Haagen et al. “Evaluation of Fcg receptor mediated T-cell activation by two purified CD3×CD19 bispecific monoclonal antibodies with hybrid Fc domains” Therapeutic Immunology. vol. 1. No. 5, pp. 279-287, 1994.* |
Lindhofer et al. “Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas” J. Immunology. vol. 145 pp. 218-225, 1995.* |
deGast, G. et al., “Clinical Experience with CD3×CD19 Bispecific Antibodies in Patients with B Cell Malignancies,” J. of Hematother. 4: 433-437 (1995). |
G.C. deGast, et al., Cancer Immunol. Immunother (1995) 40: 390-396. |
G.J. Weiner, et al., Journal of Immunology (1994) 152: 2385-2392. |
H. Lindhofer et al., “Bispecific Antobodies Target Operationally Tumor-Specific Antigens in Two Leukemia Relapse Models,” Blood (Dec. 15, 1996) 88(12): 4651-4658. |
H. Lindhofer et al., “Bispecific Antibodies Effectively Purge Cancer Cells from Peripheral Blood Stem Cell Collections without Affecting Colony Forming Units,” 26th Annual Meeting of the International Society for Experimental Hematology, Cannes, France (Aug. 24-28, 1997) 25 (8): 879. |
G.J. Weiner et al., “The Role of T Cell Activation in Anti-CD3 X Antitumor Bispecific Antibody Therapy,” Journal of Immunology (1994) 152: 2385. |
G.J. Weiner et al., “Bispecific Monoclonal Antibody Therapy of B-Cell Malignancy,” Leukemia and Lymphoma (1995) 16: 199-207. |
L. M. Weiner et al., “Clinical Development of 2B1, a Bispecific Murine Monoclonal Antibody Targeting c-erB-2 and FcyRIII,” Journal of Hematotherapy (1995) 4: 453-456. |
L.M.R. Silla et al., “Potentiation of Lysis of Leukemia Cells by a Bispecific Antibody to CD33 and CD16 (FcyRIII) Expressed by Human Natural Killer (NK) Cells,” British Journal of Haematology (1995) 89: 712-718. |
J. Chen et al., “Monocyte-Mediated Lysis of Acute Myeloid Leukemia Cells in the Presence of the Bispecific Antibody 251×22 (Anti-CD33×Anti-CD64),” Clinical Cancer Research (Nov. 1995) 1: 1319-1325. |