possible to visually monitor the liquid behavior by using an imaging device, such as charge-coupled devices (CCD) or high-speed cameras, a more reliable and precise method for monitoring the liquid behavior is desired. In the present disclosure, a laser source and a detector array arranged on the nozzle is employed to monitor the status of a nozzle in real-time and liquid motion/dynamics on the wafer with the working principle of total internal reflection.
where n2 is the RI of the other medium (e.g., air) and n is the RI of the medium in which the beam is propagating (e.g., “Liquid”).
As shown in
The laser beam transmitter 1110 is configured to emit a laser beam 1112 towards the substrate 800. In some embodiments, the laser beam transmitter 1110 is configured to emit a laser beam 1112 in a continuous wave form or in a form of pulses towards the substrate 800. The laser beam transmitter 1110 is arranged in the nozzle arm, for example, on a lower surface of the nozzle arm facing the substrate 800 on the rotatable base 820. In some embodiments, the laser beam transmitter 1110 is configured to adjust an angle 1111 of incident laser beam 1112 of the laser transmitter towards the substrate to select one or more light sensors that receive the reflected laser beam. In some embodiments, the light source 1100 includes the plurality of laser beam transmitters 1120 and emits the laser pulses sequentially or in a desired order. In other embodiments, the plurality of laser beam transmitters emit the laser pulses simultaneously or near simultaneously. The arrangement of the plurality of laser beam transmitters 1120 and the laser beam transmitter 1110 are not limited to the arrangement illustrated in
The array 1220 of light sensors 1210 is configured to receive a reflected laser beam 1114 that includes a reflected light 1116 from the substrate 800 and a scattered light 1117, and generate signals. The array 1220 is arranged in the nozzle arm, for example, on a lower surface of the nozzle arm facing the substrate 800 on the rotatable base 820. The light sensors 1210 are spaced apart within the array arranged in the nozzle arm 900. In some embodiments, the light sensors 1210 are disposed at a location other than the nozzle or nozzle arm, for example, an inner wall of a chamber or a cup surrounding the rotational base 820 or an independent support member.
The light monitoring system 1000 in accordance with some embodiments of the present disclosure determines a process quality on the substrate by analyzing a signal of the light reflected from the substrate received by an array of light sensors. In some embodiments, each of the light sensors 1210 generates and outputs signals (“0” for light not received or “1” for light received) or signals according to the intensities of the received reflected light. Based on the signals identified by the light sensors 1210, a process quality such as, an existence of a process chemical liquid, a diameter of the process chemical liquid spread, or a level of dryness of the process chemical liquid is identified. In some embodiments, the array 1220 of light sensors 1210 further includes a bandpass filter that, in operation, passes the light in a pre-determined wavelength range, for example, wavelengths longer than or equal to 650 nm and shorter than or equal to 950 nm. In some embodiments, an arithmetic circuit that is connected to the array 1220 of light sensors 1210 and that, in operation, generates and outputs information indicating whether the process quality such as, for example, existence of a process chemical liquid, a diameter of the process chemical liquid, or a level of dryness of the process chemical liquid, is located at a position corresponding to each pixel included in the light detected denoted by the light signal.
In some embodiments, as shown in
In some embodiments, the light monitoring system 1000 is configured to monitor and control a chemical process. As shown in
By centrifugal force due to the rotation of the substrate 800, the first chemical liquid 1301 spreads over the top surface 802 of the substrate 800. When the top surface of the substrate is completely covered with the first chemical liquid 1301, none of the light sensors, sensor 1 through 15, of the array 1220 receive the reflected laser beam from the substrate 800. Referring back to
Then, as shown in
When the light sensors, such as sensor 2 and other sensors, identify that there is no first chemical liquid on the upper surface of the substrate 800, as shown in
In some embodiments, as shown in
As shown in
In some embodiments, as shown in
When, as shown in
In some embodiments, as shown in
The substrate 800 is placed on the rotatable base 820, and the rotatable base starts rotating in a direction “C” for the cleaning operation. None of the light sensors, sensors 1 through 15, of the array 1220 receive the reflected laser pulses from the substrate 800 due to the total internal reflection within the spread cleaning liquid 1308. By centrifugal force due to the rotation of the substrate 800, the cleaning liquid 1308 covers the top surface 802 of the substrate 800.
Then, as shown in
The light monitoring system 1000 emits laser pulses 1112 towards the substrate 800. A single pulse sequence will be described, though it is understood a plurality of pulses of laser light is applied in some embodiments. The light monitoring system 1000 emits a single laser pulse 1112, receives the reflected laser pulse 1114 from the substrate 800, and calculates the turnaround time (TAT) and distance (discussed below) before emitting the next laser pulse. In an example, this can be achieved by increasing the repetition rate between two successive pulses or by stopping pulse generation by the light monitoring system 1000 after a single laser pulse has been emitted. However, in other embodiments, the light monitoring system 1000 can emit a series of pulses and perform measurements based on the series of pulses reflected from the substrate 800.
The laser pulse 1112 strikes (impinges upon) the top surface 802 of substrate 800 and is reflected back (reflected pulse 1114) to the light detector 1200 of the light monitoring system 1000. The light monitoring system 1000 calculates the time it takes for the reflected laser pulse 1114 to be received. This time, also referred to as turnaround time (TAT), is calculated by measuring the duration from the time the laser pulse 1112 is emitted by the light monitoring system 1000 and the time the reflected laser pulse 1114 is received by the light monitoring system 1000. In other embodiments, the light monitoring system 1000 transmits a first signal (command) to an external controller (e.g., computing system 2000,
In some embodiments, based on the respectively calculated turnaround times, the light monitoring system 1000 calculates a corresponding distance between the light monitoring system 1000 and the substrate 800. The logic (software or hardware) for calculating the distance from the turnaround time is included in the light monitoring system 1000, and the light monitoring system 1000 provides the calculated distance to the controller for indicating (e.g., displaying on a display 2004,
Depending on the distances measured by the light monitoring system 1000, a direction of the process quality can be determined. In other words, it can be determined, whether the rotatable base 820 is rotating the substrate 800 at a constant speed, thereby maintaining a uniformity of the processing film thickness. Alternatively, whether the rotatable base 820 is not rotating the substrate 800 at a constant speed can be determined, thereby indicating the processing film thickness may not be uniform.
In some embodiments, the light monitoring system 1000 is also programmed (via software or hardware circuitry) or otherwise configured to implement a timeout condition in which light monitoring system 1000 waits for a certain amount of time to receive the reflected laser pulse 1114. If the reflected laser pulse 1114 is not received with the amount of time (i.e., the time limit is exceeded), a timeout is declared and the operator is notified (e.g., a notification on a display 2004 in
As shown in
In some embodiments, a fluidic element controller 1059 is located adjacent to the nozzle arm 900 and the rotatable base 820. The fluidic element controller 1059 controls a plurality of fluidic elements such as a control valve, a pump, and a compressor. The signal from the fluidic element controller 1059 is used as a feedback for adjusting the subsequent process in some embodiments. In some embodiments, the feedback may be connected with an actuator to control one of the fluidic elements.
The feedback control system provided in some embodiments further send a notification based on a subsequent quality analysis information indicating the quality analysis is within the acceptable quality analysis range. In some embodiments, the notification includes a spectrum difference between the process chemical fluid supply and the dispensing. In some embodiments, based on the generating the notification, the feedback further sends the notification to a first external device associated with a fluidic element controller 1059 and a second external device associated with the next process tool.
The program for causing the computer system 2000 to execute the functions of an apparatus for controlling the apparatus in the foregoing embodiments may be stored in an optical disk 2021 or a magnetic disk 2022, which are inserted into the optical disk drive 2005 or the magnetic disk drive 2006, and transmitted to the hard disk 2014. Alternatively, the program may be transmitted via a network (not shown) to the computer 2001 and stored in the hard disk 2014. At the time of execution, the program is loaded into the RAM 2013. The program may be loaded from the optical disk 2021 or the magnetic disk 2022, or directly from a network. The program does not necessarily have to include, for example, an operating system (OS) or a third party program to cause the computer 2001 to execute the functions of the controller 1410 in the foregoing embodiments. The program may only include a command portion to call an appropriate function (module) in a controlled mode and obtain desired results.
In some embodiments, the distance measurement using lasers is performed by using a laser interferometer technique. In other embodiments, the distance measurement is performed by using ultrasound, sonar, echo sounding, etc. In still other embodiments, the distance measurement is performed using Doppler devices that measure the distance using Doppler technique, magnetic sensors (magnetic encoders), rotary encoders, etc.
In some embodiments, the light source 1100 is disposed with a slit. In other embodiments, the light source 1100 is disposed with an adjustable slit. In a certain embodiment, the light source 1100 is disposed with an adjustable opening/aperture, for example, an iris diaphragm, which is actuated to increase the opening size, thereby allowing wider/narrower light to pass through the light source 1100 and resulting in an increase/decrease in a focal diameter of the light beam.
In some embodiments, a reflected light intensity of the reflected laser beam received by the light sensors 1210 of the array 1220 of light sensors is measured. The reflected intensity is measured between the intensity of the laser beam emitted from the laser beam transmitter 1110 and the intensity the beam is detected at the light sensors 1210 of the array 1220 after reflecting from the substrate 800, more specifically, from the top surface 802 of the substrate. In some embodiments, the reflected intensity by each of the light sensors 1210 within the array 1220 may be compared. If the reflected intensity of the light sensors 1210 are within a desired proximity of each other, it is determined that the applied liquid on the substrate is applied substantially uniformly. If the reflected intensity of the light sensors 1210 are not within the desired proximity, then it is determined that the applied liquid on the substrate is not applied substantially uniformly.
In various embodiments, a light monitoring system including a light source and a light detector is provided to monitor the status of a nozzle in real-time and liquid motion/dynamics on the wafer with the working principle of total internal reflection. Light monitoring systems according to embodiments of the disclosure provide improved identification of a leak from the nozzle or a liquid residue on the substrate, thereby improving the inspection operation and increasing the yield of the semiconductor manufacturing process.
It will be understood that not all advantages have been necessarily discussed herein, no particular advantage is required for all embodiments or examples, and other embodiments or examples may offer different advantages.
An embodiment of the disclosure is an apparatus for manufacturing a semiconductor device that includes a rotatable base configured to support a substrate and a nozzle arm. The nozzle arm includes a nozzle and a light monitoring device including a laser transmitter and an array of light sensors arranged in the nozzle arm and facing the rotatable base.
In some embodiments, the light monitoring device is configured to transmit a laser beam from the laser transmitter towards the substrate, wherein the laser beam impinges on the substrate. The light monitoring device is configured to receive a reflected laser beam from the substrate, and identify one or more light sensors of the array of light sensors that received the laser beam. The light monitoring device is configured to determine a process quality on the substrate by analyzing a signal of the array of light sensors reflected from the substrate.
In some embodiments, the laser transmitter is arranged on a lower surface of the nozzle arm facing the substrate. In some embodiments, the light monitoring device adjusts an angle of the laser transmitter towards the substrate to select the one or more light sensors that receive the reflected laser beam. In some embodiments, the apparatus further includes light sensors disposed at a location other than the nozzle or nozzle arm. In some embodiments, the apparatus further includes an analyzing device to send a notification when there is a leak from the nozzle on the substrate.
Another embodiment of the disclosure is a method for inspecting a semiconductor substrate. The method includes placing a substrate on a rotatable base. A nozzle arm is then positioning over the substrate, in which the nozzle arm includes one or more laser transmitters and an array of light sensors arranged in the nozzle arm and facing the substrate. Subsequently, a laser beam is transmitted using each of the one or more laser transmitters towards the substrate, and the laser beam impinges on the substrate. Then, a reflected laser beam is received from the substrate at the array of light sensors. One or more light sensors of the array of light sensors that received the laser beam are identified. By a light monitoring device, a signal of the array of light sensors reflected from the substrate is analyzed. Subsequently, it is determined whether a process quality on the substrate is within an acceptable range. When a process quality on the substrate is not within the acceptable range, a configurable parameter of a semiconductor manufacturing process is automatically adjusted to set the process quality within the acceptable range. In some embodiments, the configurable parameter includes one or more of: an incident angle of the laser transmitter towards the substrate, a number of light sensors of the array of light sensors that received the laser beam, a number of laser beam transmitters to emit, a moving speed at the center of the nozzle, a distance between the nozzle and the surface of the wafer, and a type of fluids, etc.
In some embodiments, it is determined whether there was a leak from the nozzle. In some embodiments, a second chemical liquid from the nozzle arm is dispensed when it is determined that there is no first chemical liquid on a surface of the substrate. In some embodiments, the light monitoring device is configured to determine whether there is a fluid ripple on the substrate. In some embodiments, the fluid dynamics of a fluid on the substrate is analyzed when it is determined there is a fluid ripple on the substrate. In some embodiments, it is determined there is a fluid ripple on the substrate by analyzing fluid dynamics of a fluid on the substrate. In some embodiments, the light monitoring devices transmit the laser beam at different times. In some embodiments, a reflected laser beam from a light sensor disposed at a location other than the nozzle or nozzle arm is received. In some embodiments, an angle of the laser transmitter towards the substrate is adjusted to select the one or more light sensors that receive the reflected laser beam.
According to another aspect of the present disclosure, a system for inspecting a semiconductor substrate. The system includes a substrate holder and a feedback controller coupled the substrate holder. The substrate holder includes a rotatable base configured to hold the substrate and a nozzle arm including a nozzle and a plurality of light monitoring devices arranged in the nozzle arm and facing the substrate. The light monitoring devices are configured to transmit a laser pulse towards the substrate, in which the laser pulse impinges on the substrate, and then receive a reflected laser pulse from the substrate. The light monitoring devices are configured to identify one or more light sensors of the plurality of the light monitoring devices that received the laser pulse. The light monitoring devices are configured to determine a process quality on the substrate by analyzing a signal of the plurality of light monitoring device from the substrate using a reflected light intensity.
In some embodiments, the light monitoring device is configured to record a fluid motion on the substrate using a camera. In some embodiments, the light monitoring device is configured to send a notification based on the process quality on the substrate when there is a leak from the nozzle on the substrate. In some embodiments, an analyzing device is programmed to send a notification based on the process quality on the substrate when there is a liquid residue on the substrate. In some embodiments, an analyzing device identifies a chemical based on the process quality on the substrate.
The foregoing outlines features of several embodiments or examples so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments or examples introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a divisional of U.S. patent application Ser. No. 17/351,990 filed on Jun. 18, 2021, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17351990 | Jun 2021 | US |
Child | 18787617 | US |