Broken wafer recovery system

Information

  • Patent Grant
  • 9462921
  • Patent Number
    9,462,921
  • Date Filed
    Thursday, June 6, 2013
    10 years ago
  • Date Issued
    Tuesday, October 11, 2016
    7 years ago
Abstract
An apparatus and method for recovery and cleaning of broken substrates, especially beneficial for fabrication systems using silicon wafer carried on trays. Removal of broken wafers and particles from within the fabrication system is enabled without requiring disassembly of the system and without requiring manual labor. A placing mechanism moves a suction head to location of the broken substrate and a suction pump coupled to a flexible hose is used to remove the broken pieces. A hood is positioned at the inlet of the suction head, and setback extensions are provided at the bottom of the hood to allow air flow into the inlet and prevent thermal conductance from the tray to the hood. Pins are extendable about the inlet of the suction head to enable breakage of the wafer to smaller pieces for easy removal.
Description
BACKGROUND

1. Field of the Invention


The present invention relates to system and method for processing substrates, such as silicon wafers for semiconductor, solar cells, and other applications, in a clean environment. More specifically, the invention relates to system and method for handling broken substrates, especially broken silicon wafers.


2. Description of the Related Art


State of the art systems for fabrication of semiconductor wafers generally utilize a mainframe, about which several processing chambers are mounted. Other systems, especially those used for solar cell fabrication, are structured as in-line systems, wherein transport of substrates from one chamber to the next is performed in a linear fashion. Regardless of the architecture used, at some point the wafers have to be transferred from atmospheric environment to vacuum environment. This is done in order to introduce the wafers into a vacuum processing chamber, such as chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), physical vapor deposition system (PVD), etc.


In many systems used for fabricating integrated circuits, the wafers move from chamber to chamber individually. On the other hand, for solar cells fabrication, many linear systems utilize trays, upon which multiple silicon wafers are placed. The tray can move from chamber to chamber in a linear fashion, or the wafers can be moved separately and placed on stationary trays, such that in each chamber many silicon wafers are processes concurrently on a single tray e.g., 64 substrates of 125 mm by 125 mm each.


As can be appreciated, such systems operate in clean rooms under strict handling protocols. However, at times it happens that a wafer breaks in the system, whether during processing or during transport. Such breakage generates broken pieces, particles, and dust, that can cause contamination and lead to disruptions of production. Generally, when such breakage occurs, the system has to be stopped and disassembled in order to perform manual cleaning. Such disruption is costly from the manufacturing throughput perspective, and also requires manual labor for the cleaning. The effect on system throughput is especially acute in solar cell fabrication, where generally each system's throughout is on the order of one to three thousand wafers per hour.


SUMMARY

The following summary of the invention is included in order to provide a basic understanding of some aspects and features of the invention. This summary is not an extensive overview of the invention and as such it is not intended to particularly identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented below.


Various embodiments of the present invention provide system and method for detection, recovery and cleaning of broken substrates. Embodiments of the invention are especially beneficial for fabrication systems using silicon wafer carried on trays. Embodiments of the invention enable removal of broken wafers and particles from within the fabrication system without requiring disassembly of the system and without requiring manual labor.


According to various embodiments of the subject invention, a broken substrate removable system for use in a substrate processing system is provided, comprising: a suction head having an inlet; a placing mechanism for moving the suction head to location of the broken substrate; a suction pump; and a flexible hose coupling the suction head to the suction pump. A hood is positioned at the inlet of the suction head, and setback extensions are provided at the bottom of the hood to allow air flow into the inlet and prevent thermal conductance from the tray to the hood. A plurality of movable pins are extendable about the inlet of the suction head to enable breakage of the wafer to smaller pieces for easy removal. The head placing mechanism can be constructed as a first gantry providing linear motion in one direction and a second gantry providing linear motion is a perpendicular direction. Alternatively, The head placing mechanism can be constructed as a rotatable pivot providing rotational motion and an arm providing linear motion. A parking and disposal station enables parking of the suction head when not in use and disposal of broken pieces removed by the suction head. Optical sensors, such as digital cameras, are coupled to a controller to detect a broken wafer, and monitor and/or control the placing mechanism to place the suction head above the location of the broken wafer, and to confirm the broken wafer has been successfully removed post operation.


According to embodiments of the invention, a method for removing pieces of broken wafer from a plate supporting a plurality of wafers in a fabrication system is disclosed, comprising: analyzing an optical signal to determine whether one of the plurality of wafers is broken; when it is determined that a broken wafer occupies a position on the plate, transporting the plate to an exchange station, placing a suction head over the position of the broken wafer, and activating a suction pump to remove the pieces of the broken wafer. Optionally, when it is determined that a broken wafer occupies a position on the plate, the plate is moved to a position of a secondary optical sensor to verify that a broken wafer is on the plate. In another embodiment, incoming wafers are analyzed to determine if there are breakages or damage to the wafers prior to processing. Suspected wafers are removed from the incoming tray to minimize the potential of wafers breaking inside the processing apparatus.


Other aspects and features of the invention will become apparent from the description of various embodiments described herein, and which come within the scope and spirit of the invention as claimed in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are general schematics depicting major components of examples of system architectures for implementing embodiments of the invention.



FIGS. 2A and 2B are general schematics depicting major components of system architectures according to embodiments of the invention, showing the broken substrate recovery system installed over the factory interface of the systems shown in FIGS. 1A and 1B.



FIG. 2C illustrates another embodiment, showing two processing chambers arranged linearly, and a flipping station with broken wafer recovery system positioned between the two processing chambers.



FIG. 3A is a general schematic depicting major components of the broken wafer recovery system according to an embodiment of the invention.



FIG. 3B is a general schematic depicting major components of the broken wafer recovery system according to another embodiment of the invention.



FIG. 4 is a general schematic depicting further elements of the broken wafer recovery system shown in FIGS. 3A and 3B.



FIG. 5 illustrates a susceptor that can be used for processing substrates in plasma processing chambers.





The invention is described herein with reference to particular embodiments thereof, which are exemplified in the drawings. It should be understood, however, that the various embodiments depicted in the drawings are only exemplary and may not limit the invention as defined in the appended claims.


DETAILED DESCRIPTION

Various embodiments of the present invention provide apparatus and method for recovering pieces of wafers that were broken during the fabrication of, e.g., semiconductor integrated circuits, solar cells, flat panel displays, LED's etc. Embodiments of the invention are particularly useful for systems that utilize trays to transport and/or process wafers.



FIG. 1A illustrates example of a processing system that can be used to implement embodiments of the invention. It should be appreciated that other architectures and other systems can be used to implement the invention, and that the system shown in FIG. 1A is provided only as an example. For simplicity of explanation, only a single processing chamber 100 is illustrated, situated at one end of a simple linear system. In this embodiment, the processing chamber is a plasma processing chamber such as, for example, a PECVD or PVD processing chamber. One vacuum valve, 102, is provided on the side of the chamber 100, to enable introduction of trays 104 into the chamber 100. A loadlock chamber 110 is provided on the side of chamber 100, and vacuum valve 112 is provided at the entry of loadlock 110. A loading chamber 120, also referred to as factory interface, is provided at the entry side of loadlock chamber 110, and is used to load trays 104 for processing, and unload processed wafers from the system.


The flow of wafers illustrated in FIG. 1A will now be described in further details, starting with wafers loaded on the right side of the system. A tray 104 with substrates is loaded into loading chamber 120. Notably, the tray may remain within the system and wafers loaded onto the tray within the system, or the tray may be loaded outside the system and brought to and loaded onto loading chamber 120. The tray 104 may carry, for example, 64 substrates arranged in a two-dimensional array. The tray is then introduced into loadlock 110, gate valves 102 and 112 are closed, and vacuum pump is energized to bring the loadlock 110 to a vacuum level matching or sufficiently close to that of chamber 100. Then valve 102 is open and the tray is moved into the chamber for processing. That is, the wafers remain on the tray 104 while they are processed in chamber 100. After processing is completed, the reverse operation is performed to remove the tray 104 from the chamber 100 and from the loadlock 110, so as to remove the processed wafers and load fresh wafers for processing.



FIG. 1B depicts a similar system as that of FIG. 1A, and similar elements to those shown in FIG. 1A are identified with similar reference numerals. In the embodiment of FIG. 1B, the tray 104 does not move into the loadlock 110. Rather, in the embodiment of FIG. 1B, in loading chamber 120 the wafers are removed from the tray 104 and loaded onto one of specially designed wafer hangers 118 or 119. The loaded hanger, say 118, is then moved into loadlock chamber 110 and the valve 112 is then closed. A vacuum is then drawn in loadlock chamber 110. Once the proper vacuum level is reached, valve 102 is opened and the wafer hanger moves into processing chamber 100, wherein the wafers are removed from the wafer hanger and placed onto a susceptor 108. The wafer hanger is then removed from the processing chamber 100, back to the loadlock chamber 110, and the valve 102 is closed. The processing chamber 100 is then energized to process the substrates that are in the chamber.


Meanwhile, concurrent with the above processing, the other wafer hanger 119 is positioned in the loading chamber 120 and is loaded with new substrates. The loaded hanger 119 is then moved into the loadlock 110, valve 112 is closed, and vacuum is drawn. When processing in chamber 100 is completed, valve 102 is opened and wafer hanger 118 is moved from loadlock 110 into chamber 100 so as to collect the processed substrates, and hanger 119 is moved from loadlock chamber 110 into chamber 100, so as to deposit its new substrates for processing in chamber 100. When both hangers have been removed back into loadlock 110, the valve 102 is closed, and chamber 100 is energized for processing of the new wafers. The loadlock 110 is then vented to atmospheric pressure, upon which valve 112 is then opened and hanger 118 is moved into loading chamber 120, to unload its processed wafers and load new substrates for processing.



FIG. 2A is a general schematic depicting major components of a system architecture according to an embodiment of the invention, showing the broken substrate recovery system installed over the factory interface of the system shown in FIG. 1A. In FIG. 2A, elements that are similar to those shown in FIG. 1A are identified with similar reference numeral, except that they are in the 2xx series. In FIG. 2A, loading chamber 220 is fitted with a first sensing mechanism, 244, which receives signals from controller 205, once a new set of wafers have been received by the load chamber, to detect breakage of wafers on trays 204 entering and/or exiting loadlock chamber 210. In this embodiment, sensing mechanism 244 is a light sensor or a camera, which is positioned on the broken wafer recovery system described below. Also, a second sensing mechanism, 246, is provided to detect broken wafers inside the processing chamber 100. In this embodiment, sensing mechanism 246 is a camera coupled to image processor and a monitor of the controller 205. In this embodiment camera 246 is positioned inside the loadlock 210 and is oriented to view the interior of chamber 200 when gate valve 202 is opened. An illumination source 232 may be provided for illuminating the area viewed by the sensing mechanism 246. Illumination source 232 may be positioned inside the loadlock 210, may be provided outside the processing chamber and illuminating the interior via a window 233, etc. The image processor in controller 205 uses image processing program to determine whether a wafer has broken inside the chamber 200, while the monitor of controller 205 enables an operator to confirm or override the image processor's determination. The monitor also enables the operator to designate wafers as broken when the image processor missed such breakage.


The broken wafer recovery system shown in FIG. 2A has an x-motion gantry 250 which moves the y-motion gantry 252 in the x direction, as shown by the double-headed arrow marked X. The y-motion gantry moves a suction head 254 in the y direction, as indicated by the double-headed arrow marked Y. The suction head can also move vertically, as illustrated by the double-headed arrow marked Z. In this way, the suction head can be placed above any coordinate on tray 204. When a broken wafer is identified in the process chamber 200, the tray 204 is moved to the loading chamber 220. Conversely, if the broken wafer is detected on incoming or outgoing wafer trays, the tray is held in the load chamber for broken wafer removal. The controller 205 moves the suction head to the location of the broken wafer, and energizes the suction pump 365 to remove the broken wafer from the tray. Sensing mechanism 244 then confirms successful removal of the broken wafer, and the system returns to operation.



FIG. 2B is a general schematic depicting major components of a system architecture according to an embodiment of the invention, showing the broken substrate recovery system installed over the factory interface of the system shown in FIG. 1B. In FIG. 2B, elements that are similar to those shown in FIG. 1B are identified with similar reference numeral, except that they are in the 2xx series. In FIG. 2B, loading chamber 220 is fitted with a first sensing mechanism, 244, which receives signals from controller 205, once a new set of wafers have been received by the load chamber, to detect breakage of wafers on trays 204 entering and/or exiting loadlock chamber 210. In this embodiment, sensing mechanism 244 is a light sensor, thru beam sensors, a camera, etc., which is positioned on the broken wafer recovery system described below. Also, a second sensing mechanism, 246, is provided to detect broken wafers inside the processing chamber 200. In this embodiment, sensing mechanism 246 is a camera coupled to image processor and a monitor of controller 205. In this embodiment camera 246 is positioned inside the loadlock 210 and is oriented to view the interior of chamber 200 when gate valve 202 is opened. Illumination source 232 may be positioned inside the loadlock 210, may be provided outside the processing chamber and illuminating the interior via a window 233, etc. The image processor of controller 205 uses image processing program to determine whether a wafer has broken inside the chamber 200, while the monitor of controller 205 enables an operator to confirm or override the image processor's determination. The monitor also enables the operator to designate wafers as broken when the image processor missed such breakage.


The broken wafer recovery system shown in FIG. 2B has an x-motion gantry 250 which moves the y-motion gantry 252 in the x direction, as shown by the double-headed arrow marked X. The y-motion gantry moves a suction head 254 in the y-direction, as indicated by the double-headed arrow marked Y. The suction head can also move vertically, as illustrated by the double-headed arrow marked Z. In this way, the suction head can be placed above any coordinate over tray 204. When a broken wafer is identified, the suction head is moved to the location of the broken wafer, and a suction generator is energized to remove the broken wafer from the tray. Sensing mechanism 244 then confirms successful removal of the broken wafer, and the system returns to operation.


Additionally, in the embodiment of FIG. 2B hanger 219 is equipped with implements to remove the susceptor 208 from within the chamber 200 and move it to the loading chamber 220. When a image processor or the operator identifies a broken wafer inside the processing chamber 200, hanger 219 is moved into the processing chamber 200 and engages the susceptor 208. It then transports the susceptor 208 to the loading chamber 220. At loading chamber 220 the suction head is moved to the location of the broken wafer and a suction generator is energized to remove the broken wafer from the susceptor 208. Sensing mechanism 244 then confirms successful removal of the broken wafer, and the system returns to operation.


According to an embodiment of the invention, when image processor utilizes an image of sensor 246 to indicate that a wafer has been broken on the susceptor 208, the hanger 219 is used to engage the susceptor and bring it to sensor 244 for a second inspection. If sensor 244 also indicates that the wafer is indeed broken, then the hanger can be used to move the susceptor to station 220 for removing the broken pieces.


According to another embodiment, the system of FIG. 2B has sensor 244, but does not have sensor 246. According to this embodiment, when a hanger is moved into the loadlock with fresh wafers, sensor 244 is used to record each location on the hanger which is occupied by a wafer. Then, when the hanger is sent back to the chamber to remove the processed wafers, the sensor 244 is again used to check whether all of the locations on the hanger that were previously occupied by a wafer are still occupied. If not, this is an indication that the wafer broke and is still inside the chamber. The hanger is then sent to retract the susceptor and deliver it to the loading chamber 220 to use the suction head to remove the broken wafer from the susceptor.



FIG. 2C illustrates another embodiment, showing a first processing chamber 200 and a second processing chamber 201. Positioned between the first and second processing chambers is a flipping station 221. This configuration is advantageous when chamber 210 is used to process one surface of the wafers, and chamber 201 is used to process the other side of the wafers. Therefore, after processing the wafers in the first chamber 200, the tray 204 (or hanger) is moved to flipping station 221, where the wafers on the tray 204 are flipped. The tray 204 then moves into the second chamber 201 for processing. When processing is completed in the second chamber, the tray is moved to unloading chamber 226. Note that the flipping station 221 is in atmosphere, so that loadlocks 216 and 222 are provided on either side of it, which are shown abbreviated in FIG. 2C. Also, loadlock 223 is provided between processing chamber 201 and unloading chamber 226.


In this example, the broken wafer recovery system is provided on the flipping station 221. The broken wafer recovery system can be in the form of those described with respect to FIGS. 2A and 2B above. As with the previous examples, various sensors, here sensors 244, 246 and 248, communicate with controller 205 to identify breakage of wafers. For example, if any of sensors 244, 246 or 248 detects a broken wafer, the tray 204 is moved to the flipping mechanism and the suction head 254 is used to remove the broken wafer from the tray. Sensor 248 can be used to verify complete removal of the broken wafer from the tray, before the wafers are flipped and the tray proceeds into chamber 201.



FIG. 3A is a general schematic depicting major components of the broken wafer recovery system according to an embodiment of the invention. The broken wafer recovery system shown in FIG. 3A may be used in any of the embodiments shown above, or in other main-frame, linear, or other system architectures. The recovery system includes a suction head 362 and a mechanism enabling placement of the suction head 362 anywhere above a tray 304 (or a hanger or a susceptor, as described above). In the embodiment of FIG. 3A, the placement mechanism includes a first gantry 364 and a second gantry 366 mounted onto frame 360. The frame 360 may be the frame of the loading chamber, the flipping station, etc. The first gantry 364 moves the suction head 362 in one linear direction, say X direction, and the second gantry 366 moves the suction head 366 in a linear direction perpendicular to the first gantry, i.e., Y direction. This is shown by the double-headed arrows in FIG. 3A. Also illustrated by a vertical double-headed arrow is the capability to move the suction head 362 in a vertical, i.e., z-direction, to lower and retract the suction head from the tray. A flexible house 368 couples the suction head 362 to the suction pump 365.


Another feature illustrated in FIG. 3A is the park and disposal station 370. In this embodiment, when the suction head is not used, it is parked on the station 370. Also, once the suction head removes broken pieces of a wafer, illustrated as broken wafer 372, the suction head is moved to the station 370 and any residual wafer pieces are disposed into the station 370 once vacuum is removed from the suction head.



FIG. 3B is a general schematic depicting major components of the broken wafer recovery system according to another embodiment of the invention. The embodiment shown in FIG. 3B is similar to that of FIG. 3A, except that in FIG. 3B an (r,□) arrangement is used for the placement mechanism, rather than an (x,y) arrangement. That is, rather than moving the suction head 362 using orthogonal linear directions (i.e., Cartesian coordinates), in the embodiment of FIG. 3B an angular motion about pivot 374, together with linear motion along arm 376, are used to place the suction head at the proper location, using polar coordinates.



FIG. 4 is a general schematic depicting further elements of the broken wafer recovery system shown in FIGS. 3A and 3B. Specifically, FIG. 4 illustrates some details of the suction head 462. As shown in FIG. 4, a hood 469 is mounted at the inlet of the suction head 462. Inside the hood are several retractable pins 480. The pins are used to break the wafer into small pieces that can be easily removed by the suction head and will not get stuck in the suction head or hose leading to the pump. The pins 480 are connected to a common frame 486, through holes 484 provided in the hood 469. The common frame 486 is retractable by the retracting mechanism 488.



FIG. 4 also illustrate set back extensions 481, which ensures that the hood 469 does not fully contact or is sealed to the tray, susceptor or hanger. This ensures that there's sufficient air flow into the inlet to enable proper suction to remove the broken pieces. This also reduce thermal conductance to the hood, especially since if the tray or susceptor is moved out after processing it may be as hot as 300° C. With the set back extensions 481, the hood is kept from heating up by contacting the tray or susceptor.



FIG. 5 illustrates a susceptor that can be used for processing substrates in systems such as those illustrated above. The susceptor 508 is basically in the form of a plate having plurality of seats 591 for wafers. At the center of each seat 591, a hole 593 is provided to enable a lift pin to lift the substrate. In this embodiment, the lift pins do not engage the wafer directly. Rather, a puck 597 is seated inside a puck seat 595 that is provided inside the lift pin hole 593. The lift pin engages the puck, and as it lifts the pucks, it engages and lifts the wafer.


When the broken wafer removal system is fitted into a system utilizing the susceptor of FIG. 5, provisions must be made to avoid sucking the puck when removing broken wafer. According to one embodiment, the pins 480, shown in FIG. 4, are made to engage the puck and hold it in place prior to energizing the suction pump. In such configuration the pins serve dual purpose: they are used to break the wafer to smaller pieces when needed and also to hold the puck during suction.


While the invention has been described with reference to particular embodiments thereof, it is not limited to those embodiments. Specifically, various variations and modifications may be implemented by those of ordinary skill in the art without departing from the invention's spirit and scope, as defined by the appended claims. Additionally, all of the above-cited prior art references are incorporated herein by reference.

Claims
  • 1. A substrate processing system, comprising: a vacuum processing chamber;a loadlock chamber coupled to the vacuum processing chamber via a vacuum valve;a broken substrate removing apparatus comprising: a placing mechanism movably supporting a suction head for moving the suction head to location of the broken substrate, the suction head comprising a suction inlet and a hood positioned at the inlet of the suction head and configured to allow sufficient air flow into the inlet to enable proper suction to remove broken pieces of the substrate;a suction pump; and,a flexible hose coupling the suction head to the suction pump;wherein the hood comprises setback extensions to allow air flow into the inlet.
  • 2. The system of claim 1, further comprising: a controller; and,an optical sensor sending signals to the controller indicating presence or absence of a substrate.
  • 3. The system of claim 2, wherein the controller is operable to activate the placing mechanism and the suction head according to the signals received from the optical sensor.
  • 4. The system of claim 3, wherein the optical sensor comprises a camera.
  • 5. The system of claim 1, further comprising a plurality of movable pins extendable about the inlet of the suction head to further break the broken substrate.
  • 6. The system of claim 5, further comprising a frame coupled to a retracting mechanism, and wherein the plurality of movable pins are commonly connected to the frame.
  • 7. The system of claim 1, wherein the placing mechanism comprises a first gantry providing linear motion in one direction and a second gantry providing linear motion is a perpendicular direction.
  • 8. The system of claim 1, wherein the placing mechanism comprises a rotatable pivot providing rotational motion and an arm providing linear motion.
  • 9. The system of claim 1, further comprising a parking and disposal station enabling parking of the suction head when not in use and disposal of residual broken pieces removed by the suction head but not fully transferred to the suction pump.
  • 10. The system of claim 1, further comprising a loading chamber coupled to the loadlock chamber.
  • 11. The system of claim 10, further comprising: a susceptor situated within the vacuum processing chamber; and,a controller operable to transport the susceptor to the loading chamber and activate the placing mechanism to place the suction head at a specific location over the susceptor.
  • 12. The system of claim 11, further comprising extendable pins provided about an inlet of the suction head, and wherein the controller further activates the extendable pin so as to intentionally break a substrate situated on the susceptor.
  • 13. The system of claim 12, wherein the susceptor comprises a plurality of pucks and wherein the extendable pins are configured to secure one of the pucks while the suction head removes pieces of broken substrate.
  • 14. The system of claim 13, further comprising an optical sensor sending signals to the controller for at least one of verification of wafer breakage or verification of complete removal of broken wafer.
  • 15. The system of claim 10, further comprising: at least one tray configured for supporting a plurality of substrates concurrently; anda controller operable to transport the tray to the loading chamber and activate the placing mechanism to place the suction head at a specific location over the tray.
  • 16. The system of claim 15, further comprising an optical sensor sending signals to the controller for at least one of verification of wafer breakage or verification of complete removal of broken wafer.
  • 17. The system of claim 10, further comprising a flipping mechanism configured for flipping the substrates.
  • 18. The system of claim 1, further comprising: an illumination source illuminating the interior of the processing chamber; and,an imager imaging the interior of the processing chamber to identify broken substrates.
  • 19. The system of claim 1, further comprising a monitor enabling an operator to designate a wafer as broken.
RELATED CASES

This Application is a divisional application of, and claims priority from, U.S. application Ser. No. 13/115,064 filed on May 24, 2011.

US Referenced Citations (163)
Number Name Date Kind
3158086 Weimer Nov 1964 A
4490042 Wyatt Dec 1984 A
4544642 Maeda et al. Oct 1985 A
4590042 Drage May 1986 A
4612077 Tracy et al. Sep 1986 A
4643629 Takahashi et al. Feb 1987 A
4694779 Hammond et al. Sep 1987 A
H000422 Daniels et al. Feb 1988 H
4752180 Yoshikawa Jun 1988 A
4854263 Chang et al. Aug 1989 A
5084125 Aoi Jan 1992 A
5136975 Bartholomew et al. Aug 1992 A
5167922 Long Dec 1992 A
5178638 Kaneko et al. Jan 1993 A
5288379 Namiki et al. Feb 1994 A
5353495 Terabayashi et al. Oct 1994 A
5404894 Shiraiwa Apr 1995 A
5439524 Cain et al. Aug 1995 A
5486080 Sieradzki Jan 1996 A
5551327 Hamby et al. Sep 1996 A
5558717 Zhao et al. Sep 1996 A
5589002 Su Dec 1996 A
5591269 Arami et al. Jan 1997 A
5595606 Fujikawa et al. Jan 1997 A
5624498 Lee et al. Apr 1997 A
5631573 Ohno May 1997 A
5679055 Greene et al. Oct 1997 A
5690742 Ogata et al. Nov 1997 A
5695564 Imahashi Dec 1997 A
5746875 Maydan et al. May 1998 A
5756155 Tzeng et al. May 1998 A
5759334 Kojima et al. Jun 1998 A
5795399 Hasegawa et al. Aug 1998 A
5846332 Zhao et al. Dec 1998 A
5853607 Zhao et al. Dec 1998 A
5855468 Cagle et al. Jan 1999 A
5885356 Zhao et al. Mar 1999 A
5944940 Toshima Aug 1999 A
5968275 Lee et al. Oct 1999 A
5989346 Hiroki Nov 1999 A
5996528 Berrian et al. Dec 1999 A
6007675 Toshima Dec 1999 A
6050506 Guo et al. Apr 2000 A
6064629 Stringer et al. May 2000 A
6110287 Arai et al. Aug 2000 A
6113984 MacLeish et al. Sep 2000 A
6135102 Sorimachi et al. Oct 2000 A
6148761 Majewski et al. Nov 2000 A
6159301 Sato et al. Dec 2000 A
6176668 Kurita et al. Jan 2001 B1
6202589 Grahn et al. Mar 2001 B1
6206972 Dunham Mar 2001 B1
6245192 Dhindsa et al. Jun 2001 B1
6267839 Shamouilian et al. Jul 2001 B1
6286230 White et al. Sep 2001 B1
6302965 Umotoy et al. Oct 2001 B1
6323616 Sagues et al. Nov 2001 B1
6361648 Tobin Mar 2002 B1
6435798 Satoh Aug 2002 B1
6436193 Kasai et al. Aug 2002 B1
6471779 Nishio et al. Oct 2002 B1
6486444 Fairbairn et al. Nov 2002 B1
6517691 Bluck et al. Feb 2003 B1
6556715 Kozlowski Apr 2003 B1
6586886 Katz et al. Jul 2003 B1
6677712 Katz et al. Jan 2004 B2
6719517 Beaulieu et al. Apr 2004 B2
6722834 Tepman Apr 2004 B1
6746198 White et al. Jun 2004 B2
6793733 Janakiraman et al. Sep 2004 B2
6821563 Yudovsky Nov 2004 B2
6849555 Lee et al. Feb 2005 B2
6872259 Strang Mar 2005 B2
6902647 Hasper Jun 2005 B2
6979168 Uchimaki et al. Dec 2005 B2
7010388 Mitchell et al. Mar 2006 B2
7042553 An et al. May 2006 B2
7128516 Sugiyama et al. Oct 2006 B2
7195673 Shimizu et al. Mar 2007 B2
7214027 Stone May 2007 B2
7270713 Blonigan et al. Sep 2007 B2
7283660 Ganot et al. Oct 2007 B2
7290978 Tran Nov 2007 B2
7695233 Toshima Apr 2010 B2
7806641 Guo et al. Oct 2010 B2
7841820 Bonora et al. Nov 2010 B2
7845529 Okajima et al. Dec 2010 B2
7854820 De La Llera et al. Dec 2010 B2
8152923 Mitrovic et al. Apr 2012 B2
8246284 Borden Aug 2012 B2
8287646 Mitrovic et al. Oct 2012 B2
8307972 Horn et al. Nov 2012 B2
8408858 Guo et al. Apr 2013 B2
8444364 Blonigan et al. May 2013 B2
8454850 Dong et al. Jun 2013 B2
8459276 Stevens et al. Jun 2013 B2
8617349 Law et al. Dec 2013 B2
8672603 Blonigan et al. Mar 2014 B2
8998552 Toshima et al. Apr 2015 B2
9287152 Blonigan et al. Mar 2016 B2
20010000747 White et al. May 2001 A1
20010009141 Kong et al. Jul 2001 A1
20020000196 Park Jan 2002 A1
20020080291 Takahashi Jun 2002 A1
20030003767 Kim et al. Jan 2003 A1
20030068215 Mori et al. Apr 2003 A1
20030106574 Krolak Jun 2003 A1
20030111961 Katz et al. Jun 2003 A1
20030113187 Lei et al. Jun 2003 A1
20030140851 Janakiraman et al. Jul 2003 A1
20030201723 Katz et al. Oct 2003 A1
20040060514 Janakiraman et al. Apr 2004 A1
20040163761 Strang Aug 2004 A1
20040197184 Sugiyama et al. Oct 2004 A1
20050011447 Fink Jan 2005 A1
20050150601 Srivastava Jul 2005 A1
20050160991 Miyamoto et al. Jul 2005 A1
20050183666 Tsuji et al. Aug 2005 A1
20050263066 Lubomirsky et al. Dec 2005 A1
20060102081 Ueno et al. May 2006 A1
20060137609 Puchacz et al. Jun 2006 A1
20060177288 Parker et al. Aug 2006 A1
20060197235 Farnworth et al. Sep 2006 A1
20060236929 Katsuoka et al. Oct 2006 A1
20060286193 Ando et al. Dec 2006 A1
20070017445 Takehara et al. Jan 2007 A1
20070119393 Ashizawa May 2007 A1
20070151516 Law et al. Jul 2007 A1
20070181531 Horiguchi et al. Aug 2007 A1
20070207014 Toshima Sep 2007 A1
20070215048 Suzuki et al. Sep 2007 A1
20070261956 Ulrich Nov 2007 A1
20080014055 van der Meulen Jan 2008 A1
20080066683 Fujimura et al. Mar 2008 A1
20080090417 De La Llera et al. Apr 2008 A1
20080093341 Turlot et al. Apr 2008 A1
20080099448 Larson et al. May 2008 A1
20080138175 Mitchell et al. Jun 2008 A1
20080196666 Toshima Aug 2008 A1
20080213477 Zindel et al. Sep 2008 A1
20080233283 Choi et al. Sep 2008 A1
20090045182 Lerner et al. Feb 2009 A1
20090104374 Kumagai Apr 2009 A1
20090106968 Heinz Apr 2009 A1
20090179085 Carducci et al. Jul 2009 A1
20090181593 Kim Jul 2009 A1
20090309905 Yoshioka et al. Dec 2009 A1
20100068011 Tanaka Mar 2010 A1
20100076601 Matsuo et al. Mar 2010 A1
20100087028 Porthouse et al. Apr 2010 A1
20100089319 Sorensen et al. Apr 2010 A1
20100136261 Tso et al. Jun 2010 A1
20100202860 Reed et al. Aug 2010 A1
20100203242 Borden Aug 2010 A1
20100220304 Mukai et al. Sep 2010 A1
20100301088 Purdy et al. Dec 2010 A1
20110011338 Chuc et al. Jan 2011 A1
20110188974 Diamond Aug 2011 A1
20110313565 Yoo et al. Dec 2011 A1
20110315081 Law et al. Dec 2011 A1
20120267049 Stevens et al. Oct 2012 A1
20130294678 Blonigan et al. Nov 2013 A1
20140064886 Toshima et al. Mar 2014 A1
Foreign Referenced Citations (121)
Number Date Country
1250490 Apr 2000 CN
1330507 Sep 2002 CN
1446742 Oct 2003 CN
1582488 Feb 2005 CN
1650416 Aug 2005 CN
1674220 Sep 2005 CN
1734711 Feb 2006 CN
101360988 Feb 2009 CN
101413112 Apr 2009 CN
101423936 May 2009 CN
101423937 May 2009 CN
102051600 May 2011 CN
102122609 Jul 2011 CN
102122610 Jul 2011 CN
102296277 Dec 2011 CN
ZL200980119052.8 Aug 2012 CN
102751158 Oct 2012 CN
102760631 Oct 2012 CN
102810497 Dec 2012 CN
ZL201210207818.1 May 2015 CN
102051600 Jul 2015 CN
102122609 Aug 2015 CN
35 08 516 Sep 1986 DE
0 768 702 Apr 1997 EP
1 278 230 Jan 2003 EP
2 261 391 Dec 2010 EP
2 312 613 Apr 2011 EP
2 333 813 Jun 2011 EP
2 333 814 Jun 2011 EP
2 400 537 Dec 2011 EP
2 518 763 Oct 2012 EP
2 528 088 Nov 2012 EP
2518763 Sep 2015 EP
2312613 Apr 2016 EP
2003-338492 Nov 2003 JO
57-211746 Dec 1982 JP
60-178639 Sep 1985 JP
63-276239 Nov 1988 JP
01-139771 Jun 1989 JP
01-294868 Nov 1989 JP
4-78125 Mar 1992 JP
5-109683 Apr 1993 JP
05-69162 Sep 1993 JP
8-8586 Jan 1996 JP
8-316286 Nov 1996 JP
09-176856 Jul 1997 JP
9-283983 Oct 1997 JP
10-98089 Apr 1998 JP
11-204813 Jul 1999 JP
2000-208587 Jul 2000 JP
2001-210695 Aug 2001 JP
2001-284258 Oct 2001 JP
2002-43404 Feb 2002 JP
2002-516239 Jun 2002 JP
2002-203885 Jul 2002 JP
2002-256439 Sep 2002 JP
2002-270880 Sep 2002 JP
2002-288888 Oct 2002 JP
2003-007682 Jan 2003 JP
2003-028142 Jan 2003 JP
2003-059999 Feb 2003 JP
2003-068819 Mar 2003 JP
2003-258058 Sep 2003 JP
2003-282462 Oct 2003 JP
2004-200421 Jul 2004 JP
2004-327761 Nov 2004 JP
2005-019739 Jan 2005 JP
2005-516407 Jun 2005 JP
2005-211865 Aug 2005 JP
2006-058769 Mar 2006 JP
2006-332536 Dec 2006 JP
2007-112626 May 2007 JP
2007-123684 May 2007 JP
2007-242648 Sep 2007 JP
2008-205219 Sep 2008 JP
2009-267012 Nov 2009 JP
2009-540561 Nov 2009 JP
2011-124579 Jun 2011 JP
2012-009854 Jan 2012 JP
2012-230900 Nov 2012 JP
2012-248837 Dec 2012 JP
53-30721 Oct 2013 JP
2000-223546 Oct 2014 JP
5613302 Oct 2014 JP
5835722 Nov 2015 JP
10-2010-0130838 Dec 2010 KR
10-2010-0134062 Dec 2010 KR
10-2011-0041427 Apr 2011 KR
10-2011-0066111 Jun 2011 KR
10-2011-0066113 Jun 2011 KR
10-2012-0000501 Jan 2012 KR
10-2012-0120909 Nov 2012 KR
10-2012-0131105 Dec 2012 KR
200710928 Mar 2007 TW
200835638 Sep 2008 TW
M366667 Oct 2009 TW
201026583 Jul 2010 TW
201102235 Jan 2011 TW
201140733 Nov 2011 TW
201201319 Jan 2012 TW
201243982 Nov 2012 TW
I417984 Dec 2013 TW
I430714 Mar 2014 TW
201425189 Jul 2014 TW
I470729 Jan 2015 TW
I485799 May 2015 TW
WO 0022655 Apr 2000 WO
WO 03064725 Aug 2003 WO
WO 2005001925 Jan 2005 WO
2007077765 Jul 2007 WO
WO 2007084124 Jul 2007 WO
WO 2007126289 Nov 2007 WO
WO 2008048543 Apr 2008 WO
WO 2009119096 Jan 2009 WO
WO 2009052002 Apr 2009 WO
WO 2009119580 Oct 2009 WO
WO 2009130790 Oct 2009 WO
WO 2010091205 Aug 2010 WO
WO 2010127038 Nov 2010 WO
WO 2011035820 Mar 2011 WO
WO 2014035768 Mar 2014 WO
Non-Patent Literature Citations (85)
Entry
Restriction Requirement in U.S. Appl. No. 11/826,336 dated Dec. 24, 2008.
Office Action in U.S. Appl. No. 11/826,336 dated May 1, 2009.
Office Action in U.S. Appl. No. 11/826,336 dated Jan. 5, 2010.
Office Action in U.S. Appl. No. 11/826,336 dated May 25, 2010.
Restriction Requirement in U.S. Appl. No. 12/906,053 dated Mar. 26, 2013.
Notice of Allowance in U.S. Appl. No. 12/906,053 dated Aug. 14, 2013.
Restriction Requirement in U.S. Appl. No. 11/322,334 dated Sep. 13, 2007.
Office Action in U.S. Appl. No. 11/322,334 dated Nov. 27, 2007.
Office Action in U.S. Appl. No. 11/322,334 dated Nov. 4, 2008.
Office Action in U.S. Appl. No. 11/322,334 dated May 22, 2008.
Office Action in U.S. Appl. No. 11/322,334 dated Aug. 12, 2009.
Office Action in U.S. Appl. No. 11/477,931 dated Oct. 15, 2008.
Office Action in U.S. Appl. No. 11/477,931 dated Jul. 14, 2009.
Notice of Allowance in U.S. Appl. No. 11/477,931 dated Dec. 29, 2009.
Office Action in U.S. Appl. No. 12/965,791 dated Sep. 25, 2012.
Office Action in U.S. Appl. No. 12/965,791 dated Dec. 28, 2012.
Office Action in U.S. Appl. No. 12/965,791 dated Feb. 27, 2013.
Office Action in U.S. Appl. No. 12/965,791 dated Aug. 14, 2013.
Notice of Allowance in U.S. Appl. No. 12/965,791 dated Oct. 24, 2013.
Notice of Allowance in U.S. Appl. No. 12/965,798 dated Jan. 17, 2013.
Office Action in U.S. Appl. No. 12/934,629 dated Oct. 3, 2013.
Office Action in U.S. Appl. No. 12/934,629 dated May 16, 2014.
Notice of Allowance in U.S. Appl. No. 12/934,629 dated Nov. 28, 2014.
Office Action in U.S. Appl. No. 13/149,828 dated Jul. 2, 2013.
Restriction Requirement in U.S. Appl. No. 13/093,698 dated Aug. 20, 2012.
Office Action in U.S. Appl. No. 13/093,698 dated Nov. 7, 2012.
Office Action in U.S. Appl. No. 13/093,698 dated May 28, 2013.
Advisory Action in U.S. Appl. No. 13/093,698 dated Sep. 4, 2013.
Restriction Requirement in U.S. Appl. No. 13/115,064 dated Jul. 6, 2012.
Office Action in U.S. Appl. No. 13/115,064 dated Aug. 2, 2012.
Office Action in U.S. Appl. No. 13/115,064 dated Dec. 4, 2012.
Notice of Allowance in U.S. Appl. No. 13/115,064 dated Feb. 8, 2013.
Supplemental Notice of Allowance in U.S. Appl. No. 13/115,064 dated Mar. 14, 2013.
First Office Action & Examination Report in Chinese Patent Application No. 201010552244.2, dated Dec. 27, 2013.
Second Office Action & Examination Report in Chinese Patent Application No. 201010552244.2 dated Jan. 7, 2014.
Third Office Action in Chinese Patent Application No. 201010552244.2 dated Oct. 23, 2014.
First Office Action and Examination Opinion in Taiwanese Patent Application No. 99135138 dated Aug. 13, 2013.
Notice of Rejection for Japanese Patent Application No. 2006-058769 dated Aug. 9, 2011.
European Extended Search Report for Application No. 10194525.1 dated Apr. 22, 2015.
First Office Action & Examination Report in Chinese Patent Application No. 201010625048.3 dated Jun. 11, 2014.
Second Office Action & Examination Report in Chinese Patent Application No. 201010625048.3 dated Jan. 22, 2015.
Notification for Reasons for Refusal for Japanese Patent Application No. 2010-275100 dated Oct. 7, 2014.
Office Action and Examination Report for Taiwanese Patent Application No. 99143048 dated Jul. 8, 2014.
European Extended Search Report for Application No. 10194527.7 dated Apr. 28, 2015.
First Office Action & Examination Report in Chinese Patent Application No. 201010625047.9 dated Jun. 30, 2014.
Second Office Action & Examination Report in Chinese Patent Application No. 201010625047.9 dated Dec. 15, 2014.
International Search Report for PCT/JP2009/055818 dated Jun. 16, 2009.
International Preliminary Report on Patentability for PCT/JP2009/055818 dated Oct. 7, 2010.
Extended Search Report for European Application No. 09725876 dated Dec. 20, 2012.
First Office Action in Chinese Patent Application No. 200980119052.8 dated Oct. 27, 2011.
Notice of Allowance in Chinese Patent Application No. 200980119052.8 dated Apr. 1, 2012.
Fist Office Action & Examination Report in Chinese Patent Application No. 201210207818.1 dated Jun. 17, 2014.
Notice of Allowance for Japanese Patent Application No. 2008-078764 dated May 28, 2013.
Notice of Allowance for Japanese Patent Application No. 2013-154164 dated Aug. 12, 2014.
Notice of Rejection for Japanese Patent Application No. P2005-316213 dated Mar. 6, 2012.
Examination Report in Taiwanese Patent Application No. 100119927 dated Sep. 25, 2013.
Extended Search Report and Opinion for European Application No. 12165448.7 dated Jul. 5. 2012.
Notice of Intention to Grant in European Application No. 12165448.7 dated Jan. 6, 2015.
Office Action and Examination Report for Taiwanese Patent Application No. 101112986 dated Sep. 30, 2014.
Extended Search Report and Opinion for European Application No. 12168068.0 dated May 21, 2014.
Office Action and Examination Report for Taiwanese Patent Application No. 101116209 dated May 13, 2014.
Second Office Action and Examination Report for Taiwanese Patent Application No. 101116209 dated Aug. 15, 2014.
International Search Report for PCT/US2013/056030 dated Feb. 3, 2014.
International Preliminary Report on Patentability for PCT/US2013/056030 dated Mar. 12, 2015.
Fukada, T. et al., “Uniform RF Discharge Plasmas Produced by a Square Hollow Cathode with Tapered Shape”, Jpn. J. Appl. Phys., Part 2: No. 1A/B, vol. 37, Jan. 15, 1998, pp. L81-L84.
Zhang, D. et al., University of Illinois: Optical and Discharge Physics, “Optimization of Plasma Uniformity Using Hollow-Cathode Structure in RF Discharges”, 51st Gaseous Electronics Conference & 4th International Conference on Reactive Plasmas, Oct. 1923, 1998, Maui, Hawaii, pp. GEC98-01 thru GEC98-15.
Office Action in U.S. Appl. No. 13/898,353 dated May 28, 2015.
Third Office Action for Chinese Patent Application No. 201010625048.3 dated Jul. 15, 2015.
Examination Report for European Patent Application No. 09725876.8 dated Jun. 19, 2015.
Office Action for Korean Patent Application No. 2010-7023727 dated Aug. 18, 2015.
Notice of Allowance in U.S. Appl. No. 13/898,353 dated Oct. 26, 2015.
Restriction Requirement for U.S. Appl. No. 13/912,126 dated Sep. 28, 2015.
Office Action for U.S. Appl. No. 13/972,282 dated Sep. 18, 2015.
Decision of Grant for Japanese Patent Application No. 2010-275100 dated Oct. 6, 2015, Not in English. Considered to the extent is could be understood.
First Office Action for Chinese Patent Application No. 201210124533.1 dated Jul. 28, 2015.
Extended Search Report for European Application No. 10013687.8 dated Feb. 5, 2014.
Fourth Office Action for Chinese Patent Application No. 201010625048.3 dated Jan. 18, 2016.
Final Refusal for Japanese Patent Application No. 2010-275100 dated Apr. 14, 2015.
Office Action for Chinese Patent Application No. 2012101639363.7 dated Dec. 4, 2015.
Final Rejection for Korean Patent Application No. 10-2010-7023727 dated Mar. 25, 2016.
Notice of Grant for Chinese Patent Application No. 201210124533.1 dated Mar. 2, 2016.
Office Action for Japanese Patent Application No. 2012-98537 dated Mar. 22, 2016.
Examination Report for European Patent Application No. 12168068.0 dated Apr. 15, 2016.
Office Action in Korean Patent Application No. 10-2010-0100808 dated Jun. 30, 2016.
Office Action for Japanese Patent Application No. 2012-117853 dated Jun. 7, 2016.
Related Publications (1)
Number Date Country
20130269149 A1 Oct 2013 US
Divisions (1)
Number Date Country
Parent 13115064 May 2011 US
Child 13912126 US