The present invention is related to a method and apparatus for full surface electrotreating of a wafer, where electrotreating includes electroplating or electropolishing.
Multi-level integrated circuit (IC) manufacturing requires many steps of metal and insulator film depositions followed by photoresist patterning and etching or other means of material removal. After photolithography and etching, the resulting wafer or substrate surface is non-planar and contains many features such as vias, lines or channels. Often, these features need to be filled with a specific material such as a metal or other conductor. Once filled with a conductor, the features provide the means to electrically interconnect various parts of the IC.
Electrodeposition is a technique used in IC manufacturing for the deposition of a highly conductive material, such as copper (Cu), into the features on the semiconductor wafer surface.
The terms “wafer” and “substrate” are used interchangeably above and throughout the remaining description. Referring to the example shown in
The electrical contact to the seed layer and/or the barrier layer is typically made along the periphery of the wafer, which is usually round. This approach works well for thick and highly conductive seed layers and small wafer diameters (e.g. 200 mm). However, the trend in the semiconductor industry is to go to larger wafers (e.g. 300 mm) and smaller feature sizes (smaller than 0.18 microns). Smaller feature sizes, as well as cost considerations, require the use of the thinnest possible seed layers. As the wafer size increases, the plating current value also increases. As the seed layer thickness decreases, the sheet resistance increases, and the voltage drop between the middle and the edge of a large wafer also increases. Therefore, voltage drop becomes a major problem, especially for large wafers with thin seed layers. This voltage drop results in non-uniform Cu deposition on the wafer surface, the regions near the contacts being typically thicker than other regions.
One other consideration in Cu plating is the “edge exclusion”. Conventional Cu plating heads typically use contacts around peripheries of the wafers. Consequently, making electrical contact and, at the same time, providing a seal against possible electrolyte leakage is difficult.
There is, therefore, a need to develop new and novel approaches to provide electrical contacts to the surface of semiconductor wafers during electrodeposition of conductors.
It is a primary object of this invention to provide alternative methods of, and alternative apparatuses for, making electrical contact to a wafer frontal side surface which permits complete or full-face electroplating or electropolishing over the entire wafer frontal side surface. According to one method, an anode having an anode area is provided, and electrical contact to the wafer frontal side, using electrical contacts outside the anode area, is made by pushing the electrical contacts against the wafer. The wafer is moved with respect to the anode and the electrical contacts. Polarities of the anode and the electrical contacts can be reversed to alternatively permit deposition of conductive material on the wafer frontal side and removal of conductive material from the wafer frontal side. At least some of the electrical contacts can slide laterally off of the wafer frontal side while the wafer is moved with respect to the anode and the electrical contacts.
Movement of the wafer with respect to the anode and the electrical contacts can be performed by displacing a carrier head which holds the wafer, by displacing the anode and the electrical contacts, or by both displacing the carrier head which holds the wafer and displacing the anode and the electrical contacts. The electrical contacts can be pushed against and touch the frontal side of the wafer in order to make the electrical contact, or can make electrical contact, without touching the wafer frontal side, by way of a “field effect”. The electrical contacts may include any of pins, rollers, wires, and brushes. Pushing the electrical contacts against the wafer can be performed by either moving the wafer toward the contacts or by moving the contacts toward the wafer.
According to another, similar method, conductive material is deposited on or removed from a wafer frontal side of a semiconductor wafer by providing an anode having an anode area which is to face the wafer frontal side, and electrically connecting the wafer frontal side with at least one electrical contact outside of the anode area by pushing the electrical contact and the wafer frontal side into proximity with each other. A potential is applied between the anode and the electrical contact, and the wafer is moved with respect to the anode and the electrical contact. The potential can have a first polarity which produces deposition of the conductive material on the wafer frontal side, and a second potential, having a reversed polarity, can be subsequently applied to remove conductive material. Conversely, the first polarity can be one which produces removal of conductive material from the wafer frontal side, and the second potential can be one which is used to deposit conductive material. Polishing of the conductive material can be performed while applying the potential and moving the wafer with respect to the anode and the electrical contact.
The apparatus for depositing conductive material on or removing conductive material from the wafer frontal side of the semiconductor wafer includes, among other elements, an anode having an anode area which is to face the wafer frontal side. Electrical contacts are located outside of the anode area, and can be electrically connected with the wafer frontal side by pushing the electrical contacts and the wafer frontal side into proximity. As noted above, the wafer can be moved with respect to the anode and the electrical contacts during application of a potential between the anode and the electrical contacts to permit deposition or removal of the conductive material. A contact ring, by which the electrical contacts are supported so as to surround the anode, can be provided, and a porous pad can overlie the anode to permit polishing of the conductive material. The anode area can be either circular or non-circular.
The foregoing and other features, aspects, and advantages will become more apparent from the following detailed description when read in conjunction with the following drawings.
The detailed description provides a number of embodiments and methods for performing the invention. Several examples are given that are intended to set forth the best mode of practicing the invention while not limiting the scope of the invention. For example, references may be made to anode and cathode, while in other cases the more general term electrode may be used. It is anticipated that elements of the invention and terms used herein may be interchangeable with one another and can be modified within the spirit of the invention set forth herein.
A number of approaches to providing improved electrical contacts to the surfaces of semiconductor wafers during electrodeposition of conductors or during electro-etching or electro-polishing are described in U.S. Ser. No. 09/685,934 entitled Device Providing Electrical Contact To The Surface Of A Semiconductor Workpiece During Metal Plating And Method Of Providing Such Contact, incorporated herein by reference. This apparatus described herein can also be used for plating and polishing as disclosed in U.S. Pat. No. 6,402,925 entitled Method And Apparatus For Electrochemical Mechanical Deposition, incorporated herein by reference.
A general depiction of one version of a plating apparatus is shown in
Electrolyte 9a is supplied to the wafer surface through openings in the anode plate and the pad as shown by the arrows in
Electrical connection to the wafer surface can be made by way of multiple electrical contacts formed by pins that come up through the pad 8 and touch the wafer surface. Assuming by way of example that it is the structure shown in
A roller ball, similar to that which could be used in a ball-point pen, can be incorporated at the tips 20T to prevent scratching the wafer surface. Various additional or alternative electrical contact configurations will be described in connection with
For plating, the electrolyte 9a is supplied to the gap 34 between the pad 8 and the wafer surface 22 and thus is brought into physical contact with the wafer surface and the anode plate. In one mode of operation, the wafer 16 is brought down until its surface 22 makes physical contact to the tips 20T of the pins 20. A potential is applied between the cathode plate 30 and the anode plate 9, making the cathode plate 30 more negative than the anode plate 9. Therefore, the wafer surface is also rendered cathodic through the pins 20. Under applied potential, copper plates out of the electrolyte 9a onto the wafer surface 22. By adjusting the gap 34 between the pad 8 and the wafer surface 22 and/or by adjusting the pressure with which the pad 8 and the wafer surface 22 touch each other, one can achieve just plating, or plating and polishing. For effective polishing it is preferred that the pad 8 have an abrasive surface or that the whole pad 8 is abrasive.
During plating, the wafer or substrate 16 and the anode plate/pad assembly 8, 9 should rotate with respect to one another so that plating takes place uniformly. They may also translate in one or two directions. The electrolyte 9a typically fills any gap 34 between the pad 8 and the wafer surface 22. The electrolyte can be either applied through channels in the anode plate 9 and the pad 8 (not shown in
The pin tips 20T, or the tips of other types of electrical contacts which will be described, may be disposed in close proximity to the wafer surface 22 without touching this surface for other applications. Moreover, under a potential applied between the wafer and the anode plate, copper may be either plated onto or removed from the wafer, depending on the polarity of the wafer. Circuitry used for application and adjustment of the applied potential, and for inverting the polarity of the potential, is well known and commonly used.
In the construction shown in
In both approaches described above and in others which will be described, some Cu plating may take place on the exposed cathodic surfaces besides the wafer surface. In the case of pins, for example, exposed regions of the pins may get coated. In case of a conductive pad, the whole pad may get coated. Therefore, it is of utmost importance to select the right conductive materials to be used for the construction of the electrical contacts and the pads. The materials should be such that plating on the Cu coated wafer surface (i.e. the seed layer 4 of
By employing an electrical contact or connection to a wafer surface which is distributed all over the surface rather than just at the periphery, the “edge exclusion” discussed earlier in connection with
Various electrical contact distributions may be used.
Although Cu has been mentioned as the plated metal, practically any metal or conductive alloy can be plated on a wafer/substrate surface. Also, although an electroplating technique and an electroplating apparatus have been described, the same apparatus can be utilized for electroetching and/or electro-polishing. In these cases, the polarity of the voltage applied between the anode and cathode plates is reversed, making the substrate surface more positive. An electro-etching electrolyte may be used. Again, the circuitry used for application and adjustment of the voltage, and for inversion of the voltage polarity, is well known and commonly used.
The roller 120 may be housed in an arrangement that may include, but is not limited to, a contact spring 122 to supply electrical power from the cathode plate (not shown) to the roller 120. The end of the spring 122 also acts as a bearing surface. The spring 122 allows for a gentle but dynamic loading of the roller 120 on the surface of the workpiece. Each spring 122 biases its respective roller toward the wafer surface. In the configuration shown in
The seal arrangement is such that the roller 120 rotates freely with respect to the seal 126. The electrolyte fluid boundary layer, and, if the electrolyte forming the subject matter of copending application Ser. No. 09/544,558 mentioned above is used, especially the additive in the electrolyte, helps lubricate the roller surface. In addition to housing the roller 120 and the seal 126, the tip 128 also prevents the roller 120 from exposure to the electric field.
Besides the advantage of self alignment, the rolling friction between the roller 320 and the substrate or workpiece is greatly reduced, especially when the workpiece rotates or translates during the process of plating Cu out of the electrolyte. The reduced friction minimizes undesirable workpiece scratching and damage as well as particulate generation.
Other suitable support member geometries could also be used. For instance the cross section of the support member may be triangular, or the roller support may rest on the knife edge of a support member. In another configuration, shown in
The roller material, the contact spring material, and the like must be such that they do not degrade or dissolve in the electrolyte of interest. It is also desirable that these materials do not degrade the quality of the material deposited. The roller, for example, can not excessively scratch the deposited film or generate very undesirable particulates. Numerous face contacts may be made around the periphery of the wafer. The individual contacts may be discrete and range from 4 to about 2000 in number, depending on size of the substrate. As the size of the wafer or substrate increases, the number of electrical contacts used should also increase. The roller contacts could also be a continuous race track or a track which is split into several elements. For example, the periphery may be divided into quadrants or octets. Each quadrant, etc., may contain many more or less uniformly dispersed roller contacts or contact tips.
Although the foregoing and following description refers to electroplating, the techniques and apparatuses described are directly applicable to an electro-etching or electro-polishing technique or apparatus. In these cases, the polarity of the voltage applied between the anode and cathode plates is reversed, making the substrate surface more positive. A special electro-etching electrolyte also could be used.
One preferred apparatus which can be used to make electrical contact according to this invention is shown in
Electrical contact to the wafer frontal side 22, rendering the wafer barrier layer and/or the wafer seed layer cathodic, is made outside the anode area via a set of electrical contacts 603. The anode area is shown in phantom in
The wafer 16, in each embodiment of
A contact ring 610, formed of a conductive metal, a conductive metal alloy, or some other appropriately conductive material, surrounds but is spaced from the perimeter of the anode plate 9. The contact ring 610 could, for example, be connected with a housing within which the anode plate 9 is movable back and forth in the z direction. Electrical contacts, in the form of conductive brushes or any of the previously mentioned conductive pins, wires, balls, rollers, etc., or combinations thereof (conductive brushes 613 are shown in
As the contact pins, brushes, etc., on the cathode contact ring 610 touch or otherwise electrically interconnect with the wafer surface 22, the wafer 16 is moved with respect to the anode plate 9. The contacts, such as brushes 613, may make physical contact to the surface of the wafer and may be partially or fully displaced off, or outside, of the wafer surface for certain periods of time during plating. This permits control of the conductive material deposit uniformity.
The foregoing disclosure has been set forth to illustrate the invention and the best mode, and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
This application is a continuation of U.S. Ser. No. 10/265,460, filed Oct. 3, 2002 now U.S. Pat. No. 6,852,208, which is a continuation-in-part of U.S. Ser. No. 09/735,546 filed Dec. 14, 2000 now U.S. Pat. No. 6,482,307, which claims priority to Prov. No. 60/203,944 filed May 12, 2000. U.S. Ser. No. 10/265,460 Oct. 3, 2002 is a continuation-in-part of U.S. Ser. No. 09/685,934 filed Oct. 11, 2000 now U.S. Pat. No. 6,497,800, which claims priority to Prov. No. 60/190,023 filed Mar. 17, 2000, all incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2540602 | Thomas et al. | Feb 1951 | A |
2708181 | Holmes et al. | May 1955 | A |
3328273 | Creutz et al. | Jun 1967 | A |
4430173 | Boudot et al. | Feb 1984 | A |
4713149 | Hoshino | Dec 1987 | A |
4948474 | Miljkovic | Aug 1990 | A |
4954142 | Carr et al. | Sep 1990 | A |
4975159 | Dahms | Dec 1990 | A |
5084071 | Nenadic et al. | Jan 1992 | A |
5256565 | Bernhardt et al. | Oct 1993 | A |
5292399 | Lee et al. | Mar 1994 | A |
5354490 | Yu et al. | Oct 1994 | A |
5466161 | Yumibe et al. | Nov 1995 | A |
5472592 | Lowery | Dec 1995 | A |
5516412 | Andricacos et al. | May 1996 | A |
5567300 | Datta et al. | Oct 1996 | A |
5605637 | Shan et al. | Feb 1997 | A |
5681215 | Sherwood et al. | Oct 1997 | A |
5755859 | Brusic et al. | May 1998 | A |
5762544 | Zuniga et al. | Jun 1998 | A |
5770095 | Sasaki et al. | Jun 1998 | A |
5772833 | Inazawa et al. | Jun 1998 | A |
5773364 | Farkas et al. | Jun 1998 | A |
5793272 | Burghartz et al. | Aug 1998 | A |
5795215 | Guthrie et al. | Aug 1998 | A |
5807165 | Uzoh et al. | Sep 1998 | A |
5840629 | Carpio | Nov 1998 | A |
5858813 | Scherber et al. | Jan 1999 | A |
5862605 | Horie et al. | Jan 1999 | A |
5884990 | Burghartz et al. | Mar 1999 | A |
5897375 | Watts et al. | Apr 1999 | A |
5911619 | Uzoh et al. | Jun 1999 | A |
5922091 | Tsai et al. | Jul 1999 | A |
5930669 | Uzoh | Jul 1999 | A |
5933753 | Simon et al. | Aug 1999 | A |
5954997 | Kaufman et al. | Sep 1999 | A |
5985123 | Koon | Nov 1999 | A |
6004880 | Lin et al. | Dec 1999 | A |
6027631 | Broadbent | Feb 2000 | A |
6063506 | Andricacos et al. | May 2000 | A |
6066030 | Uzoh | May 2000 | A |
6071388 | Uzoh | Jun 2000 | A |
6074544 | Reid et al. | Jun 2000 | A |
6103085 | Woo et al. | Aug 2000 | A |
6106660 | Chen | Aug 2000 | A |
6106680 | Nogami et al. | Aug 2000 | A |
6132586 | Adams et al. | Oct 2000 | A |
6132587 | Jorne et al. | Oct 2000 | A |
6136163 | Cheung et al. | Oct 2000 | A |
6143155 | Adams et al. | Nov 2000 | A |
6153064 | Condra et al. | Nov 2000 | A |
6156167 | Patton et al. | Dec 2000 | A |
6159354 | Contolini et al. | Dec 2000 | A |
6162344 | Reid et al. | Dec 2000 | A |
6176992 | Talieh | Jan 2001 | B1 |
6187152 | Ting et al. | Feb 2001 | B1 |
6217134 | Kato et al. | Apr 2001 | B1 |
6217734 | Uzoh | Apr 2001 | B1 |
6251235 | Talieh et al. | Jun 2001 | B1 |
6251236 | Stevens | Jun 2001 | B1 |
6270646 | Walton et al. | Aug 2001 | B1 |
6299741 | Sun et al. | Oct 2001 | B1 |
6334937 | Batz, Jr. et al. | Jan 2002 | B1 |
6379223 | Sun et al. | Apr 2002 | B1 |
6402925 | Talieh | Jun 2002 | B2 |
6440295 | Wang | Aug 2002 | B1 |
6454926 | Ritzdorf et al. | Sep 2002 | B1 |
6471847 | Talieh et al. | Oct 2002 | B2 |
6482307 | Ashjaee et al. | Nov 2002 | B2 |
6497800 | Talieh et al. | Dec 2002 | B1 |
6506103 | Ohmori et al. | Jan 2003 | B1 |
6527925 | Batz et al. | Mar 2003 | B1 |
6534116 | Basol | Mar 2003 | B2 |
6537144 | Tsai et al. | Mar 2003 | B1 |
6600229 | Mukherjee et al. | Jul 2003 | B2 |
6610190 | Basol et al. | Aug 2003 | B2 |
6630059 | Uzoh et al. | Oct 2003 | B1 |
6653226 | Reid | Nov 2003 | B1 |
6676822 | Talieh | Jan 2004 | B1 |
6848970 | Manens et al. | Feb 2005 | B2 |
6855239 | Jairath | Feb 2005 | B1 |
6902659 | Talieh | Jun 2005 | B2 |
6942780 | Basol et al. | Sep 2005 | B2 |
6958114 | Talieh et al. | Oct 2005 | B2 |
20020074238 | Mayer et al. | Jun 2002 | A1 |
20020102853 | Li et al. | Aug 2002 | A1 |
20030054729 | Lee et al. | Mar 2003 | A1 |
20030226764 | Moore et al. | Dec 2003 | A1 |
20040178060 | Ravkin et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
11279797 | Oct 1999 | JP |
WO 9827585 | Jun 1998 | WO |
WO 0026443 | May 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050034994 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
60203944 | May 2000 | US | |
60190023 | Mar 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10265460 | Oct 2002 | US |
Child | 10947628 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09735546 | Dec 2000 | US |
Child | 10265460 | US | |
Parent | 09685934 | Oct 2000 | US |
Child | 10265460 | Oct 2002 | US |