Apparatus and methods for electrochemical processing of microelectronic workpieces

Information

  • Patent Grant
  • 7438788
  • Patent Number
    7,438,788
  • Date Filed
    Tuesday, March 29, 2005
    19 years ago
  • Date Issued
    Tuesday, October 21, 2008
    16 years ago
Abstract
An apparatus and method for electrochemical processing of microelectronic workpieces in a reaction vessel. In one embodiment, the reaction vessel includes: an outer container having an outer wall; a distributor coupled to the outer container, the distributor having a first outlet configured to introduce a primary flow into the outer container and at least one second outlet configured to introduce a secondary flow into the outer container separate from the primary flow; a primary flow guide in the outer container coupled to the distributor to receive the primary flow from the first outlet and direct it to a workpiece processing site; a dielectric field shaping unit in the outer container coupled to the distributor to receive the secondary flow from the second outlet, the field shaping unit being configured to contain the secondary flow separate from the primary flow through at least a portion of the outer container, and the field shaping unit having at least one electrode compartment through which the secondary flow can pass while the secondary flow is separate from the primary flow; an electrode in the electrode compartment; and an interface member carried by the field shaping unit downstream from the electrode, the interface member being in fluid communication with the secondary flow in the electrode compartment, and the interface member being configured to prevent selected matter of the secondary flow from passing to the primary flow.
Description
TECHNICAL FIELD

This application relates to reaction vessels and methods of making and using such vessels in electrochemical processing of microelectronic workpieces.


BACKGROUND

Microelectronic devices, such as semiconductor devices and field emission displays, are generally fabricated on and/or in microelectronic workpieces using several different types of machines (“tools”). Many such processing machines have a single processing station that performs one or more procedures on the workpieces. Other processing machines have a plurality of processing stations that perform a series of different procedures on individual workpieces or batches of workpieces. In a typical fabrication process, one or more layers of conductive materials are formed on the workpieces during deposition stages. The workpieces are then typically subject to etching and/or polishing procedures (i.e., planarization) to remove a portion of the deposited conductive layers for forming electrically isolated contacts and/or conductive lines.


Plating tools that plate metals or other materials on the workpieces are becoming an increasingly useful type of processing machine. Electroplating and electroless plating techniques can be used to deposit copper, solder, permalloy, gold, silver, platinum and other metals onto workpieces for forming blanket layers or patterned layers. A typical copper plating process involves depositing a copper seed layer onto the surface of the workpiece using chemical vapor deposition (CVD), physical vapor deposition (PVD), electroless plating processes, or other suitable methods. After forming the seed layer, a blanket layer or patterned layer of copper is plated onto the workpiece by applying an appropriate electrical potential between the seed layer and an anode in the presence of an electroprocessing solution. The workpiece is then cleaned, etched and/or annealed in subsequent procedures before transferring the workpiece to another processing machine.



FIG. 1 illustrates an embodiment of a single-wafer processing station 1 that includes a container 2 for receiving a flow of electroplating solution from a fluid inlet 3 at a lower portion of the container 2. The processing station 1 can include an anode 4, a plate-type diffuser 6 having a plurality of apertures 7, and a workpiece holder 9 for carrying a workpiece 5. The workpiece holder. 9 can include a plurality of electrical contacts for providing electrical current to a seed layer on the surface of the workpiece 5. When the seed layer is biased with a negative potential relative to the anode 4, it acts as a cathode. In operation the electroplating fluid flows around the anode 4, through the apertures 7 in the diffuser 6 and against the plating surface of the workpiece 5. The electroplating solution is an electrolyte that conducts electrical current between the anode 4 and the cathodic seed layer on the surface of the workpiece 5. Therefore, ions in the electroplating solution plate the surface of the workpiece 5.


The plating machines used in fabricating microelectronic devices must meet many specific performance criteria. For example, many processes must be able to form small contacts in vias that are less than 0.5 μm wide, and are desirably less than 0.1 μm wide. The plated metal layers accordingly often need to fill vias or trenches that are on the order of 0.1 μm wide, and the layer of plated material should also be deposited to a desired, uniform thickness across the surface of the workpiece 5. One factor that influences the uniformity of the plated layer is the mass transfer of electroplating solution at the surface of the workpiece. This parameter is generally influenced by the velocity of the flow of the electroplating solution perpendicular to the surface of the workpiece. Another factor that influences the uniformity of the plated layer is the current density of the electrical field across the surface of the wafer.


One concern of existing electroplating equipment is providing a uniform mass transfer at the surface of the workpiece. Referring to FIG. 1, existing plating tools generally use the diffuser 6 to enhance the uniformity of the fluid flow perpendicular to the face of the workpiece. Although the diffuser 6 improves the uniformity of the fluid flow, it produces a plurality of localized areas of increased flow velocity perpendicular to the surface of the workpiece 5 (indicated by arrows 8). The localized areas generally correspond to the position of the apertures 7 in the diffuser 6. The increased velocity of the fluid flow normal to the substrate in the localized areas increases the mass transfer of the electroplating solution in these areas. This typically results in faster plating rates in the localized areas over the apertures 7. Although many different configurations of apertures have been used in plate-type diffusers, these diffusers may not provide adequate uniformity for the precision required in many current applications.


Another concern of existing plating tools is that the diffusion layer in the electroplating solution adjacent to the surface of the workpiece 5 can be disrupted by gas bubbles or particles. For example, bubbles can be introduced to the plating solution by the plumbing and pumping system of the processing equipment, or they can evolve from inert anodes. Consumable anodes are often used to prevent or reduce the evolvement of gas bubbles in the electroplating solution, but these anodes erode and they can form a passivated film surface that must be maintained. Consumable anodes, moreover, often generate particles that can be carried in the plating solution. As a result, gas bubbles and/or particles can flow to the surface of the workpiece 5, which disrupts the uniformity and affects the quality of the plated layer.


Still another challenge of plating uniform layers is providing a desired electrical field at the surface of the workpiece 5. The distribution of electrical current in the plating solution is a function of the uniformity of the seed layer across the contact surface, the configuration/condition of the anode, and the configuration of the chamber. However, the current density profile on the plating surface can change. For example, the current density profile typically changes during a plating cycle because plating material covers the seed layer, or it can change over a longer period of time because the shape of consumable anodes changes as they erode and the concentration of constituents in the plating solution can change. Therefore, it can be difficult to maintain a desired current density at the surface of the workpiece 5.


SUMMARY

The present invention is directed toward reaction vessels for electrochemical processing of microelectronic workpieces, processing stations including such reaction vessels, and methods for using these devices. Several embodiments of reaction vessels in accordance with the invention solve the problem of providing a desired mass transfer at the workpiece by configuring the electrodes so that a primary flow guide and/or a field shaping unit in the reaction vessel direct a substantially uniform primary fluid flow toward the workpiece. Additionally, field shaping units in accordance with several embodiments of the invention create virtual electrodes such that the workpiece is shielded from the electrodes. This allows for the use of larger electrodes to increase electrode life, eliminates the need to “burn-in” electrodes to decrease downtime, and/or provides the capability of manipulating the electrical field by merely controlling the electrical current to one or more of the electrodes in the vessel. Furthermore, additional embodiments of the invention include interface members in the reaction vessel that inhibit particulates, bubbles and other undesirable matter in the reaction vessel from contacting the workpiece to enhance the uniformity and the quality of the finished surface on the workpieces. The interface members can also allow two different types of fluids to be used in the reaction vessel, such as a catholyte and an anolyte, to reduce the need to replenish additives as often and to add more flexibility to designing electrodes and other components in the reaction vessel.


In one embodiment of the invention, a reaction vessel includes an outer container having an outer wall, a first outlet configured to introduce a primary fluid flow into the outer container, and at least one second outlet configured to introduce a secondary fluid flow into the outer container separate from the primary fluid flow. The reaction vessel can also include a field shaping unit in the outer container and at least one electrode. The field shaping unit can be a dielectric assembly coupled to the second outlet to receive the secondary flow and configured to contain the secondary flow separate from the primary flow through at least a portion of the outer container. The field shaping unit also has at least one electrode compartment through which the secondary flow can pass separately from the primary flow. The electrode is positioned in the electrode compartment.


In a particular embodiment, the field shaping unit has a compartment assembly having a plurality of electrode compartments and a virtual electrode unit. The compartment assembly can include a plurality of annular walls including an inner or first annular wall centered on a common axis and an outer or second annular wall concentric with the first annular wall and spaced radially outward. The annular walls of the field shaping unit can be positioned inside of outer wall of the outer container so that an annular space between the first and second walls defines a first electrode compartment and an annular space between the second wall and the outer wall defines a second electrode compartment. The reaction vessel of this particular embodiment can have a first annular electrode in the first electrode compartment and/or a second annular electrode in the second electrode compartment.


The virtual electrode unit can include a plurality of partitions that have lateral sections attached to corresponding annular walls of the electrode compartment and lips that project from the lateral sections. In one embodiment, the first partition has an annular first lip that defines a central opening, and the second partition has an annular second lip surrounding the first lip that defines an annular opening.


In additional embodiments, the reaction vessel can further include a distributor coupled to the outer container and a primary flow guide in the outer container. The distributor can include the first outlet and the second outlet such that the first outlet introduces the primary fluid flow into the primary flow guide and the second outlet introduces the secondary fluid flow into the field shaping unit separately from the primary flow. The primary flow guide can condition the primary flow for providing a desired fluid flow to a workpiece processing site. In one particular embodiment, the primary flow guide directs the primary flow through the central opening of the first annular lip of the first partition. The secondary flow is distributed to the electrode compartments of the field shaping unit to establish an electrical field in the reaction vessel.


In the operation of one embodiment, the primary flow can pass through a first flow channel defined, at least in part, by the primary flow guide and the lip of the first partition. The primary flow can be the dominant flow through the reaction vessel so that it controls the mass transfer at the workpiece. The secondary flow can generally be contained within the field shaping unit so that the electrical field(s) of the electrode(s) are shaped by the virtual electrode unit and the electrode compartments. For example, in the embodiment having first and second annular electrodes, the electrical effect of the first electrode can act as if it is placed in the central opening defined by the lip of the first partition, and the electrical effect of the second electrode can act as if it is placed in the annular opening between the first and second lips. The actual electrodes, however, can be shielded from the workpiece by the field shaping unit such that the size and shape of the actual electrodes does not affect the electrical field perceived by the workpiece.


One feature of several embodiments is that the field shaping unit shields the workpiece from the electrodes. As a result, the electrodes can be much larger than they could without the field shaping unit because the size and configuration of the actual electrodes does not appreciably affect the electrical field perceived by the workpiece. This is particularly useful when the electrodes are consumable anodes because the increased size of the anodes prolongs their life, which reduces downtime for servicing a tool. Additionally, this reduces the need to “burn-in” anodes because the field shaping element reduces the impact that films on the anodes have on the shape of the electrical field perceived by the workpiece. Both of these benefits significantly improve the operating efficiency of the reaction vessel.


Another feature of several embodiments of the invention is that they provide a uniform mass transfer at the surface of the workpiece. Because the field shaping unit separates the actual electrodes from the effective area where they are perceived by the workpiece, the actual electrodes can be configured to accommodate internal structure that guides the flow along a more desirable flow path. For example, this allows the primary flow to flow along a central path. Moreover, a particular embodiment includes a central primary flow guide that projects the primary flow radially inward along diametrically opposed vectors that create a highly uniform primary flow velocity in a direction perpendicular to the surface of the workpiece.


The reaction vessel can also include an interface member carried by the field shaping unit downstream from the electrode. The interface member can be in fluid communication with the secondary flow in the electrode compartment. The interface member, for example, can be a filter and/or an ion-membrane. In either case, the interface member can inhibit particulates (e.g., particles from an anode) and bubbles in the secondary flow from reaching the surface of the workpiece to reduce non-uniformities on the processed surface. This accordingly increases the quality of the surface of the workpiece. Additionally, in the case of an ion-membrane, the interface member can be configured to prevent fluids from passing between the secondary flow and the primary flow while allowing preferred ions to pass between the flows. This allows the primary flow and the secondary flow to be different types of fluids, such as a catholyte and an anolyte, which reduces the need to replenish additives as often and adds more flexibility to designing electrodes and other features of the reaction vessel.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of an electroplating chamber in accordance with the prior art.



FIG. 2 is an isometric view of an electroprocessing machine having electroprocessing stations for processing microelectronic workpieces in accordance with an embodiment of the invention.



FIG. 3 is a cross-sectional view of an electroprocessing station having a processing chamber for use in an electroprocessing machine in accordance with an embodiment of the invention. Selected components in FIG. 3 are shown schematically.



FIG. 4 is an isometric view showing a cross-sectional portion of a processing chamber taken along line 4-4 of FIG. 8A.



FIGS. 5A-5D are cross-sectional views of a distributor for a processing chamber in accordance with an embodiment of the invention.



FIG. 6 is an isometric view showing a different cross-sectional portion of the processing chamber of FIG. 4 taken along line 6-6 of FIG. 8B.



FIG. 7A is an isometric view of an interface assembly for use in a processing chamber in accordance with an embodiment of the invention.



FIG. 7B is a cross-sectional view of the interface assembly of FIG. 7A.



FIGS. 8A and 8B are top plan views of a processing chamber that provide a reference for the isometric, cross-sectional views of FIGS. 4 and 6, respectively.





DETAILED DESCRIPTION

The following description discloses the details and features of several embodiments of electrochemical reaction vessels for use in electrochemical processing stations and integrated tools to process microelectronic workpieces. The term “microelectronic workpiece” is used throughout to include a workpiece formed from a substrate upon which and/or in which microelectronic circuits or components, data storage elements or layers, and/or micro-mechanical elements are fabricated. It will be appreciated that several of the details set forth below are provided to describe the following embodiments in a manner sufficient to enable a person skilled in the art to make and use the disclosed embodiments. Several of the details and advantages described below, however, may not be necessary to practice certain embodiments of the invention. Additionally, the invention can also include additional embodiments that are within the scope of the claims, but are not described in detail with respect to FIGS. 2-8B.


The operation and features of electrochemical reaction vessels are best understood in light of the environment and equipment in which they can be used to electrochemically process workpieces (e.g., electroplate and/or electropolish). As such, embodiments of integrated tools with processing stations having the electrochemical reaction vessels are initially described with reference to FIGS. 2 and 3. The details and features of several embodiments of electrochemical reaction vessels are then described with reference to FIGS. 4-8B.


A. Selected Embodiments of Integrated Tools with Electrochemical Processing Stations


FIG. 2 is an isometric view of a processing machine 100 having an electrochemical processing station 120 in accordance with an embodiment of the invention. A portion of the processing machine 100 is shown in a cut-away view to illustrate selected internal components. In one aspect of this embodiment, the processing machine 100 can include a cabinet 102 having an interior region 104 defining an interior enclosure that is at least partially isolated from an exterior region 105. The cabinet 102 can also include a plurality of apertures 106 (only one shown in FIG. 1) through which microelectronic workpieces 101 can ingress and egress between the interior region 104 and a load/unload station 110.


The load/unload station 110 can have two container supports 112 that are each housed in a protective shroud 113. The container supports 112 are configured to position workpiece containers 114 relative to the apertures 106 in the cabinet 102. The workpiece containers 114 can each house a plurality of microelectronic workpieces 101 in a “mini” clean environment for carrying a plurality of workpieces through other environments that are not at clean room standards. Each of the workpiece containers 114 is accessible from the interior region 104 of the cabinet 102 through the apertures 106.


The processing machine 100 can also include a plurality of electrochemical processing stations 120 and a transfer device 130 in the interior region 104 of the cabinet 102. The processing machine 100, for example, can be a plating tool that also includes clean/etch capsules 122, electroless plating stations, annealing stations, and/or metrology stations.


The transfer device 130 includes a linear track 132 extending in a lengthwise direction of the interior region 104 between the processing stations. The transfer device 130 can further include a robot unit 134 carried by the track 132. In the particular embodiment shown in FIG. 2, a first set of processing stations is arranged along a first row R1-R1 and a second set of processing stations is arranged long a second row R2-R2. The linear track 132 extends between the first and second rows of processing stations, and the robot unit 134 can access any of the processing stations along the track 132.



FIG. 3 illustrates an embodiment of an electrochemical-processing chamber 120 having a head assembly 150 and a processing chamber 200. The head assembly 150 includes a spin motor 152, a rotor 154 coupled to the spin motor 152, and a contact assembly 160 carried by the rotor 154. The rotor 154 can have a backing plate 155 and a seal 156. The backing plate 155 can move transverse to a workpiece 101 (arrow T) between a first position in which the backing plate 155 contacts a backside of the workpiece 101 (shown in solid lines in FIG. 3) and a second position in which it is spaced apart from the backside of the workpiece 101 (shown in broken lines in FIG. 3). The contact assembly 160 can have a support member 162, a plurality of contacts 164 carried by the support member 162, and a plurality of shafts 166 extending between the support member 162 and the rotor 154. The contacts 164 can be ring-type spring contacts or other types of contacts that are configured to engage a portion of the seed-layer on the workpiece 101. Commercially available head assemblies 150 and contact assemblies 160 can be used in the electroprocessing chamber 120. Particular suitable head assemblies 150 and contact assemblies 160 are disclosed in U.S. Pat. Nos. 6,228,232 and 6,080,691; and U.S. application Ser. Nos. 09/385,784; 09/386,803; 09/386,610; 09/386,197; 09/501,002; 09/733,608; and 09/804,696, all of which are herein incorporated by reference.


The processing chamber 200 includes an outer housing 202 (shown schematically in FIG. 3) and a reaction vessel 204 (also shown schematically in FIG. 3) in the housing 202. The reaction vessel 204 carries at least one electrode (not shown in FIG. 3) and directs a flow of electroprocessing solution to the workpiece 101. The electroprocessing solution, for example, can flow over a weir (arrow F) and into the external housing 202, which captures the electroprocessing solution and sends it back to a tank. Several embodiments of reaction vessels 204 are shown and described in detail with reference to FIGS. 4-8B.


In operation the head assembly 150 holds the workpiece at a workpiece-processing site of the reaction vessel 204 so that at least a plating surface of the workpiece engages the electroprocessing solution. An electrical field is established in the solution by applying an electrical potential between the plating surface of the workpiece via the contact assembly 160 and one or more electrodes in the reaction vessel 204. For example, the contact assembly 160 can be biased with a negative potential with respect to the electrode(s) in the reaction vessel 204 to plate materials onto the workpiece. On the other hand the contact assembly 160 can be biased with a positive potential with respect to the electrode(s) in the reaction vessel 204 to (a) de-plate or electropolish plated material from the workpiece or (b) deposit other materials (e.g., electrophoric resist). In general, therefore, materials can be deposited on or removed from the workpiece with the workpiece acting as a cathode or an anode depending upon the particular type of material used in the electrochemical process.


B. Selected Embodiments of Reaction Vessels for Use in Electrochemical Processing Chambers


FIGS. 4-8B illustrate several embodiments of reaction vessels 204 for use in the processing chamber 200. As explained above, the housing 202 carries the reaction vessel 204. The housing 202 can have a drain 210 for returning the processing fluid that flows out of the reaction vessel 204 to a storage tank, and a plurality of openings for receiving inlets and electrical fittings. The reaction vessel 204 can include an outer container 220 having an outer wall 222 spaced radially inwardly of the housing 202. The outer container 220 can also have a spiral spacer 224 between the outer wall 222 and the housing 202 to provide a spiral ramp (i.e., a helix) on which the processing fluid can flow downward to the bottom of the housing 202. The spiral ramp reduces the turbulence of the return fluid to inhibit entrainment of gasses in the return fluid.


The particular embodiment of the reaction vessel 204 shown in FIG. 4 can include a distributor 300 for receiving a primary fluid flow Fp and a secondary fluid flow F2, a primary flow guide 400 coupled to the distributor 300 to condition the primary fluid flow Fp, and a field shaping unit 500 coupled to the distributor 300 to contain the secondary flow F2 in a manner that shapes the electrical field in the reaction vessel 204. The reaction vessel 204 can also include at least one electrode 600 in a compartment of the field shaping unit 500 and at least one filter or other type of interface member 700 carried by the field shaping unit 500 downstream from the electrode. The primary flow guide 400 can condition the primary flow Fp by projecting this flow radially inwardly relative to a common axis A-A, and a portion of the field shaping unit 500 directs the conditioned primary flow Fp toward the workpiece. In several embodiments, the primary flow passing through the primary flow guide 400 and the center of the field shaping unit 500 controls the mass transfer of processing solution at the surface of the workpiece. The field shaping unit 500 also defines the shape the electric field, and it can influence the mass transfer at the surface of the workpiece if the secondary flow passes through the field shaping unit. The reaction vessel 204 can also have other configurations of components to guide the primary flow Fp and the secondary flow F2 through the processing chamber 200. The reaction vessel 204, for example, may not have a distributor in the processing chamber, but rather separate fluid lines with individual flows can be coupled to the vessel 204 to provide a desired distribution of fluid through the primary flow guide 400 and the field shaping unit. For example, the reaction vessel 204 can have a first outlet in the outer container 220 for introducing the primary flow into the reaction vessel and a second outlet in the outer container for introducing the secondary flow into the reaction vessel 204. Each of these components is explained in more detail below.



FIGS. 5A-5D illustrate an embodiment of the distributor 300 for directing the primary fluid flow to the primary flow guide 400 and the secondary fluid flow to the field shaping unit 500. Referring to FIG. 5A, the distributor 300 can include a body 310 having a plurality of annular steps 312 (identified individually by reference numbers 312a-d) and annular grooves 314 in the steps 312. The outermost step 312d is radially inward of the outer wall 222 (shown in broken lines) of the outer container 220 (FIG. 4), and each of the interior steps 312a-c can carry annular wall (shown in broken lines) of the field shaping unit 500 in a corresponding groove 314. The distributor 300 can also include a first inlet 320 for receiving the primary flow Fp and a plenum 330 for receiving the secondary flow F2. The first inlet 320 can have an inclined, annular cavity 322 to form a passageway 324 (best shown in FIG. 4) for directing the primary fluid flow Fp under the primary flow guide 400. The distributor 300 can also have a plurality of upper orifices 332 along an upper part of the plenum 330 and a plurality of lower orifices 334 along a lower part of the plenum 330. As explained in more detail below, the upper and lower orifices are open to channels through the body 310 to distribute the secondary flow F2 to the risers of the steps 312. The distributor 300 can also have other configurations, such as a “step-less” disk or non-circular shapes.



FIGS. 5A-5D further illustrate one configuration of channels through the body 310 of the distributor 300. Referring to FIG. 5A, a number of first channels 340 extend from some of the lower orifices 334 to openings at the riser of the first step 312a. FIG. 5B shows a number of second channels 342 extending from the upper orifices 332 to openings at the riser of the second step 312b, and FIG. 5C shows a number of third channels 344 extending from the upper orifices 332 to openings at the riser of the third step 312c. Similarly, FIG. 5D illustrates a number of fourth channels 346 extending from the lower orifices 334 to the riser of the fourth step 312d.


The particular embodiment of the channels 340-346 in FIGS. 5A-5D are configured to transport bubbles that collect in the plenum 330 radially outward as far as practical so that these bubbles can be captured and removed from the secondary flow F2. This is beneficial because the field shaping unit 500 removes bubbles from the secondary flow F2 by sequentially transporting the bubbles radially outwardly through electrode compartments. For example, a bubble B in the compartment above the first step 312a can sequentially cascade through the compartments over the second and third steps 312b-c, and then be removed from the compartment above the fourth step 312d. The first channel 340 (FIG. 5A) accordingly carries fluid from the lower orifices 334 where bubbles are less likely to collect to reduce the amount of gas that needs to cascade from the inner compartment above the first step 312a all the way out to the outer compartment. The bubbles in the secondary flow F2 are more likely to collect at the top of the plenum 330 before passing through the channels 340-346. The upper orifices 332 are accordingly coupled to the second channel 342 and the third channel 344 to deliver these bubbles outward beyond the first step 312a so that they do not need to cascade through so many compartments. In this embodiment, the upper orifices 332 are not connected to the fourth channels 346 because this would create a channel that inclines downwardly from the common axis such that it may conflict with the groove 314 in the third step 312c. Thus, the fourth channel 346 extends from the lower orifices 334 to the fourth step 312d.


Referring again to FIG. 4, the primary flow guide 400 receives the primary fluid flow Fp via the first inlet 320 of the distributor 300. In one embodiment, the primary flow guide 400 includes an inner baffle 410 and an outer baffle 420. The inner baffle can have a base 412 and a wall 414 projecting upward and radially outward from the base 412. The wall 414, for example, can have an inverted frusto-conical shape and a plurality of apertures 416. The apertures 416 can be holes, elongated slots or other types of openings. In the illustrated embodiment, the apertures 416 are annularly extending radial slots that slant upward relative to the common axis to project the primary flow radially inward and upward relative to the common axis along a plurality of diametrically opposed vectors. The inner baffle 410 can also includes a locking member 418 that couples the inner baffle 410 to the distributor 300.


The outer baffle 420 can include an outer wall 422 with a plurality of apertures 424. In this embodiment, the apertures 424 are elongated slots extending in a direction transverse to the apertures 416 of the inner baffle 410. The primary flow Fp flows through (a) the first inlet 320, (b) the passageway 324 under the base 412 of the inner baffle 410, (c) the apertures 424 of the outer baffle 420, and then (d) the apertures 416 of the inner baffle 410. The combination of the outer baffle 420 and the inner baffle 410 conditions the direction of the flow at the exit of the apertures 416 in the inner baffle 410. The primary flow guide 400 can thus project the primary flow along diametrically opposed vectors that are inclined upward relative to the common axis to create a fluid flow that has a highly uniform velocity. In alternate embodiments, the apertures 416 do not slant upward relative to the common axis such that they can project the primary flow normal, or even downward, relative to the common axis.



FIG. 4 also illustrates an embodiment of the field shaping unit 500 that receives the primary fluid flow Fp downstream from the primary flow guide 400. The field shaping unit 500 also contains the second fluid flow F2 and shapes the electrical field within the reaction vessel 204. In this embodiment, the field shaping unit 500 has a compartment structure with a plurality of walls 510 (identified individually by reference numbers 510a-d) that define electrode compartments 520 (identified individually by reference numbers 520a-d). The walls 510 can be annular skirts or dividers, and they can be received in one of the annular grooves 314 in the distributor 300. In one embodiment, the walls 510 are not fixed to the distributor 300 so that the field shaping unit 500 can be quickly removed from the distributor 300. This allows easy access to the electrode compartments 520 and/or quick removal of the field shaping unit 500 to change the shape of the electric field.


The field shaping unit 500 can have at least one wall 510 outward from the primary flow guide 400 to prevent the primary flow Fp from contacting an electrode. In the particular embodiment shown in FIG. 4, the field shaping unit 500 has a first electrode compartment 520a defined by a first wall 510a and a second wall 510b, a second electrode compartment 520b defined by the second wall 510b and a third wall 510c, a third electrode compartment 520c defined by the third wall 510c and a fourth wall 510d, and a fourth electrode compartment 520d defined by the fourth wall 510d and the outer wall 222 of the container 220. The walls 510a-d of this embodiment are concentric annular dividers that define annular electrode compartments 520a-d. Alternate embodiments of the field shaping unit can have walls with different configurations to create non-annular electrode compartments and/or each electrode compartment can be further divided into cells. The second-fourth walls 510b-d can also include holes 522 for allowing bubbles in the first-third electrode compartments 520a-c to “cascade” radially outward to the next outward electrode compartment 520 as explained above with respect to FIGS. 5A-5D. The bubbles can then exit the fourth electrode compartment 520d through an exit hole 525 through the outer wall 222. In an alternate embodiment, the bubbles can exit through an exit hole 524.


The electrode compartments 520 provide electrically discrete compartments to house an electrode assembly having at least one electrode and generally two or more electrodes 600 (identified individually by reference numbers 600a-d). The electrodes 600 can be annular members (e.g., annular rings or arcuate sections) that are configured to fit within annular electrode compartments, or they can have other shapes appropriate for the particular workpiece (e.g., rectilinear). In the illustrated embodiment, for example, the electrode assembly includes a first annular electrode 600a in the first electrode compartment 520a, a second annular electrode 600b in the second electrode compartment 520b, a third annular electrode 600c in the third electrode compartment 520c, and a fourth annular electrode 600d in the fourth electrode compartment 520d. As explained in U.S. application Ser. Nos. 60/206,661, 09/845,505, and 09/804,697, all of which are incorporated herein by reference, each of the electrodes 600a-d can be biased with the same or different potentials with respect to the workpiece to control the current density across the surface of the workpiece. In alternate embodiments, the electrodes 600 can be non-circular shapes or sections of other shapes.


Embodiments of the reaction vessel 204 that include a plurality of electrodes provide several benefits for plating or electropolishing. In plating applications, for example, the electrodes 600 can be biased with respect to the workpiece at different potentials to provide uniform plating on different workpieces even though the seed layers vary from one another or the bath(s) of electroprocessing solution have different conductivities and/or concentrations of constituents. Additionally, another the benefit of having a multiple electrode design is that plating can be controlled to achieve different final fill thicknesses of plated layers or different plating rates during a plating cycle or in different plating cycles. Other benefits of particular embodiments are that the current density can be controlled to (a) provide a uniform current density during feature filling and/or (b) achieve plating to specific film profiles across a workpiece (e.g., concave, convex, flat). Accordingly, the multiple electrode configurations in which the electrodes are separate from one another provide several benefits for controlling the electrochemical process to (a) compensate for deficiencies or differences in seed layers between workpieces, (b) adjust for variances in baths of electroprocessing solutions, and/or (c) achieve predetermined feature filling or film profiles.


The field shaping unit 500 can also include a virtual electrode unit coupled to the walls 510 of the compartment assembly for individually shaping the electrical fields produced by the electrodes 600. In the particular embodiment illustrated in FIG. 4, the virtual electrode unit includes first-fourth partitions 530a-530d, respectively. The first partition 530a can have a first section 532a coupled to the second wall 510b, a skirt 534 depending downward above the first wall 510a, and a lip 536a projecting upwardly. The lip 536a has an interior surface 537 that directs the primary flow Fp exiting from the primary flow guide 400. The second partition 530b can have a first section 532b coupled to the third wall 510c and a lip 536b projecting upward from the first section 532b, the third partition 530c can have a first section 532c coupled to the fourth wall 510d and a lip 536c projecting upward from the first section 532c, and the fourth partition 530d can have a first section 532d carried by the outer wall 222 of the container 220 and a lip 536d projecting upward from the first section 532d. The fourth partition 530d may not be connected to the outer wall 222 so that the field shaping unit 500 can be quickly removed from the vessel 204 by simply lifting the virtual electrode unit. The interface between the fourth partition 530d and the outer wall 222 is sealed by a seal 527 to inhibit both the fluid and the electrical current from leaking out of the fourth electrode compartment 520d. The seal 527 can be a lip seal. Additionally, each of the sections 532a-d can be lateral sections extending transverse to the common axis.


The individual partitions 530a-d can be machined from or molded into a single piece of dielectric material, or they can be individual dielectric members that are welded together. In alternate embodiments, the individual partitions 530a-d are not attached to each other and/or they can have different configurations. In the particular embodiment shown in FIG. 4, the partitions 530a-d are annular horizontal members, and each of the lips 536a-d are annular vertical members arranged concentrically about the common axis.


The walls 510 and the partitions 530a-d are generally dielectric materials that contain the second flow F2 of the processing solution for shaping the electric fields generated by the electrodes 600a-d. The second flow F2, for example, can pass (a) through each of the electrode compartments 520a-d, (b) between the individual partitions 530a-d, and then (c) upward through the annular openings between the lips 536a-d. In this embodiment, the secondary flow F2 through the first electrode compartment 520a can join the primary flow Fp in an antechamber just before the primary flow guide 400, and the secondary flow through the second-fourth electrode compartments 520b-d can join the primary flow Fp beyond the top edges of the lips 536a-d. The flow of electroprocessing solution then flows over a shield weir attached at rim 538 and into the gap between the housing 202 and the outer wall 222 of the container 220 as disclosed in International Application No. PCT/US00/10120. The fluid in the secondary flow F2 can be prevented from flowing out of the electrode compartments 520a-d to join the primary flow Fp while still allowing electrical current to pass from the electrodes 600 to the primary flow. In this alternate embodiment, the secondary flow F2 can exit the reaction vessel 204 through the holes 522 in the walls 510 and the hole 525 in the outer wall 222. In still additional embodiments in which the fluid of the secondary flow does not join the primary flow, a duct can be coupled to the exit hole 525 in the outer wall 222 so that a return flow of the secondary flow passing out of the field shaping unit 500 does not mix with the return flow of the primary flow passing down the spiral ramp outside of the outer wall 222. The field shaping unit 500 can have other configurations that are different than the embodiment shown in FIG. 4. For example, the electrode compartment assembly can have only a single wall 510 defining a single electrode compartment 520, and the reaction vessel 204 can include only a single electrode 600. The field shaping unit of either embodiment still separates the primary and secondary flows so that the primary flow does not engage the electrode, and thus it shields the workpiece from the single electrode. One advantage of shielding the workpiece from the electrodes 600a-d is that the electrodes can accordingly be much larger than they could be without the field shaping unit because the size of the electrodes does not have an effect on the electrical field presented to the workpiece. This is particularly useful in situations that use consumable electrodes because increasing the size of the electrodes prolongs the life of each electrode, which reduces downtime for servicing and replacing electrodes.


An embodiment of reaction vessel 204 shown in FIG. 4 can accordingly have a first conduit system for conditioning and directing the primary fluid flow Fp to the workpiece, and a second conduit system for conditioning and directing the secondary fluid flow F2. The first conduit system, for example, can include the inlet 320 of the distributor 300; the channel 324 between the base 412 of the primary flow guide 400 and the inclined cavity 322 of the distributor 300; a plenum between the wall 422 of the outer baffle 420 and the first wall 510a of the field shaping unit 500; the primary flow guide 400; and the interior surface 537 of the first lip 536a. The first conduit system conditions the direction of the primary fluid flow Fp by passing it through the primary flow guide 400 and along the interior surface 537 so that the velocity of the primary flow Fp normal to the workpiece is at least substantially uniform across the surface of the workpiece. The primary flow Fp and the rotation of the workpiece can accordingly be controlled to dominate the mass transfer of electroprocessing medium at the workpiece.


The second conduit system, for example, can include the plenum 330 and the channels 340-346 of the distributor 300, the walls 510 of the field shaping unit 500, and the partitions 530 of the field shaping unit 500. The secondary flow F2 contacts the electrodes 600 to establish individual electrical fields in the field shaping unit 500 that are electrically coupled to the primary flow Fp. The field shaping unit 500, for example, separates the individual electrical fields created by the electrodes 600a-d to create “virtual electrodes” at the top of the openings defined by the lips 536a-d of the partitions. In this particular embodiment, the central opening inside the first lip 536a defines a first virtual electrode, the annular opening between the first and second lips 536a-b defines a second virtual electrode, the annular opening between the second and third lips 536b-c defines a third virtual electrode, and the annular opening between the third and fourth lips 536c-d defines a fourth virtual electrode. These are “virtual electrodes” because the field shaping unit 500 shapes the individual electrical fields of the actual electrodes 600a-d so that the effect of the electrodes 600a-d acts as if they are placed between the top edges of the lips 536a-d. This allows the actual electrodes 600a-d to be isolated from the primary fluid flow, which can provide several benefits as explained in more detail below.


An additional embodiment of the processing chamber 200 includes at least one interface member 700 (identified individually by reference numbers 700a-d) for further conditioning the secondary flow F2 of electroprocessing solution. The interface members 700, for example, can be filters that capture particles in the secondary flow that were generated by the electrodes (i.e., anodes) or other sources of particles. The filter-type interface members 700 can also inhibit bubbles in the secondary flow F2 from passing into the primary flow Fp of electroprocessing solution. This effectively forces the bubbles to pass radially outwardly through the holes 522 in the walls 510 of the field shaping unit 500. In alternate embodiments, the interface members 700 can be ion-membranes that allow ions in the secondary flow F2 to pass through the interface members 700. The ion-membrane interface members 700 can be selected to (a) allow the fluid of the electroprocessing solution and ions to pass through the interface member 700, or (b) allow only the desired ions to pass through the interface member such that the fluid itself is prevented from passing beyond the ion-membrane.



FIG. 6 is another isometric view of the reaction vessel 204 of FIG. 4 showing a cross-sectional portion taken along a different cross-section. More specifically, the cross-section of FIG. 4 is shown in FIG. 8A and the cross-section of FIG. 6 is shown in FIG. 8B. Returning now to FIG. 6, this illustration further shows one embodiment for configuring a plurality of interface members 700a-d relative to the partitions 530a-d of the field shaping unit 500. A first interface member 700a can be attached to the skirt 534 of the first partition 530a so that a first portion of the secondary flow F2 flows past the first electrode 600a, through an opening 535 in the skirt 534, and then to the first interface member 700a. Another portion of the secondary flow F2 can flow past the second electrode 600b to the second interface member 700b. Similarly, portions of the secondary flow F2 can flow past the third and fourth electrodes 600c-d to the third and fourth interface members 700c-d.


When the interface members 700a-d are filters or ion-membranes that allow the fluid in the secondary flow F2 to pass through the interface members 700a-d, the secondary flow F2 joins the primary fluid flow Fp. The portion of the secondary flow F2 in the first electrode compartment 520a can pass through the opening 535 in the skirt 534 and the first interface member 700a, and then into a plenum between the first wall 510a and the outer wall 422 of the baffle 420. This portion of the secondary flow F2 accordingly joins the primary flow Fp and passes through the primary flow guide 400. The other portions of the secondary flow F2 in this particular embodiment pass through the second-fourth electrode compartments 520b-d and then through the annular openings between the lips 536a-d. The second-fourth interface members 700b-d can accordingly be attached to the field shaping unit 500 downstream from the second-fourth electrodes 600b-d.


In the particular embodiment shown in FIG. 6, the second interface member 700b is positioned vertically between the first and second partitions 530a-b, the third interface member 700c is positioned vertically between the second and third partitions 530b-c, and the fourth interface member 700d is positioned vertically between the third and fourth partitions 530c-d. The interface assemblies 710a-d are generally installed vertically, or at least at an upwardly inclined angle relative to horizontal, to force the bubbles to rise so that they can escape through the holes 522 in the walls 510a-d (FIG. 4). This prevents aggregations of bubbles that could potentially disrupt the electrical field from an individual electrode.



FIGS. 7A and 7B illustrate an interface assembly 710 for mounting the interface members 700 to the field shaping unit 500 in accordance with an embodiment of the invention. The interface assembly 710 can include an annular interface member 700 and a fixture 720 for holding the interface member 700. The fixture 720 can include a first frame 730 having a plurality of openings 732 and a second frame 740 having a plurality of openings 742 (best shown in FIG. 7A). The holes 732 in the first frame can be aligned with the holes 742 in the second frame 740. The second frame can further include a plurality of annular teeth 744 extending around the perimeter of the second frame. It will be appreciated that the teeth 744 can alternatively extend in a different direction on the exterior surface of the second frame 740 in other embodiments, but the teeth 744 generally extend around the perimeter of the second frame 740 in a top annular band and a lower annular band to provide annular seals with the partitions 536a-d (FIG. 6). The interface member 700 can be pressed between the first frame 730 and the second frame 740 to securely hold the interface member 700 in place. The interface assembly 710 can also include a top band 750a extending around the top of the frames 730 and 740 and a bottom band 750b extending around the bottom of the frames 730 and 740. The top and bottom bands 750a-b can be welded to the frames 730 and 740 by annular welds 752. Additionally, the first and second frames 730 and 740 can be welded to each other by welds 754. It will be appreciated that the interface assembly 710 can have several different embodiments that are defined by the configuration of the field shaping unit 500 (FIG. 6) and the particular configuration of the electrode compartments 520a-d (FIG. 6).


When the interface member 700 is a filter material that allows the secondary flow F2 of electroprocessing solution to pass through the holes 732 in the first frame 730, the post-filtered portion of the solution continues along a path (arrow Q) to join the primary fluid flow Fp as described above. One suitable material for a filter-type interface member 700 is POREX®, which is a porous plastic that filters particles to prevent them from passing through the interface member. In plating systems that use consumable anodes (e.g., phosphorized copper or nickel sulfamate), the interface member 700 can prevent the particles generated by the anodes from reaching the plating surface of the workpiece.


In alternate embodiments in which the interface member 700 is an ion-membrane, the interface member 700 can be permeable to preferred ions to allow these ions to pass through the interface member 700 and into the primary fluid flow Fp. One suitable ion-membrane is NAFION® perfluorinated membranes manufactured by DuPont®. In one application for copper plating, a NAFION 450 ion-selective membrane is used. Other suitable types of ion-membranes for plating can be polymers that are permeable to many cations, but reject anions and non-polar species. It will be appreciated that in electropolishing applications, the interface member 700 may be selected to be permeable to anions, but reject cations and non-polar species. The preferred ions can be transferred through the ion-membrane interface member 700 by a driving force, such as a difference in concentration of ions on either side of the membrane, a difference in electrical potential, or hydrostatic pressure.


Using an ion-membrane that prevents the fluid of the electroprocessing solution from passing through the interface member 700 allows the electrical current to pass through the interface member while filtering out particles, organic additives and bubbles in the fluid. For example, in plating applications in which the interface member 700 is permeable to cations, the primary fluid flow Fp that contacts the workpiece can be a catholyte and the secondary fluid flow F2 that does not contact the workpiece can be a separate anolyte because these fluids do not mix in this embodiment. A benefit of having separate anolyte and catholyte fluid flows is that it eliminates the consumption of additives at the anodes and thus the need to replenish the additives as often. Additionally, this feature combined with the “virtual electrode” aspect of the reaction vessel 204 reduces the need to “burn-in” anodes for insuring a consistent black film over the anodes for predictable current distribution because the current distribution is controlled by the configuration of the field shaping unit 500. Another advantage is that it also eliminates the need to have a predictable consumption of additives in the secondary flow F2 because the additives to the secondary flow F2 do not effect the primary fluid flow Fp when the two fluids are separated from each other.


From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims
  • 1. A reactor for electrochemical processing of microelectronic workpieces, comprising: a reaction vessel;a workpiece processing zone at an upper portion of the reaction vessel;a first electrode compartment in the reaction vessel located below the processing zone;a second electrode compartment in the reaction vessel located below the processing zone and concentric with the first electrode compartment;a first electrode in the first electrode compartment and a second electrode in the second electrode compartment;a first partition in the reaction vessel and having an upwardly extending annular first lip and a first section joined to the first lip and extending radially outwardly from the first lip;a second partition in the reaction vessel and having an upwardly extending annular second lip and a second section joined to the second lip, with an annular fluid flow path formed between the first and second lips;an interface member in the reaction vessel positioned substantially vertically, or at an upwardly inclined angle, between the first and second partitions, wherein the interface member is configured to prevent selected matter in the processing fluid from passing to the processing zone.
  • 2. The reaction vessel of claim 1 wherein the interface member comprises an ion-membrane that allows selected ions to pass from at least one of the first and second electrode compartments to the processing zone.
  • 3. The reaction vessel of claim 2 wherein the ion-membrane comprises a perfluorinated membrane.
  • 4. The reaction vessel of claim 1 wherein the interface member comprises a filter.
  • 5. The reaction vessel of claim 4 wherein the filter comprises a porous member allowing processing fluid to pass through the filter in an at least partially horizontal direction.
  • 6. The reaction vessel of claim 1 wherein the substantially vertical or upwardly inclined orientation of the interface member generally prevents bubbles from passing from the electrode compartments to the processing zone.
  • 7. The reaction vessel of claim 1 wherein the interface member comprises a ring of filter material oriented at a substantially vertical orientation.
  • 8. The reaction vessel of claim 1 wherein the interface member is an ion-membrane configured to prevent bubbles from passing from the electrode compartment to the processing zone.
  • 9. The reaction vessel of claim 1 wherein the interface member is configured to prevent bubbles from passing from the electrode compartments to the processing zone, and wherein the electrode compartments are configured to exhaust bubbles out of the reaction vessel.
  • 10. A reactor for electrochemically processing a microelectronic workpiece, comprising: a reaction vessel;a workpiece processing zone at an upper portion of the reaction vessel;a first electrode compartment in the reaction vessel below the processing zone;a second electrode compartment in the reaction vessel below the processing zone and concentric with the first electrode compartment;a fluid distributor in the reaction vessel, wherein the distributor includes an inlet for receiving a flow of electrolytic processing fluid, a first channel between the inlet and the first electrode compartment for delivering electrolytic processing fluid to the first electrode compartment, and a second channel between the inlet and the second electrode compartment for delivering electrolytic fluid to the second electrode compartment;a first partition in the reaction vessel and having an upwardly extending annular first lip and a first section joined to the first lip and extending radially outwardly from the first lip;a second partition in the reaction vessel substantially concentric with the first partition, the second partition having an upwardly extending annular second lip and a second section joined to the second lip, with an annular fluid flow path formed between the first and second lips and connecting into the processing zone;an interface member in an at least partially vertical orientation in the annular flow path and adapted to prevent selected matter from passing from the electrode compartments to the processing zone;a first electrode in the first electrode compartment; anda second electrode in the second electrode compartment and concentric with the first electrode.
  • 11. The reactor of claim 10 wherein the interface member comprises an ion-membrane that allows selected ions to pass from at least one of the first and second electrode compartments to the processing zone.
  • 12. The reaction vessel of claim 11 wherein the ion-membrane comprises a perfluorinated membrane.
  • 13. The reaction vessel of claim 10 wherein the interface member comprises a filter.
  • 14. The reaction vessel of claim 13 wherein the filter comprises a porous member.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 09/872,151, filed on May 31, 2001, now U.S. Pat. No. 7,264,698, which is a continuation-in-part of U.S. patent application Ser. No. 09/804,697, filed on Mar. 12, 2001, now U.S. Pat. No. 6,660,137; which is a continuation of International Application No. PCT/US00/10120, filed on Apr. 13, 2000, in the English language and published in the English language as International Publication No. WO00/61498, which claims the benefit of Provisional Application No. 60/129,055, filed on Apr. 13, 1999, all of which are herein incorporated by reference. This application is also a continuation-in-part of U.S. patent application Ser. No. 10/158,220, filed on May 29, 2002 and now pending, which claims the benefit of U.S. Provisional Patent Application No. 60/294,690, filed on May 30, 2001.

US Referenced Citations (493)
Number Name Date Kind
1526644 Pinney Feb 1925 A
1881713 Laukel Oct 1932 A
2256274 Boedecker et al. Sep 1941 A
2707166 Brown et al. Apr 1955 A
3124520 Juda Mar 1964 A
3309263 Grobe Mar 1967 A
3328273 Creutz et al. Jun 1967 A
3537961 White et al. Nov 1970 A
3616284 Bodmer et al. Oct 1971 A
3664933 Clauss May 1972 A
3706635 Kowalski Dec 1972 A
3706651 Leland Dec 1972 A
3716462 Jensen Feb 1973 A
3727620 Orr Apr 1973 A
3798003 Ensley et al. Mar 1974 A
3798033 Yost, Jr. Mar 1974 A
3878066 Dettke et al. Apr 1975 A
3930963 Polichette et al. Jan 1976 A
3953265 Hood Apr 1976 A
3968885 Hassan et al. Jul 1976 A
4000046 Weaver Dec 1976 A
4022679 Koziol et al. May 1977 A
4030015 Herko et al. Jun 1977 A
4046105 Gomez Sep 1977 A
4072557 Schiel Feb 1978 A
4073708 Hicks Feb 1978 A
4082638 Jumer Apr 1978 A
4105532 Haines et al. Aug 1978 A
4113577 Ross et al. Sep 1978 A
4132567 Blackwood Jan 1979 A
4134802 Herr Jan 1979 A
4137867 Aigo Feb 1979 A
4165252 Gibbs Aug 1979 A
4170959 Aigo Oct 1979 A
4222834 Bacon et al. Sep 1980 A
4238310 Eckler et al. Dec 1980 A
4246088 Murphy et al. Jan 1981 A
4259166 Whitehurst Mar 1981 A
4269670 Smith May 1981 A
4276855 Seddon Jul 1981 A
4286541 Blackwood Sep 1981 A
4287029 Shimamura Sep 1981 A
4304641 Grandia et al. Dec 1981 A
4310391 Okinaka et al. Jan 1982 A
4323433 Loch Apr 1982 A
4341629 Uhlinger Jul 1982 A
4360410 Fletcher et al. Nov 1982 A
4378283 Seyffert Mar 1983 A
4384930 Eckles May 1983 A
4391694 Runsten Jul 1983 A
4422915 Wielonski et al. Dec 1983 A
4431361 Bayne Feb 1984 A
4437943 Beck Mar 1984 A
4439243 Titus Mar 1984 A
4439244 Allevato Mar 1984 A
4440597 Wells et al. Apr 1984 A
4443117 Muramoto et al. Apr 1984 A
4449885 Hertel May 1984 A
4451197 Lange May 1984 A
4463503 Applegate Aug 1984 A
4466864 Bacon Aug 1984 A
4469564 Okinaka et al. Sep 1984 A
4469566 Wray Sep 1984 A
4475823 Stone Oct 1984 A
4480028 Kato et al. Oct 1984 A
4495153 Midorikawa Jan 1985 A
4495453 Inaba Jan 1985 A
4500394 Rizzo Feb 1985 A
4529480 Trokhan Jul 1985 A
4541895 Albert Sep 1985 A
4544446 Cady Oct 1985 A
4566847 Maeda Jan 1986 A
4576685 Goffredo et al. Mar 1986 A
4576689 Makkaev Mar 1986 A
4585539 Edson Apr 1986 A
4604177 Sivilotti Aug 1986 A
4604178 Fiegener Aug 1986 A
4634503 Nogavich Jan 1987 A
4639028 Olson Jan 1987 A
4648944 George Mar 1987 A
4652345 McBride et al. Mar 1987 A
4664133 Silvernail May 1987 A
4670126 Messer et al. Jun 1987 A
4685414 DiRico Aug 1987 A
4687552 Early et al. Aug 1987 A
4693017 Oehler et al. Sep 1987 A
4696729 Santini Sep 1987 A
4715934 Tamminen Dec 1987 A
4732785 Brewer Mar 1988 A
4741624 Barroyer May 1988 A
4750505 Inuta Jun 1988 A
4760671 Ward Aug 1988 A
4761214 Hinman Aug 1988 A
4770590 Hugues et al. Sep 1988 A
4778572 Brown Oct 1988 A
4781800 Goldman Nov 1988 A
4790262 Nakayama Dec 1988 A
4800818 Kawaguchi et al. Jan 1989 A
4828654 Reed May 1989 A
4838289 Kottman Jun 1989 A
4849054 Klowak Jul 1989 A
4858539 Schumann Aug 1989 A
4864239 Casarcia et al. Sep 1989 A
4868992 Crafts et al. Sep 1989 A
4880511 Sugita Nov 1989 A
4898647 Luce et al. Feb 1990 A
4902398 Homstad Feb 1990 A
4903717 Sumnitsch Feb 1990 A
4906340 Brown Mar 1990 A
4906341 Yamakawa Mar 1990 A
4913085 Vohringer et al. Apr 1990 A
4924890 Giles et al. May 1990 A
4944650 Matsumoto Jul 1990 A
4948476 Kamperman et al. Aug 1990 A
4949671 Davis Aug 1990 A
4951601 Maydan et al. Aug 1990 A
4959278 Shimauch Sep 1990 A
4962726 Matsushita et al. Oct 1990 A
4979464 Kunze-Concewitz et al. Dec 1990 A
4982215 Matsuoka Jan 1991 A
4982753 Grebinski Jan 1991 A
4988533 Freeman Jan 1991 A
5000827 Schuster Mar 1991 A
5020200 Mimasaka Jun 1991 A
5024746 Stierman et al. Jun 1991 A
5026239 Chiba Jun 1991 A
5032217 Tanaka Jul 1991 A
5047126 Greenberg Sep 1991 A
5048589 Cook et al. Sep 1991 A
5054988 Shiraiwa Oct 1991 A
5055036 Asano et al. Oct 1991 A
5061144 Akimoto Oct 1991 A
5069548 Boehnlein Dec 1991 A
5078852 Yee Jan 1992 A
5083364 Olbrich et al. Jan 1992 A
5096550 Mayer Mar 1992 A
5110248 Asano et al. May 1992 A
5115430 Hahne May 1992 A
5117769 DeBoer Jun 1992 A
5125784 Asano Jun 1992 A
5128912 Hug Jul 1992 A
5135636 Yee Aug 1992 A
5138973 Davis Aug 1992 A
5146136 Ogura Sep 1992 A
5151168 Gilton Sep 1992 A
5155336 Gronet et al. Oct 1992 A
5156174 Thompson Oct 1992 A
5156730 Bhatt Oct 1992 A
5162179 Lewicki, Jr. et al. Nov 1992 A
5168886 Thompson et al. Dec 1992 A
5168887 Thompson et al. Dec 1992 A
5169408 Biggerstaff et al. Dec 1992 A
5172803 Lewin Dec 1992 A
5174045 Thompson et al. Dec 1992 A
5178512 Skrobak Jan 1993 A
5178639 Nishi Jan 1993 A
5180273 Salaya et al. Jan 1993 A
5183377 Becker et al. Feb 1993 A
5186594 Toshima et al. Feb 1993 A
5209180 Shoda May 1993 A
5209817 Ahmad May 1993 A
5217586 Datta Jun 1993 A
5222310 Thompson Jun 1993 A
5224503 Thompson Jul 1993 A
5224504 Thompson et al. Jul 1993 A
5227041 Brogden Jul 1993 A
5228232 Miles Jul 1993 A
5228966 Murata Jul 1993 A
5230371 Lee Jul 1993 A
5232511 Bergman Aug 1993 A
5235995 Bergman et al. Aug 1993 A
5238500 Bergman Aug 1993 A
5252137 Tateyama et al. Oct 1993 A
5252807 Chizinsky Oct 1993 A
5256262 Blomsterberg Oct 1993 A
5256274 Poris Oct 1993 A
5271953 Litteral Dec 1993 A
5271972 Kwok et al. Dec 1993 A
5301700 Kamikawa et al. Apr 1994 A
5302464 Nomura Apr 1994 A
5306895 Ushikoshi et al. Apr 1994 A
5314294 Taniguchi et al. May 1994 A
5316642 Young May 1994 A
5326455 Kubo et al. Jul 1994 A
5330604 Allum et al. Jul 1994 A
5332271 Grant et al. Jul 1994 A
5332445 Bergman Jul 1994 A
5340456 Mehler Aug 1994 A
5344491 Katou Sep 1994 A
5348620 Hermans et al. Sep 1994 A
5349978 Sago Sep 1994 A
5361449 Akimoto Nov 1994 A
5363171 Mack Nov 1994 A
5364504 Smurkoski et al. Nov 1994 A
5366785 Sawdai Nov 1994 A
5366786 Connor et al. Nov 1994 A
5368711 Poris Nov 1994 A
5372848 Blackwell Dec 1994 A
5376176 Kuriyama Dec 1994 A
5377708 Bergman Jan 1995 A
5388945 Garric et al. Feb 1995 A
5391285 Lytle Feb 1995 A
5391517 Gelatos et al. Feb 1995 A
5393624 Ushijima Feb 1995 A
5405518 Hsieh et al. Apr 1995 A
5411076 Matsunaga et al. May 1995 A
5421893 Perlov Jun 1995 A
5421987 Tzanavaras et al. Jun 1995 A
5427674 Langenskiold et al. Jun 1995 A
5429686 Chiu et al. Jul 1995 A
5429733 Ishida Jul 1995 A
5431421 Thompson Jul 1995 A
5431803 DiFranco et al. Jul 1995 A
5437777 Kishi Aug 1995 A
5441629 Kosaki Aug 1995 A
5442416 Tateyama et al. Aug 1995 A
5443707 Mori Aug 1995 A
5445484 Kato et al. Aug 1995 A
5447615 Ishida Sep 1995 A
5454405 Hawes Oct 1995 A
5460478 Akimoto et al. Oct 1995 A
5464313 Ohsawa Nov 1995 A
5472502 Batchelder Dec 1995 A
5474807 Koshiishi Dec 1995 A
5489341 Bergman et al. Feb 1996 A
5500081 Bergman Mar 1996 A
5501768 Hermans et al. Mar 1996 A
5508095 Allum et al. Apr 1996 A
5510645 Fitch Apr 1996 A
5512319 Cook et al. Apr 1996 A
5513594 McClanahan May 1996 A
5514258 Brinket et al. May 1996 A
5516412 Andricacos et al. May 1996 A
5522975 Andricacos et al. Jun 1996 A
5527390 Ono et al. Jun 1996 A
5544421 Thompson et al. Aug 1996 A
5549808 Farooq Aug 1996 A
5551986 Jain Sep 1996 A
5567267 Kazama et al. Oct 1996 A
5571325 Ueyama et al. Nov 1996 A
5575611 Thompson et al. Nov 1996 A
5584310 Bergman Dec 1996 A
5584971 Komino Dec 1996 A
5591262 Sago Jan 1997 A
5593545 Rugowski et al. Jan 1997 A
5597460 Reynolds Jan 1997 A
5597836 Hackler et al. Jan 1997 A
5600532 Michiya et al. Feb 1997 A
5609239 Schlecker Mar 1997 A
5616069 Walker Apr 1997 A
5620581 Ang Apr 1997 A
5639206 Oda et al. Jun 1997 A
5639316 Cabral Jun 1997 A
5641613 Boff et al. Jun 1997 A
5650082 Anderson Jul 1997 A
5651823 Parodi et al. Jul 1997 A
5658183 Sandhu Aug 1997 A
5658387 Reardon Aug 1997 A
5660472 Peuse et al. Aug 1997 A
5660517 Thompson et al. Aug 1997 A
5662788 Sandhu Sep 1997 A
5664337 Davis et al. Sep 1997 A
5666985 Smith Sep 1997 A
5670034 Lowery Sep 1997 A
5676337 Giras et al. Oct 1997 A
5677118 Spara et al. Oct 1997 A
5677824 Harashima Oct 1997 A
5678116 Sugimoto Oct 1997 A
5678320 Thompson et al. Oct 1997 A
5681392 Swain Oct 1997 A
5683564 Reynolds Nov 1997 A
5684654 Searle et al. Nov 1997 A
5684713 Asada et al. Nov 1997 A
5700127 Harada Dec 1997 A
5700180 Sandhu Dec 1997 A
5711646 Ueda et al. Jan 1998 A
5718763 Tateyama Feb 1998 A
5719495 Moslehi Feb 1998 A
5723028 Poris Mar 1998 A
5731678 Zila et al. Mar 1998 A
5744019 Ang Apr 1998 A
5746565 Tepolt May 1998 A
5747098 Larson May 1998 A
5754842 Minagawa May 1998 A
5755948 Lazaro et al. May 1998 A
5759006 Miyamoto et al. Jun 1998 A
5762708 Motoda Jun 1998 A
5762751 Bleck Jun 1998 A
5765444 Bacchi Jun 1998 A
5765889 Nam et al. Jun 1998 A
5776327 Botts et al. Jul 1998 A
5779796 Tomoeda Jul 1998 A
5785826 Greenspan Jul 1998 A
5788829 Joshi et al. Aug 1998 A
5802856 Schaper et al. Sep 1998 A
5815762 Sakai Sep 1998 A
5829791 Kotsubo et al. Nov 1998 A
5843296 Greespan Dec 1998 A
5845662 Sumnitsch Dec 1998 A
5860640 Marohl Jan 1999 A
5868866 Maekawa Feb 1999 A
5871626 Crafts Feb 1999 A
5871805 Lemelson Feb 1999 A
5872633 Holzapfel Feb 1999 A
5882433 Ueno Mar 1999 A
5882498 Dubin Mar 1999 A
5885755 Nakagawa Mar 1999 A
5892207 Kawamura et al. Apr 1999 A
5900663 Johnson May 1999 A
5904827 Reynolds May 1999 A
5908543 Matsunami Jun 1999 A
5916366 Ueyama Jun 1999 A
5924058 Waldhauer Jul 1999 A
5925227 Kobayashi et al. Jul 1999 A
5932077 Reynolds Aug 1999 A
5937142 Moslehi et al. Aug 1999 A
5942035 Hasebe Aug 1999 A
5948203 Wang Sep 1999 A
5952050 Doan Sep 1999 A
5957836 Johnson Sep 1999 A
5964643 Birang Oct 1999 A
5980706 Bleck Nov 1999 A
5985126 Bleck Nov 1999 A
5989397 Laube Nov 1999 A
5989406 Beetz Nov 1999 A
5997653 Yamasaka Dec 1999 A
5998123 Tanaka et al. Dec 1999 A
5999886 Martin Dec 1999 A
6001235 Arken et al. Dec 1999 A
6004047 Akimoto Dec 1999 A
6004828 Hanson Dec 1999 A
6017437 Ting Jan 2000 A
6017820 Ting et al. Jan 2000 A
6025600 Archie Feb 2000 A
6027631 Broadbent Feb 2000 A
6028986 Song Feb 2000 A
6045618 Raoux Apr 2000 A
6051284 Byrne Apr 2000 A
6053687 Kirkpatrick Apr 2000 A
6063190 Hasebe et al. May 2000 A
6072160 Bahl Jun 2000 A
6072163 Armstrong et al. Jun 2000 A
6074544 Reid Jun 2000 A
6077412 Ting Jun 2000 A
6080288 Schwartz et al. Jun 2000 A
6080291 Woodruff et al. Jun 2000 A
6080691 Lindsay et al. Jun 2000 A
6086680 Foster et al. Jul 2000 A
6090260 Inoue et al. Jul 2000 A
6091498 Hanson Jul 2000 A
6099702 Reid Aug 2000 A
6099712 Ritzdorf Aug 2000 A
6103085 Woo et al. Aug 2000 A
6107192 Subrahmanyan et al. Aug 2000 A
6108937 Raaijmakers Aug 2000 A
6110011 Somekh Aug 2000 A
6110346 Reid Aug 2000 A
6122046 Almogy Sep 2000 A
6126798 Reid et al. Oct 2000 A
6130415 Knoot Oct 2000 A
6132289 Labunsky Oct 2000 A
6136163 Cheung Oct 2000 A
6139703 Hanson et al. Oct 2000 A
6139712 Patton Oct 2000 A
6140234 Uzoh et al. Oct 2000 A
6143147 Jelinek Nov 2000 A
6143155 Adams et al. Nov 2000 A
6149729 Iwata Nov 2000 A
6151532 Barone Nov 2000 A
6156167 Patton Dec 2000 A
6157106 Tietz et al. Dec 2000 A
6159073 Wiswesser Dec 2000 A
6159354 Contolini Dec 2000 A
6162344 Reid Dec 2000 A
6162488 Gevelber et al. Dec 2000 A
6168693 Uzoh Jan 2001 B1
6168695 Woodruff Jan 2001 B1
6174425 Simpson Jan 2001 B1
6174796 Takagi et al. Jan 2001 B1
6179983 Reid Jan 2001 B1
6184068 Ohtani et al. Feb 2001 B1
6187072 Cheung Feb 2001 B1
6190234 Swedek Feb 2001 B1
6193802 Pang Feb 2001 B1
6193859 Contolini Feb 2001 B1
6194628 Pang Feb 2001 B1
6197181 Chen Mar 2001 B1
6199301 Wallace Mar 2001 B1
6201240 Dotan Mar 2001 B1
6208751 Almogy Mar 2001 B1
6218097 Bell et al. Apr 2001 B1
6221230 Takeuchi et al. Apr 2001 B1
6228232 Woodruff May 2001 B1
6231743 Etherington May 2001 B1
6234738 Kimata May 2001 B1
6238539 Joyce May 2001 B1
6244931 Pinson Jun 2001 B1
6247998 Wiswesser Jun 2001 B1
6251238 Kaufman et al. Jun 2001 B1
6251528 Uzoh et al. Jun 2001 B1
6251692 Hanson Jun 2001 B1
6254742 Hanson et al. Jul 2001 B1
6255222 Xia Jul 2001 B1
6258220 Dordi Jul 2001 B1
6261433 Landau Jul 2001 B1
6264752 Curtis Jul 2001 B1
6268289 Chowdhury Jul 2001 B1
6270619 Suzuki Aug 2001 B1
6270634 Kumar et al. Aug 2001 B1
6270647 Graham Aug 2001 B1
6277194 Thilderkvist Aug 2001 B1
6277263 Chen Aug 2001 B1
6278089 Young et al. Aug 2001 B1
6280183 Mayur et al. Aug 2001 B1
6280582 Woodruff et al. Aug 2001 B1
6280583 Woodruff et al. Aug 2001 B1
6290865 Lloyd Sep 2001 B1
6297154 Gross et al. Oct 2001 B1
6303010 Woodruff et al. Oct 2001 B1
6309520 Woodruff et al. Oct 2001 B1
6309524 Woodruff et al. Oct 2001 B1
6309981 Mayer Oct 2001 B1
6309984 Nonaka Oct 2001 B1
6318385 Curtis Nov 2001 B1
6318951 Schmidt Nov 2001 B1
6322112 Duncan Nov 2001 B1
6322677 Woodruff Nov 2001 B1
6333275 Mayer Dec 2001 B1
6342137 Woodruff Jan 2002 B1
6350319 Curtiss Feb 2002 B1
6365729 Tyagi et al. Apr 2002 B1
6391166 Wang May 2002 B1
6399505 Nogami Jun 2002 B2
6402923 Mayer Jun 2002 B1
6409892 Woodruff et al. Jun 2002 B1
6413436 Aegerter Jul 2002 B1
6423642 Peace Jul 2002 B1
6428660 Woodruff et al. Aug 2002 B2
6428662 Woodruff et al. Aug 2002 B1
6444101 Stevens Sep 2002 B1
6471913 Weaver et al. Oct 2002 B1
6481956 Hofmeister Nov 2002 B1
6491806 Dubin Dec 2002 B1
6494221 Sellmer Dec 2002 B1
6497801 Woodruff Dec 2002 B1
6527920 Mayer et al. Mar 2003 B1
6562421 Sudo et al. May 2003 B2
6565729 Chen et al. May 2003 B2
6569297 Wilson et al. May 2003 B2
6569299 Reid et al. May 2003 B1
6599412 Graham Jul 2003 B1
6623609 Harris et al. Sep 2003 B2
6632334 Anderson et al. Oct 2003 B2
6654122 Hanson Nov 2003 B1
6660137 Wilson et al. Dec 2003 B2
6672820 Hanson Jan 2004 B1
6678055 Du-Nour et al. Jan 2004 B2
6699373 Woodruff et al. Mar 2004 B2
6709562 Andricacos et al. Mar 2004 B1
6755954 Mayer et al. Jun 2004 B2
6773571 Mayer Aug 2004 B1
7264698 Hanson et al. Sep 2007 B2
20010024611 Woodruff Sep 2001 A1
20010032788 Woodruff Oct 2001 A1
20010043856 Woodruff Nov 2001 A1
20020008036 Wang Jan 2002 A1
20020008037 Wilson Jan 2002 A1
20020022363 Ritzdorf et al. Feb 2002 A1
20020032499 Wilson Mar 2002 A1
20020046952 Graham Apr 2002 A1
20020079215 Wilson et al. Jun 2002 A1
20020096508 Weaver et al. Jul 2002 A1
20020125141 Wilson Sep 2002 A1
20020139678 Wilson Oct 2002 A1
20030020928 Ritzdorf Jan 2003 A1
20030038035 Wilson Feb 2003 A1
20030062258 Woodruff Apr 2003 A1
20030066752 Ritzdorf Apr 2003 A1
20030070918 Hanson Apr 2003 A1
20030127337 Hanson Jul 2003 A1
20040031693 Chen Feb 2004 A1
20040055877 Wilson Mar 2004 A1
20040099533 Wilson May 2004 A1
20040188259 Wilson Sep 2004 A1
20050061676 Wilson et al. Mar 2005 A1
20050109629 Wilson et al. May 2005 A1
20050155864 Woodruff et al. Jul 2005 A1
20050167265 Wilson et al. Aug 2005 A1
20050189214 Hanson Sep 2005 A1
20050194248 Hanson Sep 2005 A1
20050211551 Hanson Sep 2005 A1
20060144699 Klocke Jul 2006 A1
20060144712 Klocke Jul 2006 A1
Foreign Referenced Citations (95)
Number Date Country
591894 Feb 1960 CA
873651 Jun 1971 CA
1055883 Jun 1979 CA
4202194 Jul 1993 DE
195 25 666 Oct 1996 DE
0 140 404 Aug 1984 EP
0047132 Jul 1985 EP
0 677 612 Oct 1985 EP
0 257 670 Mar 1988 EP
0 290 210 Nov 1988 EP
0290210 Nov 1988 EP
0 677 612 Oct 1995 EP
0582019 Oct 1995 EP
0544311 May 1996 EP
0 881 673 May 1998 EP
0 924 754 Oct 1998 EP
0 982 771 Aug 1999 EP
1 037 261 Mar 2000 EP
1 069 213 Jul 2000 EP
0452939 Nov 2000 EP
105174 Dec 2000 EP
1 052 311 Nov 2007 EP
2217107 Mar 1989 GB
2 254 288 Mar 1992 GB
4109955 Oct 1992 GB
41 14 427 Nov 1992 GB
2 279 372 Jun 1994 GB
52-12576 Jan 1977 JP
55-024924 Feb 1980 JP
56-112500 Sep 1981 JP
57-051477 Mar 1982 JP
59-150094 Aug 1984 JP
59-208831 Nov 1984 JP
60-137016 Jul 1985 JP
61-196534 Aug 1986 JP
62-166515 Jul 1987 JP
63-185029 Jul 1988 JP
1048442 Feb 1989 JP
1-120023 May 1989 JP
1-283845 Nov 1989 JP
2200800 Aug 1990 JP
4-94537 Mar 1992 JP
4144150 May 1992 JP
03-103840 Nov 1992 JP
4311591 Nov 1992 JP
5-13322 Jan 1993 JP
5-21332 Jan 1993 JP
5146984 Jun 1993 JP
5195183 Aug 1993 JP
5211224 Aug 1993 JP
5-326483 Dec 1993 JP
6017291 Jan 1994 JP
6-45302 Feb 1994 JP
6073598 Mar 1994 JP
6224202 Aug 1994 JP
7113159 May 1995 JP
7197299 Aug 1995 JP
8-279494 Nov 1995 JP
9-181026 Jul 1997 JP
10-083960 Mar 1998 JP
11036096 Feb 1999 JP
11080993 Mar 1999 JP
11-350185 Dec 1999 JP
2000-087299 Mar 2000 JP
2000-256896 Sep 2000 JP
2001-64795 Mar 2001 JP
2004-097856 Apr 2004 JP
WO-9000476 Jan 1990 WO
WO-0146910 Feb 1990 WO
WO-9104213 Apr 1991 WO
WO-9506326 Mar 1995 WO
WO-9520064 Jul 1995 WO
WO-9916936 Apr 1996 WO
9925902 May 1999 WO
WO-9925904 May 1999 WO
WO-9925905 May 1999 WO
WO-9940615 Aug 1999 WO
WO-9941434 Aug 1999 WO
WO-9945745 Sep 1999 WO
WO-0002675 Jan 2000 WO
WO-0002808 Jan 2000 WO
WO-0003072 Jan 2000 WO
WO-0202808 Jan 2000 WO
WO-0032835 Jun 2000 WO
WO-0061498 Oct 2000 WO
WO-0061837 Oct 2000 WO
WO-0190434 Nov 2001 WO
WO-0191163 Nov 2001 WO
WO-0204886 Jan 2002 WO
WO-0204887 Jan 2002 WO
WO-0217203 Feb 2002 WO
WO-0245476 Jun 2002 WO
WO-03018874 Sep 2002 WO
WO-02097165 Dec 2002 WO
WO-02099165 Dec 2002 WO
Related Publications (1)
Number Date Country
20050189215 A1 Sep 2005 US
Provisional Applications (2)
Number Date Country
60294690 May 2001 US
60129055 Apr 1999 US
Continuations (2)
Number Date Country
Parent 09872151 May 2001 US
Child 10158220 US
Parent PCT/US00/10120 Apr 2000 US
Child 09804697 US
Continuation in Parts (2)
Number Date Country
Parent 10158220 May 2002 US
Child 11096477 US
Parent 09804697 Mar 2001 US
Child 09872151 US