The present disclosure relates generally to semiconductor memory and methods, and more particularly, to apparatuses and methods for logic/memory devices.
Memory devices are typically provided as internal, semiconductor, integrated circuits in computers or other computing systems. There are many different types of memory including volatile and non-volatile memory. Volatile memory can require power to maintain its data (e.g., host data, error data, etc.) and includes random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), synchronous dynamic random access memory (SDRAM), and thyristor random access memory (TRAM), among others. Non-volatile memory can provide persistent data by retaining stored data when not powered and can include NAND flash memory, NOR flash memory, and resistance variable memory such as phase change random access memory (PCRAM), resistive random access memory (RRAM), and magnetoresistive random access memory (MRAM), such as spin torque transfer random access memory (STT RAM), among others.
Computing systems often include a number of processing resources (e.g., one or more processors), which may retrieve and execute instructions and store the results of the executed instructions to a suitable location. A processing resource (e.g., CPU) can comprise a number of functional units such as arithmetic logic unit (ALU) circuitry, floating point unit (FPU) circuitry, and/or a combinatorial logic block, for example, which can be used to execute instructions by performing logical operations such as AND, OR, NOT, NAND, NOR, and XOR, and invert (e.g., inversion) logical operations on data (e.g., one or more operands). For example, functional unit circuitry may be used to perform arithmetic operations such as addition, subtraction, multiplication, and/or division on operands via a number of logical operations.
A number of components in a computing system may be involved in providing instructions to the functional unit circuitry for execution. The instructions may be executed, for instance, by a processing resource such as a controller and/or host processor. Data (e.g., the operands on which the instructions will be executed) may be stored in a memory array that is accessible by the functional unit circuitry. The instructions and/or data may be retrieved from the memory array and sequenced and/or buffered before the functional unit circuitry begins to execute instructions on the data. Furthermore, as different types of operations may be executed in one or multiple clock cycles through the functional unit circuitry, intermediate results of the instructions and/or data may also be sequenced and/or buffered. A sequence to complete an operation in one or more clock cycles may be referred to as an operation cycle. Time consumed to complete an operation cycle costs in terms of processing and computing performance and power consumption, of a computing device and/or system.
In many instances, the processing resources (e.g., processor and/or associated functional unit circuitry) may be external to the memory array, and data is accessed via a bus between the processing resources and the memory array to execute a set of instructions. Processing performance may be improved in a processor-in-memory (PIM) device, in which a processor may be implemented internal and/or near to a memory (e.g., directly on a same chip as the memory array). A PIM device may save time by reducing and/or eliminating external communications and may also conserve power.
The present disclosure includes apparatuses and methods for logic/memory device. In one example embodiment, execution of logical operations is performed on both one or more memory components and a logical component to a logic/memory device.
An example apparatus comprises a plurality of memory components adjacent to and coupled to one another. A logic component is coupled to the plurality of memory components. At least one memory component comprises a partitioned portion having an array of memory cells and sensing circuitry coupled to the array. The sensing circuitry includes a sense amplifier and a compute component configured to perform operations. Timing circuitry is coupled to the array and sensing circuitry to control timing of operations for the sensing circuitry. The logic component comprises control logic coupled to the timing circuitry. The control logic is configured to execute instructions to perform operations with the sensing circuitry.
The logic component may comprise logic that is partitioned among a number of separate logic/memory devices (also referred to as “partitioned logic”) and which is coupled to timing circuitry for a given logic/memory device. The partitioned logic on a logic component at least includes control logic that is configured to execute instructions to cause operations to be performed on one or more memory components. At least one memory component includes a portion having sensing circuitry associated with an array of memory cells. The array may be a dynamic random access memory (DRAM) array and the operations can include logical AND, OR, and/or XOR Boolean operations. The timing circuitry and the control logic may be in different clock domains and operate at different clock speeds. The timing circuitry is separate from other control registers, e.g., double data rate (DDR) registers, used to control read and write access requests for the array, e.g., in a DRAM array.
In some embodiments, a logic/memory device allows input/output (I/O) channel and processing in memory (PIM) control over a bank or set of banks allowing logic to be partitioned to perform logical operations between a memory (e.g., dynamic random access memory (DRAM)) component and a logic component. Through silicon vias (TSVs) may allow for additional signaling between a logic layer and a DRAM layer. Through silicon vias (TSVs) as the term is used herein is intended to include vias which are formed entirely through or partially through silicon and/or other single, composite and/or doped substrate materials other than silicon. Embodiments are not so limited. With enhanced signaling, a PIM operation may be partitioned between components, which may further facilitate integration with a logic component's processing resources, e.g., an embedded reduced instruction set computer (RISC) type processing resource and/or memory controller in a logic component.
In the following detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how one or more embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the embodiments of this disclosure, and it is to be understood that other embodiments may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure. As used herein, designators such as “N”, “M”, etc., particularly with respect to reference numerals in the drawings, indicate that a number of the particular feature so designated can be included. As used herein, “a number of” a particular thing can refer to one or more of such things (e.g., a number of memory arrays can refer to one or more memory arrays). A “plurality of” is intended to refer to more than one of such things.
The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 206 may reference element “06” in
As shown in the example of
For clarity, the system 100 has been simplified to focus on features with relevance to the present disclosure. The memory array 130 can be a DRAM array, SRAM array, STT RAM array, PCRAM array, TRAM array, RRAM array, NAND flash array, and/or NOR flash array, for instance. The array 130 can comprise memory cells arranged in rows coupled by access lines (which may be referred to herein as word lines or select lines) and columns coupled by sense lines, which may be referred to herein as data lines or digit lines. Although a single array 130 is shown in
The memory device 101 includes address circuitry 142 to latch address signals provided over a data bus 156 (e.g., an I/O bus) through I/O circuitry 144. Status and/or exception information can be provided from the controller 140 on the memory device 101 to a host 110 and/or logic component through an out-of-band bus 157. Address signals are received through address circuitry 142 and decoded by a row decoder 146 and a column decoder 152 to access the memory array 130. Data can be read from memory array 130 by sensing voltage and/or current changes on the data lines using sensing circuitry 150. The sensing circuitry 150 can read and latch a page (e.g., row) of data from the memory array 130. The I/O circuitry 144 can be used for bi-directional data communication with host 110 over the data bus 156. The write circuitry 148 is used to write data to the memory array 130. Address, control and/or commands, e.g., processing in memory (PIM) commands, may be received to the controller 140 via bus 154.
Registers 136 may include control registers, e.g., double data rate (DDR) control registers in a DRAM, to control the operation of the array 130, e.g., DRAM array, and/or controller 140. As such, the registers 136 may be coupled to the I/O circuitry 144 and/or controller 140. In various embodiments the registers 136 may be memory mapped I/O registers 136. The memory mapped I/O registers 136 can be mapped to a plurality of locations in memory where microcode instructions are stored.
In various embodiments, controller 140 may decode signals received via bus 154 from the host 110. These signals can include chip enable signals, write enable signals, and address latch signals that are used to control operations performed on the memory array 130, including data read, data write, and data erase operations. In one or more embodiments, portions of the controller 140 can be a reduced instruction set computer (RISC) type controller operating on 32 and/or 64 bit length instructions. In various embodiments, the controller 140 is responsible for executing instructions from the host 110 and/or logic components in association with the sensing circuitry 150 to perform logical Boolean operations such as AND, OR, XOR, etc. Further, the controller 140 can control shifting data (e.g., right or left) in an array, e.g., memory array 130. Additionally, portions of the controller 140 can include a state machine, a sequencer, or some other type of controller, described further in connection with
Examples of the sensing circuitry 150 and its operations are described further below in connection with
In various embodiments, the sensing circuitry 150 can be used to perform logical operations using data stored in array 130 as inputs and store the results of the logical operations back to the array 130 without transferring data via a sense line address access (e.g., without firing a column decode signal). As such, various compute functions can be performed using, and within, sensing circuitry 150 rather than (or in association with) being performed by processing resources external to the sensing circuitry (e.g., by a processing resource associated with host 110 and/or other processing circuitry, such as ALU circuitry, located on memory device 101 (e.g., on controller 140 or elsewhere)).
In various previous approaches, data associated with an operand, for instance, would be read from memory via sensing circuitry and provided to external ALU circuitry via I/O lines (e.g., via local I/O lines and/or global I/O lines). The external ALU circuitry could include a number of registers and would perform compute functions using the operands, and the result would be transferred back to the array via the I/O lines. In contrast, in a number of embodiments of the present disclosure, sensing circuitry 150 is configured to perform logical operations on data stored in memory array 130 and store the result back to the memory array 130 without enabling an I/O line (e.g., a local I/O line) coupled to the sensing circuitry 150. The sensing circuitry 150 can be formed on pitch with the memory cells of the array 130. Additional peripheral sense amplifiers, extended row address (XRA) registers, cache and/or data buffering, e.g., additional logic circuitry 170, can be coupled to the sensing circuitry 150 and can be used to store, e.g., cache and/or buffer, results of operations described herein.
Thus, in various embodiments, circuitry external to array 130 and sensing circuitry 150 is not needed to perform compute functions as the sensing circuitry 150 can perform the appropriate logical operations to perform such compute functions without the use of an external processing resource. Therefore, the sensing circuitry 150 may be used to compliment and/or to replace, at least to some extent, such an external processing resource (or at least the bandwidth consumption of such an external processing resource).
However, in a number of embodiments, the sensing circuitry 150 may be used to perform logical operations (e.g., to execute instructions) in addition to logical operations performed by an external processing resource (e.g., on host 110). For instance, processing resources on host 110 and/or sensing circuitry 150 on memory device 101 may be limited to performing only certain logical operations and/or a certain number of logical operations.
Enabling an I/O line can include enabling (e.g., turning on) a transistor having a gate coupled to a decode signal (e.g., a column decode signal) and a source/drain coupled to the I/O line. However, embodiments are not limited to not enabling an I/O line. For instance, in a number of embodiments, the sensing circuitry (e.g., 150) can be used to perform logical operations without enabling column decode lines of the array; however, the local I/O line(s) may be enabled in order to transfer a result to a suitable location other than back to the array 130 (e.g., to an external register).
As shown in the example of
In the example shown in
The control logic 231-1, . . . , 231-7 may decode microcode instructions into function calls, e.g., microcode function calls (uCODE), implemented by the sequencers 232-1, . . . , 232-7. The microcode function calls can be the operations that the sequencers 232-1, . . . , 232-7 receive and execute to cause the PIM device 220 to perform particular logical operations using the sensing circuitry such as sensing circuitry 150 in
As described in connection with
As such, the control logic 231-1, . . . , 231-7, sequencers 232-1, . . . , 232-7, and timing circuitry 233-1, . . . , 233-7 may operate to generate sequences of operation cycles for a DRAM array. In the PIM capable device 220 example, each sequence may be designed to perform operations, such as a Boolean logic operations AND, OR, XOR, etc., which together achieve a specific function. For example, the sequences of operations may repetitively perform a logical operation for a one (1) bit add in order to calculate a multiple bit sum. Each sequence of operations may be fed into a first in/first out (FIFO) buffer coupled to the timing circuitry 233-1, . . . , 233-7 to provide timing coordination with the sensing circuitry 150 and/or additional logic circuitry 170 associated with the array of memory cells 130, e.g., DRAM arrays, shown in
In the example PIM capable device 220 shown in
In some embodiments the I/O channels may be in the form of through silicon vias (TSVs). The TSVs may be formed either entirely or partially through silicon or other single, composite and/or doped substrate material to the components. Such TSV technology allows for additional signaling between a logic component 302 and one or more memory components 301. Given enhanced signaling through TSVs, PIM capable device controller operation, like that shown as 240 in
In the example embodiments of
Alternatively, both the control logic 331 and the sequencer 332 may be in the form of microcoded engines. As used herein, an engine is intended to include hardware and may include software and/or firmware, but at least includes hardware, e.g., circuitry in the form of an application specific integrated circuit (ASIC). For example, in current generation processing in memory (PIM) devices, microcode may be used and executed on the PIM device by a reduced instruction set computer (RISC) type controller, ASIC, etc. A RISC type controller is one of a family of processors which operates on a reduced bit length instruction, e.g., a 32 or 64 bit length instruction. Thus, as used herein, reference to microcode instructions on a PIM capable device is intended to include a 32 or 64 bit length instruction. However, embodiments may include other bit length instructions.
Thus, in various embodiments, execution of microcode instructions for PIM capable logic/memory devices 305 and 307 is performed by logic component 302, separate from a host 110 as shown in
The embodiment of
In the example embodiment of
As shown in the embodiments of
As shown in the example embodiments of
In the example embodiments of
The example embodiments shown in
According to the example embodiments of
The scheduling policies implemented by the arbitration circuitry may be according to an all, some, or none set of rules for prioritizing between DRAM requests and PIM requests received at a logic component 302 for use of an array 330 and/or sensing circuitry 350 of a bank 321 on a memory component 301. For example, one policy may allow a DRAM request received at the logic component 302 to always halt, e.g., stop or pause, a PIM command operation associated with an earlier PIM request. According to another example policy, the arbitration circuitry 339 may be configured to detect whether a threshold number or type of DRAM requests are received at the logic component 302 within a particular time window, e.g., within a particular number of packet frames, clock cycles, etc., after a PIM request is received at the logic component 302. In such an example policy, if a threshold number or type of DRAM requests are received at the logic component 302 within the particular time window, then the arbitration circuitry 339 may be configured to stop or hold PIM command request execution associated with an earlier PIM request until after performance of the DRAM request later received at the logic component 302. Alternatively, in another example policy the arbitration circuitry 339 may be configured to give priority to certain or all PIM requests received at the logic component 302 over certain or all DRAM requests received at the logic component 302. Embodiments are not limited to these examples.
Further, the apparatus and methods described herein provide embodiments that are not constrained to the control of normal control registers, e.g., double data rate (DDR) timing control registers, associated with memory arrays, e.g., DRAM arrays. Instead, the timing circuitry 333 in the memory component 301 is configured for logical operations on PIM capable logic/memory devices 305 and 307 separate from the normal control registers shown as 136 in
One example expanding on the manner in which logic that is variously partitioned between a memory component and a logic component can advantageously facilitate and/or enhance integration with one or more separate host processing resources is illustrated in the case of maintaining cache coherency. For example, the partitioned logic 325 can, in at least one embodiment, maintain cache coherency between the logic component 302 and the memory component 301. In this example, the partitioned logic 325 may be configured to create a block select as metadata to a cache line and to create a subrow select as metadata to the cache line. The partitioned logic 325 may be in the form of hardware, software and/or firmware, but at least hardware in the form of circuitry to execute instructions and/or perform logical operations. In this example, the partitioned logic 325 is configured to create and use the block select metadata to enable an offset to a cache line associated with a separate host. The partitioned logic 325 is further configured to create and use the subrow select to enable multiple sets to set associative cache used by a separate host. In at least one embodiment, the block select may provide an offset to a page in a dynamic random access memory (DRAM). Additionally, in some embodiments, the partitioned logic 325 of the logic component 302 that is coupled to the memory component 301 may be configured to generate a bulk invalidate command to a cache memory upon receipt of a bit vector operation instruction.
PIM capable device operations can use bit vector based operations. As used herein, the term “bit vector” is intended to mean a physically contiguous number of bits on a bit vector memory device, e.g., PIM device, whether physically contiguous in rows (e.g., horizontally oriented) or columns (e.g., vertically oriented) in an array of memory cells. Thus, as used herein a “bit vector operation” is intended to mean an operation that is performed on a bit-vector that is a contiguous portion (also referred to as “chunk”) of virtual address space, e.g., used by a PIM device. For example, a chunk of virtual address space may have a bit length of 256 bits. A chunk may or may not be contiguous physically to other chunks in the virtual address space. As used herein, the term “bulk” is intended to mean a capability to address and operate on information in multiple locations, e.g., multiple cache lines, without having to separately address and communicate instructions to each of the multiple locations.
In previous host based cache architecture approaches (whether fully associative, set associative, or direct mapped), the cache architecture uses part of an address generated by a processor associated with a host to locate the placement of a block in the cache and may have some metadata (e.g., valid and dirty bits) describing the state of the cache block. This is because processing resources should have the same view of memory. Accordingly, a cache based memory system will use some form of cache coherency protocol, e.g., either a MESI (modified, exclusive, shared, invalid) or directory based cache coherency protocol, to maintain access to accurate data in the cache memory system between processing resources.
In previous host based approaches a last level cache architecture may be constructed for intended use with a 3D integrated memory, with tags and meta data being stored on-chip in SRAM and the block data being stored in quickly accessed DRAM. In such an architecture, the matching occurs using the on-chip SRAM tags and the memory access is accelerated by the relatively fast on-package DRAM (as compared to an off-package solution).
In PIM capable devices, microcode instructions executing on a processing resource may want to access an array of the PIM capable device to perform a bit vector based operation. A processing resource associated with a host may only be aware of the host's cache line bit length for use in maintaining cache coherency on the host. However, as noted, a bit vector based operation in a PIM capable device may operate on bit vectors of a much different bit length. A typical use pattern for performing a bit vector based operation and maintaining cache coherency in software may involve expensive flushing of an entire cache or marking particular pages as “uncacheable”. To make a PIM capable device cache coherency protocol aware to a level equivalent to that of a host would be very costly and complex in terms of hardware and software device space usage and design development time. Further, even if this were done for a cache coherency protocol of a particular host platform, the PIM capable device would not be cache coherency protocol aware for hosts of different platforms using different cache coherency protocols.
In contrast, according to various embodiments such as described in
For example, in logic/memory device embodiments 305 and 307, memory banks 321 on the memory component 301 may have independent I/O paths, e.g., TSVs, coupling to the control logic 331 of the logic component 302 and may be controlled explicitly by the partitioned logic 325 on the logic component 302. In this manner cache blocks on a logic component 302 may be moved from an SRAM in the logic component 302 into a DRAM array in a bank 321 on the memory component 301. The placement of the cache blocks may be controlled using the metadata data structures created and added to the host cache lines by the control logic 331 of the partitioned logic 325 on the logic component 302.
In at least one embodiment, the block select and subrow select metadata data structures, created by the control logic 331 on the logic component 302, may be data structures internal to the logic/memory device embodiments 305 and 307, e.g., stored and maintained between the logic component 302 and memory component 301 and not stored, maintained or tracked as part of an address to the processing resources on a host, e.g., host 110 in
Similarly, the logic component 402 may be in the form of an individual logic die and/or distinct logic layers formed as integrated circuits on a chip. In this example, the SoC 400 provides three dimensions (3D) by stacking the plurality of memory components 401 and interconnecting at least one memory component 401-1, . . . , 401-N and to a logic component 402 to collectively form a logic/memory device 420. The plurality of memory components 401-1, . . . , 401-N can be coupled to the logic component 402 using I/O paths, e.g., through silicon vias (TSVs) (not shown). The manner in which TSVs, either entirely or partially through silicon or other single, composite and/or doped substrate material, may be used to interconnect the components is well understood.
As used herein an apparatus is intended to mean one or more components, devices and/or systems which may be coupled to achieve a particular function. A system, as used herein, is intended to mean a collection of devices coupled together, whether in wired or wireless fashion, to form a larger network, e.g., as in a distributed computing network. A component, as used herein, is intended to mean a die, substrate, layer, and/or integrated circuitry. As used herein, a device may be formed within or among components. Thus, as used herein, a “device” such as a memory device may be wholly within a memory component. Additionally, however, a device such as a logic/memory device is intended to mean some combination of logic and memory components. According to embodiments, a memory device, logic device, and/or logic/memory device all include devices able to perform a logical operation, e.g., an apparatus able to perform a Boolean logical operation.
TSV manufacturing techniques enable interconnection of multiple die layers in order to construct three-dimensional dies. This ability to interconnect multiple die layers permits building a memory device with a combination of memory storage layers and one or more logic layers. In this manner, the device provides the physical memory storage and logical memory transaction processing in a single electronic device package. The arrangement shown in
The SoC 400 example shown in
In the example of
According to various embodiments, at least a portion of a logic component 502 may be partitioned in relation to a logic/memory device 520. For example, each logic/memory device 520 may include separate logic 525-1, . . . , 525-M (also referred to as “partitioned logic” or “second partitioned logic” in relation to location on the logic component 502) which is a partitioned portion of the logic component 502 relative to a particular logic/memory device 520-1, . . . , 520-M. As shown in the embodiment of
According to various embodiments, partitioned logic 525 may manage memory reference operations for a logic/memory device 520. For example, partitioned logic 525 may provide access to one or more partitioned portions 521-1, . . . , 521-M (e.g., particular memory banks) of the plurality of memory components 501-1, . . . , 501-N. The partitioned portions 521-1, . . . , 521-N of the plurality of memory components 501-1, . . . , 501-N may permit memory transactions to exist in parallel not only across partitioned portions 521-1, . . . , 521-N of the memory components 501-1, . . . , 501-N within a target logic/memory device 520-1, but also in parallel across logic/memory devices 520-1, . . . , 520-M.
The partitioned logic 525-1, . . . , 525-M of a logic component 502 may be in the form of control logic, state machine, etc. The partitioned logic 525-1, . . . , 525-M may be in the form of hardware and firmware to implement functions described herein.
In the embodiments of
As shown in the example embodiments of
The links 529 may support the ability to couple logic/memory devices 520 to both hosts 510 or other network devices. This coupling can facilitate the construction of memory subsystems with capacities larger than a single logic/memory device 520 while not perturbing native link structures and packetized transaction protocols. Links 529 can be configured as host device links or pass-through links in a multitude of topologies. In example, four potential device topologies based upon the example four-link configuration can be configured in a network topology. These four potential device topologies include mesh, torus and/or crossbar topologies. Chaining multiple logic/memory devices 520 together can increase a total memory capacity available to a host 510.
In the example embodiments of
In one or more embodiments, partitioned portions 521-1, 521-2, . . . , 521-N (generally referred to as 521) of the plurality of memory components 501-1, . . . , 501-N within a target device 520 may be broken into banks of dynamic random access memories (DRAMs). In this example, access through stacked memory components 501-1, . . . , 501-N may access a particular memory bank, e.g., DRAM bank. In an example embodiment where memory components 501-1, . . . , 501-N are separate die and/or distinct memory layers, lower banks, e.g., 521-1, can be configured in lower die and/or layers, e.g., 501-1, while higher banks, e.g., 521-2, . . . , 521-N, can be configured in higher die and/or layers, e.g., 501-2, . . . , 501-N. A DRAM bank may be organized using rows and columns with 16K columns and 512 rows. Thus, in the example embodiments of
In this example, partitioned logic 525 including control logic 531 associated with a plurality of banks 521-1, . . . , 521-N for a given logic/memory device 520 can decode signals received from a host 510. According to various embodiments, these signals can include chip enable signals, write enable signals, debugging indication signals, and address latch signals that are used to control DRAM bank operations, including traditional data read, data write, and data erase operations as well as logical Boolean AND, OR, XOR, etc. operations performed with the memory arrays and/or sensing circuitry to a PIM capable DRAM bank. Thus, partitioned logic 525 may be responsible for executing instructions from a host 510 for a PIM capable logic/memory device 520.
In the embodiment of
In the embodiment of
According to various embodiments, and as described in more detail in the examples of
The cells of the memory array 630 can be arranged in rows coupled by word lines 604-X (Row X), 604-Y (Row Y), etc., and columns coupled by pairs of complementary sense lines (e.g., data lines DIGIT(n−1)/DIGIT(n−1), DIGIT(n)/DIGIT(n)_, DIGIT(n+1)/DIGIT(n+1)_). The individual sense lines corresponding to each pair of complementary sense lines can also be referred to as data lines 605-1 (D) and 605-2 (D_) respectively. Although only one pair of complementary data lines are shown in
Memory cells can be coupled to different data lines and/or word lines. For example, a first source/drain region of a transistor 602-1 can be coupled to data line 605-1 (D), a second source/drain region of transistor 602-1 can be coupled to capacitor 603-1, and a gate of a transistor 602-1 can be coupled to word line 604-Y. A first source/drain region of a transistor 602-2 can be coupled to data line 605-2 (D_), a second source/drain region of transistor 602-2 can be coupled to capacitor 603-2, and a gate of a transistor 602-2 can be coupled to word line 604-X. The cell plate, as shown in
The memory array 630 is coupled to sensing circuitry 650 in accordance with a number of embodiments of the present disclosure. In this example, the sensing circuitry 650 comprises a sense amplifier 606 and a compute component 631 corresponding to respective columns of memory cells (e.g., coupled to respective pairs of complementary data lines). The sense amplifier 606 can be coupled to the pair of complementary sense lines 605-1 and 605-2. The compute component 631 can be coupled to the sense amplifier 606 via pass gates 607-1 and 607-2. The gates of the pass gates 607-1 and 607-2 can be coupled to logical operation selection logic 613.
The logical operation selection logic 613 can be configured to include pass gate logic for controlling pass gates that couple the pair of complementary sense lines un-transposed between the sense amplifier 606 and the compute component 631 and/or swap gate logic for controlling swap gates that couple the pair of complementary sense lines transposed between the sense amplifier 606 and the compute component 631. The logical operation selection logic 613 can also be coupled to the pair of complementary sense lines 605-1 and 605-2. The logical operation selection logic 613 can be configured to control continuity of pass gates 607-1 and 607-2 based on a selected logical operation, as described in detail below for various configurations of the logical operation selection logic 613.
The sense amplifier 606 can be operated to determine a data value (e.g., logic state) stored in a selected memory cell. The sense amplifier 606 can comprise a cross coupled latch, which can be referred to herein as a primary latch. In the example illustrated in
In operation, when a memory cell is being sensed (e.g., read), the voltage on one of the data lines 605-1 (D) or 605-2 (D_) will be slightly greater than the voltage on the other one of data lines 605-1 (D) or 605-2 (D_). An ACT signal and the RNL* signal can be driven low to enable (e.g., fire) the sense amplifier 606. The data lines 605-1 (D) or 605-2 (D_) having the lower voltage will turn on one of the PMOS transistor 629-1 or 629-2 to a greater extent than the other of PMOS transistor 629-1 or 629-2, thereby driving high the data line 605-1 (D) or 605-2 (D_) having the higher voltage to a greater extent than the other data line 605-1 (D) or 605-2 (D_) is driven high.
Similarly, the data line 605-1 (D) or 605-2 (D_) having the higher voltage will turn on one of the NMOS transistor 627-1 or 627-2 to a greater extent than the other of the NMOS transistor 627-1 or 627-2, thereby driving low the data line 605-1 (D) or 605-2 (D_) having the lower voltage to a greater extent than the other data line 605-1 (D) or 605-2 (D_) is driven low. As a result, after a short delay, the data line 605-1 (D) or 605-2 (D_) having the slightly greater voltage is driven to the voltage of the supply voltage VCC through source transistor 611, and the other data line 605-1 (D) or 605-2 (D_) is driven to the voltage of the reference voltage (e.g., ground) through the sink transistor 613. Therefore, the cross coupled NMOS transistors 627-1 and 627-2 and PMOS transistors 629-1 and 629-2 serve as a sense amplifier pair, which amplify the differential voltage on the data lines 605-1 (D) and 605-2 (D_) and operate to latch a data value sensed from the selected memory cell.
Embodiments are not limited to the sense amplifier 606 configuration illustrated in
The sense amplifier 606 can, in conjunction with the compute component 631, be operated to perform various logical operations using data from an array as input. In a number of embodiments, the result of a logical operation can be stored back to the array without transferring the data via a data line address access (e.g., without firing a column decode signal such that data is transferred to circuitry external from the array and sensing circuitry via local I/O lines). As such, a number of embodiments of the present disclosure can enable performing logical operations and compute functions associated therewith using less power than various previous approaches. Additionally, since a number of embodiments eliminate the need to transfer data across I/O lines in order to perform compute functions (e.g., between memory and discrete processor), a number of embodiments can enable an increased parallel processing capability as compared to previous approaches.
The sense amplifier 606 can further include equilibration circuitry 614, which can be configured to equilibrate the data lines 605-1 (D) and 605-2 (D_). In this example, the equilibration circuitry 614 comprises a transistor 624 coupled between data lines 605-1 (D) and 605-2 (D_). The equilibration circuitry 614 also comprises transistors 625-1 and 625-2 each having a first source/drain region coupled to an equilibration voltage (e.g., VDD/2), where VDD is a supply voltage associated with the array. A second source/drain region of transistor 625-1 can be coupled data line 605-1 (D), and a second source/drain region of transistor 625-2 can be coupled data line 605-2 (D_). Gates of transistors 624, 625-1, and 625-2 can be coupled together, and to an equilibration (EQ) control signal line 626. As such, activating EQ enables the transistors 624, 625-1, and 625-2, which effectively shorts data lines 605-1 (D) and 605-2 (D_) together and to the an equilibration voltage (e.g., VDD/2).
Although
As described further below, in a number of embodiments, the sensing circuitry (e.g., sense amplifier 606 and compute component 631) can be operated to perform a selected logical operation and initially store the result in one of the sense amplifier 606 or the compute component 631 without transferring data from the sensing circuitry via an I/O line (e.g., without performing a data line address access via activation of a column decode signal).
Performance of logical operations (e.g., Boolean logical functions involving data values) is fundamental and commonly used. Boolean logic functions are used in many higher level functions. Consequently, speed and/or power efficiencies that can be realized with improved logical operations, can translate into speed and/or power efficiencies of higher order functionalities.
As shown in
According to the embodiment illustrated in
The sensing circuitry shown in
According to various embodiments, the operation selection logic 713 can include four logic selection transistors: logic selection transistor 762 coupled between the gates of the swap transistors 742 and a TF signal control line, logic selection transistor 752 coupled between the gates of the pass gates 707-1 and 707-2 and a TT signal control line, logic selection transistor 754 coupled between the gates of the pass gates 707-1 and 707-2 and a FT signal control line, and logic selection transistor 764 coupled between the gates of the swap transistors 742 and a FF signal control line. Gates of logic selection transistors 762 and 752 are coupled to the true sense line through isolation transistor 750-1 (having a gate coupled to an ISO signal control line). Gates of logic selection transistors 764 and 754 are coupled to the complementary sense line through isolation transistor 750-2 (also having a gate coupled to an ISO signal control line).
Data values present on the pair of complementary sense lines 705-1 and 705-2 can be loaded into the compute component 731 via the pass gates 707-1 and 707-2. The compute component 731 can comprise a loadable shift register. When the pass gates 707-1 and 707-2 are OPEN, data values on the pair of complementary sense lines 705-1 and 705-2 are passed to the compute component 731 and thereby loaded into the loadable shift register. The data values on the pair of complementary sense lines 705-1 and 705-2 can be the data value stored in the sense amplifier 706 when the sense amplifier is fired. In this example, the logical operation selection logic signal, Pass, is high to OPEN the pass gates 707-1 and 707-2.
The ISO, TF, TT, FT, and FF control signals can operate to select a logical function to implement based on the data value (“B”) in the sense amplifier 706 and the data value (“A”) in the compute component 731. In particular, the ISO, TF, TT, FT, and FF control signals are configured to select the logical function to implement independent from the data value present on the pair of complementary sense lines 705-1 and 705-2 (although the result of the implemented logical operation can be dependent on the data value present on the pair of complementary sense lines 705-1 and 705-2. For example, the ISO, TF, TT, FT, and FF control signals select the logical operation to implement directly since the data value present on the pair of complementary sense lines 705-1 and 705-2 is not passed through logic to operate the gates of the pass gates 707-1 and 707-2.
Additionally,
The logical operation selection logic 713 signal Pass can be activated (e.g., high) to OPEN the pass gates 707-1 and 707-2 (e.g., conducting) when the ISO control signal line is activated and either the TT control signal is activated (e.g., high) with data value on the true sense line is “1” or the FT control signal is activated (e.g., high) with the data value on the complement sense line is “1.”
The data value on the true sense line being a “1” OPENs logic selection transistors 752 and 762. The data value on the complimentary sense line being a “1” OPENs logic selection transistors 754 and 764. If the ISO control signal or either the respective TT/FT control signal or the data value on the corresponding sense line (e.g., sense line to which the gate of the particular logic selection transistor is coupled) is not high, then the pass gates 707-1 and 707-2 will not be OPENed by a particular logic selection transistor.
The logical operation selection logic signal Pass* can be activated (e.g., high) to OPEN the swap transistors 742 (e.g., conducting) when the ISO control signal line is activated and either the TF control signal is activated (e.g., high) with data value on the true sense line is “1,” or the FF control signal is activated (e.g., high) with the data value on the complement sense line is “1.” If either the respective control signal or the data value on the corresponding sense line (e.g., sense line to which the gate of the particular logic selection transistor is coupled) is not high, then the swap transistors 742 will not be OPENed by a particular logic selection transistor.
The Pass* control signal is not necessarily complementary to the Pass control signal. It is possible for the Pass and Pass* control signals to both be activated or both be deactivated at the same time. However, activation of both the Pass and Pass* control signals at the same time shorts the pair of complementary sense lines together, which may be a disruptive configuration to be avoided.
The sensing circuitry illustrated in
Logic Table 8-1 illustrated in
Via selective control of the continuity of the pass gates 707-1 and 707-2 and the swap transistors 742, each of the three columns of the upper portion of Logic Table 8-1 can be combined with each of the three columns of the lower portion of Logic Table 8-1 to provide 3×3=9 different result combinations, corresponding to nine different logical operations, as indicated by the various connecting paths shown at 875. The nine different selectable logical operations that can be implemented by the sensing circuitry (e.g., 550 in
The columns of Logic Table 8-2 illustrated in
While example embodiments including various combinations and configurations of sensing circuitry, sense amplifiers, compute component, dynamic latches, isolation devices, and/or shift circuitry have been illustrated and described herein, embodiments of the present disclosure are not limited to those combinations explicitly recited herein. Other combinations and configurations of the sensing circuitry, sense amplifiers, compute component, dynamic latches, isolation devices, and/or shift circuitry disclosed herein are expressly included within the scope of this disclosure.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that an arrangement calculated to achieve the same results can be substituted for the specific embodiments shown. This disclosure is intended to cover adaptations or variations of one or more embodiments of the present disclosure. It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. The scope of the one or more embodiments of the present disclosure includes other applications in which the above structures and methods are used. Therefore, the scope of one or more embodiments of the present disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
In the foregoing Detailed Description, some features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the disclosed embodiments of the present disclosure have to use more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
This application is a Continuation of U.S. application Ser. No. 17/157,447, filed Jan. 25, 2021, which is a Continuation of U.S. application Ser. No. 16/440,477, filed Jun. 13, 2019, which issued as U.S. Pat. No. 10,902,906 on Jan. 26, 2021, which is a Continuation of U.S. application Ser. No. 16/004,864, filed Jun. 11, 2018, which issued as U.S. Pat. No. 10,559,347 on Feb. 11, 2020, which is a Divisional of U.S. application Ser. No. 15/066,831, filed Mar. 10, 2016, which issued as U.S. Pat. No. 9,997,232 on Jun. 12, 2018, the contents of which are included herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4072932 | Kitagawa et al. | Feb 1978 | A |
4380046 | Fung | Apr 1983 | A |
4435792 | Bechtolsheim | Mar 1984 | A |
4435793 | Ochii | Mar 1984 | A |
4727474 | Batcher | Feb 1988 | A |
4843264 | Galbraith | Jun 1989 | A |
4958378 | Bell | Sep 1990 | A |
4977542 | Matsuda et al. | Dec 1990 | A |
5023838 | Herbert | Jun 1991 | A |
5034636 | Reis et al. | Jul 1991 | A |
5201039 | Sakamura | Apr 1993 | A |
5210850 | Kelly et al. | May 1993 | A |
5253308 | Johnson | Oct 1993 | A |
5276643 | Hoffmann et al. | Jan 1994 | A |
5325519 | Long et al. | Jun 1994 | A |
5367488 | An | Nov 1994 | A |
5379257 | Matsumura et al. | Jan 1995 | A |
5386379 | Ali-Yahia et al. | Jan 1995 | A |
5398213 | Yeon et al. | Mar 1995 | A |
5440482 | Davis | Aug 1995 | A |
5446690 | Tanaka et al. | Aug 1995 | A |
5473576 | Matsui | Dec 1995 | A |
5481500 | Reohr et al. | Jan 1996 | A |
5485373 | Davis et al. | Jan 1996 | A |
5506811 | McLaury | Apr 1996 | A |
5615404 | Knoll et al. | Mar 1997 | A |
5638128 | Hoogenboom | Jun 1997 | A |
5638317 | Tran | Jun 1997 | A |
5642324 | Ghosh et al. | Jun 1997 | A |
5654936 | Cho | Aug 1997 | A |
5678021 | Pawate et al. | Oct 1997 | A |
5680569 | Correll | Oct 1997 | A |
5724291 | Matano | Mar 1998 | A |
5724366 | Furutani | Mar 1998 | A |
5751987 | Mahant-Shetti et al. | May 1998 | A |
5787458 | Miwa | Jul 1998 | A |
5854636 | Watanabe et al. | Dec 1998 | A |
5867429 | Chen et al. | Feb 1999 | A |
5870504 | Nemoto et al. | Feb 1999 | A |
5915084 | Wendell | Jun 1999 | A |
5935263 | Keeth et al. | Aug 1999 | A |
5969986 | Wong et al. | Oct 1999 | A |
5986942 | Sugibayashi | Nov 1999 | A |
5991209 | Chow | Nov 1999 | A |
5991785 | Alidina et al. | Nov 1999 | A |
6005799 | Rao | Dec 1999 | A |
6009020 | Nagata | Dec 1999 | A |
6092186 | Betker et al. | Jul 2000 | A |
6122211 | Morgan et al. | Sep 2000 | A |
6125071 | Kohno et al. | Sep 2000 | A |
6128702 | Saulsbury et al. | Oct 2000 | A |
6134164 | Lattimore et al. | Oct 2000 | A |
6147514 | Shiratake | Nov 2000 | A |
6151244 | Fujino et al. | Nov 2000 | A |
6157578 | Brady | Dec 2000 | A |
6163862 | Adams et al. | Dec 2000 | A |
6166942 | Vo et al. | Dec 2000 | A |
6172918 | Hidaka | Jan 2001 | B1 |
6175514 | Henderson | Jan 2001 | B1 |
6181698 | Hariguchi | Jan 2001 | B1 |
6185664 | Jeddeloh | Feb 2001 | B1 |
6208544 | Beadle et al. | Mar 2001 | B1 |
6226215 | Yoon | May 2001 | B1 |
6301153 | Takeuchi et al. | Oct 2001 | B1 |
6301164 | Manning et al. | Oct 2001 | B1 |
6304477 | Naji | Oct 2001 | B1 |
6366990 | Guddat et al. | Apr 2002 | B1 |
6389507 | Sherman | May 2002 | B1 |
6418498 | Martwick | Jul 2002 | B1 |
6434736 | Schaecher et al. | Aug 2002 | B1 |
6462998 | Proebsting | Oct 2002 | B1 |
6466499 | Blodgett | Oct 2002 | B1 |
6510098 | Taylor | Jan 2003 | B1 |
6563754 | Lien et al. | May 2003 | B1 |
6578058 | Nygaard | Jun 2003 | B1 |
6731542 | Le et al. | May 2004 | B1 |
6754746 | Leung et al. | Jun 2004 | B1 |
6768679 | Le et al. | Jul 2004 | B1 |
6807614 | Chung | Oct 2004 | B2 |
6816422 | Hamade et al. | Nov 2004 | B2 |
6819612 | Achter | Nov 2004 | B1 |
6894549 | Eliason | May 2005 | B2 |
6943579 | Hazanchuk et al. | Sep 2005 | B1 |
6948056 | Roth et al. | Sep 2005 | B1 |
6950771 | Fan et al. | Sep 2005 | B1 |
6950898 | Merritt et al. | Sep 2005 | B2 |
6956770 | Khalid et al. | Oct 2005 | B2 |
6961272 | Schreck | Nov 2005 | B2 |
6965648 | Smith et al. | Nov 2005 | B1 |
6985394 | Kim | Jan 2006 | B2 |
6987693 | Cernea et al. | Jan 2006 | B2 |
7020017 | Chen et al. | Mar 2006 | B2 |
7028170 | Saulsbury | Apr 2006 | B2 |
7045834 | Tran et al. | May 2006 | B2 |
7054178 | Shiah et al. | May 2006 | B1 |
7061817 | Raad et al. | Jun 2006 | B2 |
7079407 | Dimitrelis | Jul 2006 | B1 |
7173857 | Kato et al. | Feb 2007 | B2 |
7184346 | Raszka et al. | Feb 2007 | B1 |
7187585 | Li et al. | Mar 2007 | B2 |
7196928 | Chen | Mar 2007 | B2 |
7260565 | Lee et al. | Aug 2007 | B2 |
7260672 | Garney | Aug 2007 | B2 |
7372715 | Han | May 2008 | B2 |
7400532 | Aritome | Jul 2008 | B2 |
7406494 | Magee | Jul 2008 | B2 |
7447720 | Beaumont | Nov 2008 | B2 |
7454451 | Beaumont | Nov 2008 | B2 |
7457181 | Lee et al. | Nov 2008 | B2 |
7535769 | Cernea | May 2009 | B2 |
7546438 | Chung | Jun 2009 | B2 |
7562198 | Noda et al. | Jul 2009 | B2 |
7574466 | Beaumont | Aug 2009 | B2 |
7602647 | Li et al. | Oct 2009 | B2 |
7663928 | Tsai et al. | Feb 2010 | B2 |
7685365 | Rajwar et al. | Mar 2010 | B2 |
7692466 | Ahmadi | Apr 2010 | B2 |
7752417 | Manczak et al. | Jul 2010 | B2 |
7791962 | Noda et al. | Sep 2010 | B2 |
7796453 | Riho et al. | Sep 2010 | B2 |
7805587 | Van Dyke et al. | Sep 2010 | B1 |
7808854 | Takase | Oct 2010 | B2 |
7827372 | Bink et al. | Nov 2010 | B2 |
7869273 | Lee et al. | Jan 2011 | B2 |
7898864 | Dong | Mar 2011 | B2 |
7924628 | Danon et al. | Apr 2011 | B2 |
7937535 | Ozer et al. | May 2011 | B2 |
7957206 | Bauser | Jun 2011 | B2 |
7979667 | Allen et al. | Jul 2011 | B2 |
7996749 | Ding et al. | Aug 2011 | B2 |
8042082 | Solomon | Oct 2011 | B2 |
8045391 | Mohklesi | Oct 2011 | B2 |
8059438 | Chang et al. | Nov 2011 | B2 |
8095825 | Hirotsu et al. | Jan 2012 | B2 |
8117462 | Snapp et al. | Feb 2012 | B2 |
8164942 | Gebara et al. | Apr 2012 | B2 |
8208328 | Hong | Jun 2012 | B2 |
8213248 | Moon et al. | Jul 2012 | B2 |
8223568 | Seo | Jul 2012 | B2 |
8238173 | Akerib et al. | Aug 2012 | B2 |
8274841 | Shimano et al. | Sep 2012 | B2 |
8279683 | Klein | Oct 2012 | B2 |
8310884 | Iwai et al. | Nov 2012 | B2 |
8332367 | Bhattacherjee et al. | Dec 2012 | B2 |
8339824 | Cooke | Dec 2012 | B2 |
8339883 | Yu et al. | Dec 2012 | B2 |
8347154 | Bahali et al. | Jan 2013 | B2 |
8351292 | Matano | Jan 2013 | B2 |
8356144 | Hessel et al. | Jan 2013 | B2 |
8417921 | Gonion et al. | Apr 2013 | B2 |
8462532 | Argyres | Jun 2013 | B1 |
8484276 | Carlson et al. | Jul 2013 | B2 |
8495438 | Roine | Jul 2013 | B2 |
8503250 | Demone | Aug 2013 | B2 |
8526239 | Kim | Sep 2013 | B2 |
8533245 | Cheung | Sep 2013 | B1 |
8555037 | Gonion | Oct 2013 | B2 |
8599613 | Abiko et al. | Dec 2013 | B2 |
8605015 | Guttag et al. | Dec 2013 | B2 |
8625376 | Jung et al. | Jan 2014 | B2 |
8644101 | Jun et al. | Feb 2014 | B2 |
8650232 | Stortz et al. | Feb 2014 | B2 |
8873272 | Lee | Oct 2014 | B2 |
8964496 | Manning | Feb 2015 | B2 |
8971124 | Manning | Mar 2015 | B1 |
9015390 | Klein | Apr 2015 | B2 |
9047193 | Lin et al. | Jun 2015 | B2 |
9058135 | Schumacher et al. | Jun 2015 | B1 |
9165023 | Moskovich et al. | Oct 2015 | B2 |
9170843 | Glew et al. | Oct 2015 | B2 |
9274712 | Feldman et al. | Mar 2016 | B2 |
9432298 | Smith | Aug 2016 | B1 |
9449674 | Hush | Sep 2016 | B2 |
9632830 | Miller et al. | Apr 2017 | B1 |
9659610 | Hush | May 2017 | B1 |
9711206 | Hush | Jul 2017 | B2 |
9711207 | Hush | Jul 2017 | B2 |
9761300 | Willcock | Sep 2017 | B1 |
9786335 | Hush et al. | Oct 2017 | B2 |
10120740 | Lea et al. | Nov 2018 | B2 |
10437482 | Chang | Oct 2019 | B2 |
20010007112 | Porterfield | Jul 2001 | A1 |
20010008492 | Higashiho | Jul 2001 | A1 |
20010010057 | Yamada | Jul 2001 | A1 |
20010028584 | Nakayama et al. | Oct 2001 | A1 |
20010043089 | Forbes et al. | Nov 2001 | A1 |
20020059355 | Peleg et al. | May 2002 | A1 |
20020122332 | Kim | Sep 2002 | A1 |
20020191478 | Sawhney | Dec 2002 | A1 |
20030067043 | Zhang | Apr 2003 | A1 |
20030156461 | Demone | Aug 2003 | A1 |
20030167426 | Slobodnik | Sep 2003 | A1 |
20030222879 | Lin et al. | Dec 2003 | A1 |
20040073592 | Kim et al. | Apr 2004 | A1 |
20040073773 | Demjanenko | Apr 2004 | A1 |
20040085840 | Vali et al. | May 2004 | A1 |
20040095826 | Perner | May 2004 | A1 |
20040154002 | Ball et al. | Aug 2004 | A1 |
20040193936 | Kelly | Sep 2004 | A1 |
20040205289 | Srinivasan | Oct 2004 | A1 |
20040240251 | Nozawa et al. | Dec 2004 | A1 |
20050015557 | Wang et al. | Jan 2005 | A1 |
20050078514 | Scheuerlein et al. | Apr 2005 | A1 |
20050097417 | Agrawal et al. | May 2005 | A1 |
20050283546 | Huppenthal | Dec 2005 | A1 |
20060047937 | Selvaggi et al. | Mar 2006 | A1 |
20060069849 | Rudelic | Mar 2006 | A1 |
20060092681 | Kawakubo | May 2006 | A1 |
20060146623 | Mizuno et al. | Jul 2006 | A1 |
20060149804 | Luick et al. | Jul 2006 | A1 |
20060181917 | Kang et al. | Aug 2006 | A1 |
20060215432 | Wickeraad et al. | Sep 2006 | A1 |
20060225072 | Lari et al. | Oct 2006 | A1 |
20060291282 | Liu et al. | Dec 2006 | A1 |
20070103986 | Chen | May 2007 | A1 |
20070171747 | Hunter et al. | Jul 2007 | A1 |
20070180006 | Gyoten et al. | Aug 2007 | A1 |
20070180184 | Sakashita et al. | Aug 2007 | A1 |
20070195602 | Fong et al. | Aug 2007 | A1 |
20070285131 | Sohn | Dec 2007 | A1 |
20070285979 | Turner | Dec 2007 | A1 |
20070291532 | Tsuji | Dec 2007 | A1 |
20080025073 | Arsovski | Jan 2008 | A1 |
20080037333 | Kim et al. | Feb 2008 | A1 |
20080052711 | Forin et al. | Feb 2008 | A1 |
20080137388 | Krishnan et al. | Jun 2008 | A1 |
20080165601 | Matick et al. | Jul 2008 | A1 |
20080178053 | Gorman et al. | Jul 2008 | A1 |
20080180450 | Dowling | Jul 2008 | A1 |
20080215937 | Dreibelbis et al. | Sep 2008 | A1 |
20090067218 | Graber | Mar 2009 | A1 |
20090070721 | Solomon | Mar 2009 | A1 |
20090154238 | Lee | Jun 2009 | A1 |
20090154273 | Borot et al. | Jun 2009 | A1 |
20090254697 | Akerib | Oct 2009 | A1 |
20100067296 | Li | Mar 2010 | A1 |
20100091582 | Vali et al. | Apr 2010 | A1 |
20100095088 | Vorbach | Apr 2010 | A1 |
20100110745 | Jeddeloh et al. | May 2010 | A1 |
20100172190 | Lavi et al. | Jul 2010 | A1 |
20100210076 | Gruber et al. | Aug 2010 | A1 |
20100226183 | Kim | Sep 2010 | A1 |
20100308858 | Noda et al. | Dec 2010 | A1 |
20100318764 | Greyzck | Dec 2010 | A1 |
20100332895 | Billing et al. | Dec 2010 | A1 |
20110051523 | Manabe et al. | Mar 2011 | A1 |
20110063919 | Chandrasekhar et al. | Mar 2011 | A1 |
20110093662 | Walker et al. | Apr 2011 | A1 |
20110093665 | Walker et al. | Apr 2011 | A1 |
20110103151 | Kim et al. | May 2011 | A1 |
20110119467 | Cadambi et al. | May 2011 | A1 |
20110122695 | Li et al. | May 2011 | A1 |
20110140741 | Zerbe et al. | Jun 2011 | A1 |
20110219260 | Nobunaga et al. | Sep 2011 | A1 |
20110267883 | Lee et al. | Nov 2011 | A1 |
20110280307 | MacInnis et al. | Nov 2011 | A1 |
20110317496 | Bunce et al. | Dec 2011 | A1 |
20120005397 | Lim et al. | Jan 2012 | A1 |
20120017039 | Margetts | Jan 2012 | A1 |
20120023281 | Kawasaki et al. | Jan 2012 | A1 |
20120113732 | Sohn et al. | May 2012 | A1 |
20120120705 | Mitsubori et al. | May 2012 | A1 |
20120134216 | Singh | May 2012 | A1 |
20120134225 | Chow | May 2012 | A1 |
20120134226 | Chow | May 2012 | A1 |
20120140540 | Agam et al. | Jun 2012 | A1 |
20120182798 | Hosono et al. | Jul 2012 | A1 |
20120195146 | Jun et al. | Aug 2012 | A1 |
20120198310 | Tran et al. | Aug 2012 | A1 |
20120246380 | Akerib et al. | Sep 2012 | A1 |
20120265964 | Murata et al. | Oct 2012 | A1 |
20120281486 | Rao et al. | Nov 2012 | A1 |
20120303627 | Keeton et al. | Nov 2012 | A1 |
20120311232 | Porterfield | Dec 2012 | A1 |
20130003467 | Klein | Jan 2013 | A1 |
20130036253 | Baltar | Feb 2013 | A1 |
20130061006 | Hein | Mar 2013 | A1 |
20130107623 | Kavalipurapu et al. | May 2013 | A1 |
20130117541 | Choquette et al. | May 2013 | A1 |
20130124783 | Yoon et al. | May 2013 | A1 |
20130132702 | Patel et al. | May 2013 | A1 |
20130138646 | Sirer et al. | May 2013 | A1 |
20130154712 | Hess et al. | Jun 2013 | A1 |
20130163362 | Kim | Jun 2013 | A1 |
20130173888 | Hansen et al. | Jul 2013 | A1 |
20130205114 | Badam et al. | Aug 2013 | A1 |
20130219112 | Okin et al. | Aug 2013 | A1 |
20130227361 | Bowers et al. | Aug 2013 | A1 |
20130283122 | Anholt et al. | Oct 2013 | A1 |
20130286705 | Grover et al. | Oct 2013 | A1 |
20130326154 | Haswell | Dec 2013 | A1 |
20130332707 | Gueron et al. | Dec 2013 | A1 |
20140003160 | Trivedi et al. | Jan 2014 | A1 |
20140181380 | Feldman et al. | Jun 2014 | A1 |
20140181417 | Loh et al. | Jun 2014 | A1 |
20140185395 | Seo | Jul 2014 | A1 |
20140215185 | Danielsen | Jul 2014 | A1 |
20140244948 | Walker et al. | Aug 2014 | A1 |
20140250279 | Manning | Sep 2014 | A1 |
20140344934 | Jorgensen | Nov 2014 | A1 |
20150029798 | Manning | Jan 2015 | A1 |
20150042380 | Manning | Feb 2015 | A1 |
20150063046 | Sinha et al. | Mar 2015 | A1 |
20150063052 | Manning | Mar 2015 | A1 |
20150078108 | Cowles et al. | Mar 2015 | A1 |
20150100744 | Mirichigni et al. | Apr 2015 | A1 |
20150120987 | Wheeler | Apr 2015 | A1 |
20150134713 | Wheeler | May 2015 | A1 |
20150270015 | Murphy et al. | Sep 2015 | A1 |
20150279466 | Manning | Oct 2015 | A1 |
20150290468 | Zhang | Oct 2015 | A1 |
20150324290 | Leidel | Nov 2015 | A1 |
20150325272 | Murphy | Nov 2015 | A1 |
20150347019 | Pawlowski | Dec 2015 | A1 |
20150356009 | Wheeler et al. | Dec 2015 | A1 |
20150356022 | Leidel et al. | Dec 2015 | A1 |
20150357007 | Manning et al. | Dec 2015 | A1 |
20150357008 | Manning et al. | Dec 2015 | A1 |
20150357011 | Schaefer et al. | Dec 2015 | A1 |
20150357019 | Wheeler et al. | Dec 2015 | A1 |
20150357020 | Manning | Dec 2015 | A1 |
20150357021 | Hush | Dec 2015 | A1 |
20150357022 | Hush | Dec 2015 | A1 |
20150357023 | Hush | Dec 2015 | A1 |
20150357024 | Hush et al. | Dec 2015 | A1 |
20150357047 | Tiwari | Dec 2015 | A1 |
20160062672 | Wheeler | Mar 2016 | A1 |
20160062673 | Tiwari | Mar 2016 | A1 |
20160062692 | Finkbeiner et al. | Mar 2016 | A1 |
20160062733 | Tiwari | Mar 2016 | A1 |
20160063284 | Tiwari | Mar 2016 | A1 |
20160064045 | La Fratta | Mar 2016 | A1 |
20160064047 | Tiwari | Mar 2016 | A1 |
20160098200 | Guz et al. | Apr 2016 | A1 |
20160125919 | Hush | May 2016 | A1 |
20160147667 | Awasthi et al. | May 2016 | A1 |
20160154753 | Gittins | Jun 2016 | A1 |
20160246514 | Nosaka et al. | Aug 2016 | A1 |
20160342339 | Leidel | Nov 2016 | A1 |
20160350230 | Murphy | Dec 2016 | A1 |
20160350617 | Willcock | Dec 2016 | A1 |
20160371033 | La Fratta et al. | Dec 2016 | A1 |
20170147608 | Zhang | May 2017 | A1 |
20170162243 | Manning | Jun 2017 | A1 |
20170178701 | Willcock et al. | Jun 2017 | A1 |
20170228192 | Willcock et al. | Aug 2017 | A1 |
20170235515 | Lea et al. | Aug 2017 | A1 |
20170242902 | Crawford et al. | Aug 2017 | A1 |
20170255390 | Chang et al. | Sep 2017 | A1 |
20170262369 | Murphy | Sep 2017 | A1 |
20170263306 | Murphy | Sep 2017 | A1 |
20170269865 | Willcock et al. | Sep 2017 | A1 |
20170277440 | Willcock | Sep 2017 | A1 |
20170277581 | Lea et al. | Sep 2017 | A1 |
20170277637 | Willcock et al. | Sep 2017 | A1 |
20170278559 | Hush | Sep 2017 | A1 |
20170278584 | Rosti | Sep 2017 | A1 |
20170352391 | Hush | Dec 2017 | A1 |
20180053545 | Son | Feb 2018 | A1 |
20180246814 | Jayasena et al. | Aug 2018 | A1 |
20190018597 | Zhang et al. | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
102141905 | Aug 2011 | CN |
0214718 | Mar 1987 | EP |
2026209 | Feb 2009 | EP |
H0831168 | Feb 1996 | JP |
2009259193 | Mar 2015 | JP |
10-0211482 | Aug 1998 | KR |
10-2010-0134235 | Dec 2010 | KR |
10-2013-0049421 | May 2013 | KR |
2001065359 | Sep 2001 | WO |
03088033 | Oct 2003 | WO |
2010079451 | Jul 2010 | WO |
2013062596 | May 2013 | WO |
2013081588 | Jun 2013 | WO |
2013095592 | Jun 2013 | WO |
Entry |
---|
Extended European Search Report and Written Opinion for related EP Application No. 17763773.3, dated Oct. 25, 2019, 8 pages. |
Boyd et al., “On the General Applicability of Instruction-Set Randomization”, Jul.-Sep. 2010, (14 pgs.), vol. 7. Issue 3, IEEE Transactions on Dependable and Secure Computing. |
Stojmenovic, “Multiplicative Circulant Networks Topological Properties and Communication Algorithms”, (25 pgs.), Discrete Applied Mathematics 77 (1997) 281-305. |
“4.9.3 MINLOC and MAXLOC”, Jun. 12, 1995, (5pgs.), Message Passing Interface Forum 1.1, retrieved from http://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node79.html. |
Derby, et al., “A High-Performance Embedded DSP Core with Novel SIMD Features”, Apr. 6-10, 2003, (4 pgs), vol. 2, pp. 301-304, 2003 IEEE International Conference on Accoustics, Speech, and Signal Processing. |
Debnath, Biplob, Bloomflash: Bloom Filter on Flash-Based Storage, 2011 31st Annual Conference on Distributed Computing Systems, Jun. 20-24, 2011, 10 pgs. |
Pagiamtzis, Kostas, “Content-Addressable Memory Introduction”, Jun. 25, 2007, (6 pgs.), retrieved from: http://www.pagiamtzis.com/cam/camintro. |
Pagiamtzis, et al., “Content-Addressable Memory (CAM) Circuits and Architectures: A Tutorial and Survey”, Mar. 2006, (16 pgs.), vol. 41, No. 3, IEEE Journal of Solid-State Circuits. |
International Search Report and Written Opinion for PCT Application No. PCT/US2013/043702, dated Sep. 26, 2013, (11 pgs.). |
Elliot, et al., “Computational RAM: Implementing Processors in Memory”, Jan.-Mar. 1999, (10 pgs.), vol. 16, Issue 1, IEEE Design and Test of Computers Magazine. |
Dybdahl, et al., “Destructive-Read in Embedded DRAM, Impact on Power Consumption,” Apr. 2006, (10 pgs.), vol. 2, Issue 2, Journal of Embedded Computing-Issues in embedded single-chip multicore architectures. |
Kogge, et al., “Processing In Memory: Chips to Petaflops,” May 23, 1997, (8 pgs.), retrieved from: http://www.cs.ucf.edu/courses/cda5106/summer02/papers/kogge97PIM.pdf. |
Draper, et al., “The Architecture of the DIVA Processing-In-Memory Chip,” Jun. 22-26, 2002, (12 pgs.), ICS '02, retrieved from: http://www.isi.edu/˜draper/papers/ics02.pdf. |
Adibi, et al., “Processing-In-Memory Technology for Knowledge Discovery Algorithms,” Jun. 25, 2006, (10 pgs.), Proceeding of the Second International Workshop on Data Management on New Hardware, retrieved from: http://www.cs.cmu.edu/˜damon2006/pdf/adibi06inmemory.pdf. |
U.S. Appl. No. 13/449,082, entitled, “Methods and Apparatus for Pattern Matching,” filed Apr. 17, 2012, (37 pgs.). |
U.S. Appl. No. 13/743,686, entitled, “Weighted Search and Compare in a Memory Device,” filed Jan. 17, 2013, (25 pgs.). |
U.S. Appl. No. 13/774,636, entitled, “Memory as a Programmable Logic Device,” filed Feb. 22, 2013, (30 pgs.). |
U.S. Appl. No. 13/774,553, entitled, “Neural Network in a Memory Device,” filed Feb. 22, 2013, (63 pgs.). |
U.S. Appl. No. 13/796,189, entitled, “Performing Complex Arithmetic Functions in a Memory Device,” filed Mar. 12, 2013, (23 pgs.). |
Office Action for related Taiwan Patent Application No. 106108064, dated Jan. 22, 2018, 18 pages. |
International Search Report and Written Opinion for related PCT Application No. PCT/US2017/020394, dated Jun. 1, 2017, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20230186975 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15066831 | Mar 2016 | US |
Child | 16004864 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17157447 | Jan 2021 | US |
Child | 18105442 | US | |
Parent | 16440477 | Jun 2019 | US |
Child | 17157447 | US | |
Parent | 16004864 | Jun 2018 | US |
Child | 16440477 | US |