Apparatuses and methods for performing logical operations using sensing circuitry

Information

  • Patent Grant
  • 10796733
  • Patent Number
    10,796,733
  • Date Filed
    Monday, September 30, 2019
    5 years ago
  • Date Issued
    Tuesday, October 6, 2020
    4 years ago
Abstract
The present disclosure includes apparatuses and methods related to performing logical operations using sensing circuitry. An example apparatus comprises an array of memory cells and sensing circuitry coupled to the array. The sensing circuitry is configured to perform a logical operation using a data value stored in a first memory cell coupled to a sense line as a first input and a data value stored in a second memory cell coupled to the sense line as a second input. The sensing circuitry is configured to perform the logical operation without transferring data via a sense line address access.
Description
TECHNICAL FIELD

The present disclosure relates generally to semiconductor memory and methods, and more particularly, to apparatuses and methods related to performing logical operations using sensing circuitry.


BACKGROUND

Memory devices are typically provided as internal, semiconductor, integrated circuits in computers or other electronic systems. There are many different types of memory including volatile and non-volatile memory. Volatile memory can require power to maintain its data (e.g., host data, error data, etc.) and includes random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), synchronous dynamic random access memory (SDRAM), and thyristor random access memory (TRAM), among others. Non-volatile memory can provide persistent data by retaining stored data when not powered and can include NAND flash memory, NOR flash memory, and resistance variable memory such as phase change random access memory (PCRAM), resistive random access memory (RRAM), and magnetoresistive random access memory (MRAM), such as spin torque transfer random access memory (STT RAM), among others.


Electronic systems often include a number of processing resources (e.g., one or more processors), which may retrieve and execute instructions and store the results of the executed instructions to a suitable location. A processor can comprise a number of functional units such as arithmetic logic unit (ALU) circuitry, floating point unit (FPU) circuitry, and/or a combinatorial logic block, for example, which can be used to execute instructions by performing logical operations such as AND, OR, NOT, NAND, NOR, and XOR logical operations on data (e.g., one or more operands). For example, the functional unit circuitry (FUC) may be used to perform arithmetic operations such as addition, subtraction, multiplication, and/or division on operands.


A number of components in an electronic system may be involved in providing instructions to the FUC for execution. The instructions may be generated, for instance, by a processing resource such as a controller and/or host processor. Data (e.g., the operands on which the instructions will be executed) may be stored in a memory array that is accessible by the FUC. The instructions and/or data may be retrieved from the memory array and sequenced and/or buffered before the FUC begins to execute instructions on the data. Furthermore, as different types of operations may be executed in one or multiple clock cycles through the FUC, intermediate results of the instructions and/or data may also be sequenced and/or buffered.


In many instances, the processing resources (e.g., processor and/or associated FUC) may be external to the memory array, and data is accessed via a bus between the processing resources and the memory array to execute a set of instructions. Processing performance may be improved in a processor-in-memory (PIM) device, in which a processor may be implemented internal and/or near to a memory (e.g., directly on a same chip as the memory array), which may conserve time and power in processing. However, such PIM devices may have various drawbacks such as an increased chip size. Moreover, such PIM devices may still consume undesirable amounts of power in association with performing logical operations (e.g., compute functions).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of an apparatus in the form of a computing system including a memory system in accordance with a number of embodiments of the present disclosure.



FIG. 2A illustrates a schematic diagram of a portion of a memory array coupled to sensing circuitry in accordance with a number of embodiments of the present disclosure.



FIG. 2B illustrates a timing diagram associated with performing a logical operation using sensing circuitry in accordance with a number of embodiments of the present disclosure.



FIG. 3 illustrates a schematic diagram of a portion of sensing circuitry in accordance with a number of embodiments of the present disclosure.





DETAILED DESCRIPTION

The present disclosure includes apparatuses and methods related to performing logical operations using sensing circuitry. An example apparatus comprises an array of memory cells and sensing circuitry coupled to the array. The sensing circuitry is configured to perform a logical operation using a data value stored in a first memory cell coupled to a sense line as a first input and a data value stored in a second memory cell coupled to the sense line as a second input. The sensing circuitry is configured to perform the logical operation without transferring data via a sense line address access.


A number of embodiments of the present disclosure can provide improved parallelism and/or reduced power consumption in association with performing compute functions as compared to previous systems such as previous PIM systems and systems having an external processor (e.g., a processing resource located external from a memory array, such as on a separate integrated circuit chip). For instance, a number of embodiments can provide for performing fully complete compute functions such as integer add, subtract, multiply, divide, and CAM (content addressable memory) functions without transferring data out of the memory array and sensing circuitry via a bus (e.g., data bus, address bus, control bus), for instance. Such compute functions can involve performing a number of logical operations (e.g., AND, NOT, NOR, NAND, XOR, etc.). However, embodiments are not limited to these examples. For instance, performing logical operations can include performing a number of non-boolean logic operations such as copy, compare, destroy, etc.


In previous approaches, data may be transferred from the array and sensing circuitry (e.g., via a bus comprising input/output (I/O) lines) to a processing resource such as a processor, microprocessor, and/or compute engine, which may comprise ALU circuitry and/or other functional unit circuitry configured to perform the appropriate logical operations. However, transferring data from a memory array and sensing circuitry to such processing resource(s) can involve significant power consumption. Even if the processing resource is located on a same chip as the memory array, significant power can be consumed in moving data out of the array to the compute circuitry, which can involve performing a sense line address access (e.g., firing of a column decode signal) in order to transfer data from sense lines onto I/O lines, moving the data to the array periphery, and providing the data to the compute function.


Furthermore, the circuitry of the processing resource(s) (e.g., compute engine) may not conform to pitch rules associated with a memory array. For example, the cells of a memory array may have a 4F2 or 6F2 cell size, where “F” is a feature size corresponding to the cells. As such, the devices (e.g., logic gates) associated with ALU circuitry of previous PIM systems may not be capable of being formed on pitch with the memory cells, which can affect chip size and/or memory density, for example.


In the following detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how one or more embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the embodiments of this disclosure, and it is to be understood that other embodiments may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure. As used herein, the designator “N,” particularly with respect to reference numerals in the drawings, indicates that a number of the particular feature so designated can be included. As used herein, “a number of” a particular thing can refer to one or more of such things (e.g., a number of memory arrays can refer to one or more memory arrays).


The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 130 may reference element “30” in FIG. 1, and a similar element may be referenced as 230 in FIG. 2. As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. In addition, as will be appreciated, the proportion and the relative scale of the elements provided in the figures are intended to illustrate certain embodiments of the present invention, and should not be taken in a limiting sense.



FIG. 1 is a block diagram of an apparatus in the form of a computing system 100 including a memory device 120 in accordance with a number of embodiments of the present disclosure. As used herein, a memory device 120, a memory array 130, and/or sensing circuitry 150 might also be separately considered an “apparatus.”


System 100 includes a host 110 coupled to memory device 120, which includes a memory array 130. Host 110 can be a host system such as a personal laptop computer, a desktop computer, a digital camera, a mobile telephone, or a memory card reader, among various other types of hosts. Host 102 can include a system motherboard and/or backplane and can include a number of processing resources (e.g., one or more processors, microprocessors, or some other type of controlling circuitry). The system 100 can include separate integrated circuits or both the host 110 and the memory device 120 can be on the same integrated circuit. The system 100 can be, for instance, a server system and/or a high performance computing (HPC) system and/or a portion thereof. Although the example shown in FIG. 1 illustrates a system having a Von Neumann architecture, embodiments of the present disclosure can be implemented in non-Von Neumann architectures (e.g., a Turing machine), which may not include one or more components (e.g., CPU, ALU, etc.) often associated with a Von Neumann architecture.


For clarity, the system 100 has been simplified to focus on features with particular relevance to the present disclosure. The memory array 130 can be a DRAM array, SRAM array, STT RAM array, PCRAM array, TRAM array, RRAM array, NAND flash array, and/or NOR flash array, for instance. The array 130 can comprise memory cells arranged in rows coupled by access lines (which may be referred to herein as word lines or select lines) and columns coupled by sense lines (which may be referred to herein as digit lines or data lines). Although a single array 130 is shown in FIG. 1, embodiments are not so limited. For instance, memory device 120 may include a number of arrays 130 (e.g., a number of banks of DRAM cells). An example DRAM array is described in association with FIG. 2.


The memory device 120 includes address circuitry 142 to latch address signals provided over an I/O bus 156 (e.g., a data bus) through I/O circuitry 144. Address signals are received and decoded by a row decoder 146 and a column decoder 152 to access the memory array 130. Data can be read from memory array 130 by sensing voltage and/or current changes on the sense lines using sensing circuitry 150. The sensing circuitry 150 can read and latch a page (e.g., row) of data from the memory array 130. The I/O circuitry 144 can be used for bi-directional data communication with host 110 over the I/O bus 156. The write circuitry 148 is used to write data to the memory array 130.


Control circuitry 140 decodes signals provided by control bus 154 from the host 110. These signals can include chip enable signals, write enable signals, and address latch signals that are used to control operations performed on the memory array 130, including data read, data write, and data erase operations. In various embodiments, the control circuitry 140 is responsible for executing instructions from the host 110. The control circuitry 140 can be a state machine, a sequencer, or some other type of controller.


An example of the sensing circuitry 150 is described further below in association with FIGS. 2 and 3. For instance, in a number of embodiments, the sensing circuitry 150 can comprise a number of sense amplifiers (e.g., sense amplifier 206 shown in FIG. 2 or sense amplifier 306 shown in FIG. 3) and a number of compute components, which may comprise an accumulator (e.g., compute component 231 shown in FIG. 2) and can be used to perform logical operations (e.g., on data associated with complementary sense lines). In a number of embodiments, the sensing circuitry (e.g., 150) can be used to perform logical operations using data stored in array 130 as inputs and store the results of the logical operations back to the array 130 without transferring via a sense line address access (e.g., without firing a column decode signal). As such, various compute functions can be performed within using sensing circuitry 150 rather than being performed by processing resources external to the sensing circuitry (e.g., by a processor associated with host 110 and/or other processing circuitry, such as ALU circuitry, located on device 120 (e.g., on control circuitry 140 or elsewhere)). In various previous approaches, data associated with an operand, for instance, would be read from memory via sensing circuitry and provided to external ALU circuitry via local I/O lines. The external ALU circuitry would perform compute functions using the operands and the result would be transferred back to the array via the local I/O lines. In contrast, in a number of embodiments of the present disclosure, sensing circuitry (e.g., 150) is configured to perform logical operations on data stored in memory (e.g., array 130) and store the result to the memory without enabling a local I/O line coupled to the sensing circuitry.


As such, in a number of embodiments, circuitry external to array 130 and sensing circuitry 150 is not needed to perform compute functions as the sensing circuitry 150 can perform the appropriate logical operations to perform such compute functions without the use of an external processing resource. Therefore, the sensing circuitry 150 may be used compliment and/or to replace, at least to some extent, such an external processing resource (or at least the bandwidth of such an external processing resource). However, in a number of embodiments, the sensing circuitry 150 may be used to perform logical operations (e.g., to execute instructions) in addition to logical operations performed by an external processing resource (e.g., host 110). For instance, host 110 and/or sensing circuitry 150 may be limited to performing only certain logical operations and/or a certain number of logical operations.



FIG. 2 illustrates a schematic diagram of a portion of a memory array 230 coupled to sensing circuitry in accordance with a number of embodiments of the present disclosure. In this example, the memory array 230 is a DRAM array of 1T1C (one transistor one capacitor) memory cells each comprised of an access device 202 (e.g., transistor) and a storage element 203 (e.g., a capacitor). In a number of embodiments, the memory cells are destructive read memory cells (e.g., reading the data stored in the cell destroys the data such that the data originally stored in the cell is refreshed after being read). The cells of array 230 are arranged in rows coupled by word lines 204-0 (Row0), 204-1 (Row1), 204-2, (Row2) 204-3 (Row3), . . . , 204-N (RowN) and columns coupled by sense lines (e.g., digit lines) 205-1 (D) and 205-2 (D_). In this example, each column of cells is associated with a pair of complementary sense lines 205-1 (D) and 205-2 (D_). Although only a single column of memory cells is illustrated in FIG. 2A, embodiments are not so limited. For instance, a particular array may have a number of columns of memory cells and/or sense lines (e.g., 4,096, 8,192, 16,384, etc.). A gate of a particular memory cell transistor 202 is coupled to its corresponding word line 204-0, 204-1, 204-2, 204-3, . . . , 204-N, a first source/drain region is coupled to its corresponding sense line 205-1, and a second source/drain region of a particular memory cell transistor is coupled to its corresponding capacitor 203. Although not illustrated in FIG. 2A, the sense line 205-2 may also be coupled to a column of memory cells.


The array 230 is coupled to sensing circuitry in accordance with a number of embodiments of the present disclosure. In this example, the sensing circuitry comprises a sense amplifier 206 and a compute component 231. The sensing circuitry can be sensing circuitry 150 shown in FIG. 1. The sense amplifier 206 is coupled to the complementary sense lines D, D_ corresponding to a particular column of memory cells. The sense amplifier 206 can be a sense amplifier such as sense amplifier 306 described below in association with FIG. 3. As such, the sense amp 206 can be operated to determine a state (e.g., logic data value) stored in a selected cell. Embodiments are not limited to the example sense amplifier 206. For instance, sensing circuitry in accordance with a number of embodiments described herein can include current-mode sense amplifiers and/or single-ended sense amplifiers (e.g., sense amplifiers coupled to one sense line).


In a number of embodiments, a compute component (e.g., 231) can comprise a number of transistors formed on pitch with the transistors of the sense amp (e.g., 206) and/or the memory cells of the array (e.g., 230), which may conform to a particular feature size (e.g., 4F2, 6F2, etc.). As described further below, the compute component 231 can, in conjunction with the sense amp 206, operate to perform various logical operations using data from array 230 as input and store the result back to the array 230 without transferring the data via a sense line address access (e.g., without firing a column decode signal such that data is transferred to circuitry external from the array and sensing circuitry via local I/O lines). As such, a number of embodiments of the present disclosure can enable performing logical operations and computing functions associated therewith using less power than various previous approaches. Additionally, since a number of embodiments eliminate the need to transfer data across local I/O lines in order to perform compute functions, a number of embodiments can enable an increased parallel processing capability as compared to previous approaches.


In the example illustrated in FIG. 2, the circuitry corresponding to compute component 231 comprises five transistors coupled to each of the sense lines D and D_; however, embodiments are not limited to this example. Transistors 207-1 and 207-2 have a first source/drain region coupled to sense lines D and D_, respectively, and a second source/drain region coupled to a cross coupled latch (e.g., coupled to gates of a pair of cross coupled transistors, such as cross coupled NMOS transistors 208-1 and 208-2 and cross coupled PMOS transistors 209-1 and 209-2. As described further herein, the cross coupled latch comprising transistors 208-1, 208-2, 209-1, and 209-2 can be referred to as a secondary latch (the cross coupled latch corresponding to sense amp 206 can be referred to herein as a primary latch).


The transistors 207-1 and 207-2 can be referred to as pass transistors, which can be enabled via respective signals 211-1 (Passd) and 211-2 (Passdb) in order to pass the voltages or currents on the respective sense lines D and D_ to the inputs of the cross coupled latch comprising transistors 208-1, 208-2, 209-1, and 209-2 (e.g., the input of the secondary latch). In this example, the second source/drain region of transistor 207-1 is coupled to a first source/drain region of transistors 208-1 and 209-1 as well as to the gates of transistors 208-2 and 209-2. Similarly, the second source/drain region of transistor 207-2 is coupled to a first source/drain region of transistors 208-2 and 209-2 as well as to the gates of transistors 208-1 and 209-1.


A second source/drain region of transistor 208-1 and 208-2 is commonly coupled to a negative control signal 212-1 (Accumb). A second source/drain region of transistors 209-1 and 209-2 is commonly coupled to a positive control signal 212-2 (Accum). The Accum signal 212-2 can be a supply voltage (e.g., Vcc) and the Accumb signal can be a reference voltage (e.g., ground). Enabling signals 212-1 and 212-2 activates the cross coupled latch comprising transistors 208-1, 208-2, 209-1, and 209-2 corresponding to the secondary latch. The activated sense amp pair operates to amplify a differential voltage between common node 217-1 and common node 217-2 such that node 217-1 is driven to one of the Accum signal voltage and the Accumb signal voltage (e.g., to one of Vcc and ground), and node 217-2 is driven to the other of the Accum signal voltage and the Accumb signal voltage. As described further below, the signals 212-1 and 212-2 are labeled “Accum” and “Accumb” because the secondary latch can serve as an accumulator while being used to perform a logical operation. In a number of embodiments, an accumulator comprises the cross coupled transistors 208-1, 208-2, 209-1, and 209-2 forming the secondary latch as well as the pass transistors 207-1 and 208-2. As described further herein, in a number of embodiments, a compute component comprising an accumulator coupled to a sense amplifier can be configured to perform a logical operation that comprises performing an accumulate operation on a data value represented by a signal (e.g., voltage or current) on at least one of a pair of complementary sense lines.


The compute component 231 also includes inverting transistors 214-1 and 214-2 having a first source/drain region coupled to the respective digit lines D and D_. A second source/drain region of the transistors 214-1 and 214-2 is coupled to a first source/drain region of transistors 216-1 and 216-2, respectively. The gates of transistors 214-1 and 214-2 are coupled to a signal 213 (InvD). The gate of transistor 216-1 is coupled to the common node 217-1 to which the gate of transistor 208-2, the gate of transistor 209-2, and the first source/drain region of transistor 208-1 are also coupled. In a complementary fashion, the gate of transistor 216-2 is coupled to the common node 217-2 to which the gate of transistor 208-1, the gate of transistor 209-1, and the first source/drain region of transistor 208-2 are also coupled. As such, enabling signal InvD serves to invert the data value stored in the secondary latch and drives the inverted value onto sense lines 205-1 and 205-2.


In FIG. 2, the compute component 231 is configured to perform an AND, NAND, and/or a NOT (e.g., invert) operation. The following example will demonstrate how a 3-input NAND operation can be performed using data stored in array 230 as the inputs, and how the result of the NAND operation can be stored in the array via operation of the sensing circuitry (e.g., sense amp 206 and compute component 231). The example involves using the data values (e.g., logic 1 or logic 0) stored in the memory cells coupled to word lines 204-0, 204-1, and 204-2 and commonly coupled to sense line 205-1 as the respective inputs of a NAND operation. The result of the NAND operation will be stored in the memory cell coupled to word line 204-3 and to sense line 205-1 (e.g., by overwriting the previous data value stored in the cell).


A first operation phase of the 3-input NAND operation includes performing a sensing operation on the Row0 memory cell using sense amp 206 to determine its stored data value, which serves as a first input of the NAND operation. The sense amp 206 can operate in a similar manner as sense amp 306 described below in association with FIG. 3. The sensing operation involves enabling Row0 (e.g., to activate the access transistor 202) and results in a voltage (e.g., Vcc) corresponding to a logic 1 or a voltage (e.g., ground) corresponding to a logic 0 being on sense line D (and the other voltage being on complementary sense line D_), such that the sensed data value is stored in the primary latch corresponding to sense amp 206. After the Row0 memory cell is sensed, the Passd and Passdb signals 211-1/211-2 are enabled and the Accumb and Accum signals 212-1/212-2 are enabled, which results in the sensed data value stored in the Row0 memory cell being copied to the secondary latch corresponding to compute component 231. The Passd and Passdb signals are then disabled; however, the Accum and Accumb signals remain enabled (during the second, third, and fourth operation phase as described below). Row0 is then disabled and equilibration occurs. As described below in association with FIG. 3, equilibration can involve shorting the complementary sense lines D and D_ together at an equilibration voltage, which can be Vcc/2, for instance. Equilibration can occur, for instance, prior to a memory cell sensing operation.


A second phase of the 3-input NAND operation includes performing a sensing operation on the Row1 memory cell using sense amp 206 to determine its stored data value, which serves as a second input of the NAND operation. As such, Row1 is enabled and the sense lines D and D are each driven to a different one of Vcc and ground. In this example, a Vcc voltage on sense line D corresponds to a logic 1 stored in a memory cell and a ground voltage on sense line D corresponds to a logic 0; however, embodiments are not limited to this example. After the Row1 memory cell is sensed, the Passd signal 211-1 is enabled while the Passdb signal 211-2 remains disabled (e.g., only Passd is enabled). Recall that the Accumb and Accum signals 212-1/212-2 remain enabled. If the data value stored in the Row1 memory cell is a logic 0, then the accumulated value associated with the secondary latch is asserted low such that the secondary latch stores logic 0. If the data value stored in the Row1 memory cell is not a logic 0, then the secondary latch retains its stored Row0 data value (e.g., a logic 1 or a logic 0). As such, in this example, the secondary latch is serving as a zeroes (0s) accumulator. The Passd signal is then disabled, Row1 is disabled, and equilibration occurs.


A third phase of the 3-input NAND operation includes performing a sensing operation on the Row2 memory cell using sense amp 206 to determine its stored data value, which serves as a third input of the NAND operation. As such, Row2 is enabled and the sense lines D and D are each driven to a different one of Vcc and ground. After the Row2 memory cell is sensed, the Passd signal 211-1 is enabled while the Passdb signal 211-2 remains disabled (e.g., only Passd is enabled). Recall that the Accumb and Accum signals 212-1/212-2 remain enabled. If the data value stored in the Row2 memory cell is a logic 0, then the accumulated value associated with the secondary latch is asserted low such that the secondary latch stores logic 0. If the data value stored in the Row2 memory cell is not a logic 0, then the secondary latch retains its previously stored value (e.g., its stored value). As such, the value stored in the secondary latch (e.g., the output of the accumulator) is the AND of the data values stored in the respective Row0, Row1, and Row2 memory cells. The Passd signal is then disabled, Row2 is disabled, and equilibration occurs.


The fourth phase of the 3-input NAND operation includes disabling equilibration such that sense lines D and D_ are floating. The InvD signal 213 is then enabled, which results in an inverting of the data value stored the secondary latch (e.g., inverting the accumulated output). As such, if any of the memory cells of Row0 to Row2 stored a logic 0 (e.g., if any of the three inputs of the NAND operation were logic 0), then the sense line D_ will carry a voltage corresponding to logic 0 (e.g., ground voltage) and sense line D will carry a voltage corresponding to logic 1 (e.g., Vcc). If all of the memory cells of Row0 to Row2 stored a logic 1 (e.g., all of the three inputs of the NAND operation were logic 1), then the sense line D_ will carry a voltage corresponding to logic 1 and sense line D will carry a voltage corresponding to logic 0. The primary latch of sense amp 206 is then enabled and the sense line D now contains the NANDed result of the respective input data values from the Row0 to Row2 memory cells. As such, sense line D will be at Vcc if any of the Row0 to Row 2 memory cells stored a logic 0 and sense line D will be at ground if all of the Row0 to Row2 memory cells stored a logic 1. The result of the NAND operation is then stored back to a memory cell of array 230. In this example, the result of the NAND operation can be stored to the Row3 memory cell. Storing the result of the NAND operation to the Row3 memory cell simply involves activating the Row3 access transistor 202 by enabling Row3. The capacitor 203 of the Row3 memory cell will be driven to a voltage corresponding to the data value on the sense line D (e.g., logic 1 or logic 0), which essentially overwrites whatever data value was previously stored in the Row3 memory cell. Embodiments are not so limited. For instance, in a number of embodiments, the result of the logical operation may be written to a memory cell other than a memory cell of Row3. For example, the result can be stored back to one of the memory cells that initially stored the data used as inputs of the operation (e.g., to one of cells of Row0, Row1, and Row2). In a number of embodiments, the result of the logical operation may not be stored back to the array. For instance, after performing the logical operation, the result may be transferred from an accumulator (e.g., the accumulator of compute component 231) to an external device (e.g., via local I/O lines coupled to the sense amp).


Although the above example involved a 3-input NAND operation, embodiments are not so limited. For instance, in a number of embodiments, the number of inputs can be equal to the number of rows (e.g., N) associated with a particular array. That is, the same sensing circuitry described in FIG. 2 can be used to perform an N-input NAND function. Sensing circuitry such as that described in FIG. 2 can also enable performance of numerous logical operations in parallel. For instance, in an array may having 16K columns, 16K logical operations can be performed in parallel, without transferring data from the array and sensing circuitry via a bus and/or without transferring data from the array and sensing circuitry via local I/O lines.


Also, one of ordinary skill in the art will appreciate that the ability to perform NAND logical operations can enable performance of more complex computing functions such as addition, subtraction, and multiplication, among other primary math functions and/or pattern compare functions. For example, a series of NAND operations can be combined to perform a full adder function. As an example, if a full adder requires 12 NAND gates to add two data values along with a carry in and carry out, a total of 384 NAND operations (12×32) could be performed to add two 32 bit numbers. Embodiments of the present disclosure can also be used to perform logical operations that may be non-boolean (e.g., copy, compare, etc.) and/or may be more or less complex than a NAND operation.


Additionally, in a number of embodiments, the inputs to a logical operation performed may not be data values stored in the memory array to which the sensing circuitry (e.g., 150) is coupled. For instance, a number of inputs to a logical operation can be sensed by a sense amplifier (e.g., 206) without activating a row of the array (e.g., 230). As an example, the number of inputs can be received by the sense amp 206 via I/O lines coupled thereto (e.g., I/O lines 334-1 and 334-2 shown in FIG. 3). Such inputs may be provided to the sense amp 206 (e.g., via the appropriate I/O lines) from a source external to the array 230 such as from a host processor (e.g., host 110) and/or external controller, for instance. As another example, in association with performing a logical operation, the inputs to a particular sense amp (e.g., 206) and its corresponding compute component (e.g., 231) may be received from a different sense amp/compute component pair. For instance, a data value (e.g., logical result) stored in a first accumulator coupled to a first column of cells may be transferred to a different (e.g., neighboring) sense amp/compute component pair associated with a different column of cells, which may or may not be located in the same array as the first column.


Embodiments of the present disclosure are not limited to the particular sensing circuitry configuration illustrated in FIG. 2. For instance, different compute component circuitry can be used to perform logical operations in accordance with a number of embodiments described herein. Although not illustrated in FIG. 2, in a number of embodiments, control circuitry can be coupled to array 230, sense amp 206, and/or compute component 231. Such control circuitry may be implemented on a same chip as the array and sensing circuitry and/or on an external processing resource such as an external processor, for instance, and can control enabling/disabling various signals corresponding to the array and sensing circuitry in order to perform logical operations as described herein.



FIG. 2B illustrates a timing diagram 285 associated with performing a logical operation using sensing circuitry in accordance with a number of embodiments of the present disclosure. As an example, timing diagram 285 can illustrate a phase of a 3-input NAND operation such as that described above. The timing diagram 285 illustrates voltage signals associated with performing a first phase of a logical operation. As described further below, performing the logical operation phase illustrated in FIG. 2B can involve consuming significantly less energy (e.g., about half) than previous processing approaches, which may involve providing a full swing between voltage rails (e.g., between a supply voltage and ground) to perform a compute function.


In the example illustrated in FIG. 2B, the voltage rails corresponding to complementary logic values (e.g., “1” and “0”) are a supply voltage 274 (VDD) and a ground voltage 272 (Gnd). Prior to performing a logical operation, equilibration can occur such that the complementary sense lines D and D_ are shorted together at an equilibration voltage 225 (VDD/2). Equilibration is described further below in association with FIG. 3.


At time t1, the equilibration signal 226 is deactivated, and then a row is activated (e.g., the row corresponding to a memory cell whose data value is to be sensed). Signal 204 represents the voltage signal applied to the selected row. When row signal 204 reaches the threshold voltage (Vt) of the access transistor (e.g., 202) corresponding to the selected cell, the access transistor turns on and couples the sense line D to the selected memory cell (e.g., to the capacitor 203 if the cell is a 1T1C DRAM cell), which creates a differential voltage signal between the sense lines D and D_ (e.g., as indicated by signals 205-1 and 205-2, respectively) between times t2 and t3. The voltage of the selected cell is represented by signal 203. Due to conservation of energy, creating the differential signal between D and D_ (e.g., by coupling the cell to D) does not consume energy, since the energy associated with activating/deactivating the row signal 204 can be amortized over the plurality of memory cells coupled to the row.


At time t3, the sense amp fires (e.g., the positive control signal 231 (e.g., PSA 331 shown in FIG. 3) goes high, and the negative control signal 228 (e.g., RNL_ 328) goes low), which amplifies the differential signal. The primary energy consumption occurs in charging the sense line D 205-1 from VDD/2 to VDD.


At time t4, the pass transistor 207-1 and/or 207-2 is activated, depending on the particular logic operation. Since timing diagram 285 is describing a first phase of a NAND operation, both pass transistors 207-1 and 207-2 are activated (as described above, in subsequent phases of a NAND operation only one of the pass transistors (e.g., 207-1) is activated during accumulate operations). At time t5, the accumulator control signals 212-1 (Accumb) and 212-2 (Accum) are activated. As described above, in subsequent phases of a NAND operation, the accumulator control signals 212-1 and 212-2 would already be activated. As such, in this example, activating the control signals 212-1 and 212-2 activates the accumulator. If the accumulator was previously activated, then activating passd 211 results in accumulating the data value corresponding to the voltage signal 205-1.


At time t6, the pass transistors 207-1 and 207-2 are deactivated; however, since the accumulator control signals 212-1 and 212-2 remain activated, an accumulated result is stored (e.g., latched) in the accumulator. At time t7, the row signal 204 is deactivated, and the array sense amps are deactivated at time t8 (e.g., sense amp control signals 228 and 231 are deactivated).


At time t9, the sense lines D and D_ are equilibrated (e.g., equilibration signal 226 is activated), as illustrated by sense line voltage signals 205-1 and 205-2 moving from their respective rail values to the equilibration voltage 225 (VDD/2). The equilibration consumes little energy due to the law of conservation of energy.


The example logic operation phase described in association with FIG. 2 involves accumulating a data value (e.g., a data value sensed from a memory cell and/or a data value corresponding to a voltage or current of a sense line). Due to conservation of energy, the energy consumed in performing the logic operation phase is approximately equal to the energy consumed during charging of the capacitance of the sense line D or D_ from VDD/2 to VDD, which begins at time t3 (e.g., when the sense amp is fired). As such, a logical operation is performed that consumes approximately the energy used to charge a sense line (e.g., digit line) from VDD/2 to VDD. In contrast, various previous processing approaches consume at least an amount of energy used to charge a sense line from rail to rail (e.g., from ground to VDD.



FIG. 3 illustrates a schematic diagram of a portion of sensing circuitry in accordance with a number of embodiments of the present disclosure. In this example, the portion of sensing circuitry comprises a sense amplifier 306. In a number of embodiments, one sense amplifier 306 (e.g., “sense amp”) is provided for each column of memory cells in an array (e.g., array 130). The sense amp 306 can be sense amp of a DRAM array, for instance. In this example, sense amp 306 is coupled to a pair of complementary sense lines 305-1 (“D”) and 305-2 (“D_”). As such, the sense amp 306 is coupled to all of the memory cells in a respective column through sense lines D and D_.


The sense amplifier 306 includes a pair of cross coupled n-channel transistors (e.g., NMOS transistors) 327-1 and 327-2 having their respective sources coupled to a negative control signal 328 (RNL_) and their drains coupled to sense lines D and D_, respectively. The sense amplifier 306 also includes a pair of cross coupled p-channel transistors (e.g., PMOS transistors) 329-1 and 329-2 having their respective sources coupled to a positive control signal 331 (PSA) and their drains coupled to sense lines D and D_, respectively.


The sense amp 306 includes a pair of isolation transistors 321-1 and 321-2 coupled to sense lines D and D_, respectively. The isolation transistors 321-1 and 321-2 are coupled to a control signal 322 (ISO) that, when enabled, activates (e.g., turns on) the transistors 321-1 and 321-2 to connect the sense amp 306 to a column of memory cells. Although not illustrated in FIG. 3, the sense amp 306 may be coupled to a first and a second memory array and can include another pair of isolation transistors coupled to a complementary control signal (e.g., ISO_), which is disabled when ISO is enabled such that the sense amp 306 is isolated from a first array when sense amp 306 is coupled to a second array, and vice versa.


The sense amp 306 also includes circuitry configured to equilibrate the sense lines D and D_. In this example, the equilibration circuitry comprises a transistor 324 having a first source/drain region coupled to an equilibration voltage 325 (dvc2), which can be equal to Vcc/2, where Vcc is a supply voltage associated with the array. A second source/drain region of transistor 324 is coupled to a common first source/drain region of a pair of transistors 323-1 and 323-2. The second source drain regions of transistors 323-1 and 323-2 are coupled to sense lines D and D_, respectively. The gates of transistors 324, 323-1, and 323-2 are coupled to control signal 326 (EQ). As such, enabling EQ activates the transistors 324, 323-1, and 323-2, which effectively shorts sense line D to sense line D_ such that the sense lines D and D_ are equilibrated to equilibration voltage dvc2.


The sense amp 306 also includes transistors 332-1 and 332-2 whose gates are coupled to a signal 333 (COLDEC). Signal 333 may be referred to as a column decode signal or a column select signal. The sense lines D and D_ are connected to respective local I/O lines 334-1 (10) and 334-2 (IO_) responsive to enabling signal 333 (e.g., to perform an operation such as a sense line access in association with a read operation). As such, signal 333 can be enabled to transfer a signal corresponding to the state (e.g., a logic data value such as logic 0 or logic 1) of the memory cell being accessed out of the array on the I/O lines 334-1 and 334-2.


In operation, when a memory cell is being sensed (e.g., read), the voltage on one of the sense lines D, D_ will be slightly greater than the voltage on the other one of sense lines D, D_. The PSA signal is then driven high and the RNL_ signal is driven low to enable the sense amplifier 306. The sense line D, D having the lower voltage will turn on one of the PMOS transistor 329-1, 329-2 to a greater extent than the other of PMOS transistor 329-1, 329-2, thereby driving high the sense line D, D_ having the higher voltage to a greater extent than the other sense line D, D_ is driven high. Similarly, the sense line D, D_ having the higher voltage will turn on one of the NMOS transistor 327-1, 327-2 to a greater extent than the other of the NMOS transistor 327-1, 327-2, thereby driving low the sense line D, D_ having the lower voltage to a greater extent than the other sense line D, D_ is driven low. As a result, after a short delay, the sense line D, D_ having the slightly greater voltage is driven to the voltage of the PSA signal (which can be the supply voltage Vcc), and the other sense line D, D_ is driven to the voltage of the RNL_ signal (which can be a reference potential such as a ground potential). Therefore, the cross coupled NMOS transistors 327-1, 327-2 and PMOS transistors 329-1, 329-2 serve as a sense amp pair, which amplify the differential voltage on the sense lines D and D and serve to latch a data value sensed from the selected memory cell. As used herein, the cross coupled latch of sense amp 306 may be referred to as a primary latch. In contrast, and as described above in connection with FIG. 2, a cross coupled latch associated with a compute component (e.g., compute component 231 shown in FIG. 2) may be referred to as a secondary latch.


CONCLUSION

The present disclosure includes apparatuses and methods related to performing logical operations using sensing circuitry. An example apparatus comprises an array of memory cells and sensing circuitry coupled to the array. The sensing circuitry is configured to perform a logical operation using a data value stored in a first memory cell coupled to a sense line as a first input and a data value stored in a second memory cell coupled to the sense line as a second input. The sensing circuitry is configured to perform the logical operation without transferring data via a sense line address access.


Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that an arrangement calculated to achieve the same results can be substituted for the specific embodiments shown. This disclosure is intended to cover adaptations or variations of one or more embodiments of the present disclosure. It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. The scope of the one or more embodiments of the present disclosure includes other applications in which the above structures and methods are used. Therefore, the scope of one or more embodiments of the present disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.


In the foregoing Detailed Description, some features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the disclosed embodiments of the present disclosure have to use more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A system, comprising: a host configured to generate instructions; anda memory device comprising an array of memory cells coupled to sensing circuitry comprising a first latch and a second latch, wherein the memory device is configured to: receive an instruction from the host; andexecute the instruction to perform at least one of a NAND operation or an AND operation using data values stored in the array as inputs by controlling the sensing circuitry without transferring the data values externally from the memory device.
  • 2. The system of claim 1, wherein the second latch serves as an accumulator.
  • 3. The system of claim 2, wherein the second latch is coupled to the first latch via a pair of pass transistors.
  • 4. The system of claim 1, wherein the first latch is a latch is a sense amplifier latch and the second latch is an accumulator latch.
  • 5. The system of claim 1, wherein the host comprises a processor and is coupled to the memory device via a bus.
  • 6. The system of claim 1, wherein the array comprises a plurality of columns of memory cells, and wherein executing the instruction includes performing a respective plurality of the at least one of the NAND operation or the AND operation in parallel.
  • 7. The system of claim 1, wherein the system is a server system, and wherein the memory device comprises a dynamic random access memory (DRAM) device.
  • 8. The system of claim 1, wherein the at least one of the NAND operation or the AND operation is a first logical operation, and wherein the memory device is configured to execute the instruction to perform multiple logical operations to perform a compute function selected from the group comprising: an addition operation;a subtraction operation; anda multiplication operation.
  • 9. The system of claim 1, wherein the system comprises an electronic system selected from the group comprising: a laptop computer;a desktop computer;a digital camera; anda mobile telephone.
  • 10. A method, comprising: providing an instruction to a memory device from a host, wherein the memory device comprises an array of memory cells coupled to sensing circuitry comprising a first latch and a second latch; andexecuting, on the memory device, the instruction to perform at least one of a NAND operation or an AND operation using data values stored in the array as inputs by controlling the first latch and the second latch without transferring the data values externally from the memory device.
  • 11. The method of claim 10, wherein performing the at least one of the NAND operation and the AND operation comprises providing control signals to the sensing circuitry to perform the operation by using a first data value on a sense line corresponding to a column of the array at a first point in time as a first input and a second data value on the sense line at a second point in time as a second input.
  • 12. The method of claim 11, further comprising providing the control signals to the sensing circuitry from a controller local to the memory device.
  • 13. The method of claim 11, wherein performing the at least one of the NAND operation and the AND operation without transferring the data values externally from the memory device comprises performing the at least one of the NAND operation or the AND operation without transferring the data values externally from the array and the sensing circuitry.
  • 14. The method of claim 10, further comprising providing the instruction to the memory device from an external host processor.
  • 15. The method of claim 10, wherein the array comprises a plurality of columns each corresponding to a pair of complementary sense lines, wherein the sensing circuitry comprises, for each respective one of the plurality of columns: a sense amplifier comprising the first latch; and a corresponding compute component comprising the second latch; andwherein the method further comprises controlling the sensing circuitry to perform a plurality of the at least one of the NAND operation or the AND operation in parallel, the plurality of logical operations being a same quantity as the plurality of columns.
  • 16. The method of claim 10, wherein performing the at least one of the NAND operation or the AND operation without transferring data externally from the memory device further comprises performing the at least one of the NAND operation or the AND operation without transferring data from the array and/or sensing circuitry via input/output lines of the array.
  • 17. An apparatus, comprising: a sense amplifier comprising a first latch coupled to a pair of complementary sense lines of an array of memory cells;a second latch configured to serve as an accumulator and coupled to the sense amplifier via a pair of pass transistors; andcontrol circuitry configured to provide signals to the first latch and the second latch in association with performing at least one of a NAND operation or an AND operation using, as inputs, a first data value latched by the first latch at a first point in time and a second data value represented by a signal on at least one of the pair of complementary sense lines at a second point in time.
  • 18. The apparatus of claim 17, wherein the first data value is provided to the first latch without activating an access line of the array.
  • 19. The apparatus of claim 17, wherein the apparatus is a system comprising: a memory device comprising: the array of memory cells;the sensing circuitry; andthe control circuitry; anda host coupled to the memory device; andwherein the first data value is provided to the first latch from the host.
  • 20. The apparatus of claim 17, wherein the first latch and the second latch comprise respective cross-coupled latches.
PRIORITY INFORMATION

This application is a Continuation of U.S. application Ser. No. 16/215,026, filed Dec. 10, 2018, which issues as U.S. Pat. No. 10,431,264 on Oct. 1, 2019, which is a Continuation of U.S. application Ser. No. 15/965,733, filed Apr. 27, 2018, which issued as U.S. Pat. No. 10,153,009 on Dec. 11, 2018, which is a Continuation of U.S. application Ser. No. 15/688,545, filed Aug. 28, 2017, which issues as U.S. Pat. No. 9,959,913 on May 1, 2018, which is a Continuation of U.S. application Ser. No. 15/270,761, filed Sep. 20, 2016, which issued as U.S. Pat. No. 9,892,766 on Feb. 13, 2018, which is a Continuation of U.S. application Ser. No. 14/878,452, filed Oct. 8, 2015, which issued as U.S. Pat. No. 9,472,265 on Oct. 18, 2016, which is a Continuation of U.S. application Ser. No. 13/784,219, filed Mar. 4, 2013, which issued as U.S. Pat. No. 9,158,667 on Oct. 13, 2015, the contents of which are included herein by reference.

US Referenced Citations (271)
Number Name Date Kind
4380046 Fung Apr 1983 A
4435792 Bechtolsheim Mar 1984 A
4435793 Ochii Mar 1984 A
4727474 Batcher Feb 1988 A
4843264 Galbraith Jun 1989 A
4958378 Bell Sep 1990 A
4977542 Matsuda et al. Dec 1990 A
5023838 Herbert Jun 1991 A
5034636 Reis et al. Jul 1991 A
5201039 Sakamura Apr 1993 A
5210850 Kelly et al. May 1993 A
5253308 Johnson Oct 1993 A
5276643 Hoffman et al. Jan 1994 A
5325519 Long et al. Jun 1994 A
5367488 An Nov 1994 A
5379257 Matsumura et al. Jan 1995 A
5386379 Ali-Yahia et al. Jan 1995 A
5398213 Yeon et al. Mar 1995 A
5440482 Davis Aug 1995 A
5446690 Tanaka et al. Aug 1995 A
5473576 Matsui Dec 1995 A
5481500 Reohr et al. Jan 1996 A
5485373 Davis et al. Jan 1996 A
5506811 McLaury Apr 1996 A
5615404 Knoll et al. Mar 1997 A
5638128 Hoogenboom Jun 1997 A
5638317 Tran Jun 1997 A
5654936 Cho Aug 1997 A
5678021 Pawate et al. Oct 1997 A
5724291 Matano Mar 1998 A
5724366 Furutani Mar 1998 A
5751987 Mahant-Shetti et al. May 1998 A
5787458 Miwa Jul 1998 A
5854636 Watanabe et al. Dec 1998 A
5867429 Chen et al. Feb 1999 A
5870504 Nemoto et al. Feb 1999 A
5915084 Wendell Jun 1999 A
5935263 Keeth et al. Aug 1999 A
5986942 Sugibayashi Nov 1999 A
5991209 Chow Nov 1999 A
5991785 Alidina et al. Nov 1999 A
6005799 Rao Dec 1999 A
6009020 Nagata Dec 1999 A
6092186 Betker et al. Jul 2000 A
6122211 Morgan et al. Sep 2000 A
6125071 Kohno et al. Sep 2000 A
6134164 Lattimore et al. Oct 2000 A
6147514 Shiratake Nov 2000 A
6151244 Fujino et al. Nov 2000 A
6157578 Brady Dec 2000 A
6163862 Adams et al. Dec 2000 A
6166942 Vo et al. Dec 2000 A
6172918 Hidaka Jan 2001 B1
6175514 Henderson Jan 2001 B1
6181698 Hariguchi Jan 2001 B1
6208544 Beadle et al. Mar 2001 B1
6226215 Yoon May 2001 B1
6301153 Takeuchi et al. Oct 2001 B1
6301164 Manning et al. Oct 2001 B1
6304477 Naji Oct 2001 B1
6389507 Sherman May 2002 B1
6418498 Martwick Jul 2002 B1
6466499 Blodgett Oct 2002 B1
6510098 Taylor Jan 2003 B1
6563754 Lien et al. May 2003 B1
6578058 Nygaard Jun 2003 B1
6731542 Le et al. May 2004 B1
6754746 Leung et al. Jun 2004 B1
6768679 Le et al. Jul 2004 B1
6807614 Chung Oct 2004 B2
6816422 Hamade et al. Nov 2004 B2
6819612 Achter Nov 2004 B1
6894549 Eliason May 2005 B2
6943579 Hazanchuk et al. Sep 2005 B1
6948056 Roth Sep 2005 B1
6950771 Fan et al. Sep 2005 B1
6950898 Merritt et al. Sep 2005 B2
6956770 Khalid et al. Oct 2005 B2
6961272 Schreck Nov 2005 B2
6965648 Smith et al. Nov 2005 B1
6985394 Kim Jan 2006 B2
6987693 Cernea et al. Jan 2006 B2
7020017 Chen et al. Mar 2006 B2
7028170 Saulsbury Apr 2006 B2
7045834 Tran et al. May 2006 B2
7054178 Shiah et al. May 2006 B1
7061817 Raad et al. Jun 2006 B2
7079407 Dimitrelis Jul 2006 B1
7173857 Kato et al. Feb 2007 B2
7187585 Li et al. Mar 2007 B2
7196928 Chen Mar 2007 B2
7260565 Lee et al. Aug 2007 B2
7260672 Garney Aug 2007 B2
7372715 Han May 2008 B2
7400532 Aritome Jul 2008 B2
7406494 Magee Jul 2008 B2
7447720 Beaumont Nov 2008 B2
7454451 Beaumont Nov 2008 B2
7457181 Lee et al. Nov 2008 B2
7463501 Dosaka Dec 2008 B2
7535769 Cernea May 2009 B2
7546438 Chung Jun 2009 B2
7562198 Noda et al. Jul 2009 B2
7573756 Seo Aug 2009 B2
7574466 Beaumont Aug 2009 B2
7602647 Li et al. Oct 2009 B2
7603605 Mittal Oct 2009 B2
7663928 Tsai et al. Feb 2010 B2
7685365 Rajwar et al. Mar 2010 B2
7692466 Ahmadi Apr 2010 B2
7752417 Manczak et al. Jul 2010 B2
7791962 Noda et al. Sep 2010 B2
7796439 Arai Sep 2010 B2
7796453 Riho et al. Sep 2010 B2
7805587 Van Dyke et al. Sep 2010 B1
7808854 Takase Oct 2010 B2
7827372 Bink et al. Nov 2010 B2
7869273 Lee et al. Jan 2011 B2
7898864 Dong Mar 2011 B2
7924628 Danon et al. Apr 2011 B2
7937535 Ozer et al. May 2011 B2
7957206 Bauser Jun 2011 B2
7979667 Allen et al. Jul 2011 B2
7996749 Ding et al. Aug 2011 B2
8042082 Solomon Oct 2011 B2
8045391 Mohklesi Oct 2011 B2
8059438 Chang et al. Nov 2011 B2
8095825 Hirotsu et al. Jan 2012 B2
8117462 Snapp et al. Feb 2012 B2
8130582 Shimano Mar 2012 B2
8164942 Gebara et al. Apr 2012 B2
8208328 Hong Jun 2012 B2
8208331 Lin et al. Jun 2012 B2
8213248 Moon et al. Jul 2012 B2
8223568 Seo Jul 2012 B2
8238173 Akerib et al. Aug 2012 B2
8274841 Shinano et al. Sep 2012 B2
8279683 Klein Oct 2012 B2
8310884 Iwai et al. Nov 2012 B2
8332367 Bhattacherjee et al. Dec 2012 B2
8339824 Cooke Dec 2012 B2
8339883 Yu et al. Dec 2012 B2
8347154 Bahali et al. Jan 2013 B2
8351292 Matano Jan 2013 B2
8356144 Hessel et al. Jan 2013 B2
8417921 Gonion et al. Apr 2013 B2
8462532 Argyres Jun 2013 B1
8484276 Carlson et al. Jul 2013 B2
8495438 Roine Jul 2013 B2
8503250 Demone Aug 2013 B2
8526239 Kim Sep 2013 B2
8533245 Cheung Sep 2013 B1
8555037 Gonion Oct 2013 B2
8599613 Abiko et al. Dec 2013 B2
8605015 Guttag et al. Dec 2013 B2
8625376 Jung et al. Jan 2014 B2
8644101 Jun et al. Feb 2014 B2
8650232 Stortz et al. Feb 2014 B2
8873272 Lee Oct 2014 B2
8964496 Manning Feb 2015 B2
8971124 Manning Mar 2015 B1
9015390 Klein Apr 2015 B2
9047193 Lin et al. Jun 2015 B2
9158667 Manning Oct 2015 B2
9165023 Moskovich et al. Oct 2015 B2
10153009 Manning Dec 2018 B2
10431264 Manning Oct 2019 B2
20010007112 Porterfield Jul 2001 A1
20010008492 Higashiho Jul 2001 A1
20010010057 Yamada Jul 2001 A1
20010028584 Nakayama et al. Oct 2001 A1
20010043089 Forbes et al. Nov 2001 A1
20020059355 Peleg et al. May 2002 A1
20030167426 Slobodnik Sep 2003 A1
20030222879 Lin et al. Dec 2003 A1
20040073592 Kim et al. Apr 2004 A1
20040073773 Demjanenko Apr 2004 A1
20040085840 Vali et al. May 2004 A1
20040095826 Perner May 2004 A1
20040154002 Ball et al. Aug 2004 A1
20040205289 Srinivasan Oct 2004 A1
20040240251 Nozawa et al. Dec 2004 A1
20050015557 Wang et al. Jan 2005 A1
20050078514 Scheuerlein et al. Apr 2005 A1
20050097417 Agrawal et al. May 2005 A1
20060047937 Selvaggi et al. Mar 2006 A1
20060069849 Rudelic Mar 2006 A1
20060101231 Higashida May 2006 A1
20060146623 Mizuno et al. Jul 2006 A1
20060149804 Luick et al. Jul 2006 A1
20060181917 Kang et al. Aug 2006 A1
20060215432 Wickeraad et al. Sep 2006 A1
20060225072 Lari et al. Oct 2006 A1
20060291282 Liu et al. Dec 2006 A1
20070103986 Chen May 2007 A1
20070171747 Hunter et al. Jul 2007 A1
20070180006 Gyoten et al. Aug 2007 A1
20070180184 Sakashita et al. Aug 2007 A1
20070195602 Fong et al. Aug 2007 A1
20070285131 Sohn Dec 2007 A1
20070285979 Turner Dec 2007 A1
20070291532 Tsuji Dec 2007 A1
20080025073 Arsovski Jan 2008 A1
20080037333 Kim et al. Feb 2008 A1
20080052711 Forin et al. Feb 2008 A1
20080137388 Krishnan et al. Jun 2008 A1
20080165601 Matick et al. Jul 2008 A1
20080178053 Gorman et al. Jul 2008 A1
20080215937 Dreibelbis et al. Sep 2008 A1
20090067218 Graber Mar 2009 A1
20090154238 Lee Jun 2009 A1
20090154273 Borot et al. Jun 2009 A1
20090254697 Akerib Oct 2009 A1
20100067296 Li Mar 2010 A1
20100091582 Vali et al. Apr 2010 A1
20100172190 Lavi et al. Jul 2010 A1
20100210076 Gruber et al. Aug 2010 A1
20100226183 Kim Sep 2010 A1
20100308858 Noda et al. Dec 2010 A1
20100332895 Billing et al. Dec 2010 A1
20110051523 Manabe et al. Mar 2011 A1
20110063919 Chandrasekhar et al. Mar 2011 A1
20110093662 Walker et al. Apr 2011 A1
20110103151 Kim et al. May 2011 A1
20110119467 Cadambi et al. May 2011 A1
20110122695 Li et al. May 2011 A1
20110140741 Zerbe et al. Jun 2011 A1
20110219260 Nobunaga et al. Sep 2011 A1
20110235449 Chen et al. Sep 2011 A1
20110267883 Lee et al. Nov 2011 A1
20110317496 Bunce et al. Dec 2011 A1
20120005397 Lim et al. Jan 2012 A1
20120017039 Margetts Jan 2012 A1
20120023281 Kawasaki et al. Jan 2012 A1
20120089793 Nazar et al. Apr 2012 A1
20120120705 Mitsubori et al. May 2012 A1
20120134216 Singh May 2012 A1
20120134225 Chow May 2012 A1
20120134226 Chow May 2012 A1
20120140540 Agam et al. Jun 2012 A1
20120182798 Hosono et al. Jul 2012 A1
20120195146 Jun et al. Aug 2012 A1
20120198310 Tran et al. Aug 2012 A1
20120246380 Akerib et al. Sep 2012 A1
20120265964 Murata et al. Oct 2012 A1
20120281486 Rao et al. Nov 2012 A1
20120303627 Keeton et al. Nov 2012 A1
20130003467 Klein Jan 2013 A1
20130061006 Hein Mar 2013 A1
20130107623 Kavalipurapu et al. May 2013 A1
20130117541 Choquette et al. May 2013 A1
20130124783 Yoon et al. May 2013 A1
20130132702 Patel et al. May 2013 A1
20130138646 Sirer et al. May 2013 A1
20130163362 Kim Jun 2013 A1
20130173888 Hansen et al. Jul 2013 A1
20130205114 Badam et al. Aug 2013 A1
20130219112 Okin et al. Aug 2013 A1
20130227361 Bowers et al. Aug 2013 A1
20130283122 Anholt et al. Oct 2013 A1
20130286705 Grover et al. Oct 2013 A1
20130326154 Haswell Dec 2013 A1
20130332707 Gueron et al. Dec 2013 A1
20140185395 Seo Jul 2014 A1
20140215185 Danielsen Jul 2014 A1
20140250279 Manning Sep 2014 A1
20140344934 Jorgensen Nov 2014 A1
20150134713 Wheeler May 2015 A1
20150324290 Leidel Nov 2015 A1
20150325272 Murphy Nov 2015 A1
20150356006 Perner Dec 2015 A1
Foreign Referenced Citations (18)
Number Date Country
101281781 Oct 2008 CN
101770802 Jul 2010 CN
102141905 Aug 2011 CN
102822896 Dec 2012 CN
2026209 Feb 2009 EP
0214718 Mar 1987 JP
H0831168 Feb 1996 JP
2006127460 May 2006 JP
2007206849 Aug 2007 JP
2009259193 Mar 2015 JP
10-0211482 Aug 1998 KR
10-2010-0134235 Dec 2010 KR
10-2013-0049421 May 2013 KR
2001065359 Sep 2001 WO
2010079451 Jul 2010 WO
2013062596 May 2013 WO
2013081588 Jun 2013 WO
2013095592 Jun 2013 WO
Non-Patent Literature Citations (32)
Entry
Boyd et al., “On the General Applicability of Instruction-Set Randomization”, Jul.-Sep. 2010, (14 pgs.), vol. 7, Issue 3, IEEE Transactions on Dependable and Secure Computing.
Stojmenovic, “Multiplicative Circulant Networks Topological Properties and Communication Algorithms”, (25 pgs.), Discrete Applied Mathematics 77 (1997) 281-305.
“4.9.3 MINLOC and MAXLOC”, Jun. 12, 1995, (5pgs.), Message Passing Interface Forum 1.1, retrieved from http://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node79.html.
Derby, et al., “A High-Performance Embedded DP Core with Novel SIMD Features”, Apr. 6-10, 2003, (4 pgs), vol. 2, pp. 301-304, 2003 IEEE International Conference on Accoustics, Speech, and Signal Processing.
Debnath, Biplob, Bloomflash: Bloom Filter on Flash-Based Storage, 2011 31st Annual Conference on Distributed Computing Systems, Jun. 20-24, 2011, 10 pgs.
Pagiamtzis, Kostas, “Content-Addressable Memory Introduction”, Jun. 25, 2007, (6 pgs.), retrieved from: http://www.pagiamtzis.com/cam/camintro.
Pagiamtzis, et al., “Content-Addressable Memory (CAM) Circuits and Architectures: A Tutorial and Survey”, Mar. 2006, (16 pgs.), vol. 41, No. 3, IEEE Journal of Solid-State Circuits.
International Search Report and Written Opinion for PCT Application No. PCT/US2013/043702, dated Sep. 26, 2013, (11 pgs.).
Elliot, et al., “Computational RAM: Implementing Processors in Memory”, Jan.-Mar. 1999, (10 pgs.), vol. 16, Issue 1, IEEE Design and Test of Computers Magazine.
Dybdahl, et al., “Destructive-Read in Embedded DRAM, Impact on Power Consumption,” Apr. 2006, (10 pgs.), vol. 2, Issue 2, Journal of Embedded Computing-Issues in embedded single-chip multicore architectures.
Kogge, et al., “Processing in Memory: Chips to Petaflops,” May 23, 1997, (8 pgs.), retrieved from: http://www.cs.ucf.edu/courses/cda5106/summer02/papers/kogge97PIM.pdf.
Draper, et al., “The Architecture of the DIVA Processing-In-Memory Chip,” Jun. 22-26, 2002, (12 pgs.), ICS '02, retrieved from: http://www.isi.edu/˜draper/papers/ics02.pdf.
Adibi, et al., “Processing-In-Memory Technology for Knowledge Discovery Algorithms,” Jun. 25, 2006, (10 pgs.), Proceeding of the Second International Workshop on Data Management on New Hardware, retrieved from: http://www.cs.cmu.edu/˜damon2006/pdf/adibi06inmemory.pdf.
U.S. Appl. No. 13/449,082, entitled, “Methods and Apparatus for Pattern Matching,” filed Apr. 17, 2012, (37 pgs.).
U.S. Appl. No. 13/743,686, entitled, “Weighted Search and Compare in a Memory Device,” filed Jan. 17, 2013, (25 pgs.).
U.S. Appl. No. 13/774,636, entitled, “Memory As a Programmable Logic Device,” filed Feb. 22, 2013, (30 pgs.).
U.S. Appl. No. 13/774,553, entitled, “Neural Network in a Memory Device,” filed Feb. 22, 2013, (63 pgs.).
U.S. Appl. No. 13/796,189, entitled, “Performing Complex Arithmetic Functions in a Memory Device,” filed Mar. 12, 2013, (23 pgs.).
Notice of Preliminary Rejection for related Korea Patent Applicaton No. 10-2015-7027181, dated Nov. 24, 2015, 5 pages.
Office Action for U.S. Appl. No. 13/962,399, dated Sep. 17, 2015, 7 pages.
Office Action for related China Patent Application No. 201480011890.4, dated Mar. 2, 2016, 10 pages.
Office Action for related Japan Patent Application No. 2015-560213, dated Feb. 9, 2016, 8 pages.
Notice of Preliminary Rejection for Korea Patent Application No. 10-2016-7005826, dated Apr. 12, 2016, 11 pages.
Search Report for related EP Patent Application No. 14760332.8, dated Dec. 16, 2016, 8 pages.
International Search Report and Written Opinion for related PCT Patent Application No. PCT/US2014/049881, dated Nov. 17, 2014, 11 pages.
Office Action for related Taiwan Patent Application No. 103107275, dated Jul. 31, 2015, 15 pages.
International Search Report and Written Opinion for related PCT Application No. PCT/US2014/017259, dated May 27, 2014, 13 pages.
Office Action for U.S. Appl. No. 15/051,112, dated Jul. 11, 2016, 8 pages.
Notice of Rejection for Japan Patent Application No. 2016-515939, dated Jul. 26, 2016, 7 pages.
Notice of Rejection for related Korea Patent Application No. 10-2016-7017172, dated Jul. 12, 2016, 7 pages.
Communication Pursuant to Article 94(3) EPC for related EP Application No. 14760332.8, dated Oct. 2, 2017, 5 pages.
Office Action for related China Patent Application No. 201611113948.3, dated Apr. 16, 2020, 25 pages.
Related Publications (1)
Number Date Country
20200027487 A1 Jan 2020 US
Continuations (6)
Number Date Country
Parent 16215026 Dec 2018 US
Child 16587651 US
Parent 15965733 Apr 2018 US
Child 16215026 US
Parent 15688545 Aug 2017 US
Child 15965733 US
Parent 15270761 Sep 2016 US
Child 15688545 US
Parent 14878452 Oct 2015 US
Child 15270761 US
Parent 13784219 Mar 2013 US
Child 14878452 US