The present disclosure relates to a bonded semiconductor structure.
To attain higher performance and lower power consumption of an integrated circuit (IC) device, dimensions of the IC device are minimized. However, minimizing dimensions of the IC device makes it difficult and complicated to manufacture the IC device.
The disclosure can be more fully understood by reading the following detailed description of various embodiments, with reference to the accompanying drawings as follows:
In the following description, specific details are presented to provide a thorough understanding of the embodiments of the present disclosure. Persons of ordinary skill in the art will recognize, however, that the present disclosure can be practiced without one or more of the specific details, or in combination with other components. Well-known implementations or operations are not shown or described in detail to avoid obscuring aspects of various embodiments of the present disclosure.
The terms used in this specification generally have their ordinary meanings in the art and in the specific context where each term is used. The use of examples in this specification, including examples of any terms discussed herein, is illustrative only, and in no way limits the scope and meaning of the disclosure or of any exemplified term. Likewise, the present disclosure is not limited to various embodiments given in this specification.
It will be understood that, although the terms “first,” “second,” etc., may be used herein to describe various elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
As used herein, the terms “comprising,” “including,” “having,” “containing,” “involving,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to.
Reference throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, implementation, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, uses of the phrases “in one embodiment” or “in an embodiment” in various places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, implementation, or characteristics may be combined in any suitable manner in one or more embodiments.
In the semiconductor device 100, a first semiconductor substrate 110 is bonded to a second semiconductor substrate 120 through a bonding oxide layer 130.
The semiconductor substrate 110 includes an epitaxial layer 140 and a first semiconductor device portion 145 formed thereon. In some embodiments, the epitaxial layer 140 includes germanium (Ge), indium phosphide (InP), gallium arsenide (GaAs), or other suitable materials. In some embodiments, the first semiconductor device portion 145 includes integrated circuit (IC) components (not labeled) such as N-type metal-oxide semiconductor (NMOS) transistors, P-type metal-oxide semiconductor (PMOS) transistors, MOS capacitors, varactors, etc.
A second semiconductor device portion 150 is formed in the semiconductor substrate 120. Similar to the semiconductor device portion 145, the semiconductor device portion 150 includes IC components (not labeled) such as NMOS transistors, PMOS transistors, MOS capacitors, varactors, etc.
An interconnect layer 160 is provided between the semiconductor device portion 150 and the bonding oxide layer 130. The interconnect layer 160 connects different IC components in the semiconductor device portion 150 together. In some embodiments, the interconnect layer 160 includes at least one metal layer (not shown) and corresponding inter-metal dielectric (IMD) layers (not shown). The interconnect layer 160 in
An interconnect layer 170 is formed on the semiconductor device portion 145. The interconnect layer 170 provides a similar function as the interconnect layer 160. Alternatively stated, the interconnect layer 170 connects different components in the semiconductor device portion 145 together. The interconnect layers 160 and 170 are shown differently in
Similar to the interconnect layer 160, the interconnect layer 170 in
Physically, each of the vias 180 and 185 contacts the interconnect layer 170, penetrates through the semiconductor device portion 145, the epitaxial layer 140 and the bonding oxide layer 130, and further contacts the interconnect layer 160. Electrically, the vias 180 and 185 connect the semiconductor device portion 145 and the semiconductor device portion 150 through the interconnect layer 170 and the interconnect layer 160. Effectively, the vias 180 and 185 form two electrical conduction paths each beginning from the semiconductor device portion 145, through the interconnect layer 170, the vias 180 and 185, the interconnect layer 160 and to the semiconductor device portion 150. Therefore, the IC components in the semiconductor device portion 145 are connected to the IC components in the semiconductor device portion 150 through the interconnect layer 170 and the interconnect layer 160. Two vias 180 and 185 are shown for illustration. A different number of vias is within the scope of the present disclosure.
In some embodiments, the thickness of the epitaxial layer 140 is 1-10 micrometers. Compared to the epitaxial layer having a thickness of 40-100 micrometers in other approaches, the epitaxial layer 140 is thin, and thus shortens the distance between the semiconductor device portion 145 and the semiconductor device portion 150. Accordingly, the electrical connections between the semiconductor device portion 145 and the semiconductor device portion 150 in the present disclosure are shortened. As a result, loss of electrical signals transmitted between the semiconductor device portion 145 and the semiconductor device portion 150 is reduced. The electrical performance between the semiconductor device portion 145 and the semiconductor device portion 150 is thus enhanced.
Further, in some embodiments, the diameter of the via 180 and/or 185 in
Because the epitaxial layer 140 is thinner and the vias 180 and 185 are shorter, the parasitic capacitance effect of the vias 180 and 185 is reduced. Because the parasitic capacitance effect is reduced, the diameters of the vias 180 and 185 are afforded to be smaller than those in other approaches. Furthermore, the smaller diameter and shorter length of the vias 180 and 185 result in a smaller volume. Accordingly, stresses caused by the vias 180 and 185 are decreased.
With reference to the method 200 in
In some embodiments, an additional oxide layer (not labeled) is formed on the epitaxial layer 140, and is provided for a bonding operation explained below in operation 215.
In operation 210, an ion-implanted layer 115 is formed between the epitaxial layer 140 and the substrate portion 190 as illustrated in
In some embodiments, the ion-implanted layer 115 includes micro bubbles (not shown) from the species implant. The micro bubbles are used for the epitaxial layer 140 and the substrate portion 190 to be subsequently split into two distinctive components. Effectively, the substrate portion 190 is easily exfoliated from the epitaxial layer 140 in the subsequent step of the manufacturing process.
In operation 215, the epitaxial layer 140 is bonded to the semiconductor substrate 120 through a bonding oxide layer 130, as illustrated in
In some embodiments, the epitaxial layer 140 is bonded to the bonding oxide layer 130 through the additional oxide layer (not labeled) which is previously introduced at the stage in
In operation 220, the substrate portion 190 is separated from the ion-implanted layer 115, as illustrated in
In some embodiments, the surface 142 of the epitaxial layer 140 is polished to remove the remaining ion-implanted layer 115, as illustrated in
In operation 225, a semiconductor device portion 145 is formed on the epitaxial layer 140, as illustrated in
In operation 230, vias 180 and 185 are formed to penetrate through the semiconductor device portion 145, the epitaxial layer 140, and the bonding oxide layer 130 to contact the interconnect layer 160, as illustrated in
In operation 235, an interconnect layer 170 is formed on the semiconductor device portion 145, as illustrated in
In some embodiments, a method is disclosed that includes: bonding an epitaxial layer formed with a first semiconductor substrate and an ion-implanted layer that is formed between the epitaxial layer and the first semiconductor substrate, to a bonding oxide layer of a second semiconductor substrate; separating the first semiconductor substrate from the epitaxial layer, by removing the first semiconductor substrate together with a portion of the ion-implanted layer and keeping the epitaxial layer; and forming a first semiconductor device portion on the epitaxial layer, and an interconnect layer on the first semiconductor device portion.
Also disclosed is a method that includes: bonding an epitaxial layer to a second semiconductor substrate, wherein an ion-implanted layer is disposed on the epitaxial layer, and a first semiconductor substrate is disposed on the ion-implanted layer; splitting the ion-implanted layer to remove the first semiconductor substrate and keep the epitaxial layer; forming a first semiconductor device portion on the kept epitaxial layer; forming vias through the first semiconductor device portion and the epitaxial layer; and forming a first interconnect layer on the first semiconductor device portion.
Also disclosed is a method that includes: bonding the epitaxial layer to a bonding oxide layer without forming any layer between the epitaxial layer and the bonding oxide layer, wherein an ion-implanted layer is directly in contact with the epitaxial layer, and a first semiconductor substrate is disposed on the ion-implanted layer; and removing the first semiconductor substrate together with a portion of the ion-implanted layer and keeping a remaining portion of the ion-implanted layer on the epitaxial layer.
In this document, the term “connected” may be termed as “electrically connected”, and the term “coupled” may be termed as “electrically coupled”. “Connected” and “coupled” may also be used to indicate that two or more elements cooperate or interact with each other.
The above illustrations include exemplary operations, but the operations are not necessarily performed in the order shown. Operations may be added, replaced, changed order, and/or eliminated as appropriate, in accordance with the spirit and scope of various embodiments of the present disclosure.
As is understood by one of ordinary skill in the art, the foregoing embodiments of the present disclosure are illustrative of the present disclosure rather than limiting of the present disclosure. It is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims, the scope of which should be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
The present application is a divisional application of U.S. application Ser. No. 16/866,131, filed on May 4, 2020, now U.S. Pat. No. 11,335,553, issued May 17, 2022, which is a divisional application of U.S. application Ser. No. 15/843,400, filed on Dec. 15, 2017, now U.S. Pat. No. 10,643,836, issued May, 5 2020, which is a continuation application of the U.S. application Ser. No. 13/945,217, filed Jul. 18, 2013, now U.S. Pat. No. 9,859,112, issued Jan. 2 2018, which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5374564 | Bruel | Dec 1994 | A |
5882987 | Srikrishnan | Mar 1999 | A |
6146979 | Henley et al. | Nov 2000 | A |
6225651 | Billon | May 2001 | B1 |
6323108 | Kub et al. | Nov 2001 | B1 |
6391658 | Gates | May 2002 | B1 |
6600173 | Tiwari | Jul 2003 | B2 |
6953736 | Ghyselen | Oct 2005 | B2 |
7018910 | Ghyselen et al. | Mar 2006 | B2 |
10643836 | Lin | May 2020 | B2 |
20040053477 | Ghyselen et al. | Mar 2004 | A1 |
20040157409 | Ghyselen | Aug 2004 | A1 |
20050280155 | Lee | Dec 2005 | A1 |
20070072391 | Pocas et al. | Mar 2007 | A1 |
20090224364 | Oh et al. | Sep 2009 | A1 |
20100190334 | Lee | Jul 2010 | A1 |
20100193964 | Farooq et al. | Aug 2010 | A1 |
20100289064 | Or-Bach et al. | Nov 2010 | A1 |
20110291234 | Lee | Dec 2011 | A1 |
20120003815 | Lee | Jan 2012 | A1 |
20120248622 | Sadaka | Oct 2012 | A1 |
20140252306 | Du | Sep 2014 | A1 |
Entry |
---|
Bruel et al., “Smart-Cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding,” Jpn. J. Appl. Phys., vol. 36 (1997), pp. 1636-1641. |
Celler, George and Michael Wolf, Sr., “Smart Cut: A guide to the technology, the process, the products,” SOITEC, Jul. 2003, <http://www.soitec.com/pdf/SmartCut_WP.pdf>. |
Number | Date | Country | |
---|---|---|---|
20220277954 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16866131 | May 2020 | US |
Child | 17745182 | US | |
Parent | 15843400 | Dec 2017 | US |
Child | 16866131 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13945217 | Jul 2013 | US |
Child | 15843400 | US |