The present invention relates to the expression of the exogenous genetic material in avian cells. The invention also relates to transgenic avian species, including chicken, quail and turkey, and to avians which lay eggs containing exogenous proteins, for example pharmaceutical proteins including fusion proteins such as Fc fusion proteins (e.g., CTLA4-Fc) and to the exogenous proteins.
Numerous natural and synthetic proteins are used in diagnostic and therapeutic applications and many others are in development or in clinical trials. Current methods of protein production include isolation from natural sources and recombinant production in cell culture. Because of the complexity, high cost and known problems of these methods such as batch failure, efforts have been underway to develop alternatives. For example, methods for producing exogenous proteins in the milk of pigs, sheep, goats, and cows have been reported. These approaches have certain limitations, including long generation times between founder and production herds, extensive husbandry and veterinary costs. Proteins are also being produced using milling and malting processes from barley and rye. However, plant post-translational modifications substantially differ from vertebrate post-translational modifications, which can have a negative effect on the function of the exogenous proteins such as pharmaceutical proteins.
The avian oviduct can also serve as a bioreactor. Successful methods of modifying avian genetic material such that high levels of exogenous proteins are secreted in the oviduct and packaged into eggs allows inexpensive production of large amounts of protein. Several advantages of this approach are: a) short generation times (24 weeks) and rapid establishment of transgenic flocks via artificial insemination; b) readily scaled production by increasing flock sizes to meet production needs; c) post-translational modification of expressed proteins; d) automated feeding and egg collection; e) naturally aseptic egg-whites; and f) reduced processing costs due to the high concentration of protein in the egg white.
Recent developments in avian transgenesis have allowed the modification of avian genomes for exogenous protein production. Germ-line transgenic chickens may be produced by injecting replication-defective retrovirus into the subgerminal cavity of chick blastoderms in freshly laid eggs. See, for example, U.S. Pat. No. 7,511,120, issued Mar. 31, 2009, the disclosure of which is incorporated in its entirety herein by reference; issued U.S. Pat. No. 7,338,654, issued Mar. 4, 2008, the disclosure of which is incorporated in its entirety herein by reference; and US patent publication No. 2008/0064862 published Mar. 13, 2008, the disclosure of which is incorporated in its entirety herein by reference.
Limitations of currently accepted methods of producing therapeutic proteins include the expense of producing the production facilities and batch failure. What is needed are improved methods of producing therapeutic or pharmaceutical proteins such as fusion proteins including novel and improved forms of CTLA4-Fc.
The invention encompasses novel proteins including fusion proteins (e.g., Fc-fusion proteins) such as CTLA4-Fc produced in an avian, e.g., in an avian oviduct. In addition, the invention includes transgenic avians including those which produce eggs containing the recombinant fusion protein, progeny of the transgenic avians, methods of making the avians and the eggs containing the fusion proteins.
In one particular aspect, the fusion proteins of the invention (e.g., Fc fusion protein) such as CTLA4-Fc are produced and glycosylated in an oviduct cell of the avian. For example, the fusion protein can be produced and glycosylated in a quail or chicken oviduct cell. In one embodiment, the fusion protein is produced and glycosylated in a tubular gland cell of the avian.
In one important aspect, the invention relates to an isolated mixture of fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules comprising a fusion protein molecule of the invention glycosylated with at least one of the following eight structures:
In one embodiment, the isolated mixture of fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules contains one or more fusion protein molecules which contain oligosaccharide structures from at least two of groups 1, 2, 3 and 4.
In another embodiment, the isolated mixture of fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules contains one or more fusion protein molecules which contain oligosaccharide structures from at least three of groups 1, 2, 3 and 4.
In another embodiment, the isolated mixture of fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules contains one or more Fc fusion protein molecules which contain oligosaccharide structures from each of the four groups 1, 2, 3 and 4.
In one embodiment, the CTLA4-Fc molecules of an isolated mixture have the amino acid sequence shown in
In one embodiment, the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of an isolated mixture are in a pharmaceutical composition.
Potential glycosylation sites for CTLA4-Fc are shown in
The invention is also directed to methods of treatment using the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc, as is understood in the art.
In one aspect, the invention is directed to fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules obtained from a transgenic avian, for example, a transgenic chicken, which contains a transgene encoding the fusion protein molecules. In one embodiment, the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules are produced in an avian oviduct cell, for example, a tubular gland cell. In one embodiment, the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules are contained in a hard shell egg, for example, a hard shell egg laid by an avian, for example, a chicken, which contains a transgene encoding the fusion protein molecules. For example, the fusion protein molecules may be present in the contents of an intact hard shell egg (e.g., in the egg white). In one particularly useful embodiment, the fusion protein molecules of the invention are CTLA4-Fc.
In one aspect, the invention is drawn to compositions containing fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules produced in an avian (e.g., a transgenic chicken) which contains a transgene encoding the fusion protein molecules. In one embodiment, the fusion protein molecules in the composition are produced in an oviduct cell (e.g., a tubular gland cell) of a transgenic avian (e.g., transgenic chicken) and the molecules are isolated from egg white produced by the transgenic avian.
It is contemplated that the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules in a composition of the invention are N-glycosylated and/or O-glycosylated. In one embodiment, the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules in the composition are N-glycosylated and/or O-glycosylated in the oviduct cell (e.g., tubular gland cell) of the bird, for example, a chicken.
In one aspect, the invention relates to a composition, for example, a pharmaceutical composition, containing isolated fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules having an avian derived glycosylation pattern. In one aspect, the invention relates to a composition, for example, a pharmaceutical composition, containing isolated fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules molecules, having a poultry derived glycosylation pattern. In one aspect, the invention relates to a composition, for example, a pharmaceutical composition, containing isolated and glycosylated fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules, produced in accordance with the invention.
In one embodiment, fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules in compositions of the invention contain a glycosylation pattern other than that of fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules produced in a mammalian cell. In one embodiment, fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules in compositions of the invention contain a glycosylation pattern other than that of fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules produced in a CHO cell.
In one embodiment, fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are attached to one or more N-linked oligosaccharide structures disclosed herein (e.g., those shown in Example 5). In one embodiment, fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are attached to one or more O-linked oligosaccharide structures disclosed in US patent publication No. 2009/0074718, published Mar. 19, 2009, the disclosure of which is incorporated in its entirety herein by reference.
One aspect of the present invention relates to avian hard shell eggs (e.g., chicken hard shell eggs) which contain a fusion protein including, but not limited to, a pharmaceutical fusion protein. The fusion protein in the egg is encoded by a transgene of a transgenic avian. The fusion protein may be present in an egg laid by the avian in any useful amount. In one embodiment, the fusion protein of the invention is present in an amount in a range of between about 0.01 μg per hard-shell egg and about 1 gram per hard-shell egg. In another embodiment, the fusion protein is present in an amount in a range of between about 1 μg per hard-shell egg and about 1 gram per hard-shell egg. For example, the fusion protein may be present in an amount in a range of between about 10 μg is per hard-shell egg and about 1 gram per hard-shell egg (e.g., a range of between about 10 μg per hard-shell egg and about 400 mg per hard-shell egg).
In one embodiment, the fusion protein of the invention, for example, the pharmaceutical fusion protein (e.g., an Fc fusion protein) is present in the egg white of the egg. In one embodiment, the fusion protein is present in an amount in a range of between about 1 ng per ml of egg white and about 0.2 gram per ml of egg white. For example, the fusion protein may be present in an amount in a range of between about 0.1 μg per ml of egg white and about 0.2 gram per ml of egg white (e.g., the fusion protein may be present in an amount in a range of between about 1 μg per ml of egg white and about 100 mg per ml of egg white. In one embodiment, the fusion protein is present in an amount in a range of between about 1 μg per ml of egg white and about 50 mg per ml of egg white. For example, the fusion protein may be present in an amount in a range of between about 1 μg per ml of egg white and about 10 mg per ml of egg white (e.g., the fusion protein may be present in an amount in a range of between about 1 μg per ml of egg white and about 1 mg per ml of egg white). In one embodiment, the fusion protein is present in an amount of more than 0.1 μg per ml of egg white. In one embodiment, the fusion protein is present in an amount of more than 0.5 μg is per ml of egg white. In one embodiment, the fusion protein is present in an amount of more than 1 μg per ml of egg white. In one embodiment, the fusion protein is present in an amount of more than 1.5 μg per ml of egg white.
In one embodiment, the invention provides for the production of hard shell eggs containing a glycosylated Fc fusion protein. For example, the eggs may contain a CTLA4-Fc fusion protein in accordance with the invention.
In one embodiment, the invention includes Fc fusion proteins wherein the Fc portion of the protein contains a single glycosylation site which is glycosyated with an oligosaccharide which contains no sialic acid. In one embodiment, the invention includes Fc fusion proteins wherein the Fc portion contains a single glycosylation site which is glycosylated with an oligosaccharide which is terminated exclusively with N-acetylglucosamine.
The avians developed from the blastodermal cells into which a vector containing a transgene encoding a fusion protein of the invention has been introduced are the G0 generation and can be referred to as “founders”. Founder birds are typically chimeric for each inserted transgene. That is, only some of the cells of the G0 transgenic bird contain the transgene(s). The G0 generation typically is also hemizygous for the transgene(s). The G0 generation may be bred to non-transgenic animals to give rise to G1 transgenic offspring which are also hemizygous for the transgene and contain the transgene(s) in essentially all of the bird's cells. The G1 hemizygous offspring may be bred to non-transgenic animals giving rise to G2 hemizygous offspring or may be bred together to give rise to G2 offspring homozygous for the transgene. Substantially all of the cells of birds which are positive for the transgene that are derived from G1 offspring will contain the transgene(s). In one embodiment, hemizygotic G2 offspring from the same line can be bred to produce G3 offspring homozygous for the transgene. In one embodiment, hemizygous G0 animals are bred together to give rise to homozygous G1 offspring containing two copies of the transgene(s) in each cell of the animal. These are merely examples of certain useful breeding methods and the present invention contemplates the employment of any useful breeding method such as those known to individuals of ordinary skill in the art.
The invention also includes, methods of making glycosylated proteins disclosed herein including fusion proteins (e.g., Fc fusion proteins) such as CTLA4-Fc by any useful method including, but not limited to, producing a transgenic avian which contains a transgene encoding the fusion protein wherein the fusion protein is produced in an oviduct cell, for example, a tubular gland cell. The method can also include isolating the protein. Also included are the eggs laid by the avians which contain the protein, for example, the fusion protein (e.g., Fc fusion proteins) such as CTLA4-Fc.
The invention also provides for compositions which contain isolated mixtures of an individual type of useful protein molecule, such as those proteins disclosed herein, where one or more of the protein molecules contained in the mixture has a specific oligosaccharide structure attached, in particular, an oligosaccharide structure disclosed herein which may be produced by a transgenic avian. For example, the invention provides for isolated mixtures of Fc fusion protein molecules, for example, CTLA4-Fc molecules (e.g., CTLA4-Fc of SEQ ID NO: 2) glycosylated with one or more of N-1, N-2, N-3, N-4, N-5, N-6, N-7 and/or N-8 of Example 5. It is also contemplated that the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention may be N-glycosylated with one or more of the N-linked oligosaccharide molecules which are shown in US patent publication No. 2009/0074718, published Mar. 19, 2009, the disclosure of which is incorporated in its entirety herein by reference.
Any useful combination of features described herein is included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this specification, and the knowledge of one of ordinary skill in the art.
Additional objects and aspects of the present invention will become more apparent upon review of the detailed description set forth below when taken in conjunction with the accompanying figures, which are briefly described as follows.
Certain definitions are set forth herein to illustrate and define the meaning and scope of the various terms used to describe the invention herein.
A “nucleic acid or polynucleotide sequence” includes, but is not limited to, eukaryotic mRNA, cDNA, genomic DNA, and synthetic DNA and RNA sequences, comprising the natural nucleoside bases adenine, guanine, cytosine, thymidine, and uracil. The term also encompasses sequences having one or more modified bases.
The term “avian” as used herein refers to any species, subspecies or race of organism of the taxonomic class ava, such as, but not limited to chickens, quails, turkeys, ducks, geese, pheasants, parrots, finches, hawks, crows and ratites including ostrich, emu and cassowary. The term includes the various known strains of Gallus gallus, or chickens, (for example, White Leghorn, Brown Leghorn, Barred-Rock, Sussex, New Hampshire, Rhode Island, Australorp, Minorca, Amrox, California Gray), as well as strains of turkeys, pheasants, quails, duck, ostriches and other poultry commonly bred in commercial quantities. It also includes an individual avian organism in all stages of development, including embryonic and fetal stages.
A “fusion protein” is a protein comprising two or more separate proteins/peptides with functional properties derived from each of the original two or more proteins/peptides.
“Fc fusion protein” is a protein comprising a functional Fc portion of an antibody such as human immunoglobulin G1 (IgG1) linked to a second protein or protein portion. The linkage may be through a hinge domain or other linkage region.
“CTLA4-Fc” is a fusion protein that consists of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) linked to a modified Fc (hinge, CH2, and CH3 domains) portion of human immunoglobulin G1 (IgG1).
“Therapeutic proteins” or “pharmaceutical proteins” include an amino acid sequence which in whole or in part makes up a drug.
A “coding sequence” or “open reading frame” refers to a polynucleotide or nucleic acid sequence which can be transcribed and translated (in the case of DNA) or translated (in the case of mRNA) into a polypeptide in vitro or in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a translation start codon at the 5′ (amino) terminus and a translation stop codon at the 3′ (carboxy) terminus. A transcription termination sequence will usually be located 3′ to the coding sequence. A coding sequence may be flanked on the 5′ and/or 3′ ends by untranslated regions.
Nucleic acid “control sequences” or “regulatory sequences” refer to promoter sequences, translational start and stop codons, ribosome binding sites, polyadenylation signals, transcription termination sequences, upstream regulatory domains, enhancers, and the like, as necessary and sufficient for the transcription and translation of a given coding sequence in a defined host cell. Examples of control sequences suitable for eukaryotic cells are promoters, polyadenylation signals, and enhancers. All of these control sequences need not be present in a recombinant vector so long as those necessary and sufficient for the transcription and translation of the desired coding sequence are present.
“Operably or operatively linked” refers to the configuration of the coding and control sequences so as to perform the desired function. Thus, control sequences operably linked to a coding sequence are capable of effecting the expression of the coding sequence. A coding sequence is operably linked to or under the control of transcriptional regulatory regions in a cell when DNA polymerase will bind the promoter sequence and transcribe the coding sequence into mRNA that can be translated into the encoded protein. The control sequences need not be contiguous with the coding sequence, so long as they function to direct the expression thereof. Thus, for example, intervening untranslated yet transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence can still be considered “operably linked” to the coding sequence.
The terms “heterologous” and “exogenous” as they relate to nucleic acid sequences such as coding sequences and control sequences, denote sequences that are not normally associated with a region of a recombinant construct or with a particular chromosomal locus, and/or are not normally associated with a particular cell. Thus, an “exogenous” region of a nucleic acid construct is an identifiable segment of nucleic acid within or attached to another nucleic acid molecule that is not found in association with the other molecule in nature. For example, an exogenous region of a construct could include a coding sequence flanked by sequences not found in association with the coding sequence in nature. Another example of an exogenous coding sequence is a construct where the coding sequence itself is not found in nature (e.g., synthetic sequences having codons different from the native gene). Similarly, a host cell transformed with a construct or nucleic acid which is not normally present in the host cell would be considered exogenous to the cell.
As used herein the terms “oligosaccharide”, “oligosaccharide pattern”, “oligosaccharide structure”, “carbohydrate chain”, “glycosylation pattern” and “glycosylation structure” can have essentially the same meaning and refer to one or more structures which are formed from sugar residues and are attached to proteins of the invention.
“Exogenous protein” as used herein refers to a protein not naturally present in a particular tissue or cell and is the expression product of an exogenous expression construct or transgene, and/or a protein not naturally present in a given quantity in a particular tissue or cell. A protein that is exogenous to an egg is a protein that is not normally found in the egg. For example, a protein exogenous to an egg may be a protein that is present in the egg as a result of the expression of an exogenous or heterologous coding sequence present in a transgene of the animal laying the egg.
“Endogenous nucleotide sequence” refers to a naturally occurring nucleotide sequence or fragment thereof normally associated with a particular cell.
The expression products described herein may consist of proteinaceous material having a defined chemical structure. However, the precise structure depends on a number of factors, particularly chemical modifications common to proteins. For example, since all proteins contain ionizable amino and carboxyl groups, the protein may be obtained in acidic or basic salt form, or in neutral form. The primary amino acid sequence may be derivatized using sugar molecules (glycosylation) or by other chemical derivatizations involving covalent or ionic attachment with, for example, lipids, phosphate, acetyl groups and the like, often occurring through association with saccharides. These modifications may occur in vitro or in vivo, the latter being performed by a host cell through post-translational processing systems. Such modifications may increase or decrease the biological activity of the molecule, and such chemically modified molecules are also intended to come within the scope of the invention.
Various methods of cloning, amplification, expression, and purification will be apparent to the skilled artisan. Representative methods are disclosed in Sambrook, Fritsch, and Maniatis, Molecular Cloning, a Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory (1989).
“Vector” means a polynucleotide comprised of single strand, double strand, circular, or supercoiled DNA or RNA. A typical vector may be comprised of one or more the following elements operatively linked at appropriate distances for allowing functional gene expression: replication origin, promoter, enhancer, 5′ mRNA leader sequence, ribosomal binding site, nucleic acid cassette, termination and polyadenylation sites, and selectable marker sequences. The nucleic acid cassette can include a restriction site for insertion of the nucleic acid sequence to be expressed. In a functional vector the nucleic acid cassette typically contains the nucleic acid sequence to be expressed including translation, initiation and termination sites. An intron optionally may be included in the construct, for example, 5′ to the coding sequence. A vector is constructed so that the particular coding sequence is located in the vector with the appropriate regulatory sequences, the positioning and orientation of the coding sequence with respect to the control sequences being such that the coding sequence is transcribed under the “control” of the control sequences or regulatory sequences. Modification of the sequences encoding the particular protein of interest may be desirable to achieve this end. For example, in some cases it may be necessary to modify the sequence so that it may be attached to the control sequences with the appropriate orientation; or to maintain the reading frame. The control sequences and other regulatory sequences may be ligated to the coding sequence prior to insertion into a vector. In one embodiment, the coding sequence is cloned directly into an expression vector which already contains the control sequences and an appropriate restriction site which is in reading frame with and under regulatory control of the control sequences.
A “promoter” is a site on the DNA to which RNA polymerase binds to initiate transcription of a gene. In some embodiments the promoter will be modified by the addition or deletion of sequences, or replaced with alternative sequences, including natural and synthetic sequences as well as sequences which may be a combination of synthetic and natural sequences. Many eukaryotic promoters contain two types of recognition sequences: the TATA box and the upstream promoter elements. The former, located upstream of the transcription initiation site, is involved in directing RNA polymerase to initiate transcription at the correct site, while the latter appears to determine the rate of transcription and is upstream of the TATA box. Enhancer elements can also stimulate transcription from linked promoters, but many function exclusively in a particular cell type. Many enhancer/promoter elements derived from viruses, e.g., the SV40 promoter, the cytomegalovirus (CMV) promoter, the rous-sarcoma virus (RSV) promoter, and the murine leukemia virus (MLV) promoter are all active in a wide array of cell types, and are termed “ubiquitous”. In one embodiment, non-constitutive promoters such as the mouse mammary tumor virus (MMTV) promoter are used in the present invention. The nucleic acid sequence inserted in the cloning site may have any open reading frame encoding a polypeptide of interest, with the proviso that where the coding sequence encodes a polypeptide of interest, it should preferably lack cryptic splice sites which can block production of appropriate mRNA molecules and/or produce aberrantly spliced or abnormal mRNA molecules.
The term “poultry derived” refers to a composition or substance produced by or obtained from poultry. “Poultry” refers to birds that can be kept as livestock, including but not limited to, chickens, duck, turkey, quail and ratites. For example, “poultry derived” may refer to chicken derived, turkey derived and/or quail derived.
A “retroviral particle”, “transducing particle”, or “transduction particle” refers to a replication-defective or replication-competent virus capable of transducing non-viral DNA or RNA into a cell.
The terms “transformation”, “transduction” and “transfection” all denote the introduction of a polynucleotide into a cell such as an avian cell.
“Magnum” is that part of the oviduct between the infundibulum and the isthmus containing tubular gland cells that synthesize and secrete the egg white proteins of the egg.
The term “optimized” is used in the context of “avian oviduct optimized coding sequence”, wherein the most frequently used codons for each particular amino acid found in the egg white proteins ovalbumin, lysozyme, ovomucoid, and ovotransferrin are used in the design of the avian oviduct optimized proteins of the invention. More specifically, the DNA sequence for optimized protein is based on the hen oviduct optimized codon usage and is created using the BACKTRANSLATE program of the Wisconsin Package, Version 9.1 (Genetics Computer Group Inc., Madison, Wis.) with a codon usage table compiled from the chicken (Gallus gallus) ovalbumin, lysozyme, ovomucoid, and ovotransferrin proteins. For example, the percent usage for the four codons of the amino acid alanine in the four egg white proteins is 34% for GCU, 31% for GCC, 26% for GCA, and 8% for GCG. Therefore, GCU is used as the codon for the majority of alanines in the avian oviduct optimized protein coding sequence.
The invention includes fusion proteins (e.g., Fc fusion proteins) such as CTLA4-Fc having N-linked glycosylation structures at three sites wherein the structures at each of the three sites are selected from one of N-1, N-2, N-3, N-4, N-5, N-6, N-7 and N-8 of Example 5.
The invention includes fusion proteins (e.g., Fc fusion proteins) such as CTLA4-Fc having an N-linked glycosylation structure at an Fc N-linked glycosylation site wherein the structure is selected from one of N-1, N-2, N-3, N-4, N-5, N-6, N-7 and N-8 of Example 5.
The invention also includes a mixture of fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules wherein some or all of the fusion protein molecules have one or more glycosylation structures selected from Structures N-1, N-2, N-3, N-4, N-5, N-6, N-7 and N-8 of Example 5. In one embodiment, the mixture of fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules is purified or isolated, for example, isolated from an egg or purified or isolated from egg white.
The invention also includes an individual fusion protein molecule (e.g., Fc fusion protein molecule) such as a CTLA4-Fc molecule comprising a Structure N-1. The invention also includes an individual fusion protein molecule (e.g., Fc fusion protein molecule) such as a CTLA4-Fc molecule comprising a Structure N-2. The invention also includes an individual fusion protein molecule (e.g., Fc fusion protein molecule) such as a CTLA4-Fc molecule comprising a Structure N-3. The invention also includes an individual fusion protein molecule (e.g., Fc fusion protein molecule) such as a CTLA4-Fc molecule comprising a Structure N-4. The invention also includes an individual fusion protein molecule (e.g., Fc fusion protein molecule) such as a CTLA4-Fc molecule comprising a Structure N-5. The invention also includes an individual fusion protein molecule (e.g., Fc fusion protein molecule) such as a CTLA4-Fc molecule comprising a Structure N-6. The invention also includes an individual fusion protein molecule (e.g., Fc fusion protein molecule) such as a CTLA4-Fc molecule comprising a Structure N-7. The invention also includes an individual fusion protein molecule (e.g., Fc fusion protein molecule) such as a CTLA4-Fc molecule comprising a Structure N-8. In one embodiment, the individual fusion protein molecule (e.g., Fc fusion protein molecule) such as a CTLA4-Fc molecule is present in a mixture of fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules which has been produced in a transgenic avian, e.g., a transgenic chicken. In one embodiment, the individual fusion protein molecule (e.g., Fc fusion protein molecule) such as a CTLA4-Fc molecule is present in a mixture of fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules which has been isolated or purified, for example, the mixture is isolated or purified from an egg or from egg white produced by a transgenic avian. In one embodiment, the individual fusion protein molecule (e.g., Fc fusion protein molecule) such as a CTLA4-Fc molecule is isolated or purified. The individual fusion protein molecules may be part of a composition of the invention. The mixtures of fusion protein molecules may be part of a composition of the invention. The invention also includes egg white containing the mixtures of fusion protein molecules of the invention.
The invention includes CTLA4-Fc molecule as shown in
The invention includes Fc fusion proteins molecules where the Asn-102 glycosylation site of the Fc portion shown in
In one embodiment, the glycosylation pattern is other than that of the same fusion protein produced in a CHO cell. For example, the compositions can include a fusion protein (e.g., Fc fusion protein) such as CTLA4-Fc with a poultry or avian derived carbohydrate chain (i.e., glycosylation structure) and that carbohydrate chain or glycosylation structure is not found on that fusion protein obtained from CHO cell production. However, the composition may also include a fusion protein (e.g., Fc fusion protein) such as CTLA4-Fc that has one or more glycosylation structures that are the same as that found on the fusion protein when produced in CHO cells. That is, the mixture of fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules may contain one or more fusion protein molecules having an oligosaccharide pattern disclosed herein and one or more of the fusion protein molecules in the mixture may have an oligosaccharide pattern which could also be obtained in CHO cell production.
In one embodiment, the glycosylation pattern of a fusion protein (e.g., Fc fusion protein) such as CTLA4-Fc produced in accordance with the invention is other than that of the fusion protein produced in mammalian cells. For example, the compositions can include a fusion protein (e.g., Fc fusion protein) such as CTLA4-Fc molecule with a poultry or avian derived carbohydrate chain (i.e., glycosylation structure) and that carbohydrate chain or glycosylation structure is not found on that fusion protein obtained from mammalian cells. However, the composition may also include a fusion protein (e.g., Fc fusion protein) such as CTLA4-Fc that has one or more glycosylation structures that are the same as that found on the fusion protein produced in mammalian cells. That is, the mixture of fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules may contain one or more fusion protein molecules having an oligosaccharide pattern disclosed herein and one or more of the fusion protein molecules in the mixture may have an oligosaccharide pattern which could also be obtained in mammalian cell production.
In one embodiment, provided for are fusion proteins of the invention (e.g., Fc fusion proteins) such as CTLA4-Fc which are isolated. In one embodiment, the fusion proteins (e.g., Fc fusion proteins) such as CTLA4-Fc contained in a composition are isolated. For example, the fusion proteins (e.g., Fc fusion proteins) such as CTLA4-Fc may be isolated from egg white. The isolated fusion proteins may be fusion protein molecules that do not all have the same glycosylation structures among the fusion protein molecules or the isolated fusion protein may be an isolated individual species of fusion protein molecules having only one particular glycosylation structure at a particular glycosylation site among the species of fusion protein molecules.
In one embodiment, about 95% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain sialic acid. In another embodiment, about 90% or more of the N-linked oligosaccharides present on the fusion proteins (e.g., Fc-fusion proteins) such as CTLA4-Fc of the invention do not contain sialic acid. In another embodiment, about 80% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain sialic acid. In another embodiment, more than about 70% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain sialic acid. In another embodiment, about 60% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain sialic acid. In another embodiment, about 50% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain sialic acid.
In one embodiment, the oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain fucose. In another embodiment, about 90% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain fucose. In another embodiment, about 80% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain fucose. In another embodiment, about 70% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain fucose. In another embodiment, about 60% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain fucose. In another embodiment, about 50% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain fucose. In one embodiment, the percentages in this paragraph refer specifically to the percentage of N-linked oligosaccharide structure present only on the Fc portion of Fc fusion protein molecules such as CTLA4-Fc molecules of the invention that do not contain fucose.
In one embodiment, about 95% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are terminated partially or exclusively with N-acetyl glucosamine. In another embodiment, about 90% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are terminated partially or exclusively with N-acetyl glucosamine. In another embodiment, about 80% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are terminated partially or exclusively with N-acetyl glucosamine. In another embodiment, about 70% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are terminated partially or exclusively with N-acetyl glucosamine. In another embodiment, about 60% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are terminated partially or exclusively with N-acetyl glucosamine. In another embodiment, about 50% or more of the N-linked oligosaccharides present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are terminated partially or exclusively with N-acetyl glucosamine.
In one embodiment, none or essentially none of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention contain sialic acid. In another embodiment, about 95% or more of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain sialic acid. In another embodiment, about 90% or more of the N-linked oligosaccharide structure types present on the molecules of the invention do not contain sialic acid. In another embodiment, about 80% or more of the N-linked oligosaccharide structure types present on the molecules of the invention do not contain sialic acid. In another embodiment, about 70% or more of the N-linked oligosaccharide structure types present on the molecules of the invention do not contain sialic acid. In another embodiment, about 60% or more of the N-linked oligosaccharide structure types present on the molecules of the invention do not contain sialic acid.
In one embodiment, all of the N-linked oligosaccharides structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are terminated partially or exclusively with N-acetyl glucosamine. In another embodiment, about 95% or more of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are terminated partially or exclusively with N-acetyl glucosamine. In another embodiment, about 90% or more of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are terminated partially or exclusively with N-acetyl glucosamine. In another embodiment, about 80% or more of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are terminated partially or exclusively with N-acetyl glucosamine. In another embodiment, about 70% or more of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are terminated partially or exclusively with N-acetyl glucosamine. In another embodiment, about 60% or more of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are terminated partially or exclusively with N-acetyl glucosamine. In another embodiment, about 50% or more of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention are terminated partially or exclusively with N-acetyl glucosamine.
In one embodiment, essentially none of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention contain fucose. In another embodiment, about 95% or more of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain fucose. In another embodiment, about 90% or more of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain fucose. In another embodiment, about 80% or more of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain fucose. In another embodiment, about 70% or more of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain fucose. In another embodiment, about 60% or more of the N-linked oligosaccharide structure types present on the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention do not contain fucose. In one embodiment, the percentages in this paragraph refer specifically to the percentage of N-linked oligosaccharide structure types present only on the Fc portion of Fc fusion protein molecules such as CTLA4-Fc molecules of the invention that do not contain fucose.
Each of the glycosylation structures shown in Example 5 (i.e., N-1 to N-8) is an “oligosaccharide structure type”.
In one embodiment, the fusion protein (e.g., Fc fusion protein) such as CTLA4-Fc is present in a hard shell egg. For example, the fusion protein may be present in the egg white of a hard shell egg laid by a transgenic avian of the invention. That is, in one embodiment, the invention is directed to avian (e.g., chicken) egg white containing a fusion protein of the invention. In one embodiment, the fusion protein (e.g., Fc fusion protein) such as CTLA4-Fc is present in the egg white in an amount in excess of about 1 microgram per ml of egg white (e.g., present in an amount of about 1 microgram to about 0.5 gram per ml of egg white). For example, the fusion protein (e.g., Fc fusion protein) such as CTLA4-Fc can be present in an amount greater than about 2 micrograms per ml of egg white (e.g., present in an amount of about 2 micrograms to about 200 micrograms per ml of egg white).
N-linked oligosaccharides attached to CTLA4-Fc produced in transgenic chickens typically have little or no terminal sialic acid residues. This is in contrast to CTLA4-Fc produced in mammalian cells such as CHO cells where the N-linked oligosaccharide structures are extensively terminally sialylated. In addition, terminal N-Acetyl Glucosamine (NAcGlu) is present extensively on the N-linked oligosaccharide structures of the CTLA4-Fc produced in transgenic avians such as chickens which is not the case for CTLA4-Fc produced in mammalian cells such as CHO cells. Further, no fucose or only a small amount of fucose is present on the N-linked oligosaccharide structures of the CTLA4-Fc produced in transgenic avians such as chickens. However, fucose is thought to be present on all or most N-linked oligosaccharide structures of CTLA4-Fc (e.g., the Fc portion of an Fc fusion protein) produced in mammalian cells such as CHO cells.
It is understood that though the reported method of making compositions of the invention is in avians, the compositions are not limited thereto. For example, certain of the glycosylated protein molecules of the invention may be produced in other organisms such as transgenic fish, transgenic plants, such as tobacco and duck weed (Lemna minor).
The invention also contemplates that pegylating proteins produced as disclosed herein may be advantageous. See, for example, US patent publication No. 2007/0092486, published Apr. 26, 2007, the disclosure of which is incorporated it its entirety herein by reference.
While it is possible that, for use in therapy, therapeutic proteins produced in accordance with this invention may be administered in raw form, it is preferable to administer the therapeutic proteins as part of a pharmaceutical composition.
One aspect of the invention relates to compositions containing fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules produced in accordance with the invention. In a particularly useful embodiment, the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules are purified or isolated. For example, the fusion protein molecules can be removed from the contents of a hard shell egg laid by a transgenic avian. In one embodiment, the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules of the invention have a glycosylation pattern resulting from the molecules being produced in an oviduct cell of an avian.
Another aspect of the invention relates to compositions containing fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules produced in an avian oviduct cell (e.g., a tubular gland cell) that have a glycosylation pattern other than that of fusion protein molecules produced in a mammalian cell such as a CHO cell. In one aspect, the invention provides for compositions that contain isolated fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules having an avian or poultry derived glycosylation pattern. For example, the compositions can contain a mixture of fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules produced in avians, for example, chickens, in accordance with the invention and isolated from egg white. In one useful embodiment, the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules are in pharmaceutical compositions.
The invention provides for pharmaceutical compositions comprising poultry or avian derived glycosylated fusion proteins (e.g., Fc fusion proteins) such as CTLA4-Fc, which may be pegylated, together with one or more pharmaceutically acceptable carriers thereof and, optionally, other therapeutic and/or prophylactic ingredients and methods of administering such pharmaceutical compositions. The carrier(s) must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. Methods of treating a patient (e.g., quantity of pharmaceutical protein administered, frequency of administration and duration of treatment period) using pharmaceutical compositions of the invention can be determined using standard methodologies known to physicians of skill in the art.
Pharmaceutical compositions include those suitable for oral, rectal, nasal, topical (including buccal and sub-lingual), vaginal or parenteral. The pharmaceutical compositions include those suitable for administration by injection including intramuscular, sub-cutaneous and intravenous administration. The pharmaceutical compositions also include those for administration by inhalation or insufflation. The compositions or formulations may, where appropriate, be conveniently presented in discrete dosage units and may be prepared by any of the methods well known in the art of pharmacy. The methods of producing the pharmaceutical compositions typically include the step of bringing the therapeutic proteins into association with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired formulation.
Pharmaceutical compositions suitable for oral administration may conveniently be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution; as a suspension; or as an emulsion. The active ingredient may also be presented as a bolus, electuary or paste. Tablets and capsules for oral administration may contain conventional excipients such as binding agents, fillers, lubricants, disintegrants, or wetting agents. The tablets may be coated according to methods well known in the art. Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous vehicles (which may include edible oils) or preservatives.
Therapeutic proteins of the invention may also be formulated for parenteral administration (e.g., by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative. The therapeutic proteins may be injected by, for example, subcutaneous injections, intramuscular injections, and intravenous infusions or injections.
The therapeutic proteins may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. It is also contemplated that the therapeutic proteins may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilization from solution, for constitution with a suitable vehicle, e.g., sterile, pyrogen-free water, before use.
For topical administration to the epidermis, the therapeutic proteins produced according to the invention may be formulated as ointments, creams or lotions, or as a transdermal patch. Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions may be formulated with an aqueous or oily base and will in general also contain one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents or coloring agents.
Formulations suitable for topical administration in the mouth include lozenges comprising active ingredient in a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert base such as gelatin and glycerin or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
Pharmaceutical compositions suitable for rectal administration wherein the carrier is a solid are most preferably represented as unit dose suppositories. Suitable carriers include cocoa butter and other materials commonly used in the art, and the suppositories may be conveniently formed by a mixture of the active compound with the softened or melted carrier(s) followed by chilling and shaping in molds.
Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the active ingredient, such carriers as are known in the art to be appropriate.
For intra-nasal administration the therapeutic proteins of the invention may be used as a liquid spray or dispersible powder or in the form of drops.
Drops may be formulated with an aqueous or non-aqueous base also comprising one or more dispersing agents, solubilizing agents or suspending agents. Liquid sprays are conveniently delivered from pressurized packs.
For administration by inhalation, therapeutic proteins according to the invention may be conveniently delivered from an insufflator, nebulizer or a pressurized pack or other convenient means of delivering an aerosol spray. Pressurized packs may comprise a suitable propellant such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount.
For administration by inhalation or insufflation, the therapeutic proteins according to the invention may take the form of a dry powder composition, for example a powder mix of the compound and a suitable powder base such as lactose or starch. The powder composition may be presented in unit dosage form in, for example, capsules or cartridges or, e.g., gelatin or blister packs from which the powder may be administered with the aid of an inhalator or insufflator.
When desired, the above described formulations adapted to give sustained release of the active ingredient, may be employed.
The pharmaceutical compositions according to the invention may also contain other active ingredients such as antimicrobial agents, or preservatives.
In one embodiment, fusion proteins (e.g., Fc fusion proteins) such as CTLA4-Fc of the invention contained in pharmaceutical compositions are pegylated.
In a specific example, fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules produced as disclosed herein, and which may be pegylated, are employed in a pharmaceutical composition wherein each 1 mL contains 0.05 mg polysorbate 80, and is formulated at pH 6.2±0.2 with 2.12 mg sodium phosphate monobasic monohydrate, 0.66 mg sodium phosphate dibasic anhydrous, and 8.18 mg sodium chloride in water for injection. In another specific example, a fusion protein (e.g., Fc fusion protein) such as CTLA4-Fc produced as disclosed herein is employed in a pharmaceutical composition containing 7.5 mg/ml sodium chloride, 1.8 mg/ml sodium phosphate dibasic, 1.3 mg/ml sodium phosphate monobasic, 0.1 mg/ml edetate disodium dihydrate, 0.7 mg/ml Tween® 80 and 1.5 mg/ml m-cresol. In another specific example, a fusion protein (e.g., an Fc fusion protein) such as CTLA4-Fc produced as disclosed herein is employed in a pharmaceutical composition containing 0.82 mg/ml sodium acetate, 2.8 μl/ml glacial acetic acid, 50 mg/ml mannitol and 0.04 mg/ml Tween® 80.
In addition, it is contemplated that the therapeutic proteins of the invention may be used in combination with other therapeutic agents.
Compositions or compounds of the invention can be used to treat a variety of conditions. For example, there are many conditions for which treatment therapies are known to practitioners of skill in the art in which therapeutic proteins obtained from cell culture (e.g., CHO cells) are employed. The present invention contemplates that the glycosylated therapeutic proteins produced in an avian system can be employed to treat such conditions. That is, the invention contemplates the treatment of conditions known to be treatable by conventionally produced therapeutic proteins by using therapeutic proteins produced in accordance with the invention. For example, fusion proteins (e.g., Fc-fusion proteins) such as CTLA4-Fc produced in accordance with the invention can be used to treat human conditions such as rheumatoid arthritis, as understood in the art.
Generally, the dosage administered will vary depending upon known factors such as age, health and weight of the recipient, type of concurrent treatment, frequency of treatment, and the like. Usually, a dosage of active ingredient can be between about 0.0001 mg and about 10 mg per kilogram of body weight. Precise dosage, frequency of administration and time span of treatment can be determined by a physician skilled in the art of administration of the respective therapeutic protein.
By the methods of the present invention, transgenes can be introduced into avian embryonic blastodermal cells to produce a transgenic chicken, transgenic turkey, transgenic quail and other avian species, that carry a transgene in the genetic material of its germ-line tissue to produce proteins of the invention. The blastodermal cells are typically stage VII-XII cells, or the equivalent thereof, and in one embodiment are near stage X. The cells useful in the present invention include embryonic germ (EG) cells, embryonic stem (ES) cells & primordial germ cells (PGCs). The embryonic blastodermal cells may be isolated freshly, maintained in culture, or in a particularly useful embodiment, reside within an embryo.
Some vectors useful in carrying out the methods of the present invention are described herein. These vectors can be used for stable introduction of an exogenous coding sequence into the genome of an avian. The vectors may be used to produce proteins of the invention such as fusion proteins in specific tissues of an avian, for example, in the oviduct tissue of an avian. The vectors may also be used in methods to produce avian eggs which contain exogenous protein. In one embodiment, the coding sequence and the promoter are both positioned between 5′ and 3′ LTRs before introduction into blastodermal cells. In one embodiment, the vector is retroviral and the coding sequence and the promoter are both positioned between the 5′ and 3′ LTRs of the retroviral SIN vector. In one useful embodiment, the LTRs or retroviral vector is derived from the avian leukosis virus (ALV), murine leukemia virus (MLV), or lentivirus.
Useful retroviruses for introducing a transgene into the avian genome are the replication-deficient avian leucosis virus (ALV), the replication-deficient murine leukemia virus (MLV) and the lentivirus. Any of the vectors of the present invention may include a coding sequence encoding a signal peptide that will direct secretion of the protein expressed by the vector's coding sequence from the tubular gland cells of the oviduct. Where an exogenous protein would not otherwise be secreted, the vector containing the coding sequence is modified to comprise a DNA sequence encoding a useful signal peptide. The DNA sequence encoding the signal peptide is inserted in the vector such that it is located at the N-terminus of the protein encoded by the DNA. The signal peptide can direct secretion of the exogenous protein expressed by the vector into the egg white of a hard shell egg. The vector may include a marker gene, wherein the marker gene is operably linked to a promoter.
Any useful promoter can be employed. For example, the promoter can be a constitutive promoter such as a cytomegalovirus (CMV) promoter, a rous-sarcoma virus (RSV) promoter, a murine leukemia virus (MLV) promoter, a beta-actin promoter. The promoter can also be a magnum specific promoter such as an ovalbumin promoter, a lysozyme promoter, a conalbumin promoter, an ovomucoid promoter, an ovomucin promoter or an ovotransferrin promoter. Both constitutive and magnum specific promoters have proven suitable for expression of exogenous protein in the oviduct.
The methods of the invention which provide for the production of protein of the invention in the avian oviduct and the production of eggs which contain the exogenous protein involve an additional step subsequent to providing a suitable vector and introducing the vector into embryonic blastodermal cells so that the vector is integrated into the avian genome. The subsequent step involves deriving a mature transgenic avian from the transgenic blastodermal cells produced. Deriving a mature transgenic avian from the blastodermal cells typically involves transferring the vector into an embryo and allowing that embryo to develop fully, so that the transduced cells become incorporated into the avian as the embryo is allowed to develop. The resulting chick is then grown to maturity. In one embodiment, the cells of a blastodermal embryo are transfected or transduced with the vector directly within the embryo. The resulting embryo is allowed to develop and the chick allowed to mature.
The transgenic avian so produced from the transgenic blastodermal cells is known as a founder. Some founders will carry the transgene in the tubular gland cells in the magnum of their oviducts. These avians will express the exogenous protein encoded by the transgene in their oviducts. The exogenous protein may also be expressed in other tissues (e.g., blood) in addition to the oviduct. If the exogenous protein contains the appropriate signal sequence(s), it will be secreted into the lumen of the oviduct and into the egg white of the egg. Some founders are germ-line founders. A germ-line founder is a founder that carries the transgene in genetic material of its germ-line tissue, and may also carry the transgene in oviduct magnum tubular gland cells that express the exogenous protein. Therefore, in accordance with the invention, the transgenic avian will have tubular gland cells expressing the exogenous protein, and the offspring of the transgenic avian will also have oviduct magnum tubular gland cells that express the exogenous protein. In one embodiment of the invention, the transgenic avian is a chicken, a turkey or a quail.
Other specific examples of therapeutic proteins which may be produced as disclosed herein include, without limitation, factor VIII, b-domain deleted factor VIII, factor VIIa, factor IX, anticoagulants; hirudin, alteplase, tpa, reteplase, tpa, tpa—3 of 5 domains deleted, insulin, insulin lispro, insulin aspart, insulin glargine, long-acting insulin analogs, hgh, glucagons, tsh, follitropin-beta, fsh, gm-csf, pdgh, ifn alpha2, ifn alpha2a, ifn alpha2b, inf-apha, inf-beta 1b, ifn-beta 1a, ifn-gamma1b, il-2, il-11, hbsag, ospa, murine mab directed against t-lymphocyte antigen, murine mab directed against tag-72, tumor-associated glycoprotein, fab fragments derived from chimeric mab directed against platelet surface receptor gpII(b)/III(a), murine mab fragment directed against tumor-associated antigen ca125, murine mab fragment directed against human carcinoembryonic antigen, cea, murine mab fragment directed against human cardiac myosin, murine mab fragment directed against tumor surface antigen psma, murine mab fragments (fab/fab2 mix) directed against hmw-maa, murine mab fragment (fab) directed against carcinoma-associated antigen, mab fragments (fab) directed against nca 90, a surface granulocyte nonspecific cross reacting antigen, chimeric mab directed against cd20 antigen found on surface of b lymphocytes, humanized mab directed against the alpha chain of the il2 receptor, chimeric mab directed against the alpha chain of the il2 receptor, chimeric mab directed against tnf-alpha, humanized mab directed against an epitope on the surface of respiratory synctial virus, humanized mab directed against her 2, human epidermal growth factor receptor 2, human mab directed against cytokeratin tumor-associated antigen anti-ctla4, chimeric mab directed against cd 20 surface antigen of b lymphocytes dornase-alpha dnase, beta glucocerebrosidase, tnf-alpha, il-2-diptheria toxin fusion protein, tnfr-lgg fragment fusion protein laronidase, dnaases, alefacept, darbepoetin alfa (colony stimulating factor), tositumomab, murine mab, alemtuzumab, rasburicase, agalsidase beta, teriparatide, parathyroid hormone derivatives, adalimumab (lggl), anakinra, biological modifier, nesiritide, human b-type natriuretic peptide (hbnp), colony stimulating factors, pegvisomant, human growth hormone receptor antagonist, recombinant activated protein c, omalizumab, immunoglobulin e (lge) blocker, lbritumomab tiuxetan, ACTH, glucagon, somatostatin, somatotropin, thymosin, parathyroid hormone, pigmentary hormones, somatomedin, erythropoietin, luteinizing hormone, chorionic gonadotropin, hypothalmic releasing factors, etanercept, antidiuretic hormones, prolactin and thyroid stimulating hormone.
The invention also includes the production of lysosomal acid lipase (LAL) produced in accordance with the invention. The amino acid sequence for human LAL is well known in the art, see, for example, Anderson, R. A. and Sando, G. N., “Cloning and Expression of cDNA Encoding Human Lysosomal Acid Lipase/Cholesteryl Ester Hydrolase”, Journal of Biological Chemistry, Vol. 266, No. 33, Issue of November 25, pp. 22479-22484 (1991).
The invention also includes the production of glucocerebrosidase produced in accordance with the invention. Sequence information for human glucocerebrosidase is well known in the art, see, and, for example, Sorge, J., Wets, C., Westwood, B. and Beutler, E. “Molecular cloning and nucleotide sequence of human glucocerebrosidase cDNA”, Proc. Natl. Acad. Sci, Vol 82, pp 7289-7293 (1985) and Tsuji, S., Choudary, P., Martin, B., Winfield, S., Barranger, J. and Grins, E., “Nucleotide Sequence of CDNA containing the complete coding sequence for Human Lysosomal Glucocerebrosidase”.
Certain antibodies which may be produced in accordance with the invention include, without limitation, Muromonab; Satumomab pendetide; mAb=B72.3, conjugate of B72.3 and radioligand=CYT 103; Abciximab; Edrecolomab, Mab 17-1A; murine Mab fragment directed against tumor-associated antigen CA 125; Arcitumomab; Imciromab pentetate Capromab pendetide; murine Mab fragments (Fab/Fab2 mix) directed against HMW-MAA; Nofetumomab; Sulesomab; chimeric Mab directed against CD20 antigen found on surface of B lymphocytes; Daclizumab; Basiliximab; Palivizumab; Trastuzumab; human Mab directed against cytokeratin tumor-associated antigen; Rituximab; Infliximab; Gemtuzumab ozogamicin; Alemtuzumab; Tositumomab (conjugated to 131I); Omalizumab; Ibritumomab tiuxetan (conjugated to 90Y); Efalizumab; Cetuximab; Bevacizumab; Adalimumab (IgG1); Technetium (99 mTc) fanolesomab; Natalizumab; Ranibizumab; Panitumumab; Eculizumab.
In one particularly useful embodiment, antibodies produced in accordance with the invention are produced in a single chain form. See, for example, Lee et al, Molecular Immunology (1999) vol 36, p 61-71 which discloses the production of single chain antibodies, the disclosure of which is incorporated in its entirety herein by reference. For example, any antibody which can be produced in accordance with the invention in single chain form, including but not limited to each of the antibodies specifically disclosed herein, is contemplated for production in a single chain form in a transgenic avian oviduct.
Certain enzymes, such as human enzymes, which can be produced in accordance with the invention include Rasburicase; Asparaginase; Urokinase; Tenecteplase; adenosin deaminase; Glucocerebrosidase; lysosomal acid lipase (Cholestrase); Palmitoyl-protein thioesterase 1; PPT1, B-Galactosidase; Neuraminidase; heparan sulfamidase; N-acetylglucosaminidase; alpha-N-acetylglucosaminidase; alpha-glucosaminide N-acetyltransferase; N-acetylglucosamine-6-sulfate sulfatase; galactosylceramidase (GALC); Glucoronidase; NPC1; NPC2; Agalsidase alfa; Agalsidase beta; alpha-glucosidase; Acid Sphingomyelinase (ASM); N-acetylgalactosamine 6-sulfatase (GALNS or galactose 6-sulfatase); beta-galactosidase; Idursulfase; alpha-L-duronidase; Galsulfase: arylsulfatase B, BM 102, arylsulfatase B, N-acetylgalactosamine-4-sulfatase, ASB.; lysosomal alpha-mannosidase (LAMAN); beta-hexosaminidase; alglucosidase alfa; beta-hexosaminidase A; tripeptidyl peptidase 1 (TPP1).
Other protein therapeutics which can be produced in accordance with the invention include, without limitation, Factor VIII; B-domain deleted Factor VIII; Factor VIIa; Factor IX; anticoagulant; recombinant hirudin; anticoagulant; recombinant hirudin; Alteplase, tPA; Reteplase, human tPA—3 of 5 domains deleted; Factor XI; Factor XII (Hageman factor); Factor XIII; Alpha2-antiplasmin; Microplasmin; insulin lispro; Bio Lysprol, an insulin analog; insulin Aspart, insulin glargine, long-acting insulin analog; hGH; glucagons; TSH; follitropin-beta FSH; salmon calcitonin; (Teriparatide) Parathyroid hormone derivative; nesiritide, B-type natriuretic peptide (BNP); PDGH; Lutropin alfa; Choriogonadotropin alfa; Somatropin Pegvisomant, human growth hormone receptor antagonist; platelet derived growth factor (PDGF); Keratinocyte growth factor; fibroblast growth factor 23; insulin-like growth factor-1, IGF-1 complexed with IGFBP-3; HBsAg; vaccine containing HBsAgn as one component; OspA, a lipoprotein found on the surface of B. burgorferi; Hep B-IPV HIB vaccine; Hep B-IPV vaccine; Comb vaccine; Pneumococcal conjugate vaccine; Influenza virus vaccine live, intranasal; Alefacept, Immunosuppressive agent; TNF-alpha; TNFR-IgG fragment fusion protein; Abatacept; recombinant activated protein C; dornase-alpha DNAse; Enfuvirtide (HIV fusion inhibitor) Anakinra, Botulinum Toxins, e.g., Type A; Samarium [153 m] lexidronam; Perfultren; Cetrorelix; Eptifibatide; Insulin Glargine; Insulin Aspart; Hepatitis B virus small surface antigen (HbsAg); Eptotermin alfa; Protein C; Inactivated hepatitis A virus hepatitis B surface antigen; Dibotermin alfa; IL-2-diptheria toxin fusion protein that targets cells displaying a surface IL-2 receptor; Endostatin; Human insulin-like growth factor binding protein-6.
The therapeutic proteins of the invention can be produced by methods such as those disclosed herein or by other such methods including those disclosed in US patent publication No. 2008/0064862, published Mar. 13, 2008.
The invention encompasses glycosylated fusion protein compositions of matter such as Fc fusion proteins. For example, the invention includes the glycosylated composition of matter for CTLA4-Fc; TNFR-Fc (e.g., TNF receptor type II-IgG, e.g., Enbrel); EPO-Fc (e.g., erythropoietin-Fc); GIRT-Fc (e.g., glucocorticoid induced tumor necrosis factor); cytotoxic IL-2/Fc as well as other Fc fusion proteins.
The invention includes methods for producing multimeric proteins including immunoglobulins, such as antibodies, and antigen binding fragments thereof. Thus, in one embodiment of the present invention, the multimeric protein is an immunoglobulin, wherein the first and second heterologous polypeptides are immunoglobulin heavy and light chains respectively.
In certain embodiments, an immunoglobulin polypeptide encoded by the transcriptional unit of at least one expression vector may be an immunoglobulin heavy chain polypeptide comprising a variable region or a variant thereof, and may further comprise a D region, a J region, a C region, or a combination thereof. An immunoglobulin polypeptide encoded by an expression vector may also be an immunoglobulin light chain polypeptide comprising a variable region or a variant thereof, and may further comprise a J region and a C region. The present invention also contemplates multiple immunoglobulin regions that are derived from the same animal species, or a mixture of species including, but not only, human, mouse, rat, rabbit and chicken. In certain embodiments, the antibodies are human or humanized.
In other embodiments, the immunoglobulin polypeptide encoded by at least one expression vector comprises an immunoglobulin heavy chain variable region, an immunoglobulin light chain variable region, and a linker peptide thereby forming a single-chain antibody capable of selectively binding an antigen. Some other examples of therapeutic antibodies that may be produced in methods of the invention include, but are not limited, to HERCEPTIN™ (Trastuzumab) (Genentech, CA) which is a humanized anti-HER2 monoclonal antibody for the treatment of patients with metastatic breast cancer; REOPRO™ (abciximab) (Centocor) which is an anti-glycoprotein IIb/IIIa receptor on the platelets for the prevention of clot formation; ZENAPAX™ (daclizumab) (Roche Pharmaceuticals, Switzerland) which is an immunosuppressive, humanized anti-CD25 monoclonal antibody for the prevention of acute renal allograft rejection; PANOREX™ which is a murine anti-17-IA cell surface antigen IgG2a antibody (Glaxo Wellcome/Centocor); BEC2 which is a murine anti-idiotype (GD3 epitope) IgG antibody (ImClone System); IMC-C225 which is a chimeric anti-EGFR IgG antibody (ImClone System); VITAXIN™ which is a humanized anti-αVβ3 integrin antibody (Applied Molecular Evolution/MedImmune); Campath; Campath 1H/LDP-03 which is a humanized anti CD52 IgG1 antibody (Leukosite); Smart M195 which is a humanized anti-CD33 IgG antibody (Protein Design Lab/Kanebo); RITUXAN™ which is a chimeric anti-CD2O IgG1 antibody (IDEC Pharm/Genentech, Roche/Zettyaku); LYMPHOCIDE™ which is a humanized anti-CD22 IgG antibody (Immunomedics); ICM3 is a humanized anti-ICAM3 antibody (ICOS Pharm); IDEC-114 is a primate anti-CD80 antibody (IDEC Pharm/Mitsubishi); ZEVALIN™ is a radiolabelled murine anti-CD20 antibody (IDEC/Schering AG); IDEC-131 is a humanized anti-CD40L antibody (IDEC/Eisai); IDEC-151 is a primatized anti-CD4 antibody (IDEC); IDEC-152 is a primatized anti-CD23 antibody (IDEC/Seikagaku); SMART anti-CD3 is a humanized anti-CD3 IgG (Protein Design Lab); 5G1.1 is a humanized anti-complement factor 5 (CS) antibody (Alexion Pharm); D2E7 is a humanized anti-TNF-α antibody (CATIBASF); CDP870 is a humanized anti-TNF-α Fab fragment (Celltech); IDEC-151 is a primatized anti-CD4 IgG1 antibody (IDEC Pharm/SmithKline Beecham); MDX-CD4 is a human anti-CD4 IgG antibody (Medarex/Eisai/Genmab); CDP571 is a humanized anti-TNF-α IgG4 antibody (Celltech); LDP-02 is a humanized anti-α4β7 antibody (LeukoSite/Genentech); OrthoClone OKT4A is a humanized anti-CD4 IgG antibody (Ortho Biotech); ANTOVA™ is a humanized anti-CD40L IgG antibody (Biogen); ANTEGREN™ is a humanized anti-VLA-4 IgG antibody (Elan); CAT-152, a human anti-TGF-β2 antibody (Cambridge Ab Tech); Cetuximab (BMS) is a monoclonal anti-EGF receptor (EGFr) antibody; Bevacizuma (Genentech) is an anti-VEGF human monoclonal antibody; Infliximab (Centocore, JJ) is a chimeric (mouse and human) monoclonal antibody used to treat autoimmune disorders; Gemtuzumab ozogamicin (Wyeth) is a monoclonal antibody used for chemotherapy; and Ranibizumab (Genentech) is a chimeric (mouse and human) monoclonal antibody used to treat macular degeneration.
Proteins produced in transgenic avians in accordance with the invention can be purified from egg white by any useful procedure such as those apparent to a practitioner of ordinary skill in the art of protein purification. For example, the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules produced in transgenic avians in accordance with the invention can be purified from egg white by methods apparent to practitioners of ordinary skill in the art of protein purification. For example, Fc containing fusion proteins of the invention may be isolated using a Protein A column.
Representative glycosylation structures have been determined for the fusion protein molecules (e.g., Fc fusion protein molecules) such as CTLA4-Fc molecules (CTLA4-Fc) of the invention and are shown in Example 5.
The invention includes the avians (e.g., chicken, turkey and quail) that lay the eggs containing egg white which contains therapeutic protein molecules of the invention comprising one or more of the glycosylation structures disclosed herein.
The following specific examples are intended to illustrate the invention and should not be construed as limiting the scope of the claims.
This vector includes the ovalbumin Dnase hypersensitive sites (DHS) I, II and III, the first exon (exon L), the first intron and the CTLA4-Fc fusion protein coding sequence inserted in frame with the ATG of second exon (exon 1) and with the 3′ untranslated region (UTR). The expression cassette is inserted in the inverse orientation into an avian leukosis virus (ALV) vector, which was made self-inactivating (SIN) by deletion of nucleotides 1 to 173 of the ALV LTR sequence.
The vector was constructed as follows: pNLB-3.9-OM-CTLA4-Fc, disclosed in Example 20 of US patent publication No. 2007/0113299, published May 17, 2007, the disclosure of which is incorporated in its entirety herein by reference, was cut with Nae I and Not I. The Not I site was filled in by Klenow reaction. The resulting 8125 by fragment was gel purified, religated, producing pOM-3.9-CTLA4-dSacI.
pOM-3.9-CTLA4-dSacI was cut with EcoRI and Kpn I and the 8115 by fragment gel purified. The 3′ UTR of the chicken ovalbumin gene was PCRed from BAC 26, disclosed in US patent publication No. 2006/0130170, published Jun. 15, 2006, with the primers 5′-GCGGAATTCAAAGAAGAAAGCTGAAAAAC-3′ (SEQ ID NO: 7) and 5′-GCGGGTACCTTCAAATACTACAAGTGAAA-3′ (SEQ ID NO: 8). The 3′ UTR PCR was cut with Eco RI and Kpn I and the 684 by fragment gel purified. The 8115 by fragment of pOM-3.9-CTLA4-dSacI was ligated to the 684 by fragment of 3′ UTR PCR, producing pOM-3.9-CTLA4-OV3′UTR.
The 3.5 kb OV promoter region, exon L, first intron and the UTR of exon 1 was PCR amplified with BAC26 as a template and with primers 5′-GGCCTCGAGTCAAGTTCTGAGTAGGTTTTAGTG-3′ (SEQ ID NO: 9) and 5′-GCGCGTCTCTGTCTAGAGCAAACAGCAGAACAGTGAAAATG-3′ (SEQ ID NO: 10). The PCR product was cut with Xho I and Esp3I and the 5094 by product was gel purified.
A 5′ portion of the CTLA4-Fc gene was PCR amplified using pOM-3.9-CTLA4 as a template and primers 5′-GCGCGTCTCAAGACAACTCAGAGTTCACCATGGGTGTACTGCTCACACAG-3′ (SEQ ID NO: 11) and 5′-GGCCCGGGAGTTTTGTCAGAAGATTTGGG-3′(SEQ ID NO: 12). The PCR product was cut with Esp3I and SacI and the 384 by product gel purified.
pOM-3.9-CTLA4-OV3′UTR was cut with Sac I and Xho I, the 4473 by product gel purified and ligated to the 5094 by OV PCR fragment and 384 by CTLA4-Fc fragment, producing pOV-3.5-I-CTLA4.
pALV-SIN, disclosed, for example, in Example 10 of US patent publication No. 2007/0124829, published May 31, 2007, the disclosure of which is incorporated in its entirety herein by reference, was cut with Mfe I and Xho I, filled in with Klenow and the 4911 by fragment gel purified.
pOV-3.5-I-CTLA4 was cut with XhoI and BamHI, filled in with Klenow and the 6957 by fragment gel purified. This fragment was ligated into the 4911 by fragment of pAVI-SIN such that the CTLA4-Fc gene and flanking expression elements are in the opposite orientation of the ALV long terminal repeats, producing pSIN-OV-3.5-I-CTLA4-inv which is shown in
Retroviral particles containing the pSIN-OV-3.5-I-CTLA4-inv vector (
Egg whites from chimeric quail were assayed using an ELISA for CTLA4-Fc. The highest expressing quail was found to have CTLA4-Fc in her egg white at approximately 16 μg/ml. The transgenesis level in these quail is estimated at about 5% or less. Thus the level in a G1 should be substantially greater.
The 4907 by Mfe I/Xho I fragment of pALV-SIN (disclosed, for example, in US patent publication No. 2007/0124829, published May 31, 2007) was ligated to the 5115 XhoI/EcoRI fragment of pOM-3.9-CTLA4 (shown in FIG. 15 of US patent publication No. 2007/0113299, published May 17, 2007), producing pSIN-3.9-OM-CTLA4-Fc Shown in
Retroviral particles pseudotyped with the VSV envelope protein and containing the pSIN-3.9-OM-CTLA4-Fc (
Egg white from hens was assayed using an ELISA for CTLA4-Fc. The highest expressing hen was found to have CTLA4-Fc in her egg white at approximately 0.37 μg/ml. The amino acid sequence of the CTLA4-Fc shown in
G-1 hens were obtained by crossing G-0 transgenic roosters to wild type hens and screening for transgenic offspring. Egg white from G1 hens was as high as 440 μg/ml.
CTLA4-Fc was prepared from 25 ml of egg white obtained from eggs laid by G1 transgenic chickens produced as described in Example 4 by first adding 3 volumes (75 ml) of 50 mM NaOAC, pH 4.6 and mixing overnight at 4° C. 10 ml of 0.5 M dibasic sodium phosphate, pH 9.0, was mixed into the egg white/NaOAc solution which was then centrifuged at about 9,000×g for 30 min at 4° C. After centrifugation, the supernatant was filtered through a 0.22 micro filter and then loaded to a 5 ml protein A column which had been equilibrated with about 50 ml of 0.1 M citric acid, pH 3.0 followed by about 20 ml of 1×PBS. The sample was loaded at a 0.5 ml/min flow rate and was then washed with 120 ml of 1×PBS at the same flow rate. The sample was eluted in 1 ml fractions with 0.1 M citric acid, pH 3.0 into collection vessels each containing 60 μl of 1.0 M Tris, pH 9.0.
MALDI-TOF-MS (Matrix assisted laser desorption ionization time-of-flight mass spectrometry) analysis and ESI MS/MS (electrospray ionization tandem mass spectrometry) were performed on the oligosaccharides after release from the peptide backbone of the purified avian derived CTLA4-Fc. Samples of the individual polysaccharide species were also digested with certain enzymes and the digest products were analyzed by HPLC.
N-linked CTLA4-Fc oligosaccharide structures identified were at least one of N-1 and N-2 and at least one of N-3 and N-4 and at least one of N-5 and N-6 and at least one of N-7 and N-8 shown above. Accordingly, the invention specifically includes CTLA4-Fc compositions comprising one or more of N-1, N-2, N-3, N-4, N-5, N-6, N-7 and N-8. The invention also includes CTLA4-Fc compositions comprising at least one of N-1 and N-2 or at least one of N-3 and N-4 or at least one of N-5 and N-6 or at least one of N-7 and N-8 and combinations thereof.
A 5.0 mM stock solution of MPEG-SC-20 KDa is prepared in acetonitrile. A 4.7 μM stock solution of purified CTLA4-Fc isolated from the egg white of a transgenic chicken produced in accordance with the present invention is prepared in conjugation buffer. The conjugation reaction is initiated by mixing 5 ml of the CTLA4-Fc stock with 2.4 ml of conjugation buffer followed by the addition of 400 μl of the MPEG-SC-20 KDa stock solution resulting in a PEG: CTLA4-Fc molar ratio of about 85:1. The reaction is allowed to proceed overnight at room temperature. To stop the reaction, glycine is added to the reaction mix to a concentration of 20 mM, and the mix is allowed to stand for 20 minutes at room temperature. The final volume of the PEG-CTLA4-Fc conjugation mix is about 7.8 ml, containing about 96 μg/ml CTLA4-Fc.
Above is shown MPEG-SC-20 KDa (average molecular weight of 20 KDa) which can be used. The PEG molecule is disclosed in one or more of U.S. Pat. No. 5,122,614, issued Jun. 16, 1992; U.S. Pat. No. 5,612,460, issued Mar. 18, 1997; U.S. Pat. No. 6,602,498, issued Aug. 5, 2003; U.S. Pat. No. 6,774,180, issued Aug. 10, 2004; and US patent publication No. 2006/0286657, published Dec. 21, 2006. The disclosures of each of these four issued patents and one published patent application are incorporated in their entirety herein by reference.
All documents (e.g., U.S. patents, U.S. patent applications, publications) cited in the above specification are incorporated herein by reference. Various modifications and variations of the present invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art are intended to be within the scope of the following claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/973,853, filed Oct. 10, 2007, the disclosure of which is incorporated in its entirety herein by reference, which is a continuation-in-part of U.S. patent application Ser. No. 11/708,598, filed Feb. 20, 2007, now U.S. Pat. No. 7,511,120, issued Mar. 31, 2009, the disclosure of which is incorporated in its entirety herein by reference, which is a continuation-in-part of U.S. patent application Ser. No. 11/370,555, filed Mar. 8, 2006, now U.S. Pat. No. 7,338,654, issued Mar. 4, 2008, the disclosure of which is incorporated in its entirety herein by reference, and is a continuation-in-part of U.S. patent application Ser. No. 11/167,052 filed Jun. 24, 2005, the disclosure of which is incorporated in its entirety herein by reference. This application also claims the benefit of U.S. provisional patent application Nos. 61/192,670, filed Sep. 19, 2008, the disclosure of which is incorporated in its entirety herein by reference, and 61/217,650, filed Jun. 2, 2009, the disclosure of which is incorporated in its entirety herein by reference.
Number | Date | Country | |
---|---|---|---|
61192670 | Sep 2008 | US | |
61217650 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11973853 | Oct 2007 | US |
Child | 12562899 | US | |
Parent | 11708598 | Feb 2007 | US |
Child | 11973853 | US | |
Parent | 11370555 | Mar 2006 | US |
Child | 11708598 | US | |
Parent | 11167052 | Jun 2005 | US |
Child | 11370555 | US |