Automated banking machine apparatus and system

Information

  • Patent Application
  • 20070136196
  • Publication Number
    20070136196
  • Date Filed
    November 17, 2006
    18 years ago
  • Date Published
    June 14, 2007
    17 years ago
Abstract
An ATM is operative to conduct financial transactions in response to messages exchanged with a server via the Internet. The server is operative to send markup language documents to the ATM. The ATM includes a browser and can process received markup language documents. The documents include instructions that cause the ATM to operate specific transaction devices, such as a cash dispenser.
Description
TECHNICAL FIELD

This invention relates to automated banking machines.


BACKGROUND ART

Automated banking machines are well known. A common type of automated banking machine used by consumers is an automated teller machine (“ATM”). ATMs enable customers to carry out banking transactions. Common banking transactions that may be carried out with ATMs include the dispensing of cash, the making of deposits, the transfer of funds between accounts, the payment of bills and account balance inquiries. The type of banking transactions a customer can carry out are determined by capabilities of the particular banking machine and the programming of the institution operating the machine. Other types of automated banking machines may allow customers to charge against accounts or to transfer funds. Other types of automated banking machines may print or dispense items of value such as coupons, tickets, wagering slips, vouchers, checks, food stamps, money orders, scrip or travelers checks. For purposes of this disclosure an automated banking machine or automated transaction machine shall encompass any device which carries out transactions including transfers of value.


Currently ATMs are operated in proprietary communications networks. These networks interconnect ATMs operated by financial institutions and other entities. The interconnection of the networks often enables a user to use a banking machine operated by another institution if the foreign institution's banking machine is interconnected with the network that includes the user's institution. However when the customer operates the foreign institution's machine the customer must operate the machine using the customer interface that has been established by the foreign institution for its banking machines. In addition the user is limited to the transaction options provided by the foreign institution.


A customer may encounter difficulties when using a foreign institution's machine. Problems may occur because the user is not familiar with the type of machine operated by the foreign institution. Confusion may result because the customer does not know which buttons or other mechanisms to actuate to accomplish the desired transactions. The transaction flow for a customer at a foreign institution machine may be significantly different from machines operated by the user's home institution. This may be particularly a problem when the user is from another country and is not familiar with the type of banking machine or the language of the interface provided by the foreign institution. Likewise, the documents which are printed by printers in an automated banking machine are generally limited to a limited group of defined formats in a single language.


A foreign institution may also provide different types of transactions than the user is familiar with at their home institution. For example the user's home institution may enable the transfer of funds between accounts through their automated banking machines, to enable the user to maintain funds in higher interest bearing accounts until they are needed. If the foreign institution does not provide this capability, the user will be unable to do this when operating the foreign machine. The inability of a user at a foreign machine to conduct the transactions that they are accustomed to may present problems.


The networks that operate automated teller machines and other types of automated banking machines generally operate proprietary networks to which access is restricted. This is necessary to prevent fraud or tampering with the network or user's accounts. Proprietary networks are also generally used for the transmission of credit card messages and other financial transaction messages. Access to such credit card processing systems is also restricted primarily for purposes of maintaining security.


Communication over wide area networks enables messages to be communicated between distant locations. The best known wide area network is the Internet which can be used to provide communication between computers throughout the world. The Internet is not widely used for financial transaction messages because it is not a secure system. Messages intended for receipt at a particular computer address may be intercepted at other addresses without detection. Because the messages may be intercepted at locations that are distant in the world from the intended recipient, there is potential for fraud and corruption.


Companies are beginning to provide approaches for more secure transmission of messages on the Internet. Encryption techniques are also being applied to Internet messages. However the openness of the Internet has limited its usefulness for purposes of financial messages, particularly financial messages associated with the operation of automated banking machines.


Messages in wide area networks may be communicated using the Transmission Control Protocol/Internet protocol (“TCP/IP”). U.S. Pat. No. 5,706,422 shows an example of a system in which financial information stored in databases is accessed through a private wide area network using TCP/IP messages. The messages transmitted in such networks which use TCP/IP may include “documents” (also called “pages”). Such documents are produced in Hypertext Markup Language (“HTML”) which is a reference to a type of programming language used to produce documents with commands or “tags” therein. The tags are codes which define features and/or operations of the document such as fonts, layout, imbedded graphics and hypertext links. HTML documents are processed or read through use of a computer program referred to as a “browser”. The tags tell the browser how to process and control what is seen on a screen and/or is heard on speakers connected to the computer running the browser when the document is processed. HTML documents may be transmitted over a network through the Hypertext Transfer Protocol (“HTTP”). The term “Hypertext” is a reference to the ability to embed links into the text of a document that allow communication to other documents which can be accessed in the network.


Thus there exists a need for an automated banking machine and system that can be used in a wide area network such as the Internet while providing a high level of security. There further exists a need for an automated banking machine and system which provides a user with the familiar interface and transaction options of their home institution when operating foreign institution machines. There further exists a need for a machine which may provide more transaction options and types of promotional and printed materials to users.


DISCLOSURE OF INVENTION

It is an object of an exemplary embodiment to provide an automated banking machine at which a user may conduct transactions.


It is a further object of an exemplary embodiment to provide an automated banking machine that may be operated through connection to a wide area network.


It is a further object of an exemplary embodiment to provide an automated banking machine and system that provides a user with a familiar interface and transaction options of their home institution at machines operated by foreign institutions.


It is a further object of an exemplary embodiment to provide an automated banking machine that communicates using HTML documents and TCP/IP messages.


It is a further object of an exemplary embodiment to provide an automated banking machine that enables the connection of the banking machine to a user's home institution through HTML documents and TCP/IP messages generated responsive to indicia on a card input by a user.


It is a further object of an exemplary embodiment to provide an automated banking machine and system that accomplishes transactions over a wide area network while maintaining a high level of security.


It is a further object of an exemplary embodiment to provide an automated banking machine and system that controls connection of the banking machine to foreign addresses through a proxy server.


It is a further object of an exemplary embodiment to provide an automated banking machine that limits the operation of devices in the machine through a local device server.


It is a further object of an exemplary embodiment to provide an automated banking machine and system that is operable through connection to the Internet.


It is a further object of an exemplary embodiment to provide an automated banking machine that may be used to provide a user with more types of messages including messages targeted to particular users.


It is a further object of an exemplary embodiment to provide an automated banking machine which is capable of providing users with a wider variety of printed documents.


It is a further object of an exemplary embodiment to provide an automated banking machine which provides additional options for identifying authorized users.


It is a further object of an exemplary embodiment to provide an automated banking machine that can be used in connection with existing transaction systems while providing enhanced functionality.


It is a further object of an exemplary embodiment to provide an automated banking machine which provides enhanced diagnostic and service capabilities.


It is a further object of an exemplary embodiment to provide an automated banking machine which performs transactions at a rapid pace.


It is a further object of an exemplary embodiment to provide improved systems in which automated banking machines are used.


It is a further object of an exemplary embodiment to provide improved methods of operation for automated banking machines and systems.


Further objects of exemplary embodiments will be made apparent in the following Best Modes for Carrying Out Invention and the appended Claims.


The foregoing objects are accomplished in an exemplary embodiment by an automated banking machine that includes an output device such as a display screen, and an input device such as a touch screen or a keyboard. The banking machine further includes devices such as a dispenser mechanism for sheets of currency, a printer mechanism, a card reader/writer, a depository mechanism and other physical transaction function devices that are used by the machine to accomplish banking transactions.


The banking machine further includes a computer. The computer is in operative connection with the output devices and the input devices, as well as with the sheet dispenser mechanism, card reader and other physical transaction function devices in the banking machine. The computer includes software programs that are executable therein. The software programs include an HTML document handling portion. The HTML document handling portion operates to send and receive HTML documents and HTTP messages. The HTML document handling portion in some exemplary embodiments is in connection with the output device to display screens including hypertext link indicators. The HTML document handling portion in some exemplary embodiments is also in connection with the input device, which enables user selection and the generation of response messages from the computer. The HTML document handling portion in some exemplary embodiments operates in connection with a JAVA software environment and has the capability of executing instructions in JAVA script transmitted with HTML documents.


The software in the computer of some exemplary embodiments further includes a device application portion. The device application portion includes software that is operative to control the sheet dispenser and other devices. In an exemplary embodiment the device application portion includes a plurality of JAVA applets for operating the devices in the machine.


The computer in the automated banking machine further includes a device interfacing software portion. The device interfacing software portion operates to receive messages from the device application portion and to cause the devices to operate through appropriate hardware interfaces. In one exemplary form of the automated banking machine, the HTML document handling portion, device application portion and device interfacing software portion each reside on the same computer and communicate at different IP ports.


The automated banking machine in one exemplary configuration communicates using TCP/IP messages in an intranet which includes a plurality of such machines. The intranet is in turn connected to at least one computer which is operated by a home institution. The home institution is the entity that operates the banking machines.


The computer of the home institution in some exemplary embodiments includes a home HTTP server, a proxy server and a device server. The proxy server communicates through the intranet with the HTML document handling portion of the software in each of the banking machines. The proxy server is also connectable to a wide area network, such as the Internet, to which foreign servers are connected. The device server is operative to pass messages between the device application portion and the device interfacing software portion of the banking machines. The device server may include monitor software which monitors and selectively limits the use and operation of the devices in the banking machine. This provides a level of security.


The exemplary automated banking machine and system is operative to place a user in connection with the institution where they have their accounts. This can be either the home institution that operates the banking machine where the user is present, or a foreign institution which is connected to the wide area network. To operate the banking machine a user provides inputs which correspond to an address, such as a URL address, through an address input device. The HTML document handling portion operates to connect the banking machine to the server corresponding to that address. This can be accomplished in some exemplary embodiments by the user having indicia representative of the address on a card that is read by a card reader in the banking machine, or other input device which identifies the user or an institution or entity with which the user has accounts.


The HTML document handling portion is responsive to the address on the card or other input data to connect through the proxy server to the user's institution. If the user's home institution address corresponds to the home server, the banking machine operates responsive to messages from the home server. If however the user's input address corresponds to an address of a foreign server, the proxy server is operative to communicate through the wide area network with the foreign server at the customer's home institution. If the customer causes the machine to connect a server operated by a foreign institution, the HTML documents sent from the foreign institution correspond to those normally provided by the foreign institution. As a result the customer is familiar with the interface produced by these documents and will be able to more readily operate the banking machine.


The foreign server or home server operate the banking machine by sending HTML documents that include instructions for operating the devices in the banking machine. The instructions are transmitted from the HTML document handling portion to the device application portion of the software, which operates the devices in response to the instructions. The instructions from the device application portion to the devices in the automated banking machine are passed through the device server of the home institution. This helps to maintain security. In addition, the proxy server includes screening software which limits the foreign servers which may connect to and operate the banking machine. This is referred to as a “fire wall.”


Embodiments also provide enhanced user interfaces and for the printing of a wide variety of documents with the banking machine. Exemplary embodiments also enable achieving enhanced functionality while utilizing existing transaction networks and automated transaction machines.




BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic view of a network configuration including the automated banking machine apparatus and system.



FIG. 2 is a schematic view of an exemplary embodiment of an automated banking machine.



FIGS. 3 through 24 show schematic views of the automated banking machine, an intranet connecting the banking machine to a computer system of a home bank and a wide area network connecting the computer system of the home bank to a foreign bank.



FIG. 25 is a schematic view of a network configuration including an alternative embodiment of the automated banking machine.



FIG. 26 is a schematic view of frames in the HTML document handling portion of the alternative embodiment of the automated banking machine shown in FIG. 25.



FIG. 27 is a schematic view of a customer interface of an automated banking machine and the function keys and keypad keys included in the interface.



FIGS. 28-30 schematically represent exemplary steps in converting function key and keypad key inputs to keyboard stream and mouse stream inputs.



FIG. 31 schematically represents exemplary steps in printing documents with the automated banking machine.




BEST MODES FOR CARRYING OUT INVENTION

Referring now to the drawings and particularly to FIG. 1, there is shown therein a network configuration schematically indicated 10, which includes the automated banking machine apparatus and system of one exemplary embodiment. Network 10 includes a plurality of automated banking machines 12 which in the exemplary embodiment are ATMs. ATMs 12 are connected to a computer system of a home bank schematically indicated 14. Home bank computer system 14 is the computer system that is operated by the bank or other institution which has primary responsibility for the ATMs 12. Home bank computer system 14 is connected to the ATMs 12 through an intranet 16. Intranet 16 may be a local or proprietary network that provides communication between the computer system 14 and the banking machines 12 using messages in the transmission control protocol/internet protocol (“TCP/IP”) format.


In some exemplary embodiments, the messages that are communicated through the intranet 16 are TCP/IP messages and hypertext mark up language (“HTML”) documents. In one exemplary embodiment, the HTML documents sent through intranet 16 include embedded object oriented programming instructions, which can be in the JAVA® format which has been developed by Sun Microsystems. The messages sent through intranet 16 may be sent in an encrypted or unencrypted form depending on the nature of the system and the security needs of the home bank.


It should be understood that embodiments may process other forms of documents which include tags or instructions therein. For example a form of “extended” HTML has recently been proposed which may be used in embodiments of the invention. For purposes of describing and claiming the invention, all such forms of languages and variants which include documents, which documents include instructions therein shall be referred to as HTML documents. Likewise, while JAVA® is used in the described embodiment, other programming languages may be used. For example, Active-X™ developed by Microsoft Corporation or other languages may be used in other embodiments. Further it should be understood that the instructions included in documents may be operative to cause a computer to access other documents, records or files at other addresses to obtain a program to carry out an operation.


Home bank computer system 14 is also connectable as shown to a wide area network 18. In some embodiments the wide area network 18 is the Internet. In other embodiments, other wide area networks may be used. The wide area network in some exemplary embodiments communicates messages in TCP/IP between numerous computer systems connected to the wide area network. These foreign computer systems are schematically represented by servers 20, 22, 24, 26 and 28. It should be understood that servers 20 through 28 may be operated by or connected to other financial institutions throughout the world. Servers 20 through 28 in some exemplary embodiments operate by communicating HTML documents and other HTTP messages.



FIG. 2 shows a schematic view of the ATM 12 used in connection with one exemplary embodiment. ATM 12 includes a touch screen 30. Touch screen 30 includes a display screen which serves as an output device for communication with a user of the machine. Touch screen 30, because it is a touch screen, also serves as an input device for receiving input instructions from a user. Touch screen 30 is connected through an interface 32 to a computer 34 which in some exemplary embodiments is housed within the machine. Alternative embodiments may include other output devices such as audio speakers.


Computer 34 is also in connection with a plurality of transaction function devices 36 which are included in ATM 12. Devices 36 include for example, a card reader/writer mechanism 38 and a keyboard 40. Devices 36 further include a sheet dispenser mechanism 42 which is operative to dispense sheets, which in some embodiments are currency or bank notes. Devices 36 also include a depository 44 for accepting deposits into a secure location in the machine. A receipt printer 46 for providing transaction receipts to customers is also included among devices 36. A journal printer 48 is also included among the devices for keeping a hard copy record of transaction information. In other embodiments other or additional transaction function devices which carry out other transaction functions may be used. Other embodiments may include fewer transaction function devices. It should be further understood that while the described embodiment is an automated banking machine, the principles may be employed in many types of transaction machines that do not necessarily carry out banking transactions.


Each of the devices is operatively connected to an internal control bus 50 within the banking machine 12. The control bus 50 outputs the internal messages to the particular devices. Each device has an appropriate hardware interface which enables the particular device to operate to carry out its respective function in response to the messages transmitted to it on control bus 50. Card reader/writer 38 has a hardware interface schematically shown as 52. Hardware interfaces 54, 56, 58, 60 and 62 are respectively operative to connect keyboard 40, sheet dispenser mechanism 42, depository mechanism 44, receipt printer mechanism 46 and journal printer mechanism 48 to the control bus 50.


Computer 34 has several software programs that are executable therein. In the exemplary embodiment these software programs include a device interfacing software portion generally indicated 64. Device interfacing software portion 64 in some exemplary embodiments includes a software device interface 66 that communicates electronic messages with the control bus 50. The device interface software portion 64 in some exemplary embodiments also includes a device manager 68. The device manager can be operative to manage the various devices 36 and to control their various states so as to be assured that they properly operate in sequence. The device manager can also be operable to create device objects in the software so as to enable operation of the devices by at least one object oriented program 70. Device interfacing software portion 64 also includes the object oriented program portion 70, which in some exemplary embodiments is an application written in the JAVA language. Program 70 works in conjunction with the device manager to receive object oriented JAVA messages which cause the devices to operate, and to transmit device operation messages indicative of a manner in which devices are operating and/or are receiving input data.


The device interfacing software portion 64 in the described embodiment operates on computer 34 and communicates through a physical TCP/IP connection 72 with the intranet 16. The physical connection may be analog dial-up, serial port, ISDN connection or other suitable connection. In the configuration of the system as shown, device interfacing software portion 64 communicates at the IP address of computer 34 and at an IP port or socket indicated 74 that is different from the other software applications. In other embodiments, device interfacing software portion 64 may operate in a different computer than the other software applications.


It should further be understood that although in the exemplary embodiment the device interfacing portion 64 is software, in other embodiments all or portions of the instruction steps executed by software portion 64 may be resident in firmware or in other program media in connection with one or more computers, which are operative to communicate with devices 36. For purposes of describing and claiming the invention all such forms of executable instructions shall be referred to as software.


Other software also operates in computer 34. This software includes HTML document handling software which includes a browser, schematically indicated 76. In the exemplary embodiment the HTML document handling software includes a browser provided by Netscape®.


However in other embodiments other HTML document handling and communicating software and browser software, such as Hot JAVA® by Sun Microsystems or Internet Explorer™ from Microsoft, may be used. Browser 76 communicates in computer 34 at an IP port indicated by 78.


Browser 76 is in operative connection with JAVA environment software 80 which enables computer 34 to run JAVA language programs. JAVA language programs have an advantage that they operate the same on a variety of hardware platforms without modification. This “write once\run anywhere” capability makes the JAVA environment well-suited for the described embodiment. However, other embodiments may use different types of software programs.


The JAVA environment software 80 enables computer 34 to execute instructions in JAVA script, schematically indicated 82. The instructions that are executed by the computer in JAVA script can be embedded JAVA script commands that are included in the HTML documents which are received through the browser 76. The browser 76 in connection with the JAVA environment software 80 which executes instructions in the embedded JAVA script 82, serve as an HTML document handling software portion for transmitting and receiving HTML documents and TCP/IP messages through the IP port indicated by 78.


Computer 34 also has executable software therein having a device application portion 84. The device application portion 84 contains executable instructions related to operation of the devices 36. In the exemplary embodiment, the device application portion consists of a plurality of JAVA applets. In the described embodiment, the applets can be programs operable to control and keep track of the status of the devices with which they are associated. Certain applets can also be operable to configure the browser to communicate messages. Certain applets manage security and authenticate entities that use the ATM.


In the described embodiment, JAVA applets are associated with functions such as enabling the card reader mechanism, notifying the browser when a user's card data has been entered, operating the receipt printer mechanism, operating the journal printer mechanism, enabling the customer keyboard and receiving data input through the keyboard, operating the sheet dispenser mechanism, operating the depository, navigating to document addresses, timing device functions, verifying digital signatures, handling encryption of messages, controlling the mix of bills dispensed from multiple sheet dispenser mechanisms, calculating foreign exchange, and ending a transaction and instructing the browser to return to communication with the home server. Of course, in other embodiments, other applets may be used to control devices and use data to carry out various desired functions with the machine. The device application portion 84 communicates in the computer 34 at an IP port indicated 86.


In the described embodiment, the device application portion 84 of the software does not communicate its messages directly to the device interfacing software portion 64. As later explained, this provides heightened security. However it should be understood that embodiments may provide for the device application portion 84 to directly communicate device operation messages to the device program 70. This may be done either internally using TCP/IP, by delivery of messages in a conventional manner through a queue established in the operating system of the computer that is associated with the software that interfaces with the devices, or by direct call to this software.


From the foregoing discussion it will also be appreciated that certain applets in the device application portion 84 may correspond to devices which are not present in all automated teller machines. For example an automated teller machine that operates only as a cash dispenser does not include a depository mechanism like depository 44. To accommodate the situation where a user requests a transaction that is not physically possible with the ATM 12, the device interfacing software portion 64 may be programmed to provide an appropriate response message to indicate that the function is not available.


Alternatively, the device interfacing software portion may include a function which checks for the presence or absence of each type of physical device within the ATM. Information indicative of the devices present in the ATM may be included as part of the messages generated by the ATM. For example, information indicative of the devices which are operative in the ATM may be included as a portion or several parts of the URL addresses to which messages are directed by the ATM. In this way, the URL in the server to which the ATM connects may be configured for providing only HTML documents which correspond to the types of transactions that the ATM is capable of performing. As a result the browser avoids displaying documents which include references to transaction types that the machine is not capable of performing. Thus for example, a machine may avoid producing a display in response to a document which includes a reference to a deposit transaction if the machine does not include a depository.


Alternatively the machine may include in memory, data representative of the functional devices included in the machine. This may include for example data representative of a plurality of devices in the machine and the configurations of such devices, or alternatively, a designator such as a machine number sufficient to identify the capabilities of the machine. The device data indicative of the functional devices in the machine is communicated to a server and the server is operative to deliver the appropriate HTML documents for the devices present in the machine. This may be done based on the data corresponding to the device data from the machine or may be resolved from a memory which holds data representative of the functional devices in a machine associated with a particular designator. Documents selectively delivered by the server to the browser of the machine will include the appropriate references to the functional devices present in the machine. These documents may be static documents or may be generated at run time from sub-documents or otherwise, to provide the appropriate outputs and instructions to the output devices of the transaction machine.



FIGS. 3 through 18 schematically represent steps in a transaction carried out at the banking machine with the computer system of the home bank. FIG. 3 shows the ATM 12 in communication through the intranet 16 with the home bank computer system 14. Computer system 14 includes a proxy server 88. System 14 further includes a home HTTP server 90. Computer system 14 further includes a device server 92. The proxy server, home HTTP server and device server may be included in a single computer as shown, or in other embodiments may be separate computers. Additional servers may be operative in other embodiments.


The home HTTP server 90 in some exemplary embodiments is in communication with a data store and is in electronic communication with a back office computer system, schematically indicated 94. Back office computer system 94 is operative to keep track of debiting or crediting customers' accounts when they conduct transactions at the automated banking machines. In addition back office 94 can also be operative to track transactions for purposes of accomplishing settlements with other institutions who are participants in the system and whose customers conduct transactions at the ATMs 12.


As later explained, proxy server 88 is also operative in the described embodiment to communicate through the wide area network 18 with foreign servers such as foreign server 96. Foreign server 96 is an example of a server operated by an institution or entity other than the institution which operates computer system 14. It should be understood that while foreign server 96 is indicated as operated by a “foreign” institution, this is not necessarily indicative that the institution is located in another country from the institution that operates computer system 14. However, it is possible that foreign server 96 could be located in such a foreign country, including a country in which the language spoken is different from that generally used in the country where ATM 12 is located.


The conduct of transactions using the ATM 12 is now explained with reference to FIGS. 3-24. It should be understood that the following described transaction flows are merely examples of the operation of the apparatus and system, and the apparatus and system may be configured and operated in numerous ways to carry out transactions.


At the start of an exemplary transaction, as schematically represented in FIG. 3, the browser 76 communicates through the intranet 16 with the proxy server 88. The communication in some exemplary embodiments is established in a manner so that HTML documents intended to attract customers to the ATM 12 are displayed on the touch screen 30. This is referred to as the “attract mode.” These HTML documents which are processed in the browser to produce the outputs in the form of screens on the touch screen 30 (and/or outputs through other output devices included in the machine) may originate from home HTTP server 90 which is operative to deliver the HTML documents to the proxy server. The home HTTP server sends the messages addressed to the IP port associated with browser 76, so as to cause their display at the proper ATM machine. It should be understood that while in this example, home server 90 is described as communicating with the ATMs through the proxy server 88, the server 90 may in other embodiments communicate directly with the ATMs.


A fundamental advantage of an exemplary embodiment of the system is that the home HTTP server 90 may deliver documents selectively to the ATMs 12 connected to the intranet 16. These documents may include messages or material tailored to the particular location in which an ATM 12 is located. Examples of particularly tailored screens may include bilingual messages in certain neighborhoods or information concerning currency exchange at various ports of entry. The material or messages could include advertising for various products or services or other material targeted to particular machine locations. The JAVA applets and JAVA script are loaded from a central location providing selective software distribution in the ATMs which may also be used to tailor the ATM to its environment by causing it to access documents which include material intended to be useful in that location, and which is not provided in documents delivered to at least some other machines in the system.


Some exemplary embodiments are configured to have selected machines access HTML documents at different addresses, so that the particular documents accessed include the material targeted to users of the particular machine. Alternatively, a machine may communicate machine data indicative of its identity and/or location to a server. From the machine data, and data stored in a data store in connection with the server, the server operates to deliver the documents including the targeted material. This may be accomplished by assembling subdocuments, or otherwise, to generate the documents that will be delivered to the browser of the particular machine. In addition it should be understood that while in the embodiment shown the HTML documents are accessed through a server of an institution associated with the machine, the documents used for the attract mode may be accessed from other servers operated by other entities.


The touch screen 30 in this exemplary transaction sequence displays a screen which includes an icon which indicates in one or more languages that to commence a transaction a user should touch the screen. If a user touches the screen in the area of the icon an input signal is generated. The input signal or HTTP message is transmitted through the browser 76 to the home address of the home HTTP server 90 to which the ATM 12 is currently in communication. The message generated back to the home HTTP server is represented by the arrows directed from the browser 76 to the intranet 16, from the intranet 16 to the proxy server 88, and from the proxy server to the HTTP server 90 in FIG. 3.


In response to the home HTTP server 90 receiving the message indicating that a customer has touched the icon on the screen, the home server is operative responsive to the address accessed to send a message through the proxy server 88 (or in other embodiments directly) to the browser 76. This message in some exemplary embodiments includes an HTML document which when processed through the browser produces a screen instructing the customer to insert their card into the card reader mechanism 38. The HTML document flow which is represented graphically in FIG. 4, can also include embedded JAVA script or other instructions which operate in the JAVA environment to communicate a message to the JAVA applet responsible for enabling the card reader in the device application portion 84. In one exemplary embodiment the instructions provide a pointer or tag to the applet which executes responsive to receipt of the document instructions. Of course in other embodiments other software and approaches may be used.


As shown in FIG. 5, in response to the embedded JAVA script activating the JAVA applet associated with the enable card reader function, the JAVA applet in the device application portion 84 communicates with the device server 92. The device server 92 includes a device server program 98 which in the exemplary embodiment is a JAVA program that enables communication with the JAVA applets and the device server application 100. The device server 92 further can include a monitor software application 102 which is operative to monitor device operation instructions. The monitor software minimizes the risk of fraud or abuse in a manner later explained.


Returning to the sample transaction, in response to receiving the enable card reader message from the device application portion 84, the device server 92 is operative to generate a message through the intranet 16 to the device interfacing software portion 64 of the ATM 12. This message which comprises an HTTP record including instructions for operating the card reader, is directed to the IP port indicated 74 which is where the device interfacing software portion 64 communicates. In response to receiving this message, the software portion 64 is operative to send a message or messages on the control bus 50 which enables card reader mechanism 38.


Continuing with the transaction as shown in FIG. 6, the input of the card by the customer to the card reader 38 is operative to cause the card data to be read and the device interfacing program portion 64 to send a message to the device server 92 indicating the card data has been read. This message is transmitted by the device server through the intranet 16 to the device application portion 84. The device application portion then sends a message to the device server requesting the card data. The device server 92 transmits a message with instructions to deliver the card data from the device interfacing software portion 64 which responds with a message sending the card data through the intranet to the device server. The device server, if there is no basis for stopping the transaction, transmits an HTTP record including card data back through the intranet 16 to the device application portion 84.


In one exemplary embodiment, the card input by a user or customer includes indicia which corresponds to an address associated with the user in the network. In such an embodiment the indicia corresponds to a uniform resource locator (“URL”) address which provides information on the computer where the user information resides, as well as a directory or subdirectory which includes the user information and the name of the document or resource that includes the user information. The URL address may be encoded on a customer's card. The address may be encoded on track 3 of a magnetic stripe, in other locations within the magnetic stripe data or through encoding other readable indicia on the card. Alternatively, if the customer's card is a “smart” card which includes semiconductor storage thereon, the URL address associated with the customer may be included as part of the stored data on the integrated circuit chip on the customer's card. Alternatively, a URL could be derived from other data on the card by accessing a data base in which address data is correlated with other data read from the card. The data necessary to derive the address for accessing documents associated with a customer could also be derived from inputs to input devices other than or in addition to card data, including for example biometric data which is input by a customer through a biometric reading device. Such biometric data may include for example, data corresponding to one or more fingerprints, data from the user's appearance or combinations thereof.


For example and without limitation, data input by a customer such as through a card input to a card reader may correspond to an address for accessing an HTTP record, which may be a file or document which includes information which can be used for verifying the identity of a user. This record could include data corresponding to a PIN number. The information may include biometric data corresponding to the authorized user of the card. The browser may access the record and use the contents of the record such as data and/or instructions to verify that the indicia corresponding to biometric data in the record corresponds to the biometric data of the user entering the card. Alternatively, input data representative of appearance, voice, other features (or combinations thereof) or other input data, may be used to generate one or more addresses which correspond to a user, and the content of the record at the accessed address used to verify that the user at the machine corresponds to the user associated with the record. Numerous approaches may be used. The information in the record corresponding to a user may likewise be used to authorize certain functional devices on the machine to operate for the user while other devices may not. For example, a user who is overdrawn may have information in the record accessed that prevents them from actuating the cash dispenser, while users who are not overdrawn may include information which enables such operation. Alternatively, the absence of information in a corresponding record may enable operation, while the inclusion of information selectively limits the operation of devices.


Returning to the exemplary transaction, the delivery of the card data from a successfully read card is delivered responsive to the programming of the device application portion 84 to a JAVA applet associated with notifying that the card data has been entered. In response, the JAVA applet operates to generate JAVA script which configures the browser with the URL address corresponding to the data read from the card. The JAVA applet can also be operative to open a record schematically indicated 104 concerning the transaction, which includes the user's URL address, the time and other card data. This record in an exemplary embodiment may be stored in memory as data in an object in software. The object can be used to accumulate data as the transaction proceeds. The data stored in the transaction data object can include data inputted through input devices by the user as well as data representative of operations carried out by transaction function devices.


The record or transaction data object provides persistence through what may be several different transaction steps executed by the customer. The ability to use and share the data in a number of different operations avoids the need to derive it or obtain it from a customer more than once in the course of a user session involving a number of transaction steps. The use of a transaction data object enables applets to run largely independently, obtaining needed data from the transaction object. The approach also enables the record or data object to be used to produce an appropriate record at the end of the transaction session. This record may be stored, collected into a batch or delivered to selected addresses in a local or wide area network.


As schematically shown in FIG. 7, in response to the browser 76 receiving the URL address data, the browser is operative to transmit a message through the intranet 16 to the proxy server 88. For purposes of this example, the URL address associated with the card data is that of a customer associated with the home bank which operates system 14. As a result, the customer's URL address will cause the message to be directed from the proxy server 88 to the home HTTP server 90 and to access the corresponding document at the address therein. Alternatively, in other systems the connection may be made directly with server 90 without the intervening proxy server 88. As previously discussed, the URL address may also include data representative of the devices which are operative in the ATM.


In response to receiving the message, home HTTP server 90 finds the data corresponding to the customer's URL address data in its associated memory and delivers to the browser at its IP port with an HTML document. This HTML document may include a screen acknowledging the particular customer by name as well as with the name of the banking institution or other entity which operates the home bank computer system 14.


In addition, the HTML document can include embedded JAVA script which has a digital signature or a means to obtain a digital signature associated with the home HTTP server 90. The script instruction included in the document in certain embodiments causes the device application portion to access an HTTP address on a server, which in the described embodiment is server 90. The HTTP address corresponds to an HTTP record which includes at least one instruction and can include a program such as a JAVA applet or Active-X file. The instruction is used to operate the appropriate transaction function device. The HTTP record can include data representative of a signature, such as a digital signature. This digital signature is received responsive to the JAVA script 82 and processed in the device application portion 84. A JAVA applet processes the digital signature to authenticate it and if it is an acceptable signature authorizes operation of the banking machine. In certain embodiments the applet may compare the signature to signature data stored in memory for a predetermined relationship, such as a match.


After the applet verifies that HTTP server 90 or other accessed HTTP record has sent a proper digital signature, the transaction will be allowed to continue. If for some reason a proper digital signature has not been sent, the JAVA applet will stop the transaction and return banking machine 12 back to the condition prior to the start of the transaction by connecting the ATM to the address associated with the attract mode in home server 90. The use of signed instructions may be used to assure that the various transaction function devices are only operated in response to appropriate messages. The use of signed instructions may be particularly appropriate for instructions that run the sheet dispenser or otherwise provide value to the user of the machine.


In the example it will be assumed that the digital signature received is a proper signature, in which case a message is returned from the browser 76 to home server 90 indicating that the transaction may proceed. As shown in FIG. 8, in this exemplary transaction the HTTP home server 90 then operates to send an HTML document to the browser 76 which includes instructions which when processed produce a page or screen which instructs the customer to enter their personal identification number or PIN. This HTML document can include embedded JAVA instructions which operate to cause the device application portion 84 enable the keyboard 40 of the ATM so the machine may receive the PIN number. Such a message is schematically shown in FIG. 8 with the JAVA script 82 signaling the JAVA applet responsible for the keyboard that it has been requested to enable the keyboard. In response the JAVA applet in the device application portion 84 sends a message through the intranet 16 to the device server 92. The device server 92 sends a message back through the intranet to the device interfacing software portion 64 in the ATM. The instructions in this message cause the device software to enable keyboard 40. The JAVA applet responsible for enabling the keyboard can also be operative to update the transaction record 104 to indicate that the PIN was requested.


As shown in FIG. 9, the PIN entered through the keyboard 40 is transmitted in a message from the device interfacing software portion 64 to the device server 92. The device server 92 returns a message to the responsible JAVA applet in the device application portion. The JAVA applet then operates to send a message back through the HTML document handling portion and the browser 76 to the HTTP address of home server 90. This message includes data representative of the PIN input by the customer. In some embodiments it is not desirable to display the customer's PIN on the screen. In such embodiments the keyboard applet may be operative to display a default character on the screen such as a “*” symbol or other symbol in lieu of the PIN digits. Further as later discussed it may be desirable to avoid transmission of PIN or other data through the browser, in which case PIN data may be handled as a separate HTTP message or in other manner to reduce the risk of disclosure.


The software operating in connection with HTTP server 90 is then operative to either verify the PIN itself or to verify the customer's PIN number and account number by sending it to the back office 94 and waiting for a response. Alternatively, customer PIN verification may be carried out in the ATM through an appropriate applet. This can be done in situations where data on a customer's card, such as an account number, can be correlated to the customer's PIN number through an algorithm. The embedded JAVA script in the HTML messages may include or point to an address to obtain the data and/or instructions which the applet uses to perform this verification function, including certain encryption key data. This may include user information in the HTML document or other record data that was accessed in response to the user's card data. As shown schematically in FIG. 9, the transaction data object 104 is also appropriately updated by the applet to indicate the entry of the customer's PIN.


In alternative embodiments the machine may include a biometric reader device or other input device to accept data from a user. The user may input data through such a device which may be used in lieu of, or in addition to, PIN data to verify that the user is an authorized user. This may be done for example by comparing the user data input to information corresponding to the authorized user of the card included in a record or a document which has an HTTP address and is accessed by a browser or by an HTTP client application through an HTTP server in response to card data. Alternatively input data may be used to generate addresses for documents or records which are accessed by the browser or client, and which records or documents contain information that is used to verify the user's identity. For example, data concerning users may be stored in a data store in connection with an HTTP server, which delivers data from a record responsive to the user data, which is used to verify the user's identity.


It should be noted that the page or screen which requests the customer to enter their PIN is shown generated from the home HTTP server 90. This can be a screen that is associated with the particular customer's URL address. This will be the interface of the customer's home bank and will be familiar to the customer. Alternatively, the customer address may access what may be essentially the customer's personal “home page” with the institution that operates computer system 14. As such, it is not only something the user is familiar with, but is ideally tailored to the user's particular transaction needs.


Alternatively, the document(s) or record(s) which contain the customer data may be used to generate the addresses for other documents. The information may also be used to generate a document for the particular customer in the particular circumstances. This approach may be useful to reduce the effort associated with developing in advance a personal visual page or document for each customer.


Approaches for accomplishing this may involve including various types or categories of user information in the document(s) or record(s) that pertain to a particular customer. This may include information such as gender, related persons, account types, permitted transactions, customer preferences, customer interests, account balances, previous offers declined or accepted and other information. This customer information can be used by an appropriate applet among applets 86 to address and/or develop an appropriate document for the browser to access based on the customer “profile”. In addition, the profile applet may take into consideration the transaction devices present in the particular machine, information on which is stored in a data store in the machine or elsewhere in the system, as well as other factors such as the day of the week and time of day based on a system clock. In this way the machine determines the appropriate document to access or generate for the particular customer under the particular circumstances.


The logic used in the profile applet may act to cause documents to be built or accessed for the customer which includes transaction options based on the customer information, information about the terminal and other factors. The profile applet may operate to offer transaction options or information selectively based on the customer information. For example, the operator of the machine may offer incentives, premiums, additional transaction options or advertising information selectively to customers. Certain types of customers of the institution operating the machine may receive screen outputs with options that encourage them to do more business or different types of business with the institution. Likewise, customers that are identified as customers of foreign institutions may be provided with incentives to do business with the institution operating the machine.


The profile applet may operate to cause the computer to access other documents in other servers, such as stock market data, and selectively provide it to customers. It should be understood that the profile applet may operate to determine an address or generate documents to produce initial display screens of a transaction sequence. The profile applet may also operate to provide information or access or produce documents to generate visual outputs to the customer at other points in a transaction or between transactions. This may further be used in systems in which the operator of the machine is able to sell paid advertising to third parties and then access the HTTP records such as HTML files for those third parties' products or services. Such accessing may be done based on a periodic or other basis, but may be done effectively by selecting the HTTP record to access in response to the profile of the particular customer.


The continuation of the transaction flow for this exemplary transaction by a customer of the institution that operates computer network 14, is schematically shown in FIG. 10. The home HTTP server 90 is operative in response to the customer inputting the correct PIN to send HTML documents to the HTML document handling portion of the software in the computer which operates the ATM. These messages may include information used to generate screens which prompt the customer to select a transaction. For purposes of this example, it will be assumed that the customer inputs at the touch screen 30 a selection which corresponds to the dispense of cash, which is a common transaction at an automated banking machine.


The selection of the customer through the input device of the touch screen is communicated back through the HTML document handling portion which communicates an HTTP message to the home HTTP server 90. Server 90 then responds by sending another HTML document to the banking machine which prompts the customer to select an amount. Again the customer may input a selection on the touch screen which indicates the amount of cash requested by the customer. This HTTP message passes through the HTML document handling portion and the browser 76 to the home server 90.


In response to the receipt of amount data from the customer, the home server 90 can be operative to communicate electronically with the back office 94 to verify that the customer has the amount requested in their account. This can be accomplished through a Common Gateway Interface (CGI) 106 which is in operative connection with the home server 90. For purposes of this transaction it will be assumed that the back office 94 indicates that the money is available in the customer's account and sends a message through the CGI 106 to the home server 90 indicating that it may proceed.


As schematically represented in FIG. 11, the home server 90 then operates to send a document back to the HTML document handling portion in the ATM software. This message can cause information to be displayed on the screen which advises the customer that the transaction is being processed. In addition, the HTML document returned can include JAVA script which include embedded instructions which are executed and communicated to a JAVA applet associated with the operation of the sheet dispensing mechanism 42.


The document returned from the home server 90 may include advertising or other information instead of or in addition to the customer message. The document returned may also include an instruction which causes the machine to access or generate another document. These instructions may invoke methods in the profile applet which depend on the properties associated with the customer, the machine, the current time and/or other circumstances. This enables accessing documents that provide promotional messages such as advertising or other information to the customer while the customer is waiting for the machine to operate. It should be understood that these documents may be accessed anywhere, including from the Internet. This makes it possible to selectively present a wide range of materials to customers. It also enables operators of ATMs and other transaction machines to present advertising to customers, on a broad basis, or targeted to categories of customers or even targeted to individual customers on a segment of one basis. This could be advertising of the machine operator such as a bank, or advertising pertaining to virtually any type of goods or services. The advertising may also be selectively presented based on the particular transaction device being operated, the amount of funds involved or other parameters. The HTML documents also enable the presentation of video and sound to the customer which may enhance the effectiveness of promotions.


The message to the JAVA applet in the device application portion 84 of the software to initiate operation of the sheet dispenser results in generation of a message to the device server 92. The message to the device server 92 to dispense cash can be analyzed by the monitor software 102 to check to see if the message is appropriate. For example the monitor software 102 can be operative to assure that the amount of cash being requested does not exceed a preset amount. It can also optionally check to verify that the amount provided to this customer within a prior period has not exceeded an amount. This may be done by the device server sending a message to the back office which includes the card data it has previously received from this customer. This message may pass through server 90 and its associated CGI, or other connection. Assuming that the dispense instruction is not prevented by a message from the back office or the monitor software, the device server 92 is operative to send a dispense message to the device interfacing software portion 64 in the ATM. The software portion 64 is thereafter operative responsive to the message to operate the sheet dispensing mechanism 42 to dispense the amount of cash requested by the customer.


The monitor software 102 can perform additional functions in the device server. For example, government regulations or good business practice may require limiting the size and amounts of deposits which may be made into an ATM. This may be advisable to prevent “money laundering” or other suspicious activities. The monitor software can operate to limit the amount of any single deposit to below a set limit. It further operates by communicating with the home bank back office system 94 to prevent a series of deposits within a preset time from exceeding a certain limit. The monitor software may also work in connection with the proxy server to limit certain transactions that may be carried on at the banking machine responsive to instructions from foreign servers as later discussed.


It should be noted that in the exemplary embodiment the JAVA applet which is operative to send the message which causes cash to be dispensed, works in connection with another applet which controls the mix of bills dispensed to a customer. Many automated teller machines have the ability to dispense two or more denominations of currency bills. It is desirable to control the mix of bills dispensed to a customer to suit that which is available in the machine and to avoid running out of one denomination of bills before the other. The bill mix applet can be operable to control the bill mix in accordance with the desires of the institution operating the ATM machine as well as is in accordance with the ATM machine's capabilities. Alternatively, a JAVA applet for controlling bill mix may reside in device program 70 in device interfacing software portion 64.


As will be appreciated by those skilled in the art, the particular JAVA applets and/or configuration data in the machine may be selectively loaded from the home server 90 at machine startup or at other times. Because the applets and configuration data may be selectively delivered to particular machines, the machines may be tailored specifically to the particular ATMs currency dispensing and other capabilities. For example, the ATM may be configured so that certain applets or groups of applets must be present to enable the machine to operate. One approach to loading such data or programs is to provide address values in the terminal software to indicate where the needed instructions to acquire the applets or data may be obtained. If the applets or groups of applets are not already present in memory of the ATM terminal at startup, the software is operative to access the system addresses for the documents which contain the required records or instructions which will cause the machine to load the required records. The browser may be used to access the addresses and the software loads data corresponding to the instructions from the accessed documents into a memory in the ATM terminal so that the terminal has the required applets and data. Such document addresses may be accessible through the home server 90. Alternatively the addresses may be on a separate development server connected to the intranet 16. In this way each transaction machine is able to load the applets and data which include the operative code it needs to operate the transaction devices in the machine. Alternatively, the documents may be provided through a development server or other server that is accessible to the machine through a wide area network. The documents may be provided on the development server to provide the machine with instructions on how to acquire the operating code to carry out a wide variety of functions. The instructions may direct the machine to acquire the necessary data and code from addresses accessible through HTTP servers by an HTTP client in the machine. The data and code can be acquired responsive to instructions in one or several documents. The machine may also require that the applets loaded in this manner be signed applets including digital signatures or other authenticating features to achieve operation of certain devices in the machines.


Alternatively, embodiments may acquire the necessary applets and data from a remote data store. The data store can include the data and/or programs that enable the machine to operate as desired or have instructions on where the machine may acquire the necessary instructions and data for operation. The data may be accessible from a data base server. The transaction machine addresses a query to the database server. The query includes or is accompanied by indicia from the machine which identifies the machine. This may be the particular machine such as a machine number, and/or may include indicia representative of the type or functional device capabilities of the machine.


The data store can include records which have the data or programs that are to be transmitted to the machine. In response to the query to the server, the server retrieves records from the data store and responsive thereto delivers one or more messages to the HTTP client in the transaction machine. This message(s) includes the configuration data or applets to enable the machine to operate in the manner desired or may include instructions which indicate how the machine is to acquire such programs from servers connected in the system.


In the example shown the configuration server and data store may operate on the same computer as home bank server 90. In other embodiments the database server may reside elsewhere in the networks to which the machine is connected.


An advantage of some exemplary embodiments of the machines and systems which employ such features is the flexibility to change the operation and customer interface of the machine to respond to changing conditions. This may include a change in a transaction function device. Conditions may change so that certain transactions are limited or are not available. For example, a machine may normally accept deposits but its depository is full. In that situation the machine may change the documents it accesses to present messages to users through its output devices so that the deposit option is no longer offered. This can be accomplished by the applets and data loaded into the machine initially, which provide for instructions when such event is sensed. Alternatively, the machine programming may be modified by loading new applets and/or data from an HTTP server responsive to its then current status. This may be done responsive to a query to a database server which includes or is accompanied by data representative of the changed conditions or capabilities of the machine. In response the server delivers the applet(s), data and/or instructions which will operate the machine in the modified mode.


This approach eliminates the situation with conventional transaction machines where the static interface presentation on output devices offers a transaction option to a customer. Sometimes, after the customer has made the selection an indication is given that the selected transactions option is not available. The approach described herein may be used with numerous transaction options and variations of transactions. The transaction options can be readily changed from the database server on a machine by machine basis or even a customer by customer basis as previously discussed, based on the desires of the entity operating the transaction machine.


The discussion of the exemplary transaction will now be continued. In response to the cash dispenser 42 dispensing the requested amount of cash, device interfacing software program 64 can operate to send a dispense operation message confirming the dispense back to the JAVA applet responsible for the dispense in the device application program 84. As represented in FIG. 12, the particular applet is operative to update the transaction record 104 to indicate the dispense of currency to the customer in the particular amount. The embedded JAVA script instructions which were operative to cause the dispense of currency to the customer, also can include instructions to send a confirming message back to the home server 90 that the dispense is complete. The receipt of the dispense operation message indicating the cash was dispensed causes the JAVA applet to configure the HTML document handling portion to send a device response message back to the home server. The home server then can be operated in accordance with its programming to indicate to the back office 94 that the customer received the amount of funds dispensed. This amount is deducted from the customer's account in the records maintained by the back office system.


Generally during a transaction it is common to ask the customer if they wish to have a receipt for the transaction. This may be done at various times during the transaction flow. In the present example, after the cash has been dispensed the customer operating the machine is sent such a message as reflected in FIG. 13. The home server 90 is operative to send an HTML document which includes a screen asking the customer if they would like a receipt. This message is displayed as part of a page on the touch screen 30 responsive to receipt of the message through the browser 76. Alternatively the document may be generated by the machine. In response to the customer indicating that they do or do not want a receipt, a message is returned to the home server. Again it should be understood that the screens displayed to the customer can be those that the customer is accustomed to from his or her home institution, and may be a part of his or her unique home page.


Assuming that the customer wishes to receive a transaction receipt, the home server 90 operates as shown in FIG. 14 to send a document back to the ATM with embedded JAVA script indicating that a transaction receipt is to be printed. These instructions in JAVA script are communicated to the device application portion 84 which sends a TCP/IP message through the intranet to the device server 92. The device server 92 in turn communicates a message with instructions to the device interfacing software portion 64 in the ATM. In response to receiving the message, software portion 64 is operative to cause the printer 46 to print the customer's transaction receipt. The JAVA applet responsible for enabling the printer can also be operative to update the transaction data object or record 104. As later discussed, the applet which controls the printing of the receipt may obtain the data used in printing the receipt from the transaction data object.


It should be understood that even if the customer does not wish to have a receipt, it is desirable to print a record of the transaction in hardcopy through the journal printer 48. This may be accomplished in response to imbedded instructions which are part of the same document from the home server 90 which causes the transaction receipt for the customer to be printed, or may be part of a separate document which indicates that the customer has declined the option to receive a transaction receipt. Alternatively, the journal printer may be actuated responsive to other applets such as the applet which causes the dispense of cash, or in another manner chosen by the operator of the ATM. As will be appreciated from the foregoing description, the operation of an exemplary embodiment of the ATM is inherently flexible and programmable to meet the needs of the system operator.


As shown in FIG. 15 upon completion of the printing of the transaction receipt, the software portion 64 can be operative to send a device operation message to the device server 92 which is indicative that the requested device function was carried out successfully. The device server 92 is operative to send a corresponding device operation message to the device application portion 84, and in an exemplary embodiment, to the particular JAVA applet responsible for the printing of the receipt. The JAVA applet in turn configures the HTML document handling portion to generate a message back to the home server in the form of a device response message to indicate that the receipt was printed for the customer.


Having received cash and a receipt, the customer is then prompted by a display screen generated from an HTML document from the home server 90, to indicate whether they wish to conduct another transaction as schematically represented in FIG. 16. The visual page or screen prompting the customer in this regard is displayed on the touch screen 30. For purposes of this example it will be assumed that the customer does not want another transaction and a message to that effect is returned through the HTML document handling portion back to the home server 90.


As shown schematically in FIG. 17 in response to receiving a message that the customer is done, the home server 90 is operative to send a “go home” message to the ATM. This message can include an HTML document which produces a screen display thanking the customer. This message also can include embedded JAVA script which calls the JAVA applet which eventually returns the HTML document handling portion of the ATM back into connection with the URL address on the home server 90 or other address which provides the documents that are used to output the messages for the so called “attract mode”. It should be remembered that the script in some embodiments may operate to cause a message to be sent from the document handling portion to an address on the home server which causes a corresponding HTTP record including the instructions comprising the desired applet to load.


As schematically indicated in FIG. 18, the “go home” command applet is operative to configure the browser 76. After the HTML document handling portion is configured by the JAVA applet to return home, the JAVA applet may be configured to deliver to home server 90 information from the transaction record 104 concerning the transaction that was just completed.


Because the exemplary transaction was with a customer of the institution that operates the computer system 14, all the data concerning that transaction should already be recorded in the back office 94. However it will be appreciated that this will not be the case if the transaction was conducted in response to messages from a server operated by a different institution. Thus, all or a portion of the information from the transaction record 104 may be delivered in response to a “go home” command to the home server 90 and through the CGI to the back office system 94 where it can be identified as duplicate information and discarded. This may be done using remote method invocation (RMI) to pass or deliver the object to server 90 and then transmitting the data through messages from the server to the back office or through messages or other techniques.


Of course in other embodiments transaction information may be stored in a database for extended periods rather than being returned after each transaction. Alternatively, the ATM 12 may include applets which are operable to deliver transaction record information to addresses other than that of the home server, if that is desired by the operator of system 14.



FIGS. 19 through 24 schematically represent steps in a transaction carried out at the banking machine with the computer system of the foreign bank. The operation of the computer system when a “foreign” user uses the ATM 12 is graphically represented with regard to FIGS. 19 through 24. A transaction with a foreign user who is not a customer of the institution that operates ATM 12 and computer system 14, will be operated under the control of the home server 90 and will proceed in the manner of the prior example through the point where the customer inputs their card. The customer inputs a card having indicia corresponding to a URL address that does not correspond to the home server 90. The HTML document handling portion is operative to configure a message addressed to access a URL address that corresponds to the indicia on the customer's card or other address responsive to such indicia. This message is delivered to the proxy server 88 which in turn passes the message to the wide area network 18. From the wide area network the message proceeds to the foreign server corresponding to the customer's URL address. For purposes of this example the foreign server corresponds to server 96 which is connected to the Internet.


In the exemplary embodiment proxy server 88 includes screening software graphically indicated 107. Screening software can be operable to check addresses to which messages are being directed by the ATM and to selectively prevent the sending of messages to particular addresses. This serves as a “fire wall” and is desirable for purposes of preventing fraud in the system.


As shown in FIG. 20, the foreign server 96 can be operable to communicate HTTP messages, including HTML documents, to the ATM 12 back through the wide area network 18. This may be done using a secure socket connection (“SSC”) so as to minimize the risk of interception of the messages. Of course other techniques, including encryption message techniques may be used to minimize the risk of interception of the messages.


As schematically represented in FIG. 20, the response document from foreign server 96 can include embedded JAVA script that is representative of or corresponds to a digital signature which identifies the foreign server 96. This may be accomplished by loading an HTTP record including a signed applet, as previously discussed. An applet in application portion 84 in the ATM can operate to verify the digital signature in the manner described in the prior example, and send a message indicating that the transaction has been authorized. The digital identity of the foreign institution will be stored in memory in the ATM and eventually recorded in the back office 94.


It should be noted that the HTML documents from the foreign server 96 produce the visual pages or screens of the foreign institution which the foreign customer is accustomed to seeing. These pages may correspond to the foreign user's “home page” which are tailored specifically to the needs of the particular user.



FIG. 21 shows an example of a document accessed through the foreign server 96 to the ATM 12. The document from the foreign server may include embedded JAVA script which enables operation of the JAVA applets in the manner previously discussed to operate the devices 36 in the ATM. As shown in FIG. 21 the TCP/IP messages to the devices from the JAVA applets pass from the device application portion 84 to the device server 92, and the instructions therefrom to the device interfacing software portion 64 in the ATM. Device operation messages take a reverse path. As these messages pass through the device server 92, monitor software 102 monitors them to minimize the risk of fraud or abuse.


As indicated in FIG. 21, the documents from the foreign server 96 may be operative to display at the touch screen 30 a request for the customer to input their PIN. The embedded JAVA script instructions would, as in the sample transaction previously discussed, include instructions that enable the keyboard 40 to accept the customer's PIN. As in the prior example, a transaction record 104 which includes a shared data object concerning this transaction would be opened by the device application software portion. As previously discussed, provisions may be made to prevent the passage of PIN data through the browser if desired.



FIG. 22 indicates the return of the device operation message and PIN data to the JAVA applet, which in turn transmits the data back to the foreign server 96 through the wide area network 18 using the secure socket connection. From this point the transaction proceeds generally as previously described, except that the foreign server 96 sends the HTTP records, including HTML documents, and receives the messages from the document handling portion of the ATM. The foreign server 96 includes the JAVA application software necessary to include the embedded JAVA script in the documents that are sent to the ATM to operate the devices 36 in the machine.


As the foreign server 96 operates the machine, the monitor software 102 in the device server 92 is operative to monitor the messages in the manner previously discussed. Such monitoring would for example, operate to prevent the dispense of unduly large amounts of currency out of the machine. The monitoring software may also operate to restrict certain foreign institutions to a subset of the transaction machine devices or capabilities. This is done based on data stored in memory which limits the devices or activities that can be carried out from documents at certain addresses. This may be achieved for example through the use of code plugins which implement a class of the transaction objects which limits the operations that can be performed. For example, the operations which enable connection to the foreign server may instantiate the objects which provide specified limited capabilities for messages received from the foreign server. This may for example limit the amount of money dispensed, prevent operation of a check acceptance device, limit the dispense to printed documents such as tickets, prevent operation of the cash dispenser or limit use of the machine in other appropriate ways. This may be done based on the addresses or portions of addresses for documents.


If the capabilities of the machine to the foreign customer are limited, the foreign customer may be provided with a visual interface from the foreign bank based on the transactions the machine can perform and that the owner of the machine will allow. As a result the documents accessed at the foreign bank server may be a variation of what the customer would be provided at a machine operated by the foreign bank. This could be based on documents specifically developed for operating foreign machines, or could be a variant of the usual foreign bank interface with visual indications that certain transactions are not available. In some instances the interface may indicate that some transactions are available with an associated service charge.


The ATM of the described embodiment may enhance security by limiting the addresses that the browser may access. This may be done by maintaining a list in the memory of the machine. This list may be maintained in HTTP record(s) (including documents) accessible through the home bank's intranet. The machine may access the record periodically and update the memory data. This record may itself require a digital signature corresponding to a signature in the terminal memory before the data will be loaded into terminal memory. This information may also include the instructions and information for the ATM to verify that the messages it receives by accessing documents on the foreign server are genuine. This may include digital signatures which when transferred using public key or private key encryption techniques verify the messages as genuine. The machine checks to be sure the signature in the records accessed from the foreign server corresponds to the digital signature for that address stored in memory, and enables operation of transaction devices, such as the cash dispenser, only when such correspondence is present. Of course various approaches to verifying and encrypting messages may be used in various embodiments. As used herein, signatures in signed records can encompass any indicia which is included in or is derivable from a record which is indicative that it is authorized.


As can also be appreciated from the foregoing disclosure, the foreign server 96 may communicate to the user through the touch screen in a language that is different from that normally used by the customers of the institution that operates the computer system 14. As a result the HTML documents may display requests to dispense currency of a type or in an amount which is not included in the ATM. To accommodate this situation, an applet can be included in the device application portion 84 to deal with requests for foreign currency. The foreign currency applet causes the ATM to send a message back to its home server for purposes of calculating a closest amount which may be provided to the customer in the available currency in the ATM which corresponds to what the customer requested. As will be appreciated, this applet will be operative to call the particular function address within the home server 90 that is capable of providing this function. When the dispense is made, the applet is also operative to indicate to server 96 that the amount dispensed differs somewhat from the amount the customer requested. Of course in other embodiments, other approaches may be used. Alternatively an applet in the machine may generate visual displays that show equivalents in local currency when foreign currency amounts are displayed or processed. This may include presenting both amounts on visual displays presented to a user.


As represented in FIG. 23, when the foreign customer has completed their transactions as indicated through the touch screen 30, the foreign server 96 is operative to send the “go home” message back to the ATM. The receipt of this message is operative in the manner previously described to cause the device application portion 84 to operate responsive to the embedded JAVA script instructions to configure the HTML document handling portion to cause the browser 76 to reestablish communication with the home server 90, or other designated document address.


As indicated in FIG. 24, the applet in the device application portion 84 which processes the “go home” message can be operative to reconnect to the home server 90 as well as to send the transaction record information in record 104. This transaction record information, which can be packaged in a data object, includes the customer name, the foreign institution name, digital identifier, amounts of information concerning amounts dispensed, transferred or deposited, and all other pertinent transaction data. The transaction data is used by applets in performing transaction steps in which any portion of the data is required. At the completion of the customer's activity at the machine an applet provides a transaction data message which includes at least a portion of the collected data. This data is communicated from server 90 through the CGI 106 to the home bank's back office 94. This information is stored in the back office for later use for purposes of settlement with the foreign bank operating the foreign server 96. Alternatively or in addition, transaction data may be recorded in the terminal in memory as well as in hard copy on a journal printer. Transaction data may be stored for downloading in a batch or by passing objects including data from many transactions. Batch data may be communicated at times and to addresses as may be stored in memory in the terminal configuration data.


An advantage of some embodiments is that transaction data may be delivered to addresses in a local area network or in a wide area network such as the Internet. This facilitates conducting wide varieties of transactions and enables directing messages related to tracking use (such as for electronic purse type smart cards) or for settlement of various transaction types to a selected system address.


It will be appreciated that the described embodiment of the automated banking machine and system provides the advantage that when the machine is connected to a wide area network such as the Internet, customers are able to carry out their banking transactions virtually anywhere in the world. Further, despite the broad capabilities of the system, because the machine may be monitored locally, both in terms of connection and activity, the risk of fraud is minimized.


Embodiments may include a further feature to facilitate access to documents in the network to which the machine is connected. This feature is operative to determine if an HTTP record such as an HTML document or other item is accessible at an address for downloading before the computer will attempt to access the record. This avoids transaction time outs that might otherwise occur as a result of inability to access a record due to the server through which the record is normally accessed being down. Other embodiments may consider both the size of the record and the transfer rate and determine that a transfer speed for the record is not sufficiently rapid, so that an alternative record should be transferred.


In one embodiment this feature is achieved through use of a separate program or applet which checks to see if a server that the computer will subsequently want to access is alive. The applet operates responsive to receiving an address or portion thereof, to which a connection will be made. The applet operates to make a socket connection to the address and loads a small but sufficient amount of the record or otherwise operates to determine that the server through which the record must be accessed is alive. In response to the applet verifying the operation of the remote server, or otherwise determining that conditions indicative that the record may be accessed or loaded, the computer then operates so that the browser or similar software component is enabled to navigate to the address at the appropriate time in the transaction sequence. If the applet is unable to detect that the remote server is alive, or determines that it does not appear the record may be successfully accessed or loaded, steps may be taken to access alternative addresses or to discontinue the transaction. Alternative addresses to access may be based on data stored in the memory of the terminal or may be obtained by accessing documents either locally or remotely which include data from which alternative addresses may be obtained or derived. Alternative addresses are similarly checked to make a determination that the records can be accessed before attempts are made to access the alternative records. This approach avoids delays in carrying out transactions.


Alternative embodiments may employ other approaches to determine if desired HTTP records such as HTML documents may be successfully accessed and/or downloaded adequately before the browser providing the customer interface attempts to access the document. Such embodiments may consider in determining whether the document can be successfully accessed, the transfer speed or other conditions related to system operation or document content. For example, the applet which tests to determine that the HTTP record can be accessed, or a further applet, may determine the transfer rate at which the record can be transferred to the computer. The rate at which the data can be transferred may be compared to data stored in memory, and if the rate is slower than the data representative of the desired stored rate an alternative record is accessed. This may be for example an HTML document stored locally in the machine. Other embodiments may include programs which consider the size of the HTTP record and the transfer rate in determining a transfer speed. Such programs then determine if the record can be transferred fast enough to suit the parameters established in the configuration in memory, and if not, alternative addresses are accessed. Such alternative records may be similarly tested for transfer speed before being transferred.


Programs may also consider other factors in deciding to access a particular address, such factors may include for example day and time information, or information from sensors such as sensors in a floor indicating that other persons are waiting to use the machine. In this way access to documents that have extensive outputs which may tend to prolong transactions can be avoided even when records can be loaded at an adequate speed.


While the described embodiment of the automated banking machine and system is shown with regard to a particular type of machine that is made specifically for connectability to local or wide area networks, conventional automated banking machines may also be adapted to include such capability. Specifically the HTML document handling portion and device application portions may be included with other conventional software which operates within an automated banking machine. This enables such ATMs to operate either in the conventional proprietary network or as part of a wide area network. In addition, automated banking machines may be configured to operate their devices through the device interfacing software portion or through a different software interface when operating in a conventional network. Such machines may switch to requiring device messages to be passed through a device server when operating under the control of a server within the wide area network to maintain security within the system. In this way a single ATM could operate in proprietary networks in the manner of current ATMs as well as in a network configuration of a system of an exemplary embodiment.


Alternative embodiments may operate to communicate transaction messages used in a proprietary ATM network. This may be accomplished by using a CGI in connection with either the HTML document handling portion of the ATM or the HTTP home server or other server. The CGI operates in connection with a message conversion program and database to cull the necessary data from the HTML documents and response messages and generate the defined transaction request messages appropriate for the proprietary transaction network. Likewise, the message conversion program and CGI operate to receive function command messages from the proprietary network and convert them and generate appropriate HTML documents and/or TCP/IP messages for use by the ATM. Because these proprietary network formats are defined and the data necessary to produce and interpret the messages are known, the use of the ATM 12 directly in a conventional proprietary ATM network is achieved.


Conventional ATM transaction messages are defined layout messages that do not include HTML documents on HTTP messages. An example of known conventional messages used to operate ATMs are Diebold 91X messages. Such messages generally involve transmission of a request message from an ATM in a defined layout including customer input data (account/pin) and an indication of the type and amount of transaction requested. The request message is received by an ATM host computer which sends back a response message with a defined layout which includes an indication whether the transaction is authorized. The ATM then returns another message to the host computer indicating whether the machine was able to carry out the transaction. The messages used in such conventional proprietary networks generally occupy relatively little band width.


In connecting the ATM to such a network, a server can be provided. The server is in operative connection with a memory which includes a relational database which holds the message conversion and document creation data. In one configuration, the server is connected to the document handling portion through a network, or may reside on the computer of the ATM. The server produces the documents which the browser accesses and which include the transaction device instructions. The server (or a connected server) communicates the conventional messages with the host. One server may provide an interface for several ATMs connected to it in a LAN, or alternatively, each ATM may have its own server operating therein.


The ability of ATM 12 to communicate in a proprietary network also enables operation of the ATM in a manner in which the interface is generated by a user's home institution in the manner previously described, but in which transactions are authorized through messages directed through a proprietary ATM network. This achieves the security of using the proprietary network while providing the customer with the advantages of the familiar home bank interface and/or “personal home page” interface.


In such a configuration the ATM transaction function devices may be operated in a conventional manner in response to conventional ATM transaction messages such as Diebold 91X messages, in the proprietary network. The customer output devices, such as the screen (and speakers if provided) communicate through a browser connected to a local or wide area network. The browser accesses documents to prompt a customer through operation of a transaction, but the documents do not include instructions which cause operation of devices such as the cash dispenser.


In one configuration the browser may be operated by the computer in response to the status of devices in the machine, as the devices are operated in response to conventional ATM messages. In this manner the browser may be navigated to selected addresses, including addresses which are associated with the customer based on customer input data. However, as the documents received by the browser will not operate the transaction function devices, there is less need for security measures in accessing documents. As a result, the customer may still operate the machine in response to a familiar and unique interface, and marketing information such as advertising or other material may be presented in the transaction sequence.


In other embodiments machines may perform some device functions based on conventional messages, while others may be performed in response to instructions in HTML documents or other HTTP messages. For example HTML documents may provide considerable data for use by printers or other output devices. Some embodiments may access documents with instructions, but may ignore some and act in response to others. The approach may be selected by the systems operator by configuring the software based on their requirements.


A further advantage of some exemplary embodiments of the system configuration is that it has enhanced flexibility for communicating messages associated with the ATM. The device manager 68 can generate status messages associated with the status of devices 36. These status messages may commonly represent information about conditions which exist at the devices. Such messages may indicate that supplies of paper for printers or currency, are low or are depleted. Other messages may indicate that devices are not functioning properly. Often such messages indicate that the ATM requires servicing. All such types of messages are referred to herein interchangeably as status or fault messages.


The device interfacing software portion 64 communicates through the intranet 16 using TCP/IP messages. While the messages associated with transactions previously described are directed to the device server 92, the software portion 64 may include a server and be configured to address fault and status messages to other addresses in the intranet or the Internet. For example, such fault or status messages may be directed to a software application which delivers messages to a service provider. Further, fault messages may be selectively directed based on the nature of the fault indicated. For example, fault messages indicative of a need to replenish currency or supplies may be directed to an address in the intranet associated with an entity who has responsibility for replenishing supplies. Alternatively, fault messages which indicate a need for other types of servicing may be directed to an address associated with an entity who can provide the type of servicing required.


Alternatively, the selective dispatching of fault messages to addresses in the intranet 16 may be accomplished by appropriately configuring device server 92. In addition, either software portion 64 or device server 92 may direct fault messages from the ATMs to a fault handling system such as to a computer operating Event Management System™ software available from Diebold, Incorporated. Such software is operative to resolve the nature of the fault condition and to notify appropriate personnel of the corrective action to be taken.


The ATM 12 may further include a software function to assist in diagnosing problems and providing remedial service. As graphically represented in FIG. 2, alternative embodiments of the ATM 12 may include a mini-HTTP server 109 which is in communication with the device interfacing software portion 64. Server 109 is configured to receive device status messages and to produce HTTP records including HTML documents in response thereto, which provide data representative of device status to a diagnostic device 110 such as a hand-held computer terminal. Server 109 includes a CGI for interfacing with the device software so that a technician may access the information in the records accessible at the HTTP addresses related to status messages and input test and corrective instructions through diagnostic device 110. The HTTP records and/or HTML documents generated by server 109 may include graphic and audio instructions indicative of conditions such as problems, as well as corrective action data and repair instructions.


In alternative embodiments the functions of the mini-HTTP server 109 may reside in device server 92. This may be particularly appropriate where the function of the device server resides on the computer in the ATM. Regardless of where the function resides, the use of the visual and audio components of HTML documents associated with maintenance and diagnostic messages facilitates servicing of the ATM.


These records delivered through the mini-HTTP server include instructions that correspond to the status or fault conditions. Such records or documents may be accessed locally as previously discussed, or remotely. A technician using a hand-held computer which includes a browser or other software operative to access the HTTP records may access the documents locally for purposes of maintenance, diagnosis and servicing. In some situations the customer interface and browser associated therewith may be used to access the mini-HTTP server, or a separate browser, display and input devices on the machine and intended for use servicing activity may be used. Alternatively, the fault and status messages may be monitored from terminals at locations anywhere that are connected in the network. The mini-HTTP server handling status and fault messages may also be configured to send an e-mail or similar message to a selected address whenever a particular condition or group of conditions exist.


A further advantage of some exemplary embodiments having this feature is that HTTP messages may also be sent to the mini-HTTP server to attempt to correct problems. Such messages may include running diagnostic tests and receiving results. It may also include operating devices to test or attempt to clear jams and other malfunctions. This can often be done from remote locations. Of course, when there is a significant risk of unauthorized access to the server handling default or device messages, appropriate security measures should be taken.


The HTTP records which indicate the status of the transaction function devices may have different forms depending on the software configuration and the needs of the system operator. In some embodiments the device status information for one or more devices may be represented by indicia contained within a data object. The data object may be transferred to other connected computers to provide the status data. The transfer of the data object may be accomplished by remote method invocation (RMI) for example. The data in the transferred data object may then be used to generate message and/or outputs desired by the system operator. This technique may be particularly useful when the operator wishes to connect the machine to an existing monitoring system and indicia included in the data object can be used to generate outputs or messages indicative of device status that can be processed by the existing system. Plugins may further be used to achieve communication between existing monitoring systems and transaction machines which have different types of status conditions or different types of message formats. This includes machines which have different types of transaction function devices and capabilities.


The technique of transferring a data object may also be used to conduct testing or modification of transaction function devices. For example, indicia in the data object may be modified by a servicer and the object passed back to the machine. The software in the machine may cause the transaction function devices to operate or change conditions or programming in response to the modified data object. This may include for example clearing a fault indication or causing a device to operate to clear a jam or to conduct a test. The results of such activity may be reflected in modified indicia in the data object which may then be transferred to the computer in the diagnostic terminal. Of course, the approaches discussed herein are exemplary and other approaches will become apparent to those skilled in the art from the description herein.



FIG. 25 shows a schematic view of a network configuration for an alternative embodiment of the automated banking machine. The embodiment shown in FIG. 25 includes an automated banking machine specifically adapted for operating in connection with conventional automated banking machine systems such as systems which operate using Diebold 91X ATM message formats or other non-HTTP conventional format. A host computer 120 is a conventional ATM host which communicates using such messages. The host communicates with an interface server, schematically indicated 122. Interface server 122 operates in the manner previously discussed and is in operative connection with a memory that includes the information necessary to convert HTTP messages that pertain to a transaction request to a 91X request message or other conventional message, which can be handled by host computer 120. Likewise interface server 122 and the instructions and data stored in memory are operative to convert a conventional 91X command message or other conventional command message from the host 120 into HTTP messages which can be used by the automated banking machine to carry out the command. Similarly interface server 122 is operative to receive the HTTP messages which correspond to the response of the automated banking machine to the commands and to produce a 91X response message or other conventional response message to the host. In accomplishing these functions the interface server communicates with an interface client 124 which in the exemplary embodiment can be a COMM plug in which operates on the banking machine terminal under a Windows NT® operating environment. Interface server 122 also includes a command/status gateway 126. The command/status gateway is operative to receive command and status messages from the software portions handling the functional devices within the machine. The messages concerning the devices are used in producing transaction messages to send back to host 120. In addition, the command status gateway portion also produces status messages indicative of the status of devices which may also be communicated to the host.


The interface server 122, command status gateway portion 126 and interface client 124 may reside in software on the automated banking machine terminal. In this configuration the terminal appears to the host computer to be a conventional machine. Alternatively interface server 122 and command status gateway portion 126 may reside on a separate server, while the interface client portion 124 may reside on the terminal. This enables the interface server 122 to handle a number of automated banking machines by connecting the machines to the interface server through a network.


The alternative configuration of the automated banking machine system shown in FIG. 25 is particularly adapted for use in connection with existing ATM system. The machine includes an HTML document handling portion 128 which includes a browser which operates in the manner of the embodiments previously described. The HTML document handling portion is alternatively referred to as a browser herein for purposes of simplicity. The HTML document handling portion operates in connection with a network 130 to access HTTP records in the form of HTML documents through servers 132, 134 and 136. For purposes of this example server 132 will be considered the server of the home bank which operates the automated banking machine. The browser portion 128 is enabled to access documents of its home bank for purposes of obtaining content and instructions for purposes of outputting information to customers as well as for operating devices on the machine. Servers 134 and 136 are representative of other servers which the automated banking machine may be instructed to access for purposes of downloading documents which include information or instructions. Often such documents from non-home bank servers will include information which is to be presented to customers such as advertising, promotional material, stock quotations or other types of information. It should be understood that the servers 134 and 136 may be directly connected to network 130 or may be accessed through other networks and servers. In some embodiments such servers may be accessed through the Internet for purposes of providing documents to the automated banking machine.


Document handling portion 128 includes a terminal theater software portion schematically indicated 138. Terminal theater portion 138 is schematically shown in greater detail in FIG. 26. Terminal theater portion 138 includes a back stage frame 140 and a theater frame 142. The back stage frame 140 although it resides in the browser, is not visible on the screen of the automated banking machine. The theater frame 142 is a visible frame and controls what is shown to the customer.


As schematically represented in FIG. 25 the HTML document handling portion also includes a terminal director portion 144. The terminal director portion includes directors which are related instances of applets which are used in carrying out particular types of transactions. The terminal directors generally correspond to the operation of the JAVA applets in the previously described embodiment.


The automated banking machine of the alternative embodiment further includes a transaction services application (TSA) schematically indicated 146. The transaction services application provides security, terminal condition, terminal authorization and key management services within the automated banking machine. The transaction services application includes a function for communicating HTTP messages with the interface server 122. The transaction services application may also communicate through a network such as network 130 in a manner later explained. The transaction services application also provides a server function which enables the transaction services application to carry out the functions of the device server 92 in the previously described embodiment.


The automated banking machine of the alternative embodiment further includes JAVA common device interfaces schematically indicated 148. The JAVA common device interfaces in the exemplary embodiment are related instances of applets which control and coordinate the operation of the functional devices 150 of the machines which perform transaction functions. The functional devices may include devices of the types described in connection with the previous embodiment or other types of devices which operate to carry out a function related to a transaction. The JAVA common device interfaces 148 communicate with the functional devices through common device interfaces schematically represented 152. The common device interfaces (CDIs) provide an interface that controls the electromechanical modules in the functional devices included in the automated banking machine. The common device interfaces are schematically shown in connection with a diagnostic server 154. The diagnostic server operates in a manner similar to server 109 of the previously described embodiment. The diagnostic server 154 is useful in diagnosing status and in correcting problems with the devices in the automated banking machine.


Referring again to FIG. 26 the backstage frame 140 within the terminal theater portion 138 is a component called the backstage applet 156. The backstage applet 156 can be a relatively thin component. Instructions referred to as script included in documents accessed by the browser selectively cause the backstage applet to notify a terminal director when an action is to take place in response to the instructions included in the accessed document. The backstage applet also operates to request that a new HTML document be accessed. The backstage applet also provides access to the shared transaction data object previously discussed which holds transaction data.


The theater frame 142 controls the user interface as seen by the user of the automated banking machine terminal. Client HTML schematically represented 158 in the theater frame 142 defines the identifying indicia associated with events sent to a director manager through the backstage applet and provides an interface to the director manager's public methods. The director manager schematically indicated 160 in FIG. 26, has a class which resides in the transaction services application (TSA) 146 as shown. The director manager class residing in the TSA process is operative to load the terminal directors 144 to the HTML document handling portion. The director manager also includes a backstage applet class that resides in the backstage frame 140. The backstage applet class of the director manager provides an interface for the client HTML to make requests on the director manager. Instructions in HTML documents can pass events through the backstage applet 156 to the director manager. Such events include a request to authorize a transaction. Such requests may also include indications that the customer has completed a transaction or that a document loaded by the browser includes instructions requesting that the session be terminated. Other events which can be passed through the director manager include print events. Other events which can be passed through the backstage applet to the director manager include an indication that an entry was cancelled, or other defined user events.


In response to receiving events the director manager of the embodiment shown responds to instructions in documents accessed by the browser to perform functions which include changing the content of the theater frame 142. The director manager, responsive to such instructions, also changes the active terminal director class. The director manager also caches terminal director classes for later use or loads terminal director classes and HTML documents from a list of available servers. The director manager also provides access to the shared transaction data object holding transaction data for a particular transaction. The director manager also sends terminal theater events to the backstage control class of the current terminal director and provides a screen timeout timer. Of course in other embodiments the terminal director may carry out other functions.


In operation of the alternative embodiment shown in FIG. 25 the terminal directors 144 in the transaction services application 146 enables selectively accessing documents with the HTML document handling portion 128. The documents accessed may include instructions which are used to operate the automated banking machine and the functional devices thereon. The transaction services application 146 is further operative to communicate the HTTP messages which are passed to the interface server 122 and which are used to generate conventional ATM messages which can be handled by the host 120. The dispensing of currency and other transfers of value are carried out in response to approval from the host 120, while the interface and other functions are controlled through instructions in documents accessed through the browser.


In one exemplary embodiment the ATM or other transaction machine communicates with the conventional ATM host by passing the transaction data object between the computer in the ATM and the interface server. This transfer can be accomplished by the remote message invocation (RMI) feature of software such as JAVA. Of course other methods for transferring the data object file using HTTP may be used.


As previously discussed, the transaction data object holds transaction data. The machine acquires data pertinent to the transaction, such as account data from a card, a customer's PIN number, requested transaction(s) and amount(s), and includes this data among the transaction data.


Once the data needed to generate a conventional ATM transaction message is represented in the transaction data, the data object is transferred to the interface server. The interface server is in operative connection with a database 123 or other item holding conversion data as schematically indicated. The conversion data is used by the software associated with the server to generate a conventional ATM transaction request message to the host 120. The conventional message may be formatted as a conventional 91X message or other conventional non-HTTP transaction message.


After processing the host 120 responds with a conventional response message. The components of the response message are received at the server and are processed responsive to the conversion data to produce modified transaction data in the data object. This modified transaction data can include data indicative of whether the requested transaction is authorized or denied, as well as other data. For example, if the transaction is denied it may include data which is indicative of the reason for the denial.


The transaction data object with the modified transaction data is then transferred to the computer operating the ATM by RMI or other transfer method. The transaction services application 146 operating in software receives the data object and operates the transaction function devices responsive to the modified transaction data. The transaction data object has the transaction data therein further modified by the inclusion of information concerning operation of the devices. After the devices have operated, the transaction data object with the further modified transaction data is passed back to the interface server 122. The modified transaction data is then used to generate a message to the ATM host. The message to the host includes data corresponding to the modified transaction data. Usually this message is a conventional non-HTTP completion message indicating whether the transaction was successfully carried out by the transaction function devices.


The format of the non-HTTP conventional transaction messages may be readily changed in the described embodiment. This can be achieved through the use of plugins. The plugins are operative to put data into, and to extract data from, the transaction data object. The plugins achieve conversion between the transaction data and desired conventional non-HTTP messages. The use of plugins enables more readily using the ATM of the described embodiment in connection with varied types of conventional transaction networks.


Transaction data in the transaction data object can also be operative to have the computer operate the browser to access selected HTML documents. This may be done to indicate that the transaction is authorized or denied, as well as to access specific documents responsive to components of the message. For example, customers of banks other than the one operating the ATM may be given certain promotions not presented to the bank's existing customers. The transaction data indicative of why a transaction is denied can be used to access documents which provide an explanation, or can encourage the customer to take other action, such as to take a cash advance on a credit card or to apply for a loan.


The system schematically shown in FIG. 25 is an example of an automated banking machine system that achieves the wide variety of interface options available through the use of an HTML interface while preserving compatibility with existing banking machine systems and the security techniques associated therewith. Of course in other embodiments alternative approaches and configurations may be used.


A further advantage incorporated into an exemplary system embodiment schematically represented in FIG. 25 is the ability to operate the software components of the described embodiment in existing automated banking machines. As will be appreciated, the handling of HTML documents in conventional computers requires inputs through a QWERTY type keyboard as well as mouse clicks in locations corresponding to icons or other features on HTML documents to successfully navigate and use such documents. Conventional automated banking machines generally do not include a mouse or full keyboard. Rather, conventional automated banking machines generally include an alphanumeric keypad similar to that used on telephones as well as function keys. Exemplary embodiments of the system enable operation with terminals which have such interfaces and can operate in a manner which attains benefits.



FIG. 27 shows an example of a conventional automated banking machine interface 162. Interface 162 includes an output device which includes a screen 164. Screen 164 may be a CRT, LCD or other conventional display screen. In the embodiment shown screen 164 is not a touch screen as in the previously described embodiment. A plurality of function keys 166 are disposed at locations adjacent to the screen 164. A keypad 168 is also included in the interface 162. Keypad 168 includes alphanumeric keys as well as certain other dedicated keys such as “cancel”, “correct” and “ok”. Other keys on the keypad are generally blank but in some instances may be used.


In the operation of a conventional automated banking machine, screen data which is generated from information stored in the terminal memory produces defined transaction screens which are presented graphically on the screen 164. The screens appear in a sequence in response to the transaction function selected by the customer. Conventional screens also generally include text or graphics representative of selections that can be made by a customer. These text or graphic options generally includes lines or other indicia which extend to the edges of the screen adjacent to one of the function keys 166. A user is enabled to select the options by pressing the function key which is pointed to by the selection. Likewise in the operation of the automated banking machine a user is enabled to input the alphanumeric characters which comprise the PIN number as well as numeric amount information and other instructions by pressing the keys in the keypad 168.


In one embodiment the software operated in the automated banking machine operates to convert standard ATM key inputs to operating system events such as a mouse click in a desired location or an input from a QWERTY type keyboard. The software components which enable carrying out this function are shown in FIG. 28-30. These functions include a keypad applet 170. The keypad applet 170 in the described embodiment is included among the applets in the terminal directors 144. The keypad applet 170 supports a subset of the keyboard common device interface (CDI) functionality.


The keypad applet 170 coordinates with a keyboard command server which operates in the transaction services application 146. The server in the transaction services application communicates with the common device interface for the keypad and function keys, schematically indicated 172. The key CDI in the exemplary embodiment can be a JAVA program which is referred to as a wrapper for the common device interface associated with the function keys and the keypad.


The software further includes a keyboard mapper program schematically indicated 174. The keyboard mapper in the exemplary embodiment is in connection with a database 176 which stores a plurality of map sets. In the exemplary embodiment the keyboard mapper is an extension of the keyboard class of objects used for operating the keyboard. The keyboard mapper operates to store sets of keymaps in the database 176. This is accomplished by reading information in a configuration database for the ATM to obtain the keymaps that are operated in the particular machine. During operation, the keyboard mapper selects one of the keymaps as the current set. This is done in response to the keypad applet and is based on instructions in HTTP records which are selectively accessed. The keyboard mapper may select keymaps responsive to instructions in HTML documents loaded through the browser. The keyboard mapper is also operative to enable the keypad and function keys appropriate for the particular mapset selected. The keyboard mapper is further operative responsive to the selected mapset to translate a keypad input signal or a function key input signal into a respective keyboard or mouse input signal which is then delivered to the keyboard input stream or the mouse input stream of the operating system of the computer in which the software operates.


In the exemplary embodiment the mapsets are each comprised of hash tables. Keymap objects are stored as values in the hash tables such that each object includes the values and operations necessary to convert any appropriate ATM key event to an operating system input event.


As can be appreciated in the case of function keys adjacent to the ATM screen it may be desirable to provide a mouse input to the mouse input stream that corresponds to a particular coordinate location for the mouse input. This is provided by the keyboard mapper using the selected keymap set. The various keymap sets enable the different function keys to provide different types of inputs to the computer operating system responsive to the HTML document displayed on the browser. Further, the keyboard mapper causes the pressing of a selected key to produce an input corresponding to a mouse click at a selected x, y coordinate position on the screen. It should be understood that either keypad keys or function keys can be used to produce mouse inputs. Likewise, function key inputs may be converted to keyboard inputs. In some embodiments however it will be desirable to disable the mouse indicator on the screen such that the user does not notice a usual mouse icon. Such disabling may include in some embodiments reducing the size of the mouse icon such that it is so small that it cannot be readily seen by a user of the machine.


During portions of some transactions it may be unnecessary for the user to press any keys. In such situations, some exemplary embodiments operate to disable the keypad keys and/or function keys. Because resources of the computer are used in polling such keys for inputs, the cessation of such polling during appropriate times enables the computer resources to be devoted to carrying out other functions. This will increase the speed at which other activities may be carried out. This may be accomplished in some embodiments by the keypad applet operating to remove the key devices from a poll list.



FIGS. 28-30 include schematic depictions of examples of the operation of the keyboard mapper and the keypad applet. FIG. 27 shows an example of an input to the keypad 168. In this example the keypad applet 170 generally in response to instructions in an HTTP record such as an HTML document or other events, transmits and enables events to the transaction services application 146. In response a mapset is selected from the database 176 corresponding to the particular map name. The keyboard command server is further operative to enable the appropriate keys of the ATM.


In this example, in response the customer pressing the “OK” key on the keypad, the CDI generates an appropriate signal to the transaction services application. As will be noted from FIG. 27 an “OK” key is referred to by convention as the “J” key of the ATM interface. The transaction services application transmits the signal generated from the pressing of the “J” key by the customer to the keyboard mapper 174. In response to receiving the signal, the keyboard mapper operates to resolve the object in the mapset corresponding to the map name which will convert the function key input signal to a keyboard input signal which is recognized by the operating system. By calling the selected object from the mapset, a keyboard input signal is produced and delivered into the keyboard stream of the computer. This is represented by keyboard stream 178. In the embodiment shown the keyboard stream is an input to the Windows NT® operating system. The keypad applet 170 operates to sense the input through its corresponding key listener. Applet 170 is also operative to receive the event and may operate to display an icon or other graphic corresponding to what the customer has input.



FIG. 28 shows operation of the keyboard mapper in situations where the transaction services application operates to prevent transmitting the data input by the customer to the applet 170. This may be desirable for example, in situations where the input by the customer is the customer's PIN or other data which is not to be displayed. In these circumstances the transaction services application 146 operates to hold the data input by the customer and to send only a signal representative of a holding character, in this case a “*” symbol back to the browser. This is done selectively in response to the instructions contained in documents accessed by the browser or in other HTTP records accessed by the computer which indicates that the input by the customer corresponds to their PIN or other data which is not to be sent to the browser. In the example shown in FIG. 28 only the holding character is passed through the keyboard mapper to the browser. In situations where the HTTP record accessed invokes methods in which numerical values are to be sent to the browser and/or displayed on the screen (such as the amount of a withdrawal transaction) the signal sent by the transaction services application to the browser is indicative of the numerical value associated with the key pressed.



FIG. 30 is a further example of the operation of the keyboard mapper in this case the input corresponds to a function key 166. In this case the input is caused by pressing the function key “A” which is shown adjacent to the upper right-hand corner of the screen as shown in FIG. 27. The signal generated in response to pressing the function key is passed to the keyboard mapper which in response to the data obtained from the data store 176 outputs a mouse input corresponding to a mouse click. The mouse input includes data representative of the x and y coordinates on the screen where the mouse click is to be provided. This mouse input signal is passed to the mouse stream input schematically represented 180.


As will be appreciated that to enable the automated banking machine which processes HTML documents to operate using a conventional ATM interface in an exemplary embodiment, the mouse input will generally include coordinate locations which correspond to a location on the screen adjacent to the particular function key. This is because the icon, line, text or other indicia which the customer is selecting by pressing the key will generally appear or extend on the screen adjacent to the key. In this way the customer can be aware through the visual presentation what key to press to make a corresponding selection. A number of function keys adjacent to the screen may be operative at any one time. The customer may make selections by pressing a function key at one location and then a function key at another location disposed from the first location. This will result in signals being sent to the mouse stream corresponding to mouse clicks at coordinates on the screen adjacent to the function buttons pressed by the customer. During transactions various combinations of function and keypad keys may be operative and mapped to various keyboard and mouse inputs as determined by the selected mapsets. In addition developers may develop special mapsets corresponding to the particular graphics in HTML documents which are displayed.


In the foregoing manner keypad inputs to a conventional ATM or other automated banking machine keypad can be translated into conventional keyboard or mouse inputs which can be identified and processed in a conventional keyboard input stream or mouse input stream to a computer. Likewise function keys may be translated into mouse inputs at selected locations and delivered into the mouse input stream for processing by the computer or may be converted into keyboard inputs and delivered to the keyboard input stream. A further advantage of the described exemplary embodiment terminal configuration is that keys may be selectively disabled except when they are needed. This may reduce instances of attempts to improperly access the machine by pressing keys on the keyboard. Further as previously discussed steps may also be taken to disable keys when they are not needed to increase transaction processing speeds.


A further advantage of some exemplary embodiments is the ability of the automated banking machine to provide printed documents based on instructions in HTML documents. Such printed items may include tickets, travelers checks, money orders, bank checks, scrip or other types of documents. The ability of some embodiments to access and process HTML documents enables the printing of graphics and other indicia which can produce printed documents having selected appearance features and selected ornamental designs. This can reduce the need to utilize preprinted forms and also enables the printing of a greater variety of printed formats. Further the configuration of some embodiments of the machine enable printing only selected portions of transaction information for record keeping purposes within the machine while providing versions including enhanced graphics or other attractive features to customers.



FIG. 31 is a schematic representation of the operation of the system in printing forms using a printer in an automated transaction machine. The exemplary embodiment uses the WIN32 printer services which operate under Windows NTO® 4.0. In the exemplary transaction shown, the director manager class 180 operating in the terminal theater portion 138 initiates a print receipt transaction by requesting a printer director 182 to print a receipt. The printer director in one exemplary embodiment is a collection of instances of related JAVA beans which operate to carry out printing activities, and is one of the directors among the terminal directors 144. The printer director includes a print class which is schematically shown separately which is operative to invoke a print URL method. The printer class in the embodiment includes access to the shared transaction data object which includes the customer specific information concerning the transaction that includes indicia representative of information to be printed. In the case of an automated banking machine this may include for example indicia representative information which is read from a customer's card input to the machine and read by a card reader. This would include for example the customer's name and account number. The other transaction information may include the types of transactions conducted such as a deposit, withdrawal or inquiry as well as the amount involved in each respective transaction.


The transaction services application 146 receives the print request and passes the URL string to the WIN printer object 184 by the print URL method. The URL address in one exemplary embodiment is the address of an HTTP record such as an HTML document that will be used to format the document to be printed, in this case a receipt. This HTML document contains the embedded JAVA script that processes transaction data from the transaction data object. The URL address of the document may be on a local machine or may be retrieved from another server such as through a network schematically indicated 186. Network 186 may be a local area network or a wide area network depending on the configuration of the machine.


The WIN printer object 184 next navigates to the address of the document to be accessed. This can be done in the exemplary embodiment using Microsoft's C Web Browser2 ActiveX control. When the HTML document has been loaded the ActiveX control automatically begins processing the content of the accessed document. The transaction services application 146 invokes the print URL method of the WIN printer object 184. The WIN printer object uses the ActiveX control to print the current HTML document. This printing is processed by the Windows NT® print spool and graphics components.


The JAVA CDI receives an event from the print monitor component 192 that indicates the completion of print spooling. This indicates that a file is now available to be read and sent to the common device interface (CDI) 188 of the receipt printer.


Next a printer object 190 invokes a read data function in the print monitor 192 to determine the location and size of the print data file. The print object 190 sends the data or the path name of the data file to the printer CDI 188. The printer CDI 188 then passes the print data to the printer hardware. This results in printing of the document.


Once the receipt is printed the applet from the printer director 182 issues a request to deliver the printed receipt. The delivery request is passed through the transaction services application 146 to the printer object 190. The printer object 190 invokes the deliver method on the printer CDI 188 to cause the receipt to be delivered to the user of the machine. The operation of the software components enables selectively accessing document formats as well as using instructions contained in the documents to include transaction data within the printed documents. This enables producing documents of varied types. In addition it enables providing printing different types of documents for different customers. This may be desirable when providing marketing information, coupons or similar indicia on transaction receipts. This approach further simplifies providing printed formats in various languages by developing HTML documents which provide printed forms in different languages. In addition, the exemplary methods may be used for providing marketing to customers by profile or types of customer categories, as well as on a segment of one basis.


While the printing method previously described is discussed in connection with delivering transaction receipts, similar methods may be invoked for the printing of statements for customers as well as for printing a transaction journal within the automated banking machine. Further by accessing selected documents controlling the format of printing the information journal records may be provided with consolidated information in a manner which enables conserving journal paper within the machine by not printing promotional or other types of information that is provided on customer documents.


The printing method also enables printing various types of optical indicia such as bar code or other types of machine-readable indicia which can be used for printing coupons, checks or similar articles. Such coding may facilitate tracking the use of such items by customers for purposes of evaluating the effectiveness of various marketing efforts. In addition machine-readable indicia may be used for printing on items such as deposit envelopes and/or in transaction journals. Such printing may facilitate reading such items by machine to verify the contents of deposits.


The printing capabilities achieved through the exemplary methods also enable the printing of selected graphical materials. This may include for example materials which include imbedded digital signatures which can be used to verify the genuineness of the items printed. This may be particularly useful for example in situations where the transaction machine is used to print scrip, travelers checks, betting slips or other items having independent value. In addition printed documents in full color may be produced by including a color printer in the transaction machine.


Computer software used in operating the automated transaction machines of the exemplary embodiments and connected computers may be loaded from articles of various types into the respective computers. Such computer software may be included on and loaded from one or more articles such as diskettes or compact disks. Such software may also be included on articles such as hard disk drives, tapes or ready only memory devices. Other articles which include data representative of the instructions for operating computers in the manner described herein are suitable for use in achieving operation of transaction machines and systems in accordance with exemplary embodiments.


The exemplary embodiments of the automated banking machines and systems described herein have been described with reference to particular software components and features. Other embodiments may include other or different software components which provide similar functionality.


Thus, exemplary embodiments of the new automated banking machine and system achieves the above stated objectives, eliminates difficulties encountered in the use of prior devices and systems, solves problems and attains the desirable results described herein.


In the foregoing description certain terms have been used for brevity, clarity and understanding. However no unnecessary limitations are to be implied therefrom because such terms are for descriptive purposes and are intended to be broadly construed. Moreover the descriptions and illustrations herein are by way of examples and the invention is not limited to the details shown and described.


In the following claims any feature described as a means for performing a function shall be construed as encompassing any means capable of performing the recited function and shall not be deemed limited to the particular means shown in the foregoing description or mere equivalents thereof.


Having described the features, discoveries and principles of exemplary forms of the invention, the manner in which it is constructed and operated and the advantages and useful results attained; the new and useful structures, devices, elements, arrangements, parts, combinations, systems, equipment, operations, methods, processes and relationships are set forth in the appended claims.

Claims
  • 1. A system including: an automated teller machine (ATM) including a sheet dispenser, wherein the ATM includes at least one ATM computer, wherein the ATM includes browser software, a computer remotely located from the ATM, computer software executable at the computer, wherein the computer software is operative to cause at least one markup language document to be sent to the ATM, wherein the at least one markup language document includes at least one instruction, wherein the browser software is operative to process the at least one markup language document sent from the computer, wherein the ATM is operative to cause at least one sheet to be dispensed from the ATM responsive to the at least one instruction.
  • 2. The system according to claim 1 wherein the computer software is operative to cause the at least one markup language document to be sent from the computer to the ATM.
  • 3. The system according to claim 2 wherein the computer is operative to communicate with the ATM computer via Internet communication, wherein the computer software is operative to cause the at least one markup language document to be sent from the computer to the ATM via the Internet.
  • 4. The system according to claim 1 wherein the sheet dispenser comprises a cash dispenser, wherein the cash dispenser is operative to dispense cash from the ATM, wherein the at least one instruction comprises a cash dispense instruction, wherein the ATM is operative to cause cash to be dispensed from the ATM responsive to processing the at least one markup language document.
  • 5. The system according to claim 1 wherein the computer comprises a server, wherein the computer software comprises server software, wherein the server software is executable in the server, wherein the server software is operative to cause the at least one markup language document to be sent from the server to the ATM via Internet communication.
  • 6. The system according to claim 5 wherein the ATM is operative to communicate with the server via the Internet, wherein the server software causes the at least one markup language document to be sent from the server to the ATM responsive to the server receiving a message from the ATM via the Internet.
  • 7. The system according to claim 6 wherein the at least one markup language document comprises at least one HTML document, wherein the server software causes the server to produce the at least one HTML document, wherein the server software causes the at least one HTML document to be sent from the server to the ATM via Internet communication.
  • 8. The system according to claim 1wherein the sheet dispenser comprises a cash dispenser, wherein the cash dispenser is operative to dispense cash from the ATM, wherein the at least one ATM computer is operative to control the cash dispenser, wherein the browser software is executable in the at least one ATM computer, wherein the at least one ATM computer comprises Internet access, wherein the at least one ATM computer is operative to process markup language documents received via the Internet, wherein the computer comprises a server, wherein the computer software comprises server software, wherein the server software is executable in the server, wherein the at least one server is in operative connection with the ATM via the Internet, wherein the server software is operative to cause at least one markup language document to be sent from the server to the ATM via the Internet, wherein the at least one ATM computer is operative to cause the cash dispenser to dispense cash responsive to the ATM processing the cash dispense instruction.
  • 9. The system according to claim 8 wherein the ATM includes cash, and further comprising at least one markup language document, wherein the at least one markup language document includes at least one instruction, wherein the at least one instruction is operative to cause the ATM to dispense the cash responsive to the ATM processing the cash dispense instruction.
  • 10. Computer software on at least one computer readable medium, wherein the computer software is executable in at least one non automated teller machine (ATM) computer, wherein the computer software is operative to cause at least one markup language document comprising at least one instruction to be provided to an ATM including a cash dispenser, wherein the at least one markup language document is processable by at least one computer of the ATM, wherein responsive to processing of the at least one markup language document by the ATM, the at least one instruction is operative to cause the ATM to dispense cash therefrom via operation of the cash dispenser.
  • 11. The computer software according to claim 10 wherein the computer software comprises server software, wherein the server software is readable by a server, wherein the server software is operative to cause the at least one markup language document to be produced.
  • 12. The computer software according to claim 11 wherein the server software is operative to cause the server to produce the at least one markup language document.
  • 13. The computer software according to claim 12 wherein the server software enables the server to communicate with the ATM via Internet communication.
  • 14. The computer software according to claim 13 wherein the server software is operative to cause the server to send the at least one markup language document to the ATM via the Internet.
  • 15. A method comprising: (a) operating computer software in a computer to cause at least one markup language document including at least one instruction to be produced; (b) processing the at least one markup language document through operation of an automated teller machine (ATM); and (c) dispensing cash from the ATM responsive to the at least one instruction in the at least one markup language document processed in step (b).
  • 16. The method according to claim 15 wherein step (a) includes operating the computer software to cause the computer to produce the at least one markup language document.
  • 17. The method according to claim 15 wherein the computer comprises a remote computer remotely located from the ATM, wherein the ATM includes at least one ATM computer, wherein the remote computer is operative to communicate with the at least one ATM computer, wherein the at least one ATM computer includes software comprising a browser, and wherein step (b) includes processing the at least one markup language document through operation of the browser.
  • 18. The method according to claim 17 wherein the at least one ATM computer is operative to communicate with the remote computer via Internet communication, and wherein step (b) includes accessing the at least one markup language document via the Internet communication.
  • 19. The method according to claim 18 wherein the at least one instruction includes a cash dispense instruction, wherein in step (b) includes operating the ATM to processing the cash dispense instruction, and wherein step (c) includes dispensing cash from the ATM responsive to processing the cash dispense instruction in step (b).
  • 20. The method according to claim 19 wherein the remote computer comprises a server, wherein step (a) includes operating the server to produce the at least one markup language document and further comprising (d) prior to step (b), operating the server to send the at least one markup language document from the server to the ATM via the Internet.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 09/949,283 filed Sep. 7, 2001, which is a divisional of U.S. application Ser. No. 09/193,637 filed Nov. 17, 1998, now U.S. Pat. No. 6,289,320, which claims the benefit of U.S. Provisional Application Nos. 60/091,887 filed Jul. 7, 1998; 60/095,626 filed Aug. 7, 1998; and 60/098,907 filed Sep. 2, 1998, and which is a continuation-in-part of U.S. application Ser. No. 09/077,337 filed May 27, 1998, which was the National Stage of International Application No. PCT/US97/21422 filed Nov. 25, 1997, which claims the benefit of U.S. Provisional Application No. 60/031,956, filed Nov. 27, 1996; and the disclosure of each aforementioned Application is incorporated herein by reference.

Provisional Applications (4)
Number Date Country
60031956 Nov 1996 US
60098907 Sep 1998 US
60095626 Aug 1998 US
60091887 Jul 1998 US
Divisions (2)
Number Date Country
Parent 09949283 Sep 2001 US
Child 11601556 Nov 2006 US
Parent 09193637 Nov 1998 US
Child 09949283 Sep 2001 US
Continuation in Parts (1)
Number Date Country
Parent 09077337 May 1998 US
Child 09193637 Nov 1998 US