Apparatus, method and article for providing locations of power storage device collection, charging and distribution machines

Information

  • Patent Grant
  • 10186094
  • Patent Number
    10,186,094
  • Date Filed
    Monday, March 2, 2015
    9 years ago
  • Date Issued
    Tuesday, January 22, 2019
    6 years ago
Abstract
A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). Locations of collection, charging and distribution machines having available charged portable electrical energy storage devices are communicated to or acquired by a mobile device of a user or a navigation system of a user's vehicle. The locations are indicated on a graphical user interface on a map relative to the user's current location. The user may select particular locations on the map to reserve an available portable electrical energy storage device at a particular collection, charging and distribution machine location. The collection, charging and distribution machine locations displayed may also be based on a physical distance or driving time from the current location of the user mobile device or vehicle.
Description
BACKGROUND

Technical Field


The present disclosure generally relates to the distribution of rechargeable electrical power storage devices (e.g., secondary batteries, supercapacitors or ultracapacitors), which may be suitable for use in a variety of fields or applications, for instance transportation and non-transportation uses.


Description of the Related Art


There are a wide variety of uses or applications for portable electrical power storage devices.


One such application is in the field of transportation. Hybrid and all electrical vehicles are becoming increasingly common. Such vehicles may achieve a number of advantages over traditional internal combustion engine vehicles. For example, hybrid or electrical vehicles may achieve higher fuel economy and may have little or even zero tail pipe pollution. In particular, all electric vehicles may not only have zero tail pipe pollution, but may be associated with lower overall pollution. For example, electrical power may be generated from renewable sources (e.g., solar, hydro). Also for example, electrical power may be generated at generation plants that produce no air pollution (e.g., nuclear plants). Also for example, electrical power may be generated at generation plants that burn relatively “clean burning” fuels (e.g., natural gas), which have higher efficiency than internal combustion engines, and/or which employ pollution control or removal systems (e.g., industrial air scrubbers) which are too large, costly or expensive for use with individual vehicles.


Personal transportation vehicles such as combustion engine powered scooters and/or motorbikes are ubiquitous in many places, for example in the many large cities of Asia. Such scooters and/or motorbikes tend to be relatively inexpensive, particularly as compared to automobiles, cars or trucks. Cities with high numbers of combustion engine scooters and/or motorbikes also tend to be very densely populated and suffer from high levels of air pollution. When new, many combustion engine scooters and/or motorbikes provide a relatively low polluting source of personal transportation. For instance, such scooters and/or motorbikes may have higher mileage ratings than larger vehicles. Some scooters and/or motorbikes may even be equipped with basic pollution control equipment (e.g., catalytic converter). Unfortunately, factory specified levels of emission are quickly exceeded as the scooters and/or motorbikes are used and either not maintained and/or as the scooters and/or motorbikes are modified, for example by intentional or unintentional removal of catalytic converters. Often owners or operators of scooters and/or motorbikes lack the financial resources or the motivation to maintain their vehicles.


It is known that air pollution has a negative effect on human health, being associated with causing or exacerbating various diseases (e.g., various reports tie air pollution to emphysema, asthma, pneumonia, and cystic fibrosis, as well as various cardiovascular diseases). Such diseases take large numbers of lives and severely reduce the quality of life of countless others.


BRIEF SUMMARY

Zero tail pipe pollution alternatives to combustion engines would greatly benefit air quality, and hence the health of large populations.


While the zero tail pipe emissions benefit of all-electric vehicles are appreciated, adoption of all-electric vehicles by large populations has been slow. One of the reasons appears to be the cost, particularly the cost of secondary batteries. Another one of the reasons appears to be the limited driving range available on a single charge of a battery, and the relatively long time (e.g., multiple hours) necessary to recharge a secondary battery when depleted.


The approaches described herein may address some of the issues which have limited adoption of zero tail pipe emission technology, particularly in densely crowded cities, and in populations with limited financial resources.


For example, some of the approaches described herein employ collection, charging and distribution machines, which may otherwise be termed as kiosks or vending machines, to collect, charge and distribute electrical power storage devices (e.g., batteries, supercapacitors or ultracapacitors). Such machines may be distributed about a city or other region at a variety of locations, such as convenience stores or existing gas or petrol filling stations.


The collection, charging and distribution machines may maintain a stock of fully charged or almost fully charged electrical storage devices for use by end users. The collection, charging and distribution machines may collect, receive or otherwise accept depleted electrical storage devices, for example as returned by end users, recharging such for reuse by subsequent end users.


Thus, as a battery or other electrical power storage device reaches or approaches the end of its stored charge, an end user may simply replace, exchange or otherwise swap the batteries or other electrical power storage devices. This may address issues related to cost, as well as limited range and relatively long recharging times.


As previously noted, secondary batteries and other electrical power storage devices are relatively expensive. Thus, it is beneficial to stock the least number of electrical power storage devices possible, while still ensuring that demand for such is satisfied.


For these reasons, the ability to have electrical power storage devices available is important to commercial success of any such endeavor. A number of approaches are described herein to provide availability of charged electrical power storage devices to meet current demand.


A method of operating a system for providing locations of collection, charging and distribution machines for collection, charging and distribution of portable electrical energy storage devices may be summarized as including: receiving, by the system for providing locations of collection, charging and distribution machines, information regarding locations of a plurality of collection, charging and distribution machines for collection, charging and distribution of portable electrical energy storage devices; receiving, by the system for providing locations of collection, charging and distribution machines, information regarding a location of a user; and communicating to the user locations of one or more of the plurality of collection, charging and distribution machines that are one or more of: within a particular distance from the location of the user and within a particular driving time from the location of the user.


The particular distance may be within approximately a ten kilometer radius from the location of the user. The driving time may be approximately fifteen minutes. The communicating to the user the locations of one or more of the plurality of collection, charging and distribution machines may include communicating to a mobile device of the user the user locations of one or more of the plurality of collection, charging and distribution machines that are both within the particular distance from the location of the user and within the particular driving time from the location of the user. The method may further include communicating to a mobile device of the user how many portable electrical energy storage devices are available at each of the one or more of the plurality of collection, charging and distribution machines. The method may further include receiving a request originating from the user to reserve a portable electrical energy storage device available at one of the one or more of the plurality of collection, charging and distribution machines; and in response to the request, reserving for the user an available portable electrical energy storage device at the one of the one or more of the plurality of collection, charging and distribution machines. The available portable electrical energy storage device may be reserved for a limited amount of time for the user. The limited amount of time may be based on one or more of: a distance of the one of the one or more of the plurality of collection, charging and distribution machines at which the available portable electrical energy storage device is reserved from the location of the user and a driving time from the location of the user to the one of the one or more of the plurality of collection, charging and distribution machines at which the available portable electrical energy storage device is reserved. The limited amount of time may be approximately fifteen minutes. The reserving for the user an available portable electrical energy storage device may include decreasing a stored value indicative of how many portable electrical energy storage devices are available at the one of the one or more of the plurality of collection, charging and distribution machines. The method may further include communicating to the user how many portable electrical energy storage devices are available at each of the one or more of the plurality of collection, charging and distribution machines; and communicating to the user types of portable electrical energy storage devices that are available at each of the one or more of the plurality of collection, charging and distribution machines. The method may further include receiving a request originating from the user to reserve a portable electrical energy storage device of a particular type of the types of portable electrical energy storage devices that are available at the one or more of the plurality of collection, charging and distribution machines; and in response to the request, reserving for the user an available portable electrical energy storage device of the particular type at the one of the one or more of the plurality of collection, charging and distribution machines.


A system for providing locations of collection, charging and distribution machines for collection, charging and distribution of portable electrical energy storage devices may be summarized as including at least one processor of the system for providing locations of collection, charging and distribution machines; and at least one processor-readable memory of the system for providing locations of collection, charging and distribution machines that stores instructions executable by the at least one processor to cause the at least one processor to: receive information regarding locations of one or more of a plurality of collection, charging and distribution machines that are one or more of: within a particular distance from a location of a user and within a particular driving time from the location of the user; and display a map on which the location of the user is indicated and on which one or more of the locations of the one or more of the plurality of collection, charging and distribution machines are indicated.


The instructions may be executable by the at least one processor to further cause the at least one processor to: receive information regarding the current location of the user; and compare the current location of the user with the locations of the one or more of a plurality of collection, charging and distribution machines. The instructions may be executable by the at least one processor to further cause the at least one processor to: indicate on the displayed map the location of the user and the locations of the one or more of the plurality of collection, charging and distribution machines based on the comparison of the current location of the user with the locations of the one or more of a plurality of collection, charging and distribution machines. The instructions may be executable by the at least one processor to further cause the at least one processor to: indicate on the displayed map whether a portable electrical energy storage device is available at each of the one or more of the plurality of collection, charging and distribution machines for which a location is indicated on the displayed map. The instructions may be executable by the at least one processor to further cause the at least one processor to: receive information regarding availability of portable electrical energy storage devices at each of the one or more of the plurality of collection, charging and distribution machines; and indicate on the displayed map locations only of the one or more of the plurality of collection, charging and distribution machines at which at least one portable electrical energy storage device is available based on the received information regarding availability of portable electrical energy storage devices. The instructions may be executable by the at least one processor to further cause the at least one processor to: receive from the user a selection of one of the collection, charging and distribution machine locations indicated on the displayed map; communicating the selection to reserve an available portable electrical energy storage device at a collection, charging and distribution machine at the selected location. The instructions may be executable by the at least one processor to further cause the at least one processor to: display an indication on a device of the user that the available portable electrical energy storage device at the collection, charging and distribution machine at the selected location has been reserved for the user. The instructions may be executable by the at least one processor to further cause the at least one processor to: display an indication on a device of the user of how much time is remaining until a reservation of the portable electrical energy storage device at the collection, charging and distribution machine at the selected location expires.


A non-transitory computer-readable medium that stores instructions that when executed by a system for providing locations of collection, charging and distribution machines for collection, charging and distribution of portable electrical energy storage devices, may cause the system for providing locations of collection, charging and distribution machines to perform: receiving from a user an indication of a selection of one of a plurality of collection, charging and distribution machine locations indicated on a map displayed on a device of the user; communicating the selection to reserve an available portable electrical energy storage device at a collection, charging and distribution machine at the selected location.


The instructions may further cause the system for providing locations of collection, charging and distribution machines to perform: indicating on the displayed map a location of a user; receiving from the user an indication of a selection of a distance; determining which collection, charging and distribution machines of a plurality of collection, charging and distribution machines have one or more portable electrical energy storage devices available and are within the selected distance from the user; and indicating on the displayed map selectable locations of the determined collection, charging and distribution machines. The instructions may further cause the system for providing locations of collection, charging and distribution machines to perform: indicating on the displayed map a location of a user; receiving from the user an indication of a selection of a driving time; determining which collection, charging and distribution machines of a plurality of collection, charging and distribution machines have one or more portable electrical energy storage devices available and are within the selected driving time; and indicating on the displayed map selectable locations of the determined collection, charging and distribution machines. The instructions may further cause the system for providing locations of collection, charging and distribution machines to perform: communicating driving directions on the displayed map to the collection, charging and distribution machine at the selected location.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.



FIG. 1 is a schematic view of a collection, charging and distribution machine along with a number of electrical power storage devices according to one non-limiting illustrated embodiment, along with an electric scooter or motorbike, and an electrical service provided via an electrical grid.



FIG. 2 is a block diagram of the collection, charging and distribution machine of FIG. 1, according to one non-limiting illustrated embodiment.



FIG. 3 is a block diagram of a system for providing locations of collection, charging and distribution machines, such as that of FIG. 1, according to one non-limiting illustrated embodiment.



FIG. 4 is a schematic view of the collection, charging and distribution machine management system of FIG. 3, according to one non-limiting illustrated embodiment.



FIG. 5 is an example user interface indicating locations of collection, charging and distribution machines, according to one non-limiting illustrated embodiment.



FIG. 6 is a flow diagram showing a high level method of providing locations of collection, charging and distribution machines, according to one non-limiting illustrated embodiment.



FIG. 7 is a flow diagram showing a low level method of providing locations of collection, charging and distribution machines useful in the method of FIG. 6, according to one non-limiting illustrated embodiment.



FIG. 8 is a flow diagram showing a high level method of reserving a portable electrical energy storage device, according to one non-limiting illustrated embodiment, useful in the method of FIG. 5 and FIG. 6.



FIG. 9 is a flow diagram showing a high level method of providing a user interface for providing locations of collection, charging and distribution machines, according to one non-limiting illustrated embodiment.





DETAILED DESCRIPTION

In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with vending apparatus, batteries, supercapacitors or ultracapacitors, power converters including but not limited to transformers, rectifiers, DC/DC power converters, switch mode power converters, controllers, and communications systems and structures and networks have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.


Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense that is as “including, but not limited to.”


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment.


The use of ordinals such as first, second and third does not necessarily imply a ranked sense of order, but rather may only distinguish between multiple instances of an act or structure.


Reference to portable electrical power storage device means any device capable of storing electrical power and releasing stored electrical power including but not limited to batteries, supercapacitors or ultracapacitors. Reference to batteries means chemical storage cell or cells, for instance rechargeable or secondary battery cells including but not limited to nickel cadmium alloy or lithium ion battery cells.


The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.



FIG. 1 shows an environment 100 including a collection, charging and distribution machine 102, according to one illustrated embodiment.


The collection, charging and distribution machine 102 may take the form of a vending machine or kiosk. The collection, charging and distribution machine 102 has a plurality of receivers, compartments or receptacles 104a, 104b-104n (only three called out in FIG. 1, collectively 104) to removably receive portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors) 106a-106n (collectively 106) for collection, charging and distribution. As illustrated in FIG. 1, some of the receivers 104 are empty, while other receivers 104 hold portable electrical energy storage devices 106. While FIG. 1 shows a single portable electrical energy storage device 106 per receiver 104, in some embodiments each receiver 104 may hold two or even more portable electrical energy storage devices 106. For example, each of the receivers 104 may be sufficiently deep to receive three portable electrical energy storage devices 106. Thus, for example, the collection, charging and distribution machine 102 illustrated in FIG. 1 may have a capacity capable of simultaneously holding 40, 80 or 120 portable electrical energy storage devices 106.


The portable electrical energy storage devices 106 may take a variety of forms, for example batteries (e.g., array of battery cells) or supercapacitors or ultracapacitors (e.g., array of ultracapacitor cells). For example, the portable electrical energy storage devices 106z may take the form of rechargeable batteries (i.e., secondary cells or batteries). The portable electrical energy storage devices 106z may, for instance, be sized to physically fit, and electrically power, personal transportation vehicles, such as all-electric scooters or motorbikes 108. As previously noted, combustion engine scooters and motorbikes are common in many large cities, for example in Asia, Europe and the Middle East. The ability to conveniently access charged batteries throughout a city or region may allow the use of all-electric scooters and motorbikes 108 in place of combustion engine scooters and motorbikes, thereby alleviating air pollution, as well as reducing noise.


The portable electrical energy storage devices 106 (only visible for portable electrical energy storage device 106z) may include a number of electrical terminals 110a, 110b (two illustrated, collectively 110), accessible from an exterior of the portable electrical energy storage device 106z. The electrical terminals 110 allow charge to be delivered from the portable electrical energy storage device 106z, as well as allow charge to be delivered to the portable electrical energy storage device 106z for charging or recharging the same. While illustrated in FIG. 1 as posts, the electrical terminals 110 may take any other form which is accessible from an exterior of the portable electrical energy storage device 106z, including electrical terminals positioned within slots in a battery housing.


The collection, charging and distribution machine 102 is positioned at some location 112 at which the collection, charging and distribution machine 102 is conveniently and easily accessible by various end users. The location may take any of a large variety of forms, for example, a retail environment such as a convenience store, supermarket, gas or petrol station, or service shop. Alternatively, the collection, charging and distribution machine 102 may stand alone at a location 112 not associated with an existing retail or other business, for example in public parks or other public places.


Thus, for example, collection, charging and distribution machines 102 may be located at each store of a chain of convenience stores throughout a city or region. Such may advantageously rely on the fact that convenience stores are often sited or distributed based on convenience to the target population or demographic. Such may advantageously rely on pre-existing leases on storefronts or other retail locations to allow an extensive network of collection, charging and distribution machines 102 to be quickly developed in a city or region. Quickly achieving a large network which is geographically well distributed to serve a target population enhances the ability to depend on such a system and likely commercial success of such an effort. Providing a system in which locations of the collection, charging and distribution machines are provided to and can be easily found by users of the collection, charging and distribution machines also enhances the ability to depend on such a system and likely commercial success of such an effort. The ability to quickly provide locations of the collection, charging and distribution machines 102 to users as well as provide the ability for users to select and reserve portable electrical energy storage devices at selected collection, charging and distribution machines 102 is addressed herein.


The location 112 may include an electrical service 114 to receive electrical power from a generating station (not shown) for example via a grid 116. The electrical service 114 may, for example, include one or more of an electrical service meter 114a, a circuit panel (e.g., circuit breaker panel or fuse box) 114b, wiring 114c, and an electrical outlet 114d. Where the location 112 is an existing retail or convenience store, the electrical service 114 may be an existing electrical service, so may be somewhat limited in rating (e.g., 120 volts, 240 volts, 220 volts, 230 volts, 15 amps).


Neither the operator of the retail location 112, nor the owner, distributor or operator of the collection, charging and distribution machine 102 may wish to bear the costs of upgrading the electrical service 114. Yet, quick charging is desired in order to maintain an adequate supply of portable electrical energy storage devices 106 available for use by end users. The ability to quickly charge while maintaining existing or otherwise limited rated electrical service is addressed in U.S. provisional patent application Ser. No. 61/511,900, entitled “APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES” and filed Jul. 26, 2011.


Optionally, the collection, charging and distribution machine 102 may include or be coupled to a source of renewable electrical power. For example, where installed in an outside location the collection, charging and distribution machine 102 may include an array of photovoltaic (PV) cells 118 to produce electrical power from solar insolation. Alternatively, the collection, charging and distribution machine 102 may be electrically coupled to a microturbine (e.g., wind turbine) or PV array positioned elsewhere at the location 112, for instance on a roof top or pole mounted at a top of a pole (not shown).


The collection, charging and distribution machine 102 may be communicatively coupled to one or more remotely located computer systems, such as back end or back office systems (only one shown) 120. The back end or back office systems 120 may collect data from and/or control a plurality of collection, charging and distribution machines 102 distributed about an area, such as a city. The communications may occur over one or more communications channels including one or more networks 122, or non-networked communications channels. Communications may be over one or more wired communications channels (e.g., twisted pair wiring, optical fiber), wireless communications channels (e.g., radio, microwave, satellite, 801.11 compliant). Networked communications channels may include one or more local area networks (LANs), wide area networks (WANs), extranets, intranets, or the Internet including the Worldwide Web portion of the Internet.


The collection, charging and distribution machine 102 may include a user interface 124. The user interface may include a variety of input/output (I/O) devices to allow an end user to interact with the collection, charging and distribution machine 102. Various I/O devices are called out and described in reference to FIG. 2, discussion of which follows.



FIG. 2 shows the collection, charging and distribution machine 102 of FIG. 1, according to one illustrated embodiment.


The collection, charging and distribution machine 102 includes a control subsystem 202, a charging subsystem 204, a communications subsystem 206, and a user interface subsystem 208.


The control subsystem 202 includes a controller 210, for example a microprocessor, microcontroller, programmable logic controller (PLC), programmable gate array (PGA), application specific integrated circuit (ASIC) or another controller capable of receiving signals from various sensors, performing logical operations, and sending signals to various components. Typically, the controller 210 may take the form of a microprocessor (e.g., INTEL, AMD, ATOM). The control subsystem 202 may also include one or more non-transitory processor- or computer-readable storage media, for example read-only memory (ROM) 212, random access memory (RAM) 214, and data store 216 (e.g., solid-state storage media such as flash memory or EEPROM, spinning storage media such as hard disk). The non-transitory processor- or computer-readable storage media 212, 214, 216 may be in addition to any non-transitory storage medium (e.g., registers) which is part of the controller 210. The control subsystem 202 may include one or more buses 218 (only one illustrated) coupling various components together, for example one or more power buses, instruction buses, data buses, etc.


As illustrated, the ROM 212, or some other one of the non-transitory processor- or computer-readable storage media 212, 214, 216, stores instructions and/or data or values for variables or parameters. The sets of data may take a variety of forms, for example a lookup table, a set of records in a database, etc. The instructions and sets of data or values are executable by the controller 110. Execution of the instructions and sets of data or values causes the controller 110 to perform specific acts to cause the collection, charging and distribution machine 102 to collect, charge, and distribute portable energy storage devices. Specific operation of the collection, charging and distribution machine 102 is described herein and also below with reference to various flow diagrams (FIGS. 14-16).


The controller 210 may use RAM 214 in a conventional fashion, for volatile storage of instructions, data, etc. The controller 210 may use data store 216 to log or retain information, for example telemetric information related to collection, charging and/or distribution or collection of the portable electrical power storage devices 106 and/or operation of the collection, charging and distribution machine 102 itself. The instructions are executable by the controller 210 to control operation of the collection, charging and distribution machine 102 in response to end user or operator input, and using data or values for the variables or parameters.


The control subsystem 202 receives signals from various sensors and/or other components of the collection, charging and distribution machine 102 which include information that characterizes or is indicative of operation, status, or condition of such other components. Sensors are represented in FIG. 2 by the letter S appearing in a circle along with appropriate subscript letters.


For example, one or more position sensors SP1-SPN may detect the presence or absence of portable electrical power storage device 106 at each of the receivers 104. The position sensors SP1-SPN may take a variety of forms. For example, the position sensors SP1-SPN may take the form of mechanical switches that are closed, or alternatively opened, in response to contact with a portion of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104. Also for example, the position sensors SP1-SPN may take the form of optical switches (i.e., optical source and receiver) that are closed, or alternatively opened, in response to contact with a portion of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104. Also for example, the position sensors SP1-SPN may take the form of electrical sensors or switches that are closed, or alternatively opened, in response to detecting a closed circuit condition created by contact with the terminals 110 of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104, or an open circuit condition that results from the lack of a respective portable electrical power storage device 106 in the receiver 104. These examples are intended to be non-limiting, and it is noted that any other structures and devices for detecting the presence/absence, the availability, or even the insertion of the portable electrical power storage devices 106 into receivers may be employed.


For example, one or more charge sensors SC1-SCN may detect charge of the portable electrical power storage devices 106 at each of the receivers 104. Charge sensors SC1-SCN may detect the amount of charge stored by the portable electrical power storage devices 106. Charge sensors SC1-SCN may additionally detect an amount of charge and/or rate of charging being supplied to ones of the portable electrical power storage devices 106 at each of the receivers 104. Such may allow assessment of current (i.e., temporal) charge condition or status of each portable electrical power storage device 106, as well as allow feedback control over charging of same, including control over rate of charging. Charge sensors SC1-SCN may include any variety of current and/or voltage sensors.


For example, one or more charge sensors ST1 (only one shown) may detect or sense a temperature at the receivers 104 or in the ambient environment.


The control subsystem 202 provides signals to various actuators and/or other components responsive to control signals, which signals include information that characterizes or is indicative of an operation the component is to perform or a state or condition in which the components should enter. Control signals, actuators or other components responsive to control signals are represented in FIG. 2 by the letter C appearing in a circle along with appropriate subscript letters.


For example, one or more engine control signals CA1-CAN may affect the operation of one or more actuators 220 (only one illustrated). For instance, a control signal CA1 may cause movement of an actuator 220 between a first and a second position or change a magnetic field produced by the actuator 220. The actuator 220 may take any of a variety of forms, including but not limited to a solenoid, an electric motor such as a stepper motor, or an electromagnet. The actuator 220 may be coupled to operate a latch, lock or other retainer mechanism 222. The latch, lock or other retainer mechanism 222 may selectively secure or retain one or more portable electrical power storage devices 106 (FIG. 1) in the receiver 104 (FIG. 1). For instance, the latch, lock or other retainer mechanism 222 may physically couple to a complementary structure that is part of a housing of the portable electrical power storage devices 106 (FIG. 1). Alternatively, the latch, lock or other retainer mechanism 222 may magnetically couple to a complementary structure that is part of a housing of the portable electrical power storage devices 106 (FIG. 1). Also for instance, the latch, lock or other mechanism may open a receiver 104 (FIG. 1), or may allow a receiver 104 to be opened, to receive a partially or fully discharged portable electrical power storage device 106 for charging. For example, the actuator may open and/or close a door to the receiver 104 (FIG. 1), to selectively provide access to a portable electrical power storage device 106 (FIG. 1) received therein. Also for example, the actuator may open and/or close a latch or lock, allowing an end user to open and/or close a door to the receiver 104 (FIG. 1), to selectively provide access to a portable electrical power storage device 106 (FIG. 1) received therein.


The control subsystem 202 may include one or more ports 224a to provide control signals to one or more ports 224b of the charging subsystem 206. The ports 224a, 224b may provide bi-directional communications. The control subsystem 202 may include one or more ports 226a to provide control signals to one or more ports 226b of the user interface subsystem 208. The ports 226a, 226b may provide bi-directional communications.


The charging subsystem 204 includes various electrical and electronic components to charge portable electrical power storage devices 106 when positioned or received in the receivers 104. For example, the charging subsystem 204 may include one or more power buses or power bus bars, relays, contactors or other switches (e.g., insulated gate bipolar transistors or IGBTs, metal oxide semiconductor transistors or MOSFETs), rectifier bridge(s), current sensors, ground fault circuitry, etc. The electrical power is supplied via contacts that can take any of a variety of forms, for instance terminals, leads, posts, etc. The contacts allow electrical coupling of various components. Some possible implementations are illustrated in FIG. 2. Such is not intended to be exhaustive. Additional components may be employed while other components may be omitted.


The illustrated charging subsystem 204 includes a first power converter 230 that receives electrical power from the electrical service 114 (FIG. 1) via a line or cord 232. The power will typically be in the form of single, two or three phase AC electrical power. As such, the first power converter 230 may need to convert and otherwise condition the electrical power received via the electrical services 114 (FIG. 1), for example for rectifying an AC waveform to DC, transforming voltage, current, phase, as well as reducing transients and noise. Thus, the first power converter 230 may include a transformer 234, rectifier 236, DC/DC power converter 238, and filter(s) 240.


The transformer 234 may take the form of any of a variety of commercially available transformers with suitable ratings for handling the power received via the electrical service 114 (FIG. 1). Some embodiments may employ multiple transformers. The transformer 234 may advantageously provide galvanic isolation between the components of the collection, charging and distribution machine 102 and the grid 116 (FIG. 1). The rectifier 236 may take any of a variety of forms, for example a full bridge diode rectifier or a switch mode rectifier. The rectifier 236 may be operated to transform AC electrical power to DC electrical power. The DC/DC power converter 238 may be any of a large variety of forms. For example, DC/DC power converter 238 may take the form a switch mode DC/DC power converter, for instance employing IGBTs or MOSFETs in a half or full bridge configuration, and may include one or more inductors. The DC/DC power converter 238 may have any number of topologies including a boost converter, buck converter, synchronous buck converter, buck-boost converter or fly-back converter. The filter(s) 240 may include one or more capacitors, resistors, Zener diodes or other elements to suppress voltage spikes, or to remove or reduce transients and/or noise.


The illustrated charging subsystem 204 may also receive electrical power from a renewable power source, for example the PV array 118 (FIG. 1). Such may be converted or conditioned by the first power converter 230, for example being supplied directly to the DC/DC power converter 238, bypassing the transformer 236 and/or rectifier 236. Alternatively, the illustrated charging subsystem 204 may include a dedicated power converter to convert or otherwise condition such electrical power.


The illustrated charging subsystem 204 may optionally include second power converter 242 that receives electrical power from one or more portable electrical power storage devices 106 (FIG. 1) via one or more lines 244, for charging other ones of the portable electrical power storage devices 106. As such, the second power converter 242 may need to convert and/or otherwise condition the electrical power received from portable electrical power storage devices 106, for example optionally transforming voltage or current, as well as reducing transients and noise. Thus, the second power converter 242 may optionally include a DC/DC power converter 246 and/or filter(s) 248. Various types of DC/DC power converters and filters are discussed above.


The illustrated charging subsystem 204 includes a plurality of switches 250 responsive to the control signals delivered via ports 224a, 224b from the control subsystem 202. The switches may be operable to selectively couple a first number or set of portable electrical power storage devices 106 to be charged from electrical power supplied by both the electrical service via the first power converter 230 and from electrical power supplied by a second number or set of portable electrical power storage devices 106. The first number or set of portable electrical power storage devices 106 may include a single portable electrical power storage device 106, two, or even more portable electrical power storage devices 106. The second number or set of portable electrical power storage devices 106 may include a single portable electrical power storage device 106, two, or even more portable electrical power storage devices 106. The portable electrical power storage devices 106 are represented in FIG. 2 as loads L1, L2-LN.


The communications subsystem 206 may additionally include one or more communications modules or components which facilitate communications with the various components of a back end or back office system 120 (FIG. 1). The communications subsystem 206 may, for example, include one or more modems 252 or one or more Ethernet or other types of communications cards or components 254. A port 256a of the control subsystem 202 may communicatively couple the control subsystem 202 with a port 256b of the communications subsystem 206. The communications subsystem 206 may provide wired and/or wireless communications. The communications subsystem 206 may include one or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the various remote components or systems. The remote communications subsystem 206 may include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking protocols.


The user interface system 208 includes one or more user input/output (I/O) components. For example, user interface system 208 may include a touch screen display 208a, operable to present information and a graphical user interface (GUI) to an end user and to receive indications of user selections. The user interface system 208 may include a keyboard or keypad 208b, and/or a cursor controller (e.g., mouse, trackball, trackpad) (not illustrated) to allow an end user to enter information and/or select user selectable icons in a GUI. The user interface system 208 may include a speaker 208c to provide aural messages to an end user and/or a microphone 208d to receive spoken user input such as spoken commands.


The user interface system 208 may include a card reader 208e to read information from card type media 209. The card reader 208e may take a variety of forms. For instance, the card reader 208e may take the form of, or include, a magnetic stripe reader for reading information encoded in a magnetic stripe carried by a card 209. For instance, the card reader 208e may take the form of, or include, a machine-readable symbol (e.g., barcode, matrix code) card reader for reading information encoded in a machine-readable symbol carried by a card 209. For instance, the card reader 208e may take the form of, or include, a smart card reader for reading information encoded in a non-transitory medium carried by a card 209. Such may, for instance, include media employing radio frequency identification (RFID) transponders or electronic payment chips (e.g., near field communications (NFC) chips). Thus, the card reader 208e may be able to read information from a variety of card media 209, for instance credit cards, debit cards, gift cards, prepaid cards, as well as identification media such as drivers' licenses.


The user interface system 208 may include a bill acceptor 208f and a validator and/or coin acceptor 208g to accept and validate cash payments. Such may be highly useful in servicing populations who lack access to credit. Bill acceptor and validator 208f and/or coin acceptor 208g may take any variety of forms, for example those that are currently commercially available and used in various vending machines and kiosks.



FIG. 3 is a block diagram of a system 300 for providing locations of collection, charging and distribution machines, such as that of FIG. 1, according to one non-limiting illustrated embodiment.


Shown is a collection, charging and distribution machine management system 302 for providing locations of collection, charging and distribution machines, such as, for example, machines like the collection, charging and distribution machine 102 of FIG. 1. The collection, charging and distribution machine management system 302 also provides information regarding the availability of portable electrical energy storage devices for users of portable electrical energy storage devices 106 at each collection, charging and distribution machine 102, and in some embodiments, the types of portable electrical energy storage devices 106 available. In some embodiments, the collection, charging and distribution machine management system 302 may be the back end or back office system 120 shown in FIG. 1. In other embodiments, the collection, charging and distribution machine management system 302 may be part of or may be in operable communication with, the back end or back office system 120 shown in FIG. 1.


For illustrative purposes, shown are two example areas, Area X 306 and Area Y 304, which each contain one or more collection, charging and distribution machines and one or more electrically powered vehicles. As shown in FIG. 3, as an example, Area Y 306 includes collection, charging and distribution machine 308a, collection, charging and distribution machine 308b and vehicle 310a. For example, Area Y may be defined by a radius from vehicle 310a or from user mobile device 313 of a particular distance (e.g., 10 kilometers), defined by a particular driving time (e.g., 10 minutes) from vehicle 310a or mobile device 313 and/or defined by a particular driving distance from vehicle 310a or mobile device 313. The driving time and/or driving distance may be calculated based on the current location of the vehicle 310a and/or mobile device 313 and one or more of: the roads and driving routes available to the particular collection, charging and distribution machine from the current location of the vehicle 310a and/or mobile device 313, current traffic conditions, preferred routes of the user, historical driving routes of the user, the current direction the user is traveling, etc. Area X 304 includes collection, charging and distribution machine 308c, collection, charging and distribution machine 308d and vehicle 310b. For example, Area X may be defined by a radius from vehicle 310b of a particular distance and/or defined by a particular driving distance or driving time from vehicle 310b. In other embodiments, each area represents a different geographic location whose boundaries may be defined by any number of criteria including, but not limited to: property, neighborhood, district, municipality, city, population, county, state, province, country, road, water, longitudinal or latitudinal coordinates, boundaries or any other public, private, physical or political boundary. Also, each area may contain fewer or more collection, charging and distribution machines depending on the boundary constraints.


The collection, charging and distribution machine management system 302 is in operable communication with the collection, charging and distribution machines 308a, 308b, 308c and 308d, and one or more user mobile communication devices 313 (only one shown as an example), such that data may be exchanged between the collection, charging and distribution machine management system 302, the collection, charging and distribution machines 308a, 308b, 308c and 308d, and the user mobile communication device 313. This data may represent actual, expected or predicted availability of portable electrical energy storage devices 106 at one or more of the collection, charging and distribution machines. In some embodiments, an available portable electrical energy storage device 106z may be an operable and fully or nearly fully charged portable electrical energy storage device that has not yet been reserved. Also, the collection, charging and distribution machine management system 302, the collection, charging and distribution machines 308a, 308b, 308c and 308d, and the user mobile communication device 313 may, in some embodiments, additionally or instead be in operable communication directly with each other.


This communication between the various items, systems and entities of FIG. 3 is enabled by the various communications subsystems of these various items, systems and entities. For example, this communication may be enabled by the various communications subsystems of the collection, charging and distribution machines 308a, 308b, 308c and 308d, the collection, charging and distribution machine management system 302, the vehicles 310a and 310b, and the user mobile communications device 313. One or more of such communication subsystems may provide wired and/or wireless communications, e.g., cellular, local area network connections, and/or short range wireless connections (such as Bluetooth® wireless connections, etc.). The communications subsystems of the items in FIG. 3 may include one or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the various remote components or systems. The remote communications subsystems may include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking protocols.


For example, the collection, charging and distribution machine management system 302 may receive an update from collection, charging and distribution machine 308c indicating the current inventory and/or availability of charged electrical energy storage devices at collection, charging and distribution machine 308c. In some embodiments, the collection, charging and distribution machine management system 302 may continually or periodically monitor the inventories of charged electrical energy storage devices of all or many of the collection, charging and distribution machines. Also, the collection, charging and distribution machines may continually or periodically provide updates to the collection, charging and distribution machine management system 302 regarding the inventory of charged electrical energy storage devices of the respective collection, charging and distribution machine. This information may be provided to mobile device 313, vehicle 310a, and/or vehicle 310b continuously, periodically, aperiodically and/or or in response to a request for such information from mobile device 313, vehicle 310a, and/or vehicle 310b. The locations of collection, charging and distribution machines having available portable electrical energy storage devices may then be provided to a respective user of the mobile device 313, vehicle 310a, and/or vehicle 310b.


For example, a map may be displayed on a display of the mobile device 313, vehicle 310a, and/or vehicle 310b on which locations of collection, charging and distribution machines within the respective area (e.g., area X or area Y) having available portable electrical energy storage devices are indicated, along with the current location of the respective mobile device 313, vehicle 310a, and/or vehicle 310b. Location data of the mobile device 313, vehicle 310a, and/or vehicle 310b may be determined by the collection, charging and distribution machine management system 302 and/or the mobile device 313, vehicle 310a, and/or vehicle 310b based on a global positioning system (GPS) signal associated with the mobile device 313, vehicle 310a, and/or vehicle 310b or other location information regarding the mobile device 313, vehicle 310a, and/or vehicle 310b. In some embodiments, this location information may be communicated to and/or from the mobile device 313 and vehicle 310a, either of which may have received the location information based on the global positioning system (GPS) signal or from the collection, charging and distribution machine management system. For example, this location information may be communicated to and/or from the mobile device 313 and vehicle 310a via a short range wireless signal such as a Bluetooth® signal or other short range wireless signal or other communication medium.


The user may then select a location indicated on the displayed map (e.g., via a touch screen or other interface enabling selection of the indicated locations) at which to reserve an available portable electrical energy storage device. This reservation is stored in a database of reservations maintained centrally by the collection, charging and distribution machine management system 302 and/or locally at the selected collection, charging and distribution machine. For example, the reservation may include a record in which an available portable electrical energy storage device or unique reservation number or code is associated with the user who reserved the portable electrical energy storage device, such as by a user identification or other user data communicated from the mobile device 313, vehicle 310a, and/or vehicle 310b to the collection, charging and distribution machine 102 or the collection, charging and distribution machine management system 302 when the reservation was being made. In some embodiments, each portable electrical energy storage device may have an identification code or number uniquely identifying the particular portable electrical energy storage device. This portable electrical energy storage device identification number or code may be associated with the user identification number or code in the reservation record. The number of portable electrical energy storage devices available at the selected collection, charging and distribution machine location is then decreased by one by the collection, charging and distribution machine management system 302 and/or by the selected collection, charging and distribution machine.


The reservation may be for a limited time or have other restrictions. After the limited time elapses and the user has not removed the reserved portable electrical energy storage device at the selected collection, charging and distribution machine, the portable electrical energy storage device then becomes available and this available status is updated in the collection, charging and distribution machine management system 302 and/or the selected collection, charging and distribution machine system.


The collection, charging and distribution machine system may identify the user via the user interface of the collection, charging and distribution machine by the user inputting particular user credentials, a password, biometric data, the user identification number or code, and/or by the card reader 208e described above, etc. The collection, charging and distribution machine management system 302, a navigation system running on the mobile device 313 and/or a navigation system running on the vehicle 310a may then provide driving directions to the selected collection, charging and distribution machine such as on the displayed map or another map available to the user. Also, the locations of the collection, charging and distribution machines and associated information regarding available portable electrical energy storage devices need not be displayed on a map, but may be communicated and organized in any manner including in a list, as a group of selectable icons, etc., that indicates particular collection, charging and distribution machines have one or more available portable electrical energy storage devices.


In some instances, particular collection, charging and distribution machines may be further away from the user's current location than other collection, charging and distribution machines that perhaps are currently experiencing higher demand. Thus, the collection, charging and distribution machine management system 302 may communicate to the user a redeemable incentive for the user to exchange or return their portable electrical energy storage devices to one of the collection, charging and distribution machines that are further away from the user than other closer collection, charging and distribution machines that also have available portable electrical energy storage devices. For example, the incentive may be redeemable as a discount or credit on fees related to the use of one or more of the plurality of collection, charging and distribution machines. Also, users may be provided similar incentives to return or exchange electrical energy storage devices before they are depleted or almost depleted, to head off or smooth out an anticipated spike in demand.


In some embodiments, various options and features regarding available portable electrical energy storage devices may be generated and made available to the user. For example, a user's historical route information may be utilized by the collection, charging and distribution machine management system 302 to anticipate which collection, charging and distribution machines the user may likely to want to visit, and availability of charged portable electrical energy storage devices at these particular collection, charging and distribution machines may be communicated to the user automatically as these portable electrical energy storage devices at these locations become available (e.g., by sending an alert to the user). The availability of charged portable electrical energy storage devices at these particular collection, charging and distribution machines may also or instead be highlighted or given special designations on the displayed map, or may be indicated on the displayed map instead of locations of other collection, charging and distribution machines at which portable electrical energy storage devices are available. The number and types of available portable electrical energy storage devices at each collection, charging and distribution machine location within the area may also be displayed. For example, the number of available high performance portable electrical energy storage devices and other types of portable electrical energy storage devices at each collection, charging and distribution machine may be communicated to the user. These various options may be selectable by the user via a mobile device 313, user interface on the vehicle 310a, or other computing device.



FIG. 4 is a schematic view of the collection, charging and distribution machine management system 302 of FIG. 3, according to one non-limiting illustrated embodiment.


The collection, charging and distribution machine management system 302 includes a control subsystem 402, a communications subsystem 406, and a user interface subsystem 408. However, such a system and associated functionalities may also be present in the vehicle (e.g., vehicle 310a of FIG. 3) and/or the user mobile device 313 also shown in FIG. 3.


The control subsystem 402 includes a controller 410, for example a microprocessor, microcontroller, programmable logic controller (PLC), programmable gate array (PGA), application specific integrated circuit (ASIC) or another controller capable of receiving signals from various sensors, performing logical operations, and sending signals to various components. Typically, the controller 410 may take the form of a microprocessor (e.g., INTEL, AMD, ATOM). The control subsystem 402 may also include one or more non-transitory processor- or computer-readable storage media, for example read-only memory (ROM) 412, random access memory (RAM) 414, and data store 416 (e.g., solid-state storage media such as flash memory or EEPROM, spinning storage media such as hard disk). The non-transitory processor- or computer-readable storage media 412, 414, 416 may be in addition to any non-transitory storage medium (e.g., registers) which is part of the controller 410. The control subsystem 402 may include one or more buses 418 (only one illustrated) coupling various components together, for example one or more power buses, instruction buses, data buses, etc.


As illustrated, the ROM 412, or some other one of the non-transitory processor- or computer-readable storage media 412, 414, 416, stores instructions and/or data or values for variables or parameters. The sets of data may take a variety of forms, for example a lookup table, a set of records in a database, etc. The instructions and sets of data or values are executable by the controller 410. Execution of the instructions and sets of data or values causes the controller 410 to perform specific acts to cause the collection, charging and distribution machine management system 302 to receive, send and/or to provide information to various external devices regarding locations of collection, charging and distribution machines that have available charged portable electrical energy storage devices for use. Execution of the instructions and sets of data or values may also cause the controller 410 to perform specific acts to cause the collection, charging and distribution machine management system 302 to receive, send, store, maintain, update and otherwise manage information regarding reservations of various portable electrical energy storage devices of various collection, charging and distribution machines. Specific operation of the collection, charging and distribution machine management system 302 is described herein and also below with reference to various flow diagrams (FIGS. 6-9).


The controller 410 may use RAM 414 in a conventional fashion, for volatile storage of instructions, data, etc. The controller 410 may use data store 416 to log or retain information, for example, information regarding portable electrical energy storage device availability and reservations of portable electrical energy storage devices, information regarding relative demand of charged portable electrical energy storage devices between geographical locations, information regarding historic usage patterns of one or more of the plurality of collection, charging and distribution machines, information regarding user vehicle locations and telematic and/or telemetric user vehicle information, information regarding portable electrical energy storage device charge capacity, information regarding route information of users of one or more of the charged portable electrical energy storage devices, information regarding energy storage devices, telemetric information related to collection, charging and/or distribution of collection of the portable electrical power storage devices 106 and/or operation of the collection, charging and distribution machine management system 302 itself. The instructions are executable by the controller 410 to control operation of the collection, charging and distribution machine management system 302 in response to input from remote systems such as collection, charging and distribution machines, collection, charging and distribution machine service systems, user mobile devices, user vehicles, and end user or operator input, and using data or values for the variables or parameters.


The control subsystem 402 may also receive signals from various sensors and/or components of a collection, charging and distribution machine, such as the collection, charging and distribution machine 102 of FIG. 1 via the communications subsystem 206 of collection, charging and distribution machine 102. This information may include information that characterizes or is indicative of operation, status, or condition of such components. Sensors are represented in FIG. 2 by the letter S appearing in a circle along with appropriate subscript letters. For example, one or more position sensors SP1-SPN may detect the presence or absence of portable electrical power storage device 106 at each of the receivers 104. This information may be communicated to the control subsystem 402. Also, one or more charge sensors SC1-SCN may detect a charge level charge of the portable electrical power storage devices 106 at each of the receivers 104. This information may also be communicated to the control subsystem 402.


The communications subsystem 406 may include one or more communications modules or components which facilitates communications with the various components of a collection, charging and distribution machine, such as collection, charging and distribution machine 112 of FIG. 1 and also the various components of the collection, charging and distribution machines 308a, 308b, 308c and 308d of FIG. 3, the portable electrical energy storage device transfer service 312 and the one or more user mobile communication devices 313, such that data may be exchanged between the collection, charging and distribution machine management system 302, the collection, charging and distribution machines 308a, 308b, 308c and 308d, and the user mobile communication device 313. The communications subsystem 406 may, for example, include one or more modems 452 or one or more Ethernet or other types of communications cards or components 454. A port 456a of the control subsystem 402 may communicatively couple the control subsystem 402 with a port 456b of the communications subsystem 406. The communications subsystem 406 may provide wired and/or wireless communications. The communications subsystem 406 may include one or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the various remote components or systems. The remote communications subsystem 406 may include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking protocols.


The user interface system 408 includes one or more user input/output (I/O) components (not illustrated). For example, user interface system 408 may include a touch screen display operable to present information and a graphical user interface (GUI) to a user and to receive indications of user selections. The user interface system 408 may include a keyboard or keypad, and/or a cursor controller (e.g., mouse, trackball, trackpad, and/or touch screen) to allow a user to enter information and/or select user selectable icons in a GUI.



FIG. 5 is an example user interface 500 indicating locations of collection, charging and distribution machines, according to one non-limiting illustrated embodiment. For example, the user interface 500 may be a user interface of the user mobile device 313 or vehicle 310a shown in FIG. 3. Shown are three selectable icons on a map 608 representing locations of collection, charging and distribution machines (collection, charging and distribution machine A 502, collection, charging and distribution machine B 504 and collection, charging and distribution machine C 506) within a particular distance (e.g., a 10 kilometer radius) from user mobile device 313 or vehicle 310a. Also shown on the map 508 of the user interface 500 is an icon representing the current location 510 of the user mobile device 313 or vehicle 310a. Each selectable icon representing locations of collection, charging and distribution machines (collection, charging and distribution machine A 502, collection, charging and distribution machine B 504 and collection, charging and distribution machine C 506) also displays the driving distance from the current location 510 of the mobile device 313 or vehicle 310a; the driving time from the current location 610 of the mobile device 313 or vehicle 310a; and the number of available portable electrical energy storage devices at the collection, charging and distribution machine corresponding to the selectable icon. The user may select the particular selectable icon representing locations of collection, charging and distribution machines (collection, charging and distribution machine A 502, collection, charging and distribution machine B 504 and collection, charging and distribution machine C 506) to reserve an available portable electrical energy storage device at the collection, charging and distribution machine corresponding to the selected icon. The user interface may then display a confirmation that the portable electrical energy storage device has been reserved, the time remaining until the reservation expires and directions from the user's current location 510 to the collection, charging and distribution machine corresponding to the selected icon.



FIG. 6 shows a high level method 600 of providing locations of collection, charging and distribution machines, according to one non-limiting illustrated embodiment.


At 602, the collection, charging and distribution machine management system 302, user mobile device 313 or vehicle 310a receives information regarding locations of a plurality of collection, charging and distribution machines. For example, this information may include location data for the collection, charging and distribution machines via a GPS signal. Also included may be additional information regarding the quantity of available portable electrical energy storage devices at each collection, charging and distribution machine, the charge levels of the portable electrical energy storage devices, the types of portable electrical energy storage devices available and the availability of the portable electrical energy storage devices for use.


At 604, the collection, charging and distribution machine management system 302, user mobile device 313 or vehicle 310a receives information regarding a location of a user (e.g., GPS coordinates, or other data identifying the location of the user mobile device 313 or vehicle 310a).


At 606, the collection, charging and distribution machine management system 302, user mobile device 313 or vehicle 310a communicates to the user locations of one or more of the plurality of collection, charging and distribution machines that are one or more of: within a particular distance from the location of the user and within a particular driving time from the location of the user. For example, the collection, charging and distribution machine management system 302 may communicate the locations of the one or more of the plurality of collection, charging and distribution machines to the user mobile device 313, which will then display these locations on a map displayed on the user mobile device 313 including the user's current location (e.g., such as that shown on map 508 in FIG. 5).



FIG. 7 shows a low level method 700 of providing locations of collection, charging and distribution machines useful in the method of FIG. 6, according to one non-limiting illustrated embodiment.


At 702, the collection, charging and distribution machine management system 302, user mobile device 313 or vehicle 310a communicate to the user locations of one or more of the plurality of collection, charging and distribution machines that are both within the particular distance from the location of the user and within the particular driving time from the location of the user. For example, in one embodiment only collection, charging and distribution machines that are both within a 10 km radius of the user mobile device 313 and within 10 minutes driving time from the user device 313 are displayed on a map of the user interface of the user mobile device 313.



FIG. 8 shows a high level method 800 of reserving a portable electrical energy storage device, according to one non-limiting illustrated embodiment, useful in the method of FIG. 5 and FIG. 6.


At 802, the collection, charging and distribution machine management system 302, user mobile device 313 or vehicle 310a receives a request originating from the user to reserve a portable electrical energy storage device available at one of the one or more of the plurality of collection, charging and distribution machines. For example, this may be a request activated or triggered by a selection of one of the three selectable icons on the map 508 representing locations of collection, charging and distribution machines (collection, charging and distribution machine A 502, collection, charging and distribution machine B 504 and collection, charging and distribution machine C 506) within a particular distance from user mobile device 313 or vehicle 310a as shown in FIG. 5.


At 804, in response to the request, the collection, charging and distribution machine management system 302, user mobile device 313 or vehicle 310a reserves for the user an available portable electrical energy storage device at the selected one of the one or more of the plurality of collection, charging and distribution machines. For example, this request may be sent from the user mobile device 313 to the collection, charging and distribution machine management system 302 for the collection, charging and distribution machine management system 302 to update the reservation system maintained by the collection, charging and distribution machine management system 302 to indicate the reservation.



FIG. 9 shows a high level method 900 of providing a user interface for providing locations of collection, charging and distribution machines, according to one non-limiting illustrated embodiment.


At 902, the mobile device 313 or vehicle 310a receives information regarding locations of one or more of a plurality of collection, charging and distribution machines that are one or more of: within a particular distance from a location of a user and within a particular driving time from the location of the user.


At 904, the mobile device 313 or vehicle 310a displays a map on which the location of the user is indicated and on which one or more of the locations of the one or more of the plurality of collection, charging and distribution machines are indicated. For example, shown in FIG. 5 is a map 508 on which the location of the user is indicated and on which one or more of the locations of the one or more of the plurality of collection, charging and distribution machines are indicated. However, other types of maps, driving directions and types of indications of the locations of the one or more of the plurality of collection, charging and distribution machines may be used.


The various methods described herein may include additional acts, omit some acts, and/or may perform the acts in a different order than set out in the various flow diagrams.


The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via one or more microcontrollers. However, those skilled in the art will recognize that the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits (e.g., Application Specific Integrated Circuits or ASICs), as one or more computer programs executed by one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs executed by on one or more controllers (e.g., microcontrollers) as one or more programs executed by one or more processors (e.g., microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and/or firmware would be well within the skill of one of ordinary skill in the art in light of the teachings of this disclosure.


When logic is implemented as software and stored in memory, logic or information can be stored on any non-transitory computer-readable medium for use by or in connection with any processor-related system or method. In the context of this disclosure, a memory is a nontransitory computer- or processor-readable storage medium that is an electronic, magnetic, optical, or other physical device or means that non-transitorily contains or stores a computer and/or processor program. Logic and/or the information can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions associated with logic and/or information.


In the context of this specification, a “computer-readable medium” can be any physical element that can store the program associated with logic and/or information for use by or in connection with the instruction execution system, apparatus, and/or device. The computer-readable medium can be, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device. More specific examples (a non-exhaustive list) of the computer readable medium would include the following: a portable computer diskette (magnetic, compact flash card, secure digital, or the like), a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM, EEPROM, or Flash memory), a portable compact disc read-only memory (CDROM), and digital tape.


The various embodiments described above can be combined to provide further embodiments. To the extent that they are not inconsistent with the specific teachings and definitions herein, all of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, including but not limited to: U.S. provisional patent application Ser. No. 61/511,900 entitled “APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES” and filed Jul. 26, 2011 , U.S. provisional patent application Ser. No. 61/647,936 entitled “APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES” and filed May 16, 2012 , U.S. provisional patent application Ser. No. 61/534,753 entitled “APPARATUS, METHOD AND ARTICLE FOR REDISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES, BETWEEN COLLECTION, CHARGING AND DISTRIBUTION MACHINES” and filed Sep. 14, 2011 , U.S. provisional patent application Ser. No. 61/534,761 entitled “APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES SUCH AS BATTERIES” and filed Sep. 14, 2011 , U.S. provisional patent application Ser. No. 61/534,772 entitled “APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES, SUCH AS BATTERIES, BASED ON USER PROFILES” and filed Sep. 14, 2011 , U.S. provisional patent application Ser. No. 61/511,887 entitled “THERMAL MANAGEMENT OF COMPONENTS IN ELECTRIC MOTOR DRIVE VEHICLES” and filed Jul. 26, 2011 , U.S. provisional patent application Ser. No. 61/647,941 entitled “THERMAL MANAGEMENT OF COMPONENTS IN ELECTRIC MOTOR DRIVE VEHICLES” and filed May 16, 2012 , U.S. provisional patent application Ser. No. 61/511,880 entitled “DYNAMICALLY LIMITING VEHICLE OPERATION FOR BEST EFFORT ECONOMY” and filed Jul. 26, 2011 , U.S. provisional patent application Ser. No. 61/557,170 entitled “APPARATUS, METHOD, AND ARTICLE FOR PHYSICAL SECURITY OF POWER STORAGE DEVICES IN VEHICLES” and filed Nov. 08, 2011 , U.S. provisional patent application Ser. No. 61/581,566 entitled “APPARATUS, METHOD AND ARTICLE FOR A POWER STORAGE DEVICE COMPARTMENT” and filed Dec. 29, 2011 , U.S. provisional patent application Ser. No. 61/601,404 entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING VEHICLE DIAGNOSTIC DATA” and filed Feb. 21, 2012 , U.S. provisional patent application Ser. No. 61/601,949 entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING LOCATIONS OF POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINES” and filed Feb. 22, 2012 , and U.S. provisional patent application Ser. No. 61/601,953 entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING INFORMATION REGARDING AVAILABILITY OF POWER STORAGE DEVICES AT A POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINE” and filed Feb. 22, 2012 , U.S. application Ser. No. 13/559,314, filed on Jul. 26, 2012, naming Hok-Sum Horace Luke, Matthew Whiting Taylor and Huang-Cheng Hung as inventors and entitled “APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES”, U.S. application Ser. No. 13/559,038, filed on Jul. 26, 2012, naming Hok-Sum Horace Luke and Matthew Whiting Taylor as inventors and entitled “APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES SUCH AS BATTERIES” U.S. application Ser. No. 13/559,264, filed on Jul. 26, 2012 naming Hok-Sum Horace Luke and Matthew Whiting Taylor as inventors and entitled “DYNAMICALLY LIMITING VEHICLE OPERATION FOR BEST EFFORT ECONOMY”, U.S. application Ser. No. 13/559,054, filed on Jul. 26, 2012, naming Matthew Whiting Taylor, Yi-Tsung Wu, Hok-Sum Horace Luke and Huang-Cheng Hung as inventors and entitled “APPARATUS, METHOD, AND ARTICLE FOR PHYSICAL SECURITY OF POWER STORAGE DEVICES IN VEHICLES”, U.S. application Ser. No. 13/559,390, filed on Jul. 26, 2012, naming Ching Chen, Hok-Sum Horace Luke, Matthew Whiting Taylor, Yi-Tsung Wu as inventors and entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING VEHICLE DIAGNOSTIC DATA” (Atty. Docket No. 170178.417), U.S. application Ser. No. 13/559,343, filed on Jul. 26, 2012, naming Yi-Tsung Wu, Matthew Whiting Taylor, Hok-Sum Horace Luke and Jung-Hsiu Chen as inventors and entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING INFORMATION REGARDING AVAILABILITY OF POWER STORAGE DEVICES AT A POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINE”, and U.S. application Ser. No. 13/559,064, filed on Jul. 26, 2012, naming Hok-Sum Horace Luke, Yi-Tsung Wu, Jung-Hsiu Chen, Yulin Wu, Chien Ming Huang, TsungTing Chan, Shen-Chi Chen and Feng Kai Yang as inventors and entitled “APPARATUS, METHOD AND ARTICLE FOR RESERVING POWER STORAGE DEVICES AT RESERVING POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINES” are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments.


While generally discussed in the environment and context of collection, charging and distribution of portable electrical energy storage devices for use with personal transportation vehicle such as all-electric scooters and/or motorbikes, the teachings herein can be applied in a wide variety of other environments, including other vehicular as well as non-vehicular environments.


The above description of illustrated embodiments, including what is described in the Abstract of the Disclosure, is not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. Although specific embodiments and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the disclosure, as will be recognized by those skilled in the relevant art.


These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims
  • 1. A non-transitory computer-readable storage medium of a system for providing locations of collection, charging and distribution machines having computer-executable instructions stored thereon that, when executed by at least one processor, cause the at least one processor to: receive information regarding locations of one or more collection, charging and distribution machines that are within a particular distance from a location of a vehicle, and information regarding a number of available energy storage devices at the collection, charging and distribution machines; anddisplay a map on which the location of the vehicle is indicated and a number of selectable icons showing the locations of the one or more collection, charging and distribution machines, and the number of available energy storage devices available at the collection, charging and distribution machines;in response to a request received via at least one selectable icons, generating reservation information regarding at least one of the available energy storage devices;storing the reservation information centrally at a collection, charging and distribution machine management system; andstoring the reservation information locally at one of the collection, charging and distribution machines were the at least one of the available energy storage devices is located.
  • 2. The non-transitory computer-readable storage medium of claim 1 wherein the instructions, when executed, further cause the at least one processor to: receive information regarding the location of the vehicle; andcompare the location of the vehicle with the locations of the one or more collection, charging and distribution machines.
  • 3. The non-transitory computer-readable storage medium of claim 2 wherein the instructions, when executed, further cause the at least one processor to: indicate on the displayed map the location of the vehicle and the locations of the one or more collection, charging and distribution machines based on the comparison of the location of the vehicle with the locations of the one or more collection, charging and distribution machines.
  • 4. The non-transitory computer-readable storage medium of claim 3 wherein the instructions, when executed, further cause the at least one processor to: indicate in the selectable icons on the displayed map a driving time from the location of the vehicle to each of the one or more collection, charging and distribution machines.
  • 5. The non-transitory computer-readable storage medium of claim 1 wherein the instructions, when executed, further cause the at least one processor to: display an indication on a mobile device associated with the vehicle that the at least one of the available electrical energy storage devices has been reserved.
  • 6. The non-transitory computer-readable storage medium of claim 1 wherein the instructions, when executed, further cause the at least one processor to; display an indication on the mobile device associated with the vehicle of how much time is remaining until a reservation associated with the reservation information expires.
  • 7. A method for providing locations of collection, charging and distribution machines for collection, charging and distribution of portable electrical energy storage devices for a vehicle, the method comprising: receiving, by a processor, information regarding locations of one or more collection, charging and distribution machines that are within a particular distance from a location of the vehicle, and information about a number of electrical energy storage devices that are available at each of the collection, charging and distribution machines;displaying, by the processor, a map on which the location of the vehicle is indicated and a number of selectable icons showing the locations of the one or more collection, charging and distribution machines, and the number of the available energy storage devices,in response to a request received via at least one of the selectable icons, generating reservation information regarding at least one of the available energy storage devices;storing the reservation information centrally at a collection charging and distribution machine management system; andstoring the reservation information locally at one of the collection, charging and distribution machines were the at least one of the available energy storage devices is located.
  • 8. The method of claim 7 further comprising: receiving, by the processor, information regarding the location of the vehicle; andcomparing, by the processor, the location of the vehicle with the locations of the one or more collection, charging and distribution machines.
  • 9. The method of claim 8 further comprising: indicating, by the processor, on the displayed map the location of the vehicle and the locations of the one or more collection, charging and distribution machines based on the comparison of the location of the vehicle with the locations of the one or more collection, charging and distribution machines.
  • 10. The method of claim 9 further comprising: indicating, by the processor, in the selectable icons on the displayed map a driving time from the location of the vehicle to each of the one or more collection, charging and distribution machines.
  • 11. The method of claim 7 further comprising: displaying, by the processor, an indication on a mobile device that the at least one of the available electrical energy storage devices has been reserved.
  • 12. The method of claim 7 further comprising: displaying, by the processor, an indication on a mobile device of how much time is remaining until a reservation associated with the reservation information expires.
  • 13. A method performed by a processor in a vehicle for displaying a number of available batteries for the vehicle, the method comprising: receiving, by the processor, information regarding locations of one or more battery-swap machines based on a location of the vehicle, and information about a number of batteries that are available at each of the battery-swap machines;displaying, by the processor, a map on which the location of the vehicle is indicated and a number of selectable icons showing the locations of the one or more battery-swap machines, and the number of available batteries at the battery-swap machines;in response to a request received via at least one of the selectable icons, generating reservation information regarding at least one of the available batteries;storing the reservation information centrally at a battery-swap machine management system; andstoring the reservation information locally at one of the battery-swap machines where the at least one of the available batteries is located.
  • 14. The method of claim 13 further comprising: receiving, by the processor, information regarding the location of the vehicle; andcomparing, by the processor, the location of the vehicle with the locations of the one or more battery-swap machines.
  • 15. The method of claim 14 further comprising; indicating, by the processor, on the displayed map the location of the vehicle and the locations of the one or more battery-swap machines based on the comparison of the location of the vehicle with the locations of the one or more battery-swap machines.
  • 16. The method of claim 15 further comprising: indicating, by the processor, in the selectable icons on the displayed map a driving time from the location of the vehicle to each of the one or more battery-swap machines.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/022,147, filed Sep. 9, 2013 (U.S. Pat. No. 8,996,308), which is a divisional of U.S. application Ser. No. 13/559,333, filed Jul. 26, 2012 (U.S. Pat. No. 8,862,388), which claims priority to U.S. Application No. 61/647,941, filed May 16, 2012, U.S. Application No. 61/647,936, filed May 16, 2012, U.S. Application No. 61/601,953, filed Feb. 22, 2012, U.S. Application No. 61/601,949, filed Feb. 22, 2012, U.S. Application No. 61/601,404, filed Feb. 21, 2012, U.S. Application No. 61/581,566, filed Dec. 29, 2011, U.S. Application No. 61/557,170, filed Nov. 8, 2011, U.S. Application No. 61/534,772, filed Sep. 14, 2011, U.S. Application No. 61/534,761, filed Sept. 14, 2011, U.S. Application No. 61/534,753, filed Sep. 14, 2011, U.S. Application No. 61/511,900, filed Jul. 26, 2011, U.S. Application No. 61/511,887, filed Jul. 26, 2011, and U.S. Application No. 61/511,880, filed Jul. 26, 2011, all of which are incorporated by reference herein in their entireties.

US Referenced Citations (291)
Number Name Date Kind
1387848 Good Aug 1921 A
3470974 Pefine Oct 1969 A
3664450 Udden et al. May 1972 A
3678455 Levey Jul 1972 A
3687484 Cosby Aug 1972 A
3708028 Hafer Jan 1973 A
4087895 Etienne May 1978 A
4129759 Hug Dec 1978 A
4216839 Gould et al. Aug 1980 A
4669570 Perret Jun 1987 A
5187423 Marton Feb 1993 A
5189325 Jarczynski Feb 1993 A
5236069 Peng Aug 1993 A
5339250 Durbin Aug 1994 A
5349535 Gupta Sep 1994 A
5376869 Konrad Dec 1994 A
5491486 Welles, II et al. Feb 1996 A
5539399 Takahira et al. Jul 1996 A
5544784 Malaspina Aug 1996 A
5596261 Suyama Jan 1997 A
5627752 Buck et al. May 1997 A
5631536 Tseng May 1997 A
5642270 Green et al. Jun 1997 A
5648897 Johnson et al. Jul 1997 A
5711648 Hammerslag Jan 1998 A
5815824 Saga et al. Sep 1998 A
5839800 Koga et al. Nov 1998 A
5878368 DeGraaf Mar 1999 A
5898282 Drozdz et al. Apr 1999 A
5998963 Aarseth Dec 1999 A
6016882 Ishikawa Jan 2000 A
6094028 Gu et al. Jul 2000 A
6154006 Hatanaka et al. Nov 2000 A
6177867 Simon et al. Jan 2001 B1
6177879 Kokubu et al. Jan 2001 B1
6236333 King May 2001 B1
6403251 Baggaley et al. Jun 2002 B1
6494279 Hutchens Dec 2002 B1
6498457 Tsuboi Dec 2002 B1
6515580 Isoda et al. Feb 2003 B1
6583592 Omata et al. Jun 2003 B2
6593713 Morimoto et al. Jul 2003 B2
6614204 Pellegrino et al. Sep 2003 B2
6796396 Kamen et al. Sep 2004 B2
6822560 Geber et al. Nov 2004 B2
6850898 Murakami Feb 2005 B1
6854773 Lin Feb 2005 B2
6899268 Hara May 2005 B2
6952795 O'Gorman et al. Oct 2005 B2
7010682 Reinold et al. Mar 2006 B2
7109875 Ota et al. Sep 2006 B2
7131005 Levenson et al. Oct 2006 B2
7392068 Dayan et al. Jun 2008 B2
7415332 Ito et al. Aug 2008 B2
7426910 Elwart Sep 2008 B2
7495543 Denison et al. Feb 2009 B2
7567166 Bourgine De Meder Jul 2009 B2
7592728 Jones et al. Sep 2009 B2
7596709 Cooper et al. Sep 2009 B2
7617893 Syed et al. Nov 2009 B2
7630181 Wilk et al. Dec 2009 B2
7698044 Prakash et al. Apr 2010 B2
7728548 Daynes et al. Jun 2010 B2
7761307 Ochi et al. Jul 2010 B2
7778746 McLeod et al. Aug 2010 B2
7863858 Gangstoe et al. Jan 2011 B2
7868591 Phillips et al. Jan 2011 B2
7898439 Bettez et al. Mar 2011 B2
7908020 Pieronek Mar 2011 B2
7923144 Kohn et al. Apr 2011 B2
7948207 Scheucher May 2011 B2
7979147 Dunn Jul 2011 B1
7993155 Heichal et al. Aug 2011 B2
8006793 Heichal et al. Aug 2011 B2
8006973 Toba et al. Aug 2011 B2
8013571 Agassi et al. Sep 2011 B2
8035341 Genzel et al. Oct 2011 B2
8035349 Lubawy Oct 2011 B2
8063762 Sid Nov 2011 B2
8068952 Valentine et al. Nov 2011 B2
8106631 Abe Jan 2012 B2
8118132 Gray, Jr. Feb 2012 B2
8164300 Agassi et al. Apr 2012 B2
8219839 Akimoto Jul 2012 B2
8229625 Lal et al. Jul 2012 B2
8265816 LaFrance Sep 2012 B1
8301365 Niwa et al. Oct 2012 B2
8319605 Hassan et al. Nov 2012 B2
8326259 Gautama et al. Dec 2012 B2
8354768 Cipriani Jan 2013 B2
8355965 Yamada Jan 2013 B2
8378627 Asada et al. Feb 2013 B2
8412401 Bertosa et al. Apr 2013 B2
8437908 Goff et al. May 2013 B2
8447598 Chutorash et al. May 2013 B2
8560147 Taylor et al. Oct 2013 B2
8614565 Lubawy Dec 2013 B2
8725135 Weyl et al. May 2014 B2
8798852 Chen et al. Aug 2014 B1
8825250 Luke et al. Sep 2014 B2
8862304 Chen et al. Oct 2014 B2
8862388 Wu et al. Oct 2014 B2
8878487 Wu et al. Nov 2014 B2
8996188 Frader-Thompson et al. Mar 2015 B2
8996308 Wu et al. Mar 2015 B2
9292983 Luke et al. Mar 2016 B2
9335179 Penilla et al. May 2016 B2
20010018903 Hirose et al. Sep 2001 A1
20010033502 Blair et al. Oct 2001 A1
20010052433 Harris et al. Dec 2001 A1
20020014872 Kazuhiko et al. Feb 2002 A1
20020023789 Morisawa et al. Feb 2002 A1
20020026252 Wruck et al. Feb 2002 A1
20020070851 Raichle et al. Jun 2002 A1
20020156537 Sakakibara et al. Oct 2002 A1
20030141840 Sanders Jul 2003 A1
20030163434 Barends Aug 2003 A1
20030209375 Suzuki et al. Nov 2003 A1
20040002266 Hinkle et al. Jan 2004 A1
20040027094 Sanders et al. Feb 2004 A1
20040130292 Buchanan et al. Jul 2004 A1
20040236615 Msndy Nov 2004 A1
20040246119 Martin et al. Dec 2004 A1
20060047380 Welch Mar 2006 A1
20060052918 McLeod et al. Mar 2006 A1
20060208850 Ikeuchi et al. Sep 2006 A1
20060284601 Salasoo et al. Dec 2006 A1
20070026996 Ayabe et al. Feb 2007 A1
20070035397 Patenaude et al. Feb 2007 A1
20070069687 Suzuki Mar 2007 A1
20070090921 Fisher Apr 2007 A1
20070126395 Suchar Jun 2007 A1
20070145945 McGinley et al. Jun 2007 A1
20070159297 Paulk et al. Jul 2007 A1
20070188130 Scheucher Aug 2007 A1
20070208468 Sankaran et al. Sep 2007 A1
20070238164 Kim Oct 2007 A1
20080007211 Poisner Jan 2008 A1
20080015721 Spearman Jan 2008 A1
20080067974 Zhang et al. Mar 2008 A1
20080084177 Sander et al. Apr 2008 A1
20080143292 Ward Jun 2008 A1
20080154801 Fein et al. Jun 2008 A1
20080276110 Indiani et al. Nov 2008 A1
20080281732 Yamada Nov 2008 A1
20090024872 Beverly Jan 2009 A1
20090033278 Ludtke Feb 2009 A1
20090033456 Castillo et al. Feb 2009 A1
20090045773 Pandya et al. Feb 2009 A1
20090082957 Agassi et al. Mar 2009 A1
20090112394 Lepejian et al. Apr 2009 A1
20090158790 Oliver Jun 2009 A1
20090198372 Hammerslag Aug 2009 A1
20090261779 Zyren Oct 2009 A1
20090278488 Choi et al. Nov 2009 A1
20090294188 Cole Dec 2009 A1
20100012406 Kressner et al. Jan 2010 A1
20100013433 Baxter et al. Jan 2010 A1
20100017045 Nesler et al. Jan 2010 A1
20100026238 Suzuki et al. Feb 2010 A1
20100051363 Inoue et al. Mar 2010 A1
20100052588 Okamura et al. Mar 2010 A1
20100079115 Lubawy Apr 2010 A1
20100089547 King et al. Apr 2010 A1
20100094496 Hershkovitz et al. Apr 2010 A1
20100114798 Sirton May 2010 A1
20100114800 Yasuda et al. May 2010 A1
20100134067 Baxter et al. Jun 2010 A1
20100141206 Agassi Jun 2010 A1
20100145717 Hoeltzel Jun 2010 A1
20100161481 Littrell Jun 2010 A1
20100188043 Kelty et al. Jul 2010 A1
20100191585 Smith Jul 2010 A1
20100198535 Brown et al. Aug 2010 A1
20100198754 Jones et al. Aug 2010 A1
20100201482 Robertson et al. Aug 2010 A1
20100225266 Hartman Sep 2010 A1
20100235043 Seta et al. Sep 2010 A1
20100262312 Kubota et al. Oct 2010 A1
20100308989 Gasper Dec 2010 A1
20110010043 Lafky Jan 2011 A1
20110016063 Pollack et al. Jan 2011 A1
20110025263 Gilbert Feb 2011 A1
20110025267 Kamen et al. Feb 2011 A1
20110029157 Muzaffer Feb 2011 A1
20110032110 Taguchi Feb 2011 A1
20110055037 Hayashigawa et al. Mar 2011 A1
20110071932 Agassi et al. Mar 2011 A1
20110082598 Boretto et al. Apr 2011 A1
20110082621 Berkobin et al. Apr 2011 A1
20110095723 Bhade et al. Apr 2011 A1
20110106329 Donnelly et al. May 2011 A1
20110111644 Jin May 2011 A1
20110112710 Meyer-Ebeling et al. May 2011 A1
20110114798 Gemmati May 2011 A1
20110120789 Teraya May 2011 A1
20110148346 Gagosz et al. Jun 2011 A1
20110153141 Beechie et al. Jun 2011 A1
20110156662 Nakamura et al. Jun 2011 A1
20110160992 Crombez Jun 2011 A1
20110169447 Brown et al. Jul 2011 A1
20110191265 Lowenthal et al. Aug 2011 A1
20110200193 Blitz et al. Aug 2011 A1
20110202476 Nagy et al. Aug 2011 A1
20110218703 Uchida Sep 2011 A1
20110224868 Collings, III et al. Sep 2011 A1
20110224900 Hiruta et al. Sep 2011 A1
20110241824 Uesugi Oct 2011 A1
20110260691 Ishibashi et al. Oct 2011 A1
20110270480 Ishibashi et al. Nov 2011 A1
20110273180 Park et al. Nov 2011 A1
20110279257 Au et al. Nov 2011 A1
20110282527 Inbarajan et al. Nov 2011 A1
20110292667 Meyers Dec 2011 A1
20110295454 Meyers Dec 2011 A1
20110303509 Agassi et al. Dec 2011 A1
20120000720 Honda et al. Jan 2012 A1
20120013182 Minegishi et al. Jan 2012 A1
20120019196 Fung Jan 2012 A1
20120038473 Fecher Feb 2012 A1
20120058682 Huang Mar 2012 A1
20120062361 Kosugi Mar 2012 A1
20120068817 Fisher Mar 2012 A1
20120078413 Baker, Jr. Mar 2012 A1
20120105078 Kikuchi et al. May 2012 A1
20120109519 Uyeki May 2012 A1
20120123661 Gray, Jr. May 2012 A1
20120126969 Wilbur et al. May 2012 A1
20120157083 Otterson Jun 2012 A1
20120158229 Schaefer Jun 2012 A1
20120167071 Paek Jun 2012 A1
20120173292 Solomon et al. Jul 2012 A1
20120194346 Tsai et al. Aug 2012 A1
20120223575 Hachiya et al. Sep 2012 A1
20120233077 Tate et al. Sep 2012 A1
20120248868 Mobin et al. Oct 2012 A1
20120248869 Itagaki et al. Oct 2012 A1
20120253567 Levy et al. Oct 2012 A1
20120256588 Hayashi et al. Oct 2012 A1
20120259665 Pandhi et al. Oct 2012 A1
20120271723 Penilla et al. Oct 2012 A1
20120280573 Ohkura et al. Nov 2012 A1
20120296512 Lee et al. Nov 2012 A1
20120299527 Vo Nov 2012 A1
20120299537 Kikuchi Nov 2012 A1
20120299721 Jones Nov 2012 A1
20120316671 Hammerslag et al. Dec 2012 A1
20120319649 Billmaier Dec 2012 A1
20130024306 Shah et al. Jan 2013 A1
20130026971 Luke et al. Jan 2013 A1
20130026972 Luke et al. Jan 2013 A1
20130026973 Luke et al. Jan 2013 A1
20130027183 Wu et al. Jan 2013 A1
20130030580 Luke et al. Jan 2013 A1
20130030581 Luke et al. Jan 2013 A1
20130030630 Luke et al. Jan 2013 A1
20130030920 Wu et al. Jan 2013 A1
20130031318 Chen et al. Jan 2013 A1
20130033203 Luke et al. Feb 2013 A1
20130046457 Pettersson Feb 2013 A1
20130049677 Bouman Feb 2013 A1
20130074411 Ferguson et al. Mar 2013 A1
20130078867 ChongYu et al. Mar 2013 A1
20130090795 Luke et al. Apr 2013 A1
20130093271 Luke et al. Apr 2013 A1
20130093368 Luke et al. Apr 2013 A1
20130093384 Nyu et al. Apr 2013 A1
20130116892 Wu et al. May 2013 A1
20130119898 Ohkura May 2013 A1
20130127416 Karner et al. May 2013 A1
20130132307 Phelps et al. May 2013 A1
20130151293 Karner et al. Jun 2013 A1
20130164573 Williams et al. Jun 2013 A1
20130179061 Gadh et al. Jul 2013 A1
20130181582 Luke et al. Jul 2013 A1
20130200845 Bito Aug 2013 A1
20130207605 Errattuparambil et al. Aug 2013 A1
20130254097 Marathe et al. Sep 2013 A1
20130282254 Dwan et al. Oct 2013 A1
20140019043 Wu et al. Jan 2014 A1
20140028089 Luke et al. Jan 2014 A1
20140053620 Taylor et al. Feb 2014 A1
20140111121 Wu Apr 2014 A1
20140142786 Huang et al. May 2014 A1
20140163813 Chen et al. Jun 2014 A1
20140253021 Luke et al. Sep 2014 A1
20140266006 Luke et al. Sep 2014 A1
20140277844 Luke Sep 2014 A1
20140279576 Luke Sep 2014 A1
20140368032 Doerndorfer Dec 2014 A1
20150042157 Chen et al. Feb 2015 A1
Foreign Referenced Citations (146)
Number Date Country
2012258299 Dec 2012 AU
2 797 507 May 2011 CA
2 865 976 Sep 2013 CA
1211844 Mar 1999 CN
101071953 Nov 2007 CN
101950998 Jan 2011 CN
102007418 Apr 2011 CN
102064565 May 2011 CN
44 32 539 Jun 1995 DE
69933742 Feb 2007 DE
10 2007 045 633 Apr 2009 DE
11 2008 000 424 Dec 2009 DE
102009016869 Oct 2010 DE
102010039075 Feb 2011 DE
0 693 813 Jan 1996 EP
0877342 Nov 1998 EP
1 177 955 Feb 2002 EP
0 902 521 Dec 2008 EP
2 101 390 Sep 2009 EP
2 110 923 Oct 2009 EP
2 182 575 May 2010 EP
2 230 146 Sep 2010 EP
2 428 939 Mar 2012 EP
07-031008 Jan 1995 JP
7-36504 Jul 1995 JP
9-119839 May 1997 JP
10-170293 Jun 1998 JP
10-307952 Nov 1998 JP
11-049079 Feb 1999 JP
11-51681 Feb 1999 JP
H1155869 Feb 1999 JP
11-176487 Jul 1999 JP
11-205914 Jul 1999 JP
11-29666 Oct 1999 JP
2000-14032 Jan 2000 JP
2000-102102 Apr 2000 JP
2000-102103 Apr 2000 JP
2000-341868 Dec 2000 JP
2001-23037 Jan 2001 JP
2001-128301 May 2001 JP
2002-140398 May 2002 JP
2002-269195 Sep 2002 JP
2002-324264 Nov 2002 JP
2003-102110 Apr 2003 JP
2003-118397 Apr 2003 JP
2003-262525 Sep 2003 JP
2004-30168 Jan 2004 JP
2004-215468 Jul 2004 JP
2004215468 Jul 2004 JP
2004-355838 Dec 2004 JP
2005-67453 Mar 2005 JP
2005323455 Nov 2005 JP
2006-121874 May 2006 JP
2006-331405 Dec 2006 JP
2007-60353 Mar 2007 JP
2007-148590 Jun 2007 JP
2007-182310 Jul 2007 JP
2007259600 Oct 2007 JP
2008016229 Jan 2008 JP
2008-127894 Jun 2008 JP
2008-219953 Sep 2008 JP
2009-8609 Jan 2009 JP
2009022069 Jan 2009 JP
2009-512035 Mar 2009 JP
2009-103504 May 2009 JP
2009-171646 Jul 2009 JP
2009-171647 Jul 2009 JP
4319289 Aug 2009 JP
2009248888 Oct 2009 JP
2010-022148 Jan 2010 JP
2010124634 Jun 2010 JP
2010-172122 Aug 2010 JP
2010-186238 Aug 2010 JP
2010-191636 Sep 2010 JP
2010-200405 Sep 2010 JP
2010-212048 Sep 2010 JP
2010225528 Oct 2010 JP
2010-263781 Nov 2010 JP
2010-263788 Nov 2010 JP
2010259238 Nov 2010 JP
2010-269686 Dec 2010 JP
2010-540907 Dec 2010 JP
2011-83166 Apr 2011 JP
2011-87430 Apr 2011 JP
2011-97825 May 2011 JP
2011-118638 Jun 2011 JP
2011-126452 Jun 2011 JP
2011-131631 Jul 2011 JP
2011-131805 Jul 2011 JP
2011-135727 Jul 2011 JP
2011-142704 Jul 2011 JP
2011-142779 Jul 2011 JP
2011-233470 Nov 2011 JP
2012-503468 Feb 2012 JP
2012-151916 Aug 2012 JP
2012-523551 Oct 2012 JP
2012214060 Nov 2012 JP
1998-045020 Sep 1998 KR
2004-005146 Jan 2004 KR
10-2009-0103431 Oct 2009 KR
20100012401 Feb 2010 KR
10-0971278 Jul 2010 KR
20110004292 Jan 2011 KR
20110041783 Apr 2011 KR
20120020554 Mar 2012 KR
477099 Feb 2002 TW
200836452 Sep 2008 TW
I303508 Nov 2008 TW
I315116 Sep 2009 TW
M371880 Jan 2010 TW
M379269 Apr 2010 TW
M379789 May 2010 TW
M385047 Jul 2010 TW
201043986 Dec 2010 TW
201044266 Dec 2010 TW
201044289 Dec 2010 TW
201105985 Feb 2011 TW
201112579 Apr 2011 TW
9821132 May 1998 WO
WO 9821132 May 1998 WO
2010115573 Jan 1999 WO
2006090636 Aug 2006 WO
2009039454 Mar 2009 WO
2010033517 Mar 2010 WO
2010033881 Mar 2010 WO
2010035605 Apr 2010 WO
2010143483 Dec 2010 WO
2011138205 Nov 2011 WO
2012085992 Jun 2012 WO
2012160407 Nov 2012 WO
2012160557 Nov 2012 WO
2013016540 Jan 2013 WO
2013024483 Feb 2013 WO
2013024484 Feb 2013 WO
2013042216 Mar 2013 WO
WO 2013052785 Apr 2013 WO
2013074819 May 2013 WO
2013080211 Jun 2013 WO
2013102894 Jul 2013 WO
2013108246 Jul 2013 WO
2013118113 Aug 2013 WO
2013128007 Sep 2013 WO
2013128009 Sep 2013 WO
2013128009 Sep 2013 WO
2013142154 Sep 2013 WO
2013144951 Oct 2013 WO
Non-Patent Literature Citations (156)
Entry
“Inrunner,” retreived from URL=http://en.wikipedia.org/w/index.php?title=Inrunner&printable=yes on Sep. 28, 2011, 1 page.
“Outrunner,” retreived from URL=http://en.wikipedia.org/w/index.php?title=Outrunner&printable=yes on Sep. 16, 2011, 2 pages.
Chen et al., “Adjusting Electric Vehicle Systems Based on an Electrical Energy Storage Device Thermal Profile,” U.S. Appl. No. 61/862,854, filed Aug. 6, 2013, 74 pages.
Chen et al., “Apparatus, System, and Method for Authentication of Vehicular Components ,” U.S. Appl. No. 61/783,041, filed Mar. 14, 2013, 84 pages.
Chen et al., “Apparatus, System, and Method for Authentication of Vehicular Components,” Office Action dated Nov. 22, 2013, for U.S. Appl. No. 13/918,703, 35 pages.
Chen et al., “Apparatus, System, and Method for Authentication of Vehicular Components,” Notice of Allowance dated Mar. 25, 2014, for U.S. Appl. No. 13/918,703, 7 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” Office Action dated Dec. 30, 2013, for U.S. Appl. No. 14/022,134, 20 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” Office Action dated Apr. 9, 2014, for U.S. Appl. No. 14/022,134, 20 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” Notice of Allowance dated Jul. 9, 2014, for U.S. Appl. No. 14/022,134, 10 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” Office Action dated Jun. 18, 2014, for U.S. Appl. No. 13/559,390, 16 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” Notice of Allowance dated Nov. 3, 2014, for U.S. Appl. No. 13/559,390, 10 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” U.S. Appl. No. 61/601,404, filed Feb. 21, 2012, 56 pages.
Chen et al., “Systems and Methods for Powering Electric Vehicles Using a Single or Multiple Power Cells,” U.S. Appl. No. 61/862,852, filed Aug. 6, 2013, 46 pages.
Communication pursuant to Rules 161(2) and 162 EPC, for corresponding European Patent Application No. 12817273.1, dated Mar. 25, 2014, 3 pages.
Communication pursuant to Rules 161(2) and 162 EPC, for corresponding European Patent Application No. 12817141.0, dated Mar. 26, 2014, 3 pages.
Communication pursuant to Rules 161(2) and 162 EPC, for corresponding European Patent Application No. 12818308.4, dated Mar. 26, 2014, 3 pages.
Communication pursuant to Rules 161(2) and 162 EPC, for corresponding European Patent Application No. 12817696.3, dated Mar. 27, 2014, 3 pages.
Communication pursuant to Rules 161(2) and 162 EPC, for corresponding European Patent Application No. 12817883.7, dated Mar. 27, 2014, 3 pages.
Communication pursuant to Rules 161(2) and 162 EPC, for corresponding European Patent Application No. 12818447.0, dated Mar. 27, 2014, 3 pages.
Huang et al., “Apparatus, Method and Article for Vehicle Turn Signals,” U.S. Appl. No. 61/727,403, filed Nov. 16, 2012, 41 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048349, dated Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048354, dated Jan. 28, 2014, 7 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048358, dated Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048366, dated Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048367, dated Jan. 28, 2014, 4 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048375, dated Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048379, dated Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048380, dated Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048382, dated Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048391, dated Jan. 28, 2014, 6 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048344, dated Feb. 28, 2013, 9 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048347, dated Dec. 18, 2012, 8 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048349, dated Feb. 18, 2013, 9 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048354, dated Feb. 18, 2013, 11 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048366, dated Jan. 21, 2013, 10 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048367, dated Jan. 17, 2013, 8 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048375, dated Jan. 23, 2013, 9 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048379, dated Dec. 17, 2012, 9 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048380, dated Feb. 27, 2013, 9 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048382, dated Feb. 27, 2013, 9 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/063979, dated Mar. 4, 2013, 10 pages.
International Search Report and Written Opinion for corresponding International Application no. PCT/US2012/048391, dated Dec. 21, 2012, 9 pages.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2012/058930, dated Mar. 15, 2013, 11 pages.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2013/070131, dated Feb. 19, 2014, 17 pages.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2013/065704, dated Feb. 13, 2014, 13 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048358, dated Feb. 25, 2013, 9 pages.
International Search Report and Written Opinion for corresponding International Application no. PCT/US2012/059931, dated Mar. 29, 2013, 13 pages.
International Search Report and Written Opinion, for corresponding International Application No. PCT/US2014/021369, dated Jul. 2, 2014, 14 pages.
International Search Report and Written Opinion, for corresponding International Application No. PCT/US2014/022610, dated Jul. 10, 2014, 12 pages.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/024757, dated Jul. 11, 2014, 15 pages.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/023539, dated Sep. 4, 2014, 12 pages.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/050001, dated Nov. 18, 2014, 9 pages.
Japanese Office Action with English Translation, dated Dec. 16, 2014, for corresponding JP Application No. 2014-523013, 11 pages.
Luke et al., “Portable Electrical Energy Storage Device,” U.S. Appl. No. 61/872,126, filed Aug. 30, 2013, 39 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Portable Charging Devices and Power Storage Devices, Such as Batteries,” Office Action dated Jan. 6, 2014, for U.S. Appl. No. 14/017,090, 19 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Portable Charging Devices and Power Storage Devices, Such As Batteries,” Office Action dated Jun. 26, 2014, for U.S. Appl. No. 14/017,090, 19 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Portable Charging Devices and Power Storage Devices, Such as Batteries,” U.S. Appl. No. 61/773,621, filed Mar. 6, 2013, 69 pages.
Luke et al., “Apparatus, Method and Article for Providing Targeted Advertising in a Rechargeable Electrical Power Storage Device Distribution Environment,” U.S. Appl. No. 61/773,614, filed Mar. 6, 2013, 77 pages.
Luke et al., “Detectible Indication of an Electric Motor Vehicle Standby Mode,” Office Action for U.S. Appl. No. 13/646,320, dated May 30, 2013, 13 pages.
Luke et al., “Detectible Indication of an Electric Motor Vehicle Standby Mode,” Notice of Allowance for U.S. Appl. No. 13/646,320, dated Apr. 10, 2014, 8 pages.
Luke et al., “Detectible Indication of an Electric Motor Vehicle Standby Mode,” U.S. Appl. No. 61/543,720, filed Oct. 5, 2011, 35 pages.
Luke et al., “Detectible Indication of an Electric Motor Vehicle Standby Mode,” U.S. Appl. No. 61/684,432, filed Aug. 17, 2012, 41 pages.
Luke et al., “Drive Assembly for Electric Powered Device,” U.S. Appl. No. 61/546,411, filed Oct. 12, 2011, 18 pages.
Luke et al., “Electric Device Drive Assembly and Cooling System,” U.S. Appl. No. 61/615,144, filed Mar. 23, 2012, 43 pages.
Luke et al., “Modular System for Collection and Distribution of Electric Storage Devices,” U.S. Appl. No. 61/789,065, filed Mar. 15, 2013, 76 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries, Based on User Profiles,” U.S. Appl. No. 61/534,772, filed Sep. 14, 2011, 55 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries,” Office Action dated Feb. 26, 2014, for U.S. Appl. No. 13/559,038, 13 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries,” Office Action dated Aug. 19, 2014, for U.S. Appl. No. 13/559,038, 14 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries,” Office Action dated Feb. 25, 2014, for U.S. Appl. No. 14/023,344, 12 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries,” Office Action dated Aug. 21, 2014, for U.S. Appl. No. 14/023,344, 13 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries,” U.S. Appl. No. 61/534,761, filed Sep. 14, 2011, 55 pages.
Luke et al., “Apparatus, Method and Article for Collection, Charging and Distributing Power Storage Devices, Such as Batteries,” U.S. Appl. No. 61/511,900, filed Jul. 26, 2011, 73 pages.
Luke et al., “Apparatus, Method and Article for Collection, Charging and Distributing Power Storage Devices, Such as Batteries,” U.S. Appl. No. 61/647,936, filed May 16, 2012, 76 pages.
Luke et al., “Apparatus, Method and Article for Redistributing Power Storage Devices, Such as Batteries, Between Collection, Charging and Distribution Machines,” U.S. Appl. No. 61/534,753, filed Sep. 14, 2011, 65 pages.
Luke et al., “Dynamically Limiting Vehicle Operation for Best Effort Economy,” Office Action for U.S. Appl. No. 13/559,264, dated Aug. 14, 2013, 21 pages.
Luke et al., “Dynamically Limiting Vehicle Operation for Best Effort Economy,” Office Action for U.S. Appl. No. 13/559,264, dated Feb. 12, 2014, 24 pages.
Luke et al., “Dynamically Limiting Vehicle Operation for Best Effort Economy,” Office Action for U.S. Appl. No. 13/559,264, dated Aug. 19, 2014, 26 pages.
Luke et al., “Dynamically Limiting Vehicle Operation for Best Effort Economy,” Office Action for U.S. Appl. No. 13/559,264, dated Jan. 21, 2015, 31 pages.
Luke et al., “Dynamically Limiting Vehicle Operation for Best Effort Economy,” U.S. Appl. No. 61/511,880, filed Jul. 26, 2011, 52 pages.
Luke et al., “Thermal Management of Components in Electric Motor Drive Vehicles,” Office Action dated Apr. 2, 2014, for U.S. Appl. No. 13/559,259, 11 pages.
Luke et al., “Thermal Management of Components in Electric Motor Drive Vehicles,” U.S. Appl. No. 61/511,887, filed Jul. 26, 2011, 44 pages.
Luke et al., “Thermal Management of Components in Electric Motor Drive Vehicles,” U.S. Appl. No. 61/647,941, filed May 16, 2012, 47 pages.
Luke, “Apparatus, Method and Article for Changing Portable Electrical Power Storage Device Exchange Plans,” U.S. Appl. No. 61/778,038, filed Mar. 12, 2013, 56 pages.
Luke, “Apparatus, Method and Article for Providing Information Regarding a Vehicle Via a Mobile Device,” Office Action for U.S. Appl. No. 14/017,081, dated Jan. 30, 2014, 36 pages.
Luke, “Apparatus, Method and Article for Providing Information Regarding a Vehicle Via a Mobile Device,” Office Action for U.S. Appl. No. 14/017,081, dated Jul. 21, 2014, 42 pages.
Luke, “Apparatus, Method and Article for Providing Information Regarding a Vehicle Via a Mobile Device,” Office Action for U.S. Appl. No. 14/017,081, dated Dec. 31, 2014, 59 pages.
Luke, “Apparatus, Method and Article for Providing Information Regarding a Vehicle Via a Mobile Device,” U.S. Appl. No. 61/780,781, filed Mar. 13, 2013, 80 pages.
Microchip, “AN885: Brushless DC (BLDC) Motor Fundamentals,” Microchip Technology Inc., 2003, 19 pages.
Taylor et al., “Apparatus, Method and Article for Physical Security of Power Storage Devices in Vehicles,” Notice of Allowance for U.S. Appl. No. 13/559,054, dated May 30, 2013, 32 pages.
Taylor et al., “Apparatus, Method and Article for Physical Security of Power Storage Devices in Vehicles,” Office Action for U.S. Appl. No. 13/559,054, dated Dec. 3, 2012, 11 pages.
Taylor et al., “Apparatus, Method and Article for Physical Security of Power Storage Devices in Vehicles,” Office Action dated Dec. 10, 2014, for U.S. Appl. No. 14/012,845, 13 pages.
Taylor et al., “Apparatus, Method and Article for Physical Security of Power Storage Devices in Vehicles,” U.S. Appl. No. 61/557,170, filed Nov. 8, 2011, 60 pages.
Wu et al., “Apparatus, Method and Article for Security of Vehicles,” Office Action dated Oct. 2, 2014, for U.S. Appl. No. 13/671,144, 20 pages.
Wu et al., “Battery Configuration for an Electric Vehicle,” U.S. Appl. No. 61/716,388, filed Oct. 19, 2012, 37 pages.
Wu et al., “Apparatus, Method and Article for a Power Storage Device Compartment,” Office Action for U.S. Appl. No. 13/559,125, dated Feb. 24, 2014, 28 pages.
Wu et al., “Apparatus, Method and Article for a Power Storage Device Compartment,” Office Action for U.S. Appl. No. 13/559,125, dated Sep. 9, 2014, 28 pages.
Wu et al., “Apparatus, Method and Article for a Power Storage Device Compartment,” U.S. Appl. No. 61/581,566, filed Dec. 29, 2011, 61 pages.
Wu et al., “Apparatus, Method and Article for Providing Information Regarding Availability of Power Storage Devices at a Power Storage Device Collection, Charging and Distribution Machine,” Office Action dated Mar. 5, 2014, for U.S. Appl. No. 14/022,140, 8 pages.
Wu et al., “Apparatus, Method and Article for Providing to a User Device Information Regarding Availability of Portable Electrical Energy Storage Devices at a Portable Electrical Energy Storage Device Collection, Charging and Distribution Machine,” Notice of Allowance dated Jun. 30, 2014, for U.S. Appl. No. 14/022,140, 5 pages.
Wu et al., “Apparatus, Method and Article for Providing to a User Device Information Regarding Availability of Portable Electrical Energy Storage Devices at a Portable Electrical Storage Device Collection, Charging and Distribution Machine,” U.S. Appl. No. 14/511,137, mailed Oct. 9, 2014, 56 pages.
Wu et al., “Apparatus, Method and Article for Providing Information Regarding Availability of Power Storage Devices at a Power Storage Device Collection, Charging and Distribution Machine,” U.S. Appl. No. 61/601,953, filed Feb. 22, 2012, 53 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Office Action for U.S. Appl. No. 13/559,333, dated Jul. 3, 2013, 14 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Office Action dated Nov. 27, 2013, for U.S. Appl. No. 13/559,333, 19 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Notice of Allowance dated Jul. 10, 2014, for U.S. Appl. No. 13/559,333, 9 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Office Action dated Nov. 19, 2013, for U.S. Appl. No. 14/022,147, 10 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Office Action dated Mar. 5, 2014, for U.S. Appl. No. 14/022,147, 12 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Office Action dated Aug. 6, 2014, forU.S. Appl. No. 14/022,147, 17 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Notice of Allowance dated Nov. 25, 2014, for U.S. Appl. No. 14/022,147, 5 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” U.S. Appl. No. 61/601,949, filed Feb. 22, 2012, 56 pages.
Wu et al., “Apparatus, Method and Article for Security of Vehicles,” U.S. Appl. No. 61/557,176, filed Nov. 8, 2011, 37 pages.
Wu et al., “Apparatus, Method and Article for Power Storage Device Failure Safety,” U.S. Appl. No. 14/071,134, filed Nov. 4, 2013, 68 pages.
Wu et al., “Apparatus, Method and Article for Power Storage Device Failure Safety,” Office Action for U.S. Appl. No. 14/071,134, dated Feb. 12, 2014, 14 pages.
Wu et al., “Apparatus, Method and Article for Power Storage Device Failure Safety,” Office Action dated Jun. 9, 2014, for U.S. Appl. No. 14/071,134, 15 pages.
Chinese Office Action dated Oct. 9, 2015, for corresponding CN Application No. 20120046898.5, with English translation, 21 pages.
Extended European Search Report dated Dec. 17, 2015, for corresponding EP Application No. 12817504.9, 11 pages.
Extended European Search Report dated Dec. 17, 2015, for corresponding EP Application No. 12817905.8, 9 pages.
International Search Report and Written Opinion dated Nov. 11, 2015, for corresponding International Application No. PCT/US2015/044480, 8 pages.
International Search Report dated Dec. 15, 2015, for corresponding International Application No. PCT/US2015/047946, 3 pages.
Japanese Office Action dated Dec. 22, 2015, for corresponding JP Application No. 2014-523019, with English translation, 22 pages.
Japanese Office Action dated Oct. 20, 2015 for Corresponding JP Application No. 2014-523014, with English Translation, 9 pages.
Japanese Office Action dated Oct. 6, 2015 for Corresponding JP Application No. 2014-523023, with English Translation, 15 pages.
Japanese Office Action dated Sep. 8, 2015, for corresponding JP Application No. 2014-523018, with English Translation, 12 pages.
Luke et al., “Apparatus, Method and Article for Redistributing Power Storage Devices, Such as Batteries, Between Collection, Charging and Distribution Machines,” Office Action dated Sep. 14, 2015, for U.S. Appl. No. 13/559,091, 59 pages.
Taiwanese Office Action dated Sep. 15, 2015 for Corresponding TW Application No. 101127034, with English Translation, 7 pages.
Taiwanese Office Action dated Sep. 21, 2015 for Corresponding TW Application No. 101127038, with English Translation, 50 pages.
Chinese Office Action dated Jul. 30, 2015, for corresponding CN Application No. 201280046871.6, 25 pages.
Chinese Office Action with English Translation dated Jul. 31, 2015, for corresponding CN Application No. 201280046976.1, 45 pages.
Communication pursuant to Rules 70(2) and 70a(2) EPC, for corresponding European Patent Application No. 12817696.3, dated Aug. 21, 2015, 1 page.
Communication pursuant to Rules 70(2) and 70a(2) EPC, for corresponding European Patent Application No. 12818447.0, dated Aug. 21, 2015, 1 page.
Extended European Search Report dated Aug. 5, 2015, for corresponding EP Application No. 12818447.0, 17 pages.
Extended European Search Report dated Aug. 5, 2015, for corresponding EP Application No. 12817392.9, 9 pages.
Extended European Search Report dated Aug. 5, 2015, for corresponding EP Application No. 12817696.3, 13 pages.
Japanese Office Action with English Translation dated Jun. 30, 2015, for corresponding JP Application No. 2014-523020, 15 pages.
Japanese Office Action with English Translation dated Mar. 31, 2015, for corresponding JP Application No. 2014-523014, 9 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries, Based on User Profiles,” Office Action dated May 11, 2015, for U.S. Appl. No. 13/559,010, 26 pages.
Luke et al., “Apparatus, Method and Article for Collection, Charging and Distributing Power Storage Devices, Such as Batteries,” Notice of Allowance dated Jun. 8, 2015, for U.S. Appl. No. 13/559,314, 12 pages.
Luke et al., “Apparatus, Method and Article for Redistributing Power Storage Devices, Such as Batteries, Between Collection, Charging and Distribution Machines,” Office Action dated Mar. 13, 2015, for U.S. Appl. No. 13/559,091, 33 pages.
Luke et al., “Apparatus, Method and Article for Reserving Power Storage Devices at Reserving Power Storage Device Collection, Charging and Distribution Machines,” Office Action dated Jun. 23, 2015, for U.S. Appl. No. 13/559,064, 32 pages.
Taiwanese Office Action with English Translation dated Aug. 19, 2015, for corresponding TW Application No. 101127036, 25 pages.
Taylor et al., “Apparatus, Method and Article for Physical Security of Power Storage Devices in Vehicles,” Office Action dated Jun. 23, 2015, for U.S. Appl. No. 14/012,845, 11 pages.
Chinese Office Action, dated Feb. 6, 2016, for corresponding CN Application No. 201280046976.1, with English Translation, 49 pages.
Taiwanese Office Action, dated Jan. 25, 2016, for corresponding TW Application No. 101127016, with English Translation, 24 pages.
Chinese Office Action dated Sep. 28, 2015, for corresponding CN Application No. 201280046879, with English Translation, 18 pages.
Park, “A Comprehensive Thermal Management System Model for Hybrid Electric Vehicles,” Dissertation, The University of Michigan, 2011, 142 pages.
Taiwanese Office Action dated Dec. 25, 2015, for corresponding TW Application No. 101127034, with English Translation, 7 pages.
Taiwanese Office Action dated Jan. 14, 2016, for corresponding TW Application No. 101127042, with English Translation, 25 pages.
Taiwanese Office Action dated Jan. 30, 2016, for corresponding TW Application No. 101127036, with English Translation, 25 pages.
Extended European Search Report dated Sep. 29, 2016 for corresponding EP Application No. 14769329.5, 10 pages.
Japanese Office Action dated Aug. 16, 2016, for corresponding JP Application No. 2014-523019, with English Translation, 10 pages.
Luke et al., “Modular System for Collection and Distribution of Electric Storage Devices,” Office Action dated Sep. 19, 2016 for U.S. Appl. No. 14/202,589, 17 pages.
Chen et al., “Apparatus, System and Method for Vending, Charging, and Two-Way Distribution of Electrical Energy Storage Devices,” U.S. Appl. No. 62/045,982, filed Sep. 4, 2014, 93 pages.
Chinese Office Action, dated May 16, 2016, for corresponding CN Application No. 201280046994, with English translation, 25 pages.
Japanese Office Action dated Sep. 28, 2015 for corresponding JP Application No. 2014-523023, with English Translation, 15 pages.
Japanese Office Action dated Jun. 7, 2016, for corresponding JP Application No. 2014-523004, with English Translation, 13 pages.
Taiwanese Office Action dated Jun. 16, 2016, for corresponding TW Application No. 101127040, with English Translation, 6 pages.
Taiwanese Office Action dated Jun. 20, 2016, for corresponding TW Application No. 101127036, with English Translation, 12 pages.
Related Publications (1)
Number Date Country
20150185040 A1 Jul 2015 US
Provisional Applications (13)
Number Date Country
61511900 Jul 2011 US
61647936 May 2012 US
61534753 Sep 2011 US
61534761 Sep 2011 US
61534772 Sep 2011 US
61511887 Jul 2011 US
61647941 May 2012 US
61511880 Jul 2011 US
61557170 Nov 2011 US
61581566 Dec 2011 US
61601404 Feb 2012 US
61601949 Feb 2012 US
61601953 Feb 2012 US
Divisions (1)
Number Date Country
Parent 13559333 Jul 2012 US
Child 14022147 US
Continuations (1)
Number Date Country
Parent 14022147 Sep 2013 US
Child 14635748 US