This Application is a Section 371 National Stage Application of International Application No. PCT/GB2012/051630, filed Jul. 11, 2012, which is incorporated by reference in its entirety and published as WO 2013/024247 A1 on Feb. 21, 2013 and which claims priority of British Application No. 1114172.8, filed Aug. 17, 2011.
The present invention relates to apparatus for treating a gas stream. The invention finds particular application in the treatment of a gas stream exhaust from a process chamber used in the semiconductor or flat panel display industry.
A primary step in the fabrication of semiconductor devices is the formation of a thin film on a semiconductor substrate by chemical reaction of vapour precursors. One known technique for depositing a thin film on a substrate is chemical vapour deposition (CVD), which is commonly plasma enhanced. In this technique, process gases are supplied to a process chamber housing the substrate and react to form a thin film over the surface of the substrate. Examples of gases supplied to the process chamber to form a thin film include, but are not restricted to: Silane and ammonia for the formation of a silicon nitride film; Silane, ammonia and nitrous oxide for the formation of a SiON film; TEOS and one of oxygen and ozone for the formation of a silicon oxide film; and AI(CH3)3 and water vapour for the formation of an aluminium oxide film.
Gases exhausted from a process chamber can be treated with high efficiency and at a relatively low cost using a plasma abatement device. In the plasma abatement process, the gas stream is caused to flow into a high density plasma and under the intensive conditions within the plasma species within the gas stream are subjected to impact with energetic electrons causing dissociation into reactive species which can combine with oxygen or hydrogen to produce relatively stable by-products.
During the plasma abatement of gases that produce solid by-products (for example, silica during silane or TEOS oxidation), blockage problems have been encountered in the reaction chamber located down stream of the plasma flare. The chamber typically consists of a pipe of approximately 30 mm in diameter and 90-150 mm in length. The purpose of the reaction chambers is to contain the hot gases in a restricted volume to allow abatement reactions to occur. However, the chamber may become blocked with for example silica particles adhering to the interior surface when abating for example silane, TEOS or organosilanes.
One way of avoiding the adhesion of particles to the walls of the chamber is to form a water weir over their surface. However, there are nevertheless “dry” areas of the plasma reactor between the electrode (anode) and the reaction chamber, and the electrode itself requires additional cleaning.
The discussion above is merely provided for general background information and is not intended to be used as an aid in determining the scope of the claimed subject matter. The claimed subject matter is not limited to implementations that solve any or all disadvantages noted in the background.
The present invention provides apparatus for treating a gas stream, comprising a plasma generator for generating a plasma flare, a first inlet for conveying the gas stream into the apparatus, and a reaction chamber downstream of the plasma generator in which the gas stream is treated by the generated plasma flare, a second inlet for receiving a liquid into the apparatus for establishing a liquid weir over an interior surface of the reaction chamber for resisting the accumulation of solid deposits from plasma treatment on the interior surface, and a flow director, i.e. a weir guide, having an outer annular surface in flow communication with the second inlet and located relative to the interior surface of the reaction chamber for directing the liquid over the interior surface of the reaction chamber, wherein the flow director further comprises an inner annular surface in flow communication with the outer annular surface of the flow director so that liquid can flow over the interior annular surface of the flow director to resist depositing on the inner annular surface of the flow director.
In a second aspect, the present invention provides a flow director, i.e. a weir guide, having an outer annular surface that, in use, will be arranged in flow communication with a liquid inlet and located relative to the interior surface of a reaction chamber for directing the liquid over the interior surface of the reaction chamber, wherein the flow director further comprises an inner annular surface in flow communication with the outer annular surface so that said liquid can flow over the interior annular surface to resist depositing on the inner annular surface of the flow director.
The Summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detail Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In order that the present invention may be well understood, some embodiments thereof, which are given by way of example only, will now be described with reference to the accompanying drawings, in which:
Referring to
A second inlet 22 receives a liquid 32, typically water, into the apparatus for establishing a liquid weir 24 over an interior surface 26 of the reaction chamber 22 for resisting the accumulation of solid deposits from plasma treatment on the interior surface 26. The reaction chamber is generally cylindrical in this example.
A flow director is shown generally at 28 and is shown in more detail in
The flow director 28 has a barrier surface 40 located between the inner and outer annular surfaces 34, 30 on the one hand and the plasma generator 14 on the other hand for resisting wetting of the plasma generator by the water weirs 24, 38 flowing over the inner and outer annular surfaces. The barrier surface in this example is a flange extending generally radially inwardly to provide a physical barrier between the water weirs 24, 38 and the plasma generator. The barrier surface prevents damage occurring to the plasma generator. The barrier surface defines an aperture 42 through which the plasma flare 16 can extend into the reaction chamber. The aperture should be sufficiently large that the plasma flare does not ordinarily contact it, otherwise it could become degraded by the hot plasma.
The inner and outer annular surfaces are formed by a generally annular wall 44 depending from the barrier surface 40 in a downstream direction. As shown in
The size of this channel is selected to optimise the flow of water around the central orifice. If the channel is too large then a high flow of water enters the central orifice and creates a spray which causes detrimental cooling of the plasma flare. If the channel is too small the water entering the central orifice is insufficient to completely wash the inside walls of the orifice and prevent solid adhesion/build up.
In the example shown in
The outer annular surface has a diameter which is less than the diameter of the reaction chamber and in close proximity thereto so that liquid directed around the outer annular surface is transferred generally tangentially onto the interior surface of the reaction chamber so that the liquid weir is established over substantially all of the interior surface. At a water inlet pressure of 1 to 1.5 bar a 2 mm spacing between the outer annular surface and the interior wall of the reaction chamber has been found to produce good results.
As indicated above the flow director may be an insert located at the mouth of the reaction chamber. In order to ensure thermal robustness and prevent corrosion the flow director, also known as a weir guide, may be manufactured from sintered silicon carbide. This material, as well as other ceramics, has a high thermal stability and is therefore suitable to be located proximate the plasma flare, where the temperature can reach 1500° C. Silicon carbide is also chemically resistant to attack from halogen-containing chemicals (especially, fluorine and HF) which are widely used in the semiconductor industry.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Number | Date | Country | Kind |
---|---|---|---|
1114172.8 | Aug 2011 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2012/051630 | 7/11/2012 | WO | 00 | 7/25/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/024247 | 2/21/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3149222 | Giannini et al. | Sep 1964 | A |
5053093 | Ciccarelli et al. | Oct 1991 | A |
5833888 | Arya et al. | Nov 1998 | A |
20070172398 | Clark et al. | Jul 2007 | A1 |
20110088556 | Langle et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
0712666 | May 1996 | EP |
1297891 | Apr 2003 | EP |
2004209373 | Jul 2004 | JP |
200900135 | Jan 2009 | TW |
2006135272 | Dec 2006 | WO |
2007060385 | May 2007 | WO |
2008093442 | Aug 2008 | WO |
2009066395 | May 2009 | WO |
Entry |
---|
First Office Action dated Mar. 20, 2015 for corresponding Chinese Application No. 201280040090.6. |
PCT International Search Report dated Nov. 30, 2012 for corresponding Application No. PCT/GB2012/051630, filed Jul. 11, 2012. |
PCT International Written Opinion dated Nov. 30, 2012 for corresponding Application No. PCT/GB2012/051630, filed Jul. 11, 2012. |
British Search Report dated Nov. 28, 2011 for corresponding Application No. GB1114172.8. |
Office Action dated Mar. 10, 2016 and Search Report dated Mar. 1, 2016 for corresponding Taiwnese Application No. 101125893. |
Office Action dated Jun. 23, 2016 for corresponding Japanese Application No. JP2014-525482. |
Number | Date | Country | |
---|---|---|---|
20150027373 A1 | Jan 2015 | US |