1. Field of the Invention
The present invention relates to the field of electromechanical circuits or microsystems (MEMS). These circuits are especially used in mobile phone radio frequency applications.
2. Discussion of the Related Art
WO01/13457 discloses a switch having a beam embedded at an extremity, including a piezoelectric actuation means formed of a unit disposed on a portion of the mobile beam. This unit is made of a plurality of layers parallel to the surface of the beam. The first layer is a conductive electrode, the second layer is a piezoelectric layer (PZT), the third layer is a second conductive electrode. When an electric voltage is applied between the first and second electrodes, the unit expands in the direction of the length of the beam. Therefore, a bi-metal effect appears between the beam and the piezoelectric unit that causes a bending of the beam. This structure is difficult to manufacture and necessitates a large number of steps for depositing the different layers one above the others.
Additionally, EP Patent Application 0963000 discloses an electrostatically actuated mechanic microswitch and a resonator assembled in the same device. The actuation mode is not suitable for a large number of applications and the use of a piezoelectric actuator of the above type in such a device may result in a complex structure.
An object of the present invention is to provide a mechanical microswitch with a piezoelectric actuation of simple structure.
Another object of the present invention is to provide such a mechanical microswitch with a piezoelectric actuation capable of being simply assembled with an acoustic resonator in integrated form.
Another object of the present invention is to provide a mode for manufacturing the device in integrated form, by using a conventional integrated circuit manufacturing technology.
To achieve these and other objects, the present invention provides an electromechanical microswitch comprising a mobile beam above a substrate and an actuator formed in a piezoelectric material capable of bending the beam, wherein the actuator forms an area of the beam and a portion of the actuator is integral with the substrate through one of its surfaces.
According to an embodiment of the present invention, at least a pair of electrodes is arranged on opposite sides of the piezoelectric material.
According to an embodiment of the present invention, at least a portion of said beam forms the piezoelectric element of a bulk acoustic wave resonator.
According to an embodiment of the present invention, at least one pair of electrodes is arranged on either side of said portion of the beam.
According to an embodiment of the present invention, said portion of said beam is formed of the same piezoelectric material as said actuator.
According to an embodiment of the present invention, only one portion of the piezoelectric material, surrounded by a pair of electrodes, has the functions of an actuator and a resonator.
According to an embodiment of the present invention, the material forming the mobile beam belongs to the group comprising AlN, ZnO, and a PZT ceramic (PbxZryTizOt with 0.8<x<1.2; 0.8<y<1.2; 0.8<z<1.2; 2<t<4).
According to an embodiment of the present invention, the mobile beam is made of AlN.
The present invention also provides a method for manufacturing a device comprising a mechanical microswitch comprising a mobile beam comprising an acoustic resonator, comprising the steps of:
a) depositing a conductive contact in a recess located in a substrate;
b) filling the recess with a sacrificial material;
c) forming metal electrodes on the sacrificial material;
d) depositing a piezoelectric material intended to form the mobile beam;
e) depositing metal electrodes on the beam; and
f) etching, according to a pattern, the piezoelectric material and removing said sacrificial material.
The foregoing and other objects, features, and advantages of the present invention will be discussed in detail in the following non-limiting description of specific embodiments in connection with the accompanying drawings, in which:
For clarity, the same elements have been designated with the same reference numerals in the different drawings. Further, as usual in the representation of integrated circuits and of electromechanical microcircuits, the various drawings are not to scale.
The device comprises an insulating substrate 1, for example, made of glass, of alumina (Al2O3), or of aluminum nitride (AlN). The substrate may also be made of a conductor or semiconductor material, coated with an insulating layer where an insulation is required. A mobile beam 2 rests on substrate 1 and extends above a recess 3. At the bottom of recess 3 is a conductive contact 4. On the lower surface of mobile beam 2 is a conductive contact 12. Mobile beam 2 and contacts 4 and 12 altogether form an electromechanical microswitch.
The present invention provides that the beam is actuated by a piezoelectric type actuator. This actuator forms, locally, the beam body. Reference 14 designates a piezoelectric area arranged between electrodes 15 and 16. A portion of the lower surface of this piezoelectric area is integral with the substrate 1 through the electrode 15. Therefore, in case of longitudinal stress of the piezoelectric material 14, this one is also deformed transversally to absorb a portion of the stresses generated in the portion integral with the substrate. When a d.c. voltage is applied between the electrodes 15 and 16, this causes for example an extension of the area 14 and therefore a flexion of the beam and one passes from the state shown in
The present invention further provides integrating in such a switch a bulk acoustic wave resonator. For this purpose, beam 2 or at least a portion 10 of this beam is made of a material capable of forming, once placed between two electrodes, the bulk of a bulk acoustic wave resonator. As illustrated in
Conventionally, to form a bulk acoustic wave resonator capable of operating at frequencies on the order of one gigahertz, dimensions in top view on the order of some hundred micrometers may be provided, which is compatible with the usual dimensions of an electromechanical microswitch, such switches currently having a beam length on the order of a few hundreds of micrometers and a thickness on the order of a few micrometers.
In
In
The structure of
The two resonators may have identical or different features. To obtain different features, it may, for example, be provided for these microresonators to have electrode shapes or different dimensions. The central frequency of one of the resonators may also be modified by covering it with an additional layer, for example, SiO2 or SiN. Further, in the case of
Further, in
According to an alternative embodiment, the invention provides a device comprising a single piezoelectric area cumulating the functions of actuator and resonator. Only one electrode pair addresses this device. An electric signal comprising a d.c. component and an a.c. component is applied to the electrode pair. The deformation of the beam is caused by the d.c. component of the signal, the device being capable of entering a resonance under the effect of the effect of the a.c. component of the same signal. In an example of this arrangement, the free length of the beam 2 above the recess 3 is about 300 μm. The width of the beam is about 50 μm. The actuator-resonator device forms the body of the beam on a length of 210 μm and lies integrally with the substrate 1 on a length of 10 μm. Therefore, the largest portion (200 μm) of this actuator-resonator device is arranged above the recess 3.
A structure according to the present invention may be formed by methods conventional in the field of the forming of integrated circuits and of electromechanical microcomponents.
At an initial step illustrated in
At the step illustrated in
At the step illustrated in
At the step illustrated in
At the step illustrated in
At the step illustrated in
Of course, the present invention is likely to have various alterations, modifications, and improvements which will readily occur to those skilled in the art. In particular, the metal electrodes are made of a material conventionally used to form electromechanical microswitches. As an example, aluminum, tungsten, platinum, gold, and molybdenum can be mentioned. Bilayers may also be used, the lower layer, for example, made of gold, being used as a contact electrode, while the upper layer, for example, made of Mo, aims at properly crystallographically orienting the layer. The material forming the mobile beam will be preferentially selected from the group comprising AlN, ZnO, and a PZT ceramic (PbxZryTizOt with 0.8<x<1.2; 0.8<y<1.2; 0.8<z<1.2; 2<t<4). For the sacrificial material (41), instead of resin, any material being easily removable by a selective etch, for example, a silicon-germanium alloy or a silicon oxide, may be used. Having thus described at least one illustrative embodiment of the invention, various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be within the scope of the invention. Accordingly, the foregoing description is by way of example only and is not intended as limiting. The invention is limited only as defined in the following claims and the equivalents thereto.
Number | Date | Country | Kind |
---|---|---|---|
04 51171 | Jun 2004 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2005/050439 | 6/13/2005 | WO | 00 | 1/28/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/000731 | 1/5/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4585970 | Koal et al. | Apr 1986 | A |
4906840 | Zdeblick et al. | Mar 1990 | A |
RE33691 | Harnden et al. | Sep 1991 | E |
6204737 | Ella | Mar 2001 | B1 |
6379510 | Kane et al. | Apr 2002 | B1 |
7126254 | Nanataki et al. | Oct 2006 | B2 |
7215064 | Mehta | May 2007 | B2 |
7280014 | Potter | Oct 2007 | B2 |
7420320 | Sano et al. | Sep 2008 | B2 |
7466060 | Ikehashi | Dec 2008 | B2 |
7567018 | Kawakubo et al. | Jul 2009 | B2 |
7586238 | Liu | Sep 2009 | B2 |
20040075366 | Mehta | Apr 2004 | A1 |
20040183402 | Mizuyama et al. | Sep 2004 | A1 |
20050162040 | Robert | Jul 2005 | A1 |
20090211884 | Pelzer et al. | Aug 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20080283373 A1 | Nov 2008 | US |