The present disclosure relates to the field of communications system technologies, and in particular, to a backplane and a communications device.
In a communications system, a backplane is an important composition part of a communications device, generally includes multiple layers of printed circuit boards (PCB) boards and connectors, and provides functions of electrical signal connection and physical support for each subcard and module in the communications system.
With continuous development of a communications system technology, a large capacity requirement of the communications system requires a higher signal transmission rate in the backplane and a greater channel for signal transmission, and further, requirements for a quantity of layers, size, and density of conductive patterns in the PCB board of the backplane are higher. Moreover, the high transmission rate has higher requirements for an insulation material of the PCB board and precision of the conductive pattern in the PCB board. However, in a conventional PCB manufacturing technology, addition of the quantity of layers of the conductive patterns in the PCB board directly leads to an exponential growth of manufacturing difficulty and manufacturing costs of the PCB board, and even leads to a case in which processing cannot be performed. In addition, because the conductive pattern in the PCB board is processed by means of etching, the size and the precision of the conductive pattern cannot satisfy a requirement of high-rate signal transmission in an internal system.
Therefore, the prior art provides a backplane. Referring to
Although the backplane with the foregoing structure separates wiring of the high-rate signal and configures the wiring in the backplanes 02, the signal transmission rate in the small backplanes 02 is still limited by a conventional PCB board manufacturing process, further leading to poor transmission quality and a low transmission rate of the high-rate signal in the communications device and an inflexible arrangement manner of a signal channel in the communications device.
The present disclosure provides a backplane and a communications device. The backplane can improve transmission quality and a transmission rate of a high-rate signal in a communications device, and an arrangement manner of a signal channel is flexible.
According to a first aspect, a backplane of a communications device is provided, where the backplane includes: at least one fixing plate, multiple connectors, and multiple flexible cables, where signal connection is implemented between corresponding connectors by means of the flexible cables, each of the connectors is provided with a housing and multiple signal pins installed on the housing, the housing is installed on the fixing plate, and the housing is provided with a jack for insertion of a connector of a subcard in the communications device; one end of each signal pin is inserted into the jack, and the other end is connected to one of the multiple flexible cables; and a surface of each fixing plate facing the subcard in the communications device is an insertion surface of the fixing plate, and the multiple flexible cables are located on a side of the fixing plate opposite to the insertion surface.
With reference to the first aspect, in a first possible implementation manner, each fixing plate is provided with at least one connector opening running through a thickness direction of the fixing plate, and a housing of each connector runs through the fixing plate through the connector opening.
With reference to the first possible implementation manner of the first aspect, in a second possible implementation manner, the connector and the fixing plate are assembled by means of at least one pair of a limiting groove and a limiting bulge that are in clearance fit, so that a position of the connector relative to the fixing plate is adjustable in a length direction of the connector opening and a width direction of the connector opening.
With reference to the second possible implementation manner of the first aspect, in a third possible implementation manner, the connector and the fixing plate are connected by means of two pairs of limiting grooves and limiting bulges that are in clearance fit, where
the two limiting grooves are separately formed on the fixing plate, and are located on two opposite side walls of the connector opening; and the two limiting bulges are disposed on the housing of the connector, and are located on two opposite side surfaces of the housing; or
the two limiting bulges are separately formed on the fixing plate, and are located on two opposite side walls of the connector opening; and the two limiting grooves are disposed on the housing of the connector, and are located on two opposite side surfaces of the housing.
With reference to the first aspect, the first possible implementation manner of the first aspect, the second possible implementation manner of the first aspect, and the third possible implementation manner of the first aspect, in a fourth possible implementation manner, the backplane further includes a printed circuit board, and the fixing plate is installed on the printed circuit board.
With reference to the fourth possible implementation manner of the first aspect, in a fifth possible implementation manner, the printed circuit board is provided with multiple guide pins, and each fixing plate is provided with at least two pin holes that are in guide fit with the guide pins, so that each fixing plate and the printed circuit board are aligned by means of guiding between a corresponding pin hole and a corresponding guide pin.
With reference to the first aspect, the first possible implementation manner of the first aspect, the second possible implementation manner of the first aspect, the third possible implementation manner of the first aspect, the fourth possible implementation manner of the first aspect, and the fifth possible implementation manner of the first aspect, in a sixth possible implementation manner, the flexible cables are metal conducting wires or optical fibers.
With reference to the first aspect, the first possible implementation manner of the first aspect, the second possible implementation manner of the first aspect, the third possible implementation manner of the first aspect, the fourth possible implementation manner of the first aspect, the fifth possible implementation manner of the first aspect, and the sixth possible implementation manner of the first aspect, in a seventh possible implementation manner, the backplane includes two fixing plates, where the two fixing plates are parallel to each other, and the multiple flexible cables are located between the two fixing plates; or the two fixing plates are perpendicular to each other, one side of one of the two fixing plates is spliced with one side of the other fixing plate, and the flexible cables are located in a region of an angle of 90 degrees formed between the two fixing plates.
With reference to the seventh possible implementation manner of the first aspect, in an eighth possible implementation manner, the backplane further includes at least one baffle, the baffle is located on sides of the two fixing plates opposite to the insertion surfaces of the two fixing plates, a protective cover that is located on the sides of the two fixing plates opposite to the insertion surfaces of the two fixing plates is formed between the at least one baffle and the two fixing plates, and the flexible cables are located in the protective cover.
According to a second aspect, a communications device is provided, where the communications device includes multiple subcards and any backplane provided in the first aspect, the first possible implementation manner of the first aspect, the second possible implementation manner of the first aspect, the third possible implementation manner of the first aspect, the fourth possible implementation manner of the first aspect, the fifth possible implementation manner of the first aspect, the sixth possible implementation manner of the first aspect, the seventh possible implementation manner of the first aspect, or the eighth possible implementation manner of the first aspect, where a connector of each subcard is inserted into a jack of a connector of the backplane, to implement signal connection between the connector of the subcard and the connector of the backplane.
With reference to the backplane provided in the first aspect and the communications device provided in the second aspect, the backplane includes at least one fixing plate, multiple connectors, and multiple flexible cables, and signal connection is implemented, by means of the flexible cables, between the connectors needing to be connected. During a specific operation process, before the multiple connectors are installed on the fixing plate, signal connection may be implemented between the multiple connectors by means of the flexible cables, and then corresponding connectors only need to be installed on corresponding positions on the at least one fixing plate, so that the assembling is convenient. At the same time, in the backplane, a surface of the fixing plate facing a subcard in the communications device is an insertion surface of the fixing plate, signal connection is implemented, by means of the flexible cables, between multiple connectors disposed on the backplane, and the multiple flexible cables are located on a side of each fixing plate opposite to the insertion surface of the fixing plate. A high-rate signal in the backplane may be transmitted by means of the flexible cables. Further, when the communications device provided with the backplane transmits a high-rate signal, transmission quality and a transmission rate of the high-rate signal are not limited by a conventional PCB board manufacturing process, and the high-rate signal of the communications device has relatively high transmission quality and a relatively high transmission rate.
To describe the technical solutions in the embodiments of the present disclosure more clearly, the following briefly introduces the accompanying drawings required for describing the embodiments. Apparently, the accompanying drawings in the following description show merely some embodiments of the present disclosure, and a person of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.
The following clearly describes the technical solutions in the embodiments of the present disclosure with reference to the accompanying drawings in the embodiments of the present disclosure. Apparently, the described embodiments are merely some but not all of the embodiments of the present disclosure. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present disclosure without creative efforts shall fall within the protection scope of the present disclosure.
Embodiments of the present disclosure provide a backplane, and a communications device provided with the backplane. The backplane can improve transmission quality and a transmission rate of a high-rate signal in a communications device, and an arrangement manner of a signal channel is flexible.
Referring to
Referring to
Generally, for the convenience of description, the side of each fixing plate 200 opposite to the insertion surface is referred to as a back side of the fixing plate 200.
In the backplane, before the multiple connectors 300 are installed on the fixing plate 200, signal connection may be implemented, by means of the flexible cables 400, between the multiple connectors 300 needing to be connected, and then the corresponding multiple connectors 300 only need to be installed on corresponding positions of the at least one fixing plate 200, so that the assembling is convenient. At the same time, signal connection is implemented, by means of the flexible cables 400, between multiple connectors 300 needing to be connected in the backplane, and the multiple flexible cables 400 are located on a side of each fixing plate 200 opposite to the insertion surface of the fixing plate, which does not cause an impact on the connection between the subcard and the backplane. A high-rate signal in the backplane may be transmitted by means of the flexible cables 400. Further, when the communications device provided with the backplane transmits a high-rate signal, transmission quality and a transmission rate of the high-rate signal are not limited by a conventional PCB board manufacturing process, and the high-rate signal of the communications device has relatively high transmission quality and a relatively high transmission rate. Moreover, installation positions of the connectors 300 may be selected according to actual requirements, and an arrangement manner of a signal channel in the backplane is flexible.
In addition, referring to
Referring to
Specifically, in the foregoing embodiment, the connector 300 and the fixing plate 200 are assembled by means of at least one pair of a limiting groove and a limiting bulge that are in clearance fit, so that a position of the connector 300 relative to the fixing plate 200 is adjustable in a length direction of the connector opening 201 and a width direction of the connector opening 201.
Certainly, a position of the connector 300 relative to the fixing plate 200 is also adjustable perpendicularly to a length direction of the connector opening 201 and perpendicularly to a width direction of the connector opening 201.
As shown in
the two limiting grooves are separately formed on the fixing plate 200, for example, limiting grooves 203 shown in
the two limiting bulges are separately formed on the fixing plate 200, and are located on two opposite side walls of the connector opening 201; and the two limiting grooves are disposed on the housing 301 of the connector 300, and are located on two opposite side surfaces of the housing 301 (not shown in the figure).
After the connector 300 is installed on the fixing plate 200, and a position of the connector 300 relative to the fixing plate 200 may be adjusted in a direction a shown in
In an embodiment, in the backplane provided in this embodiment, signal connection may be implemented between each flexible cable 400 and a signal pin 302 by means of welding, crimping, clamping, or wrapping.
Referring to
the printed circuit board 100 is provided with wiring; and/or
the printed circuit board 100 is provided with a power source channel; and/or
the printed circuit board 100 is provided with a power source connector; and/or
the printed circuit board 100 is provided with a signal connector.
With reference to
In an embodiment, the flexible cables 400 in the backplane are metal conducting wires or optical fibers.
In addition, the form and the structure of the backplane provided in the present disclosure may have multiple combination manners.
For example, referring to
Certainly, the backplane may also have another combination manner, and details are not described herein.
Refer to
According to a second aspect, an embodiment of the present disclosure further provides a communications device, including multiple subcards and any backplane provided in the foregoing embodiments. A connector of each subcard is inserted into a jack of a connector 300 of the backplane, so as to implement signal connection between the connector of the subcard and the connector of the backplane.
When the communications device transmits a high-rate signal, transmission quality and a transmission rate of the high-rate signal are not limited by a conventional PCB board manufacturing process, and the high-rate signal of the communications device has relatively high transmission quality and a relatively high transmission rate.
Obviously, a person skilled in the art can make various modifications and variations to the embodiments of the present disclosure without departing from the spirit and scope of the present disclosure. The present disclosure is intended to cover these modifications and variations provided that they fall within the scope of protection defined by the following claims and their equivalent technologies.
Number | Date | Country | Kind |
---|---|---|---|
2014 1 0251151 | Jun 2014 | CN | national |
This application is a continuation of U.S. patent application Ser. No. 15/363,429, filed on Nov. 29, 2016, which is a continuation of International Application No. PCT/CN2015/079196, filed on May 18, 2015, which claims priority to Chinese Patent Application No. 201410251151.4, filed on Jun. 6, 2014. All of the afore-mentioned patent applications are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3705378 | Elkins | Dec 1972 | A |
3963300 | Patton et al. | Jun 1976 | A |
4236779 | Tang | Dec 1980 | A |
4290664 | Davis et al. | Sep 1981 | A |
4401355 | Young | Aug 1983 | A |
4902236 | Hasircoglu | Feb 1990 | A |
5380216 | Broeksteeg | Jan 1995 | A |
5391095 | Born | Feb 1995 | A |
5415566 | Brunker et al. | May 1995 | A |
6171139 | Sato et al. | Jan 2001 | B1 |
6322395 | Nishio et al. | Nov 2001 | B1 |
6375508 | Pickles et al. | Apr 2002 | B1 |
6663429 | Korsunsky et al. | Dec 2003 | B1 |
6776659 | Stokoe et al. | Aug 2004 | B1 |
6799981 | Yu | Oct 2004 | B1 |
7153162 | Mizumura et al. | Dec 2006 | B2 |
8079847 | Davis | Dec 2011 | B2 |
8366485 | Johnescu et al. | Feb 2013 | B2 |
8398429 | Costello | Mar 2013 | B2 |
8506323 | Costello | Aug 2013 | B2 |
8745438 | Armstrong et al. | Jun 2014 | B2 |
8860889 | Choi | Oct 2014 | B2 |
8944831 | Stoner et al. | Feb 2015 | B2 |
8998636 | Gomez et al. | Apr 2015 | B2 |
9160088 | Rossman | Oct 2015 | B2 |
9236684 | Lin | Jan 2016 | B2 |
9450320 | Jung et al. | Sep 2016 | B2 |
9735481 | Costello et al. | Aug 2017 | B2 |
9949398 | Zhang | Apr 2018 | B2 |
20090027867 | Yamamoto et al. | Jan 2009 | A1 |
20100029126 | Ngo | Feb 2010 | A1 |
20120002358 | Hayashi | Jan 2012 | A1 |
20120071034 | Li | Mar 2012 | A1 |
20150049451 | Wang | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
2852439 | Dec 2006 | CN |
101877932 | Nov 2010 | CN |
102265721 | Nov 2011 | CN |
102307142 | Jan 2012 | CN |
102681618 | Sep 2012 | CN |
102725924 | Oct 2012 | CN |
202474911 | Oct 2012 | CN |
103503590 | Jan 2014 | CN |
103718658 | Apr 2014 | CN |
104064893 | Sep 2014 | CN |
2910808 | Jan 1980 | DE |
2453727 | May 2012 | EP |
H0886835 | Apr 1996 | JP |
2013163867 | Nov 2013 | WO |
Entry |
---|
Extended European Search Report issued in European Application No. 15802417.4 dated Jul. 11, 2017, 7 pages. |
International Search Report issued in International Application No. PCT/CN2015/079196 dated Aug. 6, 2015, 7 pages. |
Chinese Office Action issued in Chinese Application No. 201410251151.4 dated Sep. 25, 2015, 15 pages. |
Notice of Allowance issued in Chinese Application No. 201410251151.4 dated Apr. 5, 2016, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20180220545 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15363429 | Nov 2016 | US |
Child | 15936100 | US | |
Parent | PCT/CN2015/079196 | May 2015 | US |
Child | 15363429 | US |