This specification relates generally to automated test systems and components thereof.
System-level testing (SLT) involves testing an entire device, rather than individual components of the device. If the device passes a battery of system-level tests, it is assumed that the individual components of the device are operating properly. SLT has become more prevalent as the complexity of, and number of components in, devices have increased. For example, a chip-implemented system, such as an application-level integrated circuit (ASIC), may be tested on a system level in order to determine that components that comprise the system are functioning correctly.
SLT systems have traditionally required large footprints in order to provide sufficient testing speed and throughput. For example, some SLT systems can occupy spaces measured in dozens of square meters.
An example method, such as a calibration method, comprises: determining a geometry of an arrangement of cells that is perceived by a robot configured to move devices into, and out of, the cells; determining an expected location of a target cell among the cells; determining an offset from the expected location that is based on the geometry that is perceived by the robot; and calibrating the robot based on the offset. The example method may include one or more of the following features, either alone or in combination.
The geometry may be a first geometry. Determining the offset may comprise: calculating a first dimension error based on a difference, in the first dimension, between the first geometry and a second geometry of the arrangement of cells, with the second geometry being an expected geometry for the arrangement of cells; and calculating a second dimension error based on a difference, in the second dimension, between the first geometry and the second geometry, with the offset comprising a combination of the first dimension error and the second dimension error. The first dimension error and the second dimension error may be calculated relative to the expected location of the target cell. Calibrating the robot may comprise incorporating the first dimension error and the second dimension error into a movement of the robot to reach the target cell.
The robot may comprise multiple heads, and the offset may be determined with respect to a first head among the multiple heads. Calibrating the robot may comprise calibrating a second head among the multiple heads that is different than the first head. The second head may be calibrated based on both the offset and a second offset corresponding to a difference in locations between the first head and the second head.
The robot may be programmed or otherwise controlled to reach the expected location of the target cell by combining the offset with a perceived location of the target cell. The cells may be on one or more trays for holding devices that have been tested or devices that have not been tested. The cells may comprise one or more receptacles on one or more shuttles configured to move devices between different stages of a test system. The robot may be calibrated to a sub-millimeter accuracy. The robot may be calibrated to an accuracy of at least 0.1 millimeters.
Any two or more of the features described in this specification, including in this summary section, can be combined to form implementations not specifically described herein.
The systems and techniques and processes described herein, or portions thereof, can be implemented as/controlled by a computer program product that includes instructions that are stored on one or more non-transitory machine-readable storage media, and that are executable on one or more processing devices to control (e.g., coordinate) the operations described herein. The systems and techniques and processes described herein, or portions thereof, can be implemented as an apparatus, method, or electronic system that can include one or more processing devices and memory to store executable instructions to implement various operations.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference numerals in different figures indicate like elements.
Described herein are example implementations of a test system and components thereof. In some implementations, the test system is constrained in size, without sacrificing speed or throughput. For example, in some implementations the test system may have a footprint of less than sixteen square meters (16 m2) and a volume of less than forty-eight cubic meters (48 m3). The test system may also be configured to test an individual device in ten minutes, and to test tens, hundreds, or thousands of devices contemporaneously or concurrently. However, the example test system described herein is not limited to any particular size, testing speed, or throughput. In some implementations, the test system is an SLT system; however, the components and features described herein may be realized in any appropriate testing context.
In some implementations, the example test system is modular, enabling the test system to accommodate various testing requirements. Each unit of the test system is referred to as a slice. Two or more slices may be combined and controlled to operate in concert (e.g., dependently) or independently to perform testing operations. In some implementations a slice of the test system may have a footprint of less than sixteen square meters (16 m2) and a volume of less than forty-eight cubic meters (48 m3). In some implementations, a slice of the test system has a footprint that is less than 10 m2, or less than 9 m2, or less than 8 m2, e.g., a footprint of about 7.2 m2.
As explained herein, the different stages of the test system may operate independently and contemporaneously. In the example of
In the example of
In some implementations, each tray includes cells for holding devices to be tested or cells for holding devices that have been tested. As shown in
In this example, transport stage 17 includes, but is not limited to, a transport robot 30 and two device shuttles 31, 32 (e.g.,
By way of example, transport robot 30 is configured and controllable to pick an untested from a cell of tray 34 and to place the device on a device shuttle 31. In this example, transport robot 30 is configured and controllable to pick a tested device from device shuttle 31 or 32, and to place the tested device into a cell in tray 35 or 36. As described above, the tray cell may have tapered edges, which may reduce the need for precision when placing a tested device into a cell on the tray. For example, the tapered edges may allow the transport robot to deviate by, e.g., tenths of a millimeter or more, when placing the device in a cell of a tray, and still result in the device reach its resting position within the cell. That is, in implementations such as these, the transport robot may be able to position a device and deviate from a target position by tenths of millimeters or more, with the deviation being corrected by the tapered edges.
In the example of
In the example of
In some implementations, the two devices shuttles may be configured and controlled to operate in parallel, independently, contemporaneously, and/or concurrently. For example, the transport robot may provide one device shuttle with devices to be tested, while removing devices that have been tested from another device shuttle. The two devices shuttles may be configured to move between the loading stage and the transport stage independently, in parallel, contemporaneously, and/or concurrently. For example, one device shuttle may transport devices to be tested from the transport stage towards, and to, the loading stage, while the other device shuttle transports devices that have been tested away from the loading stage and to the transport stage. In addition, one device shuttle may be stationary while the other device shuttle is moving. For example, one device shuttle may receive devices to be tested while the other device shuttle transports devices to or from the loading stage.
One or more cameras may be located above the area holding trays 34, 35, 36 to capture images of the trays continuously, periodically, or intermittently. The cameras may be configured to capture images of the trays, at least in part, in order to identify which cells of which trays are empty and which cells of which trays are full. For example, as described, cells in trays 35 and 36 receive devices that have been tested from transport robot 30. To reduce the chances that transport robot 30 will place two devices in the same cell, the cameras capture images of the trays during system operation. One or more computing systems 45 (see, e.g.,
The images captured by the cameras may also be used to trigger feeding of trays into, or out of, the transport stage. For example, captured images may identify when all cells of tray 34 are empty (e.g., all untested devices have been moved to the loading stage), which may trigger movement of tray 34 back to feeder 24 and movement of a new tray of untested devices into the transport stage. For example, the captured images may identify when all cells of tray 35 or 36 are full, which may trigger movement of tray 35 or 36 back to feeder 24 or 25, respectively, and movement of a new tray of untested devices into the transport stage.
In some implementations, loading stage 18 includes, but is not limited to, loading robots 48, 49 (see, e.g.,
In some implementations, a test socket is device-specific. For example, the test socket may contain electrical contacts that are complementary to corresponding electrical contacts on a device under test (DUT). Among other things, the loading robots may be configured to place untested devices into test sockets, and to remove tested devices from test sockets. The test sockets are inlaid in the test carrier, and contain walls that may guide devices under test into position so that electrical contacts in the carrier socket and electrical contacts on the device under test align. In some implementations, for example, where the electrical contacts are relatively large, the loading robots may not require a high level of precision, and the test socket walls may play a prominent role in guiding devices under test into position so that electrical contacts in the carrier socket and electrical contacts on the device under test align.
In some implementations, for example, where the electrical contacts are relatively small, more precise placement of the devices into the test sockets may be required. For example, in some implementations, the loading robots may be controllable to operate at a micron (μm)-level precision when placing devices into the test sockets. For example, in some implementations, the loading robots may be controlled to operate at a precision of 1 μm, 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, and so forth. That is, some in implementations, the loading robots may be required not to deviate from a target position by more than an amount of microns. In some implementations, only the loading stage includes robotics and/or mechanics that require high levels of precision, e.g., down to the micron level. In some implementations, the remaining stages may operate with less precision than the loading stage. By relegating higher precision to the loading stage in some implementations, it may be possible to contain system cost and complexity.
In some implementations, precision may be supported using cameras located above and below the loading stage. For example, a camera above the loading stage may capture an image 61 (
In some implementations, a first camera is mounted on each loading robot and therefore can be moved along the X dimension, and the first camera is above the sockets and thus can be focused on the sockets. In some implementations, a second camera is mounted below each loading robot and is focused on each robot's vacuum tip in order to image below the device held on the vacuum tip. The position of each loading robot is adjustable in the X and Z dimensions and in terms of pitch, yaw, and roll. The carrier shuttle is controllable to provide Y-dimension adjustments. In some implementations, the second camera is static mounted, whereas each first camera is movable along with a loading robot, as described.
After an untested device reaches a resting position within the test socket, a socket cap is placed over the test socket, among other things, to apply pressure to the device to cause the electrical contacts in the test socket to mate to the complementary electrical contacts in the test carrier. In some implementations, the socket cap may include memory storing executable instructions that are usable by the device during test. For example, the executable instructions may include operational instructions, test routines, and so forth. Accordingly, the socket cap may also include electrical contacts that mate to complementary electrical contacts on the device and/or the test carrier. In some implementations, the socket cap exerts about 35 pounds (lbs) of force on the device in order to implement the various electrical connections; however, any appropriate amount of force may be applied to implement connections. In some implementations, as described herein, the socket cap may be, or include, a kinematic mount, that applies the force via a compression spring. Examples of a socket cap and its installation in a test socket by a loading robot are described below.
Referring back to
In some implementations, during loading and unloading, each loading robot services a diametrically-opposite (e.g., diagonally-located) test socket on a different test carrier. For example, in
In some implementations, a loading robot performs operations in sequence and does not operate empty-handed. As noted, each loading robot is configured to, and controllable to, move a device under test between a test carrier and a device shuttle. In an example operational sequence, a carrier shuttle 73 moves from the insertion stage to the loading stage, as shown, e.g., in
Meanwhile, the socket cap is held by a socket picker head of the loading robot until it is replaced onto the test socket. While the socket picker head is still holding the socket cap, a device picker head of the same loading robot 48 removes the tested device from the test socket 89 (see
After the untested device is in place in the test socket, the socket picker head of the same loading robot places the socket cap 76 over the test socket (
As explained, the carrier shuttle is configured and controllable to transport the test carrier from the loading stage to the insertion stage. In some implementations, the insertion stage is a lower-precision stage than the loading stage, in that the insertion stage is configured and controlled to operate with higher tolerances for deviations than the loading stage. That is, while the loading stage may permit deviations of only microns, the insertion stage may allow deviations in terms of, e.g., tenths of millimeters, millimeters, or more. In this example, the mechanics of the insertion stage support these higher tolerances for deviations for reasons explained.
The insertion stage includes, but is not limited to, test arms 77, 78 (see, e.g.,
In the example of
Each test arm is configured to hold two test carriers at the same time—one on each face or side of the test arm. In some implementations, each side of a test arm (e.g., 77) includes a carrier-holding receptacle, such as gripper 80 of
Test rack 80 includes multiple test slots. Each test slot may be configured and controllable to test devices in the test sockets on a test carrier, and to report the test results back to the computing system controlling the test system. The computing system keeps track of which devices passed testing, and which devices failed testing, and sorts the devices accordingly, as described herein. A test slot in the test rack is serviced by a test arm. In some implementations, during testing, a test slot always remains occupied except for the short time during which test carriers are exchanged in the slot. For example, a test arm may arrive at a test slot while holding a test carrier containing untested devices, extract a test carrier containing tested devices from the test slot, and insert the test carrier containing untested devices into that same test slot from which the other test carrier was extracted. Thus, except for the time between the removal and insertion of the test carriers, the test slot remains occupied. Each test slot in the test rack may be serviced in this manner to enhance testing throughput. Examples of how test carriers are inserted and extracted are provided below.
In an example operation, a test carrier containing tested devices is extracted from a test slot and held in a first gripper on one side of a test arm. At this time, the test arm also holds a test carrier containing untested devices in a second gripper on the other side of the test arm. At least part of the test arm holding the test carriers then rotates (e.g., about 180°) while in front of the now-open test slot so as to position the test carrier containing untested devices for insertion into the test slot. The test carrier containing untested devices is then pushed into the test slot using an air-controlled arm, referred to herein as a pusher (described in more detail below), leaving that second gripper empty and ready to receive a new test carrier
The test arm then moves—e.g., flips and rotates—to position itself to pick-up a test carrier containing untested devices from a carrier shuttle, and to deposit the test carrier containing tested devices onto the (same or different) carrier shuttle. In this example, the test carrier rotates (e.g., about 180°) and flips, as described with respect to
At this time, therefore, the first gripper is empty and the second gripper holds a test carrier containing untested devices. Accordingly, the test arm rotates and flips to position the test arm to service another test slot. The test arm may also move vertically to position itself in front of a target test slot to be serviced. This rotation and flipping is opposite to the rotation and flipping performed to position the test arm above the carrier shuttle. Thus, the test arm is positioned to extract, or to receive, from the target test slot, a test carrier containing devices that have been tested. The test carrier containing devices that have been tested is received into the theretofore empty first gripper. Following receipt of the test carrier containing devices that have been tested, the test arm rotates to position the test carrier in the second gripper, which contains devices that have not been tested, into position for insertion into the same test slot. Thereafter, the test carrier containing devices that have not been tested is pushed into that test slot, and the foregoing operations are repeated, slot-by-slot.
As noted, to access different test slots in the test rack, the test arm is configured to move in the Z dimension, which is orthogonal to the X and Y dimensions. To this end, each test arm 77, 78 may be mounted on a corresponding track 84, 85 (see, e.g.,
The test stage includes, but is not limited to, the test rack and slots therein. As explained above, the test rack 80 includes electronics for implementing testing operations on devices in the test carriers. In some implementations, the test stage is a lower-precision stage than the loading stage, in that the test stage is configured to operate with higher tolerances for deviations than the loading stage. That is, while the loading stage may permit deviations of only microns, the insertion stage may allow deviations in terms of, e.g., tenths of millimeters, millimeters, or more. In this example, the mechanics of the test stage and the insertion stage support these higher tolerances. For example, as described below, the insertion stage may include a pushing mechanism, or pusher, which pushes a test carrier through a gripper into a test slot, or pulls a test carrier from a test slot into a gripper.
In some implementations, the pusher may precisely push and pull the test carrier along only one degree of freedom, while allowing the test carrier to move, in a relatively loose manner, in the other five degrees of freedom. In some cases, this configuration may reduce, or eliminate, the need for vision systems and precision robots for loading test carriers in to the test rack. For example, the pusher may push or pull the test carrier in one dimension (e.g., the Y dimension) and, in this example, not include tight servo-control. The pusher allows other movement of the test carrier in other dimension, which may result in test carrier wobble. This test carrier wobble, however, is accounted for, and addressed, in the test system design. For example, each test slot contains walls, which are configured to as guides to funnel a test carrier into the test slot so that the test carrier eventually reaches a resting position where electrical contacts on the test carrier can mate to complementary electrical contacts in the test carrier. The guides enable the test carrier to reach its resting position even if the insertion process is not implemented with precision. Thus, in some implementations, by pushing in one dimension, and making use of guides within the test carrier that operate with relatively large tolerances, the test system is able to control costs through use of less precise robotics, while maintaining testing throughput and speed. In some implementations, the use of a pusher that operates in one degree of freedom and guides configured to direct a test carrier in a test slot enable implementation of a low-cost automation solution to perform a task that aligns electrical connections relatively accurately at the back of the carrier. In some implementations, the test slot and the test carrier may be manufacture of plastic. In some implementations, the plastic may be low-cost.
The subsequent description follows devices through the example system of
In
After both sockets of test carrier 50 have been loaded with devices to be tested, the socket carrier is transported to the insertion stage by carrier shuttle 73, as shown in
As shown in
At the position of
More specifically, following extraction and subsequent insertion of a new test carrier in the test slot, the part of test arm 77 that holds test carrier 93 rotates along its longitudinal axis and flips (e.g., rotates along the X-axis) to position its empty gripper to pick-up a new test carrier from the carrier shuttle. Then, after picking-up a new test carrier from the carrier shuttle, the test arm rotates in place to deposit a test carrier containing tested devices onto the carrier shuttle.
At the loading stage, a device that has been tested is removed from test carrier, such as test carrier 88, and placed onto device shuttle 31. In an example implementation, the ports in the carrier shuttle force air outwardly, causing the carrier shuttle to float on the device carrier. While the test carrier is floating on pressurized air, a socket picker head of the loading robot engages a socket cap over the device, and removes the socket cap as described herein. The socket cap is then held by the socket picker head for subsequent placement on the test carrier, as described herein. At this time, the ports in the carrier shuttle suction air, creating a vacuum to hold the test carrier in place. A device picker head on the loading robot removes the device that has been tested from the test socket. As described, vacuum suction may be used by the device picker head to pick-up and to hold the device during movement, a mechanical grasping mechanism may be used by the device picker head to pick-up and to hold the device during movement, or a combination of vacuum suction and one or more mechanical elements may be used by the device picker head to pick-up and to hold the device during movement. In any event, the device picker head moves the device that has been tested to an empty receptacle of device shuttle. The computing system that controls operation of the test system may keep track of which receptacles of the device shuttle are empty, and control the loading robot accordingly.
In some implementations, after all untested devices have been removed from the device shuttle, and tested devices have been placed into receptacles on the device shuttle, the computing system that controls operation of the test system controls the device shuttle to move from the loading stage towards, and to, the transport stage. At the transport stage, the transport robot 30 removes the devices that have been tested from the device shuttle, and places the devices into an appropriate tray based on whether a device has passed testing or has not passed testing. As described, one or more cameras in the transport stage keep track of open cells in the trays for placement of tested devices. A tray containing the tested device may be moved back into the feeder stage after the tray is full or at least partly full.
Referring to
As explained the socket cap is configured to contact a device in a socket of the test carrier and, in response to pressure, to cause the device to connect electrically to electrical connections in the test carrier and/or in the socket cap. An actuator may be movable relative to the socket cap to engage the socket cap to enable to socket cap to apply pressure as described herein. As described with respect to
Referring to
Referring to
In this regard, the actuator may be part of a socket picker head of a loading robot. The socket picker head places the socket cap over the socket containing an untested device. The socket cap includes flanges 118, 119 that physically hold the socket cap in place in the test socket. Following physical connection of the socket cap to the socket via the flanges, the actuator is released, which causes the compression spring to release and to apply force downward, in the direction of arrow 120 (
As described, in some implementations, the test arm includes a pusher that is configured to extend and thereby to push the test carrier into the test slot. In some implementations, the pusher moves in one dimension only (e.g., the Y dimension), and pushes the test carrier into the test slot in only one degree of freedom. As a result, during movement of the device into the test slot, the test carrier may wobble in other degrees of freedom. However, as the test carrier engages with the test slot, walls, or guides, within the test slot direct, or funnel, the test carrier into a resting position within the test slot. The force applied by the pusher allows electrical contacts on the test carrier—which are part of electrical pathways to the devices in the test slots—to connect to complementary electrical contacts in the test slot. Tests of the devices may be performed by sending signals along these electrical pathways, and from one or more controllers resident in the slot to the test computing system.
When pusher 125 aligns to a gripper containing a test carrier, in some implementations the pusher is configured to move in one dimension (e.g., the Y dimension), and to force the test carrier into the test slot in only one degree of freedom. As explained above, the gripper engages grooves in the sides of the test carrier, such as groove 128 of test carrier 56 (see, e.g.,
Referring back to
As shown in
As shown in
Referring to
The air-controlled extenders may be controlled using a pneumatic system. In some implementations, air used to actuate the air-controlled extenders is supplied only when pusher 125 is extended. Referring to
As noted above, in some implementations, the pusher is controlled using a pneumatic system. Air reaches the pusher through air hoses that are held in a rotary winding. In this regard, some conventional cable management systems would have required additional space along the X-axis and the Z-axis, which would increase the footprint of a slice. However, as shown in
In some implementations, individual air hoses are interconnected like ribbon cable. In some implementations, individual air hoses are separate. In some implementations, each air hose includes one or more electrical cables—e.g., one or more wound cables—running longitudinally through the air hose. The electrical cables send signals to and from components of the test system, such as the test arm, to control their operation. Because the electrical cables are within the air hoses, the electrical cables are also part of the helical or rotary winding that includes the rotary hoses. Thus, the amount of space taken-up by the electrical cables may also be reduced
In some implementations, the tubing is a multi-channel tube ribbon, with some channels used to convey compressed air, and others used to route high-flex cable for the purposes of passing electrical signals between static and the dynamic sides of the assembly (or fixed and the rotating parts of the system).
Referring to
In some implementations, the transport robot may be calibrated in order to pick, hold, and place devices on the various trays, and in order to pick, hold, and place devices in the device shuttles on the parallel paths. An example implementation of the transport robot includes eight pick-and-place actuators configured to move in three orthogonal axes, including in plane that is parallel to the floor, which is referred to as the XY plane. The actuators can also move up and down along the Z dimension (see the legend of
In some implementations, the example calibration process described herein employs mechanical and executable tools and procedures to learn the shape and position of a tray relative to a set of pick and place actuators mounted on a the robot's head, with freedom to move in orthogonal (e.g., XY) axes. In some implementations, the calibration process does not require a uniform relationship between the axes that the pick-and-place actuators move and the distance covered as measured on the target trays themselves. In some implementations, the calibration process is independent of the dimensions of the device that is handled by the pick-and-place actuators. In some implementations, the calibration process is independent of the quantity of devices that can be contained in each tray from each feeder.
Referring to
The computer system that performs the calibration process stores, in memory, the shape and coordinates of the actual geometry 210. The computer system that performs the calibration also stores, in memory, the shape and coordinates of the perceived geometry 211. In some implementations, the perceived geometry of an arrangement of cells, such as a tray, is determined before calibration. For example, in some implementations, a calibration device having the same geometry as the tray may be used to determine the perceived geometry. For example, as shown in
By comparing the actual geometry 210 to the perceived geometry 211, it is apparent in this example that the perceived geometry is a distorted version of the actual geometry. In this example, the perceived geometry is stretched and skewed irregularly; however, different robots may perceive the same geometry differently and not necessarily in the manner shown in
Referring back to
Calibration process 200 determines (203) an offset from the expected location that is based on the geometry of the arrangement of cells that is perceived by the robot. In some implementations, determining the offset includes, but is not limited to, calculating a first dimension—e.g., X dimension—error based on a difference, in the first dimension, between the actual geometry and the perceived geometry; and calculating a second dimension—e.g., Y dimension—error based on a difference, in the second dimension, between the actual geometry and the perceived geometry. The offset includes a combination of the first dimension error and the second dimension error, and may be combined with the coordinates of the robot's perceived location of the cell so that the robot is able to reach the expected location of the cell.
Accordingly, to obtain the X dimension error, the computer system simulates a horizontal line 216 through actual location 214. As shown in
The combination of the errors in the X dimension and the Y dimension constitute the offset. The transport robot may be calibrated (204) based on the offset. For example, if the transport robot is controlled to move to the target cell, the computer system is programmed to combine the coordinates of the target cell as perceived by the transport robot with the offset—e.g., the errors in the X and Y dimensions—in order to enable the transport robot to travel to, and to reach, the target cell at the actual/expected location. For example, the error in the X dimension may be added to, or subtracted from, the X coordinate of the perceived location, and the error in the Y dimension may be added to, or subtracted from, the Y coordinate of the perceived location. In some implementations, weighting factors or multipliers may be applied to the error in the X and/or Y dimensions. In some implementations, the transport robot is calibrated to a sub-millimeter precision. For example, the transport robot may be calibrated to an accuracy of at least 0.1 millimeters—for instance, the transport robot may be calibrated and controlled so that the transport robot positions a device in a cell at a location that is no more than 0.1 millimeters from its expected location.
In some implementations, the transport robot includes multiple—e.g., eight—pick-and-place actuators, as noted above. The offset described above may be determined with respect to a designated one of the multiple pick-and-place actuators. Calibrating the transport robot may include calibrating a second head among the multiple heads that is different than the designated head. The second head may be calibrated based on both the offset and a second offset corresponding to a difference in locations between the designated head and the second head. For example, the computer system may know the distances between heads on a transport robot. The offset may be determined with respect to the designated head. An additional offset, reflecting the distance between the second head (e.g., an adjacent head) and the designated head may also be applied when determining where to position the second head. For example, in addition to adding the X dimension error and the Y dimension error, an additional X and/or Y dimension offset may be applied to the perceived coordinates when performing calibration for a head other than the designated head.
Although calibration process 200 is described with respect to the transport robot, the example calibration process may be used with any appropriate robot or system.
The example systems described herein may be implemented by, and/or controlled using, one or more computer systems comprising hardware or a combination of hardware and software. For example, a system like the ones described herein may include various controllers and/or processing devices located at various points in the system to control operation of the automated elements. A central computer may coordinate operation among the various controllers or processing devices. The central computer, controllers, and processing devices may execute various software routines to effect control and coordination of the various automated elements.
The example systems described herein can be controlled, at least in part, using one or more computer program products, e.g., one or more computer program tangibly embodied in one or more information carriers, such as one or more non-transitory machine-readable media, for execution by, or to control the operation of, one or more data processing apparatus, e.g., a programmable processor, a computer, multiple computers, and/or programmable logic components.
A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a network.
Actions associated with implementing all or part of the testing can be performed by one or more programmable processors executing one or more computer programs to perform the functions described herein. All or part of the testing can be implemented using special purpose logic circuitry, e.g., an FPGA (field programmable gate array) and/or an ASIC (application-specific integrated circuit).
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only storage area or a random access storage area or both. Elements of a computer (including a server) include one or more processors for executing instructions and one or more storage area devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from, or transfer data to, or both, one or more machine-readable storage media, such as mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Machine-readable storage media suitable for embodying computer program instructions and data include all forms of non-volatile storage area, including by way of example, semiconductor storage area devices, e.g., EPROM, EEPROM, and flash storage area devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
Any “electrical connection” as used herein may imply a direct physical connection or a wired or wireless connection that includes or does not include intervening components but that nevertheless allows electrical signals to flow between connected components. Any “connection” involving electrical circuitry that allows signals to flow, unless stated otherwise, is an electrical connection and not necessarily a direct physical connection regardless of whether the word “electrical” is used to modify “connection”.
Elements of different implementations described herein may be combined to form other embodiments not specifically set forth above. Elements may be left out of the structures described herein without adversely affecting their operation. Furthermore, various separate elements may be combined into one or more individual elements to perform the functions described herein.
Number | Name | Date | Kind |
---|---|---|---|
557186 | Cahill | Mar 1896 | A |
2224407 | Passur | Dec 1940 | A |
2380026 | Clarke | Jul 1945 | A |
2631775 | Gordon | Mar 1953 | A |
2635524 | Jenkins | Apr 1953 | A |
3120166 | Lyman | Feb 1964 | A |
3360032 | Sherwood | Dec 1967 | A |
3364838 | Bradley | Jan 1968 | A |
3517601 | Courchesne | Jun 1970 | A |
3845286 | Aronstein et al. | Oct 1974 | A |
4147299 | Freeman | Apr 1979 | A |
4233644 | Hwang et al. | Nov 1980 | A |
4336748 | Martin et al. | Jun 1982 | A |
4379259 | Varadi et al. | Apr 1983 | A |
4477127 | Kume | Oct 1984 | A |
4495545 | Dufresne et al. | Jan 1985 | A |
4526318 | Fleming et al. | Jul 1985 | A |
4620248 | Gitzendanner | Oct 1986 | A |
4648007 | Garner | Mar 1987 | A |
4654727 | Blum et al. | Mar 1987 | A |
4654732 | Mesher | Mar 1987 | A |
4665455 | Mesher | May 1987 | A |
4683424 | Cutright et al. | Jul 1987 | A |
4685303 | Branc et al. | Aug 1987 | A |
4688124 | Scribner et al. | Aug 1987 | A |
4713714 | Gatti et al. | Dec 1987 | A |
4739444 | Zushi et al. | Apr 1988 | A |
4754397 | Varaiya et al. | Jun 1988 | A |
4768285 | Woodman, Jr. | Sep 1988 | A |
4775281 | Prentakis | Oct 1988 | A |
4778063 | Ueberreiter | Oct 1988 | A |
4801234 | Cedrone | Jan 1989 | A |
4809881 | Becker | Mar 1989 | A |
4817273 | Lape et al. | Apr 1989 | A |
4817934 | McCormick et al. | Apr 1989 | A |
4851965 | Gabuzda et al. | Jul 1989 | A |
4881591 | Rignall | Nov 1989 | A |
4888549 | Wilson et al. | Dec 1989 | A |
4911281 | Jenkner | Mar 1990 | A |
4967155 | Magnuson | Oct 1990 | A |
5012187 | Littlebury | Apr 1991 | A |
5045960 | Eding | Sep 1991 | A |
5061630 | Knopf et al. | Oct 1991 | A |
5094584 | Bullock | Mar 1992 | A |
5119270 | Bolton et al. | Jun 1992 | A |
5122914 | Hanson | Jun 1992 | A |
5127684 | Klotz et al. | Jul 1992 | A |
5128813 | Lee | Jul 1992 | A |
5136395 | Ishii et al. | Aug 1992 | A |
5143193 | Geraci | Sep 1992 | A |
5158132 | Guillemot | Oct 1992 | A |
5168424 | Bolton et al. | Dec 1992 | A |
5171183 | Pollard et al. | Dec 1992 | A |
5173819 | Takahashi et al. | Dec 1992 | A |
5176202 | Richard | Jan 1993 | A |
5205132 | Fu | Apr 1993 | A |
5206772 | Hirano et al. | Apr 1993 | A |
5207613 | Ferchau et al. | May 1993 | A |
5210680 | Scheibler | May 1993 | A |
5237484 | Ferchau et al. | Aug 1993 | A |
5263537 | Plucinski et al. | Nov 1993 | A |
5268637 | Liken et al. | Dec 1993 | A |
5269698 | Singer | Dec 1993 | A |
5295392 | Hensel et al. | Mar 1994 | A |
5309323 | Gray et al. | May 1994 | A |
5325263 | Singer et al. | Jun 1994 | A |
5343403 | Beidle et al. | Aug 1994 | A |
5349486 | Sugimoto et al. | Sep 1994 | A |
5368072 | Cote | Nov 1994 | A |
5374395 | Robinson et al. | Dec 1994 | A |
5379229 | Parsons et al. | Jan 1995 | A |
5398058 | Hattori | Mar 1995 | A |
5412534 | Cutts et al. | May 1995 | A |
5414591 | Kimura et al. | May 1995 | A |
5426581 | Kishi et al. | Jun 1995 | A |
5469037 | McMurtrey, Sr. et al. | Nov 1995 | A |
5477416 | Schkrohowsky et al. | Dec 1995 | A |
5484012 | Hiratsuka | Jan 1996 | A |
5486681 | Dagnac et al. | Jan 1996 | A |
5491610 | Mok et al. | Feb 1996 | A |
5543727 | Bushard et al. | Aug 1996 | A |
5546250 | Diel | Aug 1996 | A |
5547537 | Reynolds et al. | Aug 1996 | A |
5557186 | McMurtrey, Sr. et al. | Sep 1996 | A |
5563768 | Perdue | Oct 1996 | A |
5570740 | Flores et al. | Nov 1996 | A |
5593380 | Bittikofer | Jan 1997 | A |
5601141 | Gordon et al. | Feb 1997 | A |
5604662 | Anderson et al. | Feb 1997 | A |
5610893 | Soga et al. | Mar 1997 | A |
5617430 | Angelotti et al. | Apr 1997 | A |
5644705 | Stanley | Jul 1997 | A |
5646918 | Dimitri et al. | Jul 1997 | A |
5654846 | Wicks et al. | Aug 1997 | A |
5673029 | Behl et al. | Sep 1997 | A |
5694290 | Chang | Dec 1997 | A |
5703843 | Katsuyama et al. | Dec 1997 | A |
5718627 | Wicks | Feb 1998 | A |
5718628 | Nakazato et al. | Feb 1998 | A |
5731928 | Jabbari et al. | Mar 1998 | A |
5751549 | Eberhardt et al. | May 1998 | A |
5754365 | Beck et al. | May 1998 | A |
5761032 | Jones | Jun 1998 | A |
5793610 | Schmitt et al. | Aug 1998 | A |
5811678 | Hirano | Sep 1998 | A |
5812761 | Seki et al. | Sep 1998 | A |
5813817 | Matsumiya et al. | Sep 1998 | A |
5819842 | Potter et al. | Oct 1998 | A |
5831525 | Harvey | Nov 1998 | A |
5851143 | Hamid | Dec 1998 | A |
5859409 | Kim et al. | Jan 1999 | A |
5859540 | Fukumoto | Jan 1999 | A |
5862037 | Behl | Jan 1999 | A |
5870630 | Reasoner et al. | Feb 1999 | A |
5886639 | Behl et al. | Mar 1999 | A |
5890959 | Pettit et al. | Apr 1999 | A |
5892367 | Magee et al. | Apr 1999 | A |
5912799 | Grouell et al. | Jun 1999 | A |
5913926 | Anderson et al. | Jun 1999 | A |
5914856 | Morton et al. | Jun 1999 | A |
5927386 | Lin | Jul 1999 | A |
5955877 | Farnworth | Sep 1999 | A |
5956301 | Dimitri et al. | Sep 1999 | A |
5959834 | Chang | Sep 1999 | A |
5999356 | Dimitri et al. | Dec 1999 | A |
5999365 | Hasegawa et al. | Dec 1999 | A |
6000623 | Blatti et al. | Dec 1999 | A |
6005404 | Cochran et al. | Dec 1999 | A |
6005770 | Schmitt | Dec 1999 | A |
6008636 | Miller et al. | Dec 1999 | A |
6008984 | Cunningham et al. | Dec 1999 | A |
6011689 | Wrycraft | Jan 2000 | A |
6031717 | Baddour et al. | Feb 2000 | A |
6034870 | Osborn et al. | Mar 2000 | A |
6042348 | Aakalu et al. | Mar 2000 | A |
6045113 | Itakura | Apr 2000 | A |
6055814 | Song | May 2000 | A |
6066822 | Nemoto et al. | May 2000 | A |
6067225 | Reznikov et al. | May 2000 | A |
6069792 | Nelik | May 2000 | A |
6084768 | Bolognia | Jul 2000 | A |
6094342 | Dague et al. | Jul 2000 | A |
6104607 | Behl | Aug 2000 | A |
6107813 | Sinsheimer et al. | Aug 2000 | A |
6115250 | Schmitt | Sep 2000 | A |
6122131 | Jeppson | Sep 2000 | A |
6122232 | Schell et al. | Sep 2000 | A |
6124707 | Kim et al. | Sep 2000 | A |
6129428 | Helwig et al. | Oct 2000 | A |
6130817 | Flotho et al. | Oct 2000 | A |
6144553 | Hileman et al. | Nov 2000 | A |
6166901 | Gamble et al. | Dec 2000 | A |
6169413 | Paek et al. | Jan 2001 | B1 |
6169930 | Blachek et al. | Jan 2001 | B1 |
6177805 | Pih | Jan 2001 | B1 |
6178835 | Orriss et al. | Jan 2001 | B1 |
6181557 | Gatti | Jan 2001 | B1 |
6185065 | Hasegawa et al. | Feb 2001 | B1 |
6185097 | Behl | Feb 2001 | B1 |
6188191 | Frees et al. | Feb 2001 | B1 |
6192282 | Smith et al. | Feb 2001 | B1 |
6193339 | Behl et al. | Feb 2001 | B1 |
6209842 | Anderson et al. | Apr 2001 | B1 |
6227516 | Webster, Jr. et al. | May 2001 | B1 |
6229275 | Yamamoto | May 2001 | B1 |
6231145 | Liu | May 2001 | B1 |
6233148 | Shen | May 2001 | B1 |
6236563 | Buican et al. | May 2001 | B1 |
6247944 | Bolognia et al. | Jun 2001 | B1 |
6249824 | Henrichs | Jun 2001 | B1 |
6252769 | Tullstedt et al. | Jun 2001 | B1 |
6262863 | Ostwald et al. | Jul 2001 | B1 |
6272007 | Kitlas et al. | Aug 2001 | B1 |
6272767 | Botruff et al. | Aug 2001 | B1 |
6281677 | Cosci et al. | Aug 2001 | B1 |
6282501 | Assouad | Aug 2001 | B1 |
6285524 | Boigenzahn et al. | Sep 2001 | B1 |
6289678 | Pandolfi | Sep 2001 | B1 |
6297950 | Erwin | Oct 2001 | B1 |
6298672 | Valicoff, Jr. | Oct 2001 | B1 |
6302714 | Bolognia et al. | Oct 2001 | B1 |
6304839 | Ho et al. | Oct 2001 | B1 |
6307386 | Fowler et al. | Oct 2001 | B1 |
6327150 | Levy et al. | Dec 2001 | B1 |
6330154 | Fryers et al. | Dec 2001 | B1 |
6351379 | Cheng | Feb 2002 | B1 |
6354792 | Kobayashi et al. | Mar 2002 | B1 |
6356409 | Price et al. | Mar 2002 | B1 |
6356415 | Kabasawa | Mar 2002 | B1 |
6384593 | Kobayashi et al. | May 2002 | B1 |
6384995 | Smith | May 2002 | B1 |
6388437 | Wolski et al. | May 2002 | B1 |
6388875 | Chen | May 2002 | B1 |
6388878 | Chang | May 2002 | B1 |
6389225 | Malinoski et al. | May 2002 | B1 |
6390756 | Isaacs et al. | May 2002 | B1 |
6411584 | Davis et al. | Jun 2002 | B2 |
6421236 | Montoya et al. | Jul 2002 | B1 |
6434000 | Pandolfi | Aug 2002 | B1 |
6434498 | Ulrich et al. | Aug 2002 | B1 |
6434499 | Ulrich et al. | Aug 2002 | B1 |
6464080 | Morris et al. | Oct 2002 | B1 |
6467153 | Butts et al. | Oct 2002 | B2 |
6473297 | Behl et al. | Oct 2002 | B1 |
6473301 | Levy et al. | Oct 2002 | B1 |
6476627 | Pelissier et al. | Nov 2002 | B1 |
6477044 | Foley et al. | Nov 2002 | B2 |
6477442 | Valerino, Sr. | Nov 2002 | B1 |
6480380 | French et al. | Nov 2002 | B1 |
6480382 | Cheng | Nov 2002 | B2 |
6487071 | Tata et al. | Nov 2002 | B1 |
6489793 | Jones et al. | Dec 2002 | B2 |
6494663 | Ostwald et al. | Dec 2002 | B2 |
6525933 | Eland | Feb 2003 | B2 |
6526841 | Wanek et al. | Mar 2003 | B1 |
6535384 | Huang | Mar 2003 | B2 |
6537013 | Emberty et al. | Mar 2003 | B2 |
6544309 | Hoefer et al. | Apr 2003 | B1 |
6546445 | Hayes | Apr 2003 | B1 |
6553532 | Aoki | Apr 2003 | B1 |
6560107 | Beck et al. | May 2003 | B1 |
6565163 | Behl et al. | May 2003 | B2 |
6566859 | Wolski et al. | May 2003 | B2 |
6567266 | Ives et al. | May 2003 | B2 |
6568770 | Gonska et al. | May 2003 | B2 |
6570734 | Ostwald et al. | May 2003 | B2 |
6577586 | Yang et al. | Jun 2003 | B1 |
6577687 | Hall et al. | Jun 2003 | B2 |
6618254 | Ives | Sep 2003 | B2 |
6626846 | Spencer | Sep 2003 | B2 |
6628518 | Behl et al. | Sep 2003 | B2 |
6635115 | Fairbairn et al. | Oct 2003 | B1 |
6640235 | Anderson | Oct 2003 | B1 |
6644982 | Ondricek et al. | Nov 2003 | B1 |
6651192 | Viglione et al. | Nov 2003 | B1 |
6654240 | Tseng et al. | Nov 2003 | B1 |
6679128 | Wanek et al. | Jan 2004 | B2 |
6693757 | Hayakawa et al. | Feb 2004 | B2 |
6736583 | Ostwald et al. | May 2004 | B2 |
6741529 | Getreuer | May 2004 | B1 |
6746648 | Mattila et al. | Jun 2004 | B1 |
6751093 | Hsu et al. | Jun 2004 | B1 |
6791785 | Messenger et al. | Sep 2004 | B1 |
6791799 | Fletcher | Sep 2004 | B2 |
6798651 | Syring et al. | Sep 2004 | B2 |
6798972 | Ito et al. | Sep 2004 | B1 |
6801834 | Konshak et al. | Oct 2004 | B1 |
6806700 | Wanek et al. | Oct 2004 | B2 |
6808353 | Ostwald et al. | Oct 2004 | B2 |
6811427 | Garrett et al. | Nov 2004 | B2 |
6826046 | Muncaster et al. | Nov 2004 | B1 |
6830372 | Liu et al. | Dec 2004 | B2 |
6832929 | Garrett et al. | Dec 2004 | B2 |
6861861 | Song et al. | Mar 2005 | B2 |
6862173 | Konshak et al. | Mar 2005 | B1 |
6867939 | Katahara et al. | Mar 2005 | B2 |
6892328 | Klein et al. | May 2005 | B2 |
6904479 | Hall et al. | Jun 2005 | B2 |
6908330 | Garrett et al. | Jun 2005 | B2 |
6928336 | Peshkin et al. | Aug 2005 | B2 |
6937432 | Sri-Jayantha et al. | Aug 2005 | B2 |
6957291 | Moon et al. | Oct 2005 | B2 |
6965811 | Dickey et al. | Nov 2005 | B2 |
6974017 | Oseguera | Dec 2005 | B2 |
6976190 | Goldstone | Dec 2005 | B1 |
6980381 | Gray et al. | Dec 2005 | B2 |
6982872 | Behl et al. | Jan 2006 | B2 |
7006325 | Emberty et al. | Feb 2006 | B2 |
7013198 | Haas | Mar 2006 | B2 |
7021883 | Plutt et al. | Apr 2006 | B1 |
7039924 | Goodman et al. | May 2006 | B2 |
7054150 | Orriss et al. | May 2006 | B2 |
7070323 | Wanek et al. | Jul 2006 | B2 |
7076391 | Pakzad et al. | Jul 2006 | B1 |
7077614 | Hasper et al. | Jul 2006 | B1 |
7088541 | Orriss et al. | Aug 2006 | B2 |
7092251 | Henry | Aug 2006 | B1 |
7106582 | Albrecht et al. | Sep 2006 | B2 |
7123477 | Coglitore et al. | Oct 2006 | B2 |
7126777 | Flechsig et al. | Oct 2006 | B2 |
7130138 | Lum et al. | Oct 2006 | B2 |
7134553 | Stephens | Nov 2006 | B2 |
7139145 | Archibald et al. | Nov 2006 | B1 |
7164579 | Muncaster et al. | Jan 2007 | B2 |
7167360 | Inoue et al. | Jan 2007 | B2 |
7181458 | Higashi | Feb 2007 | B1 |
7203021 | Ryan et al. | Apr 2007 | B1 |
7203060 | Kay et al. | Apr 2007 | B2 |
7206201 | Behl et al. | Apr 2007 | B2 |
7216968 | Smith et al. | May 2007 | B2 |
7219028 | Bae et al. | May 2007 | B2 |
7219273 | Fisher et al. | May 2007 | B2 |
7227746 | Tanaka et al. | Jun 2007 | B2 |
7232101 | Wanek et al. | Jun 2007 | B2 |
7243043 | Shin | Jul 2007 | B2 |
7248467 | Sri-Jayantha et al. | Jul 2007 | B2 |
7259966 | Connelly, Jr. et al. | Aug 2007 | B2 |
7273344 | Ostwald et al. | Sep 2007 | B2 |
7280353 | Wendel et al. | Oct 2007 | B2 |
7289885 | Basham et al. | Oct 2007 | B2 |
7304855 | Milligan et al. | Dec 2007 | B1 |
7315447 | Inoue et al. | Jan 2008 | B2 |
7349205 | Hall et al. | Mar 2008 | B2 |
7353524 | Lin et al. | Apr 2008 | B1 |
7385385 | Magliocco et al. | Jun 2008 | B2 |
7395133 | Lowe | Jul 2008 | B2 |
7403451 | Goodman et al. | Jul 2008 | B2 |
7421623 | Haugh | Sep 2008 | B2 |
7437212 | Farchmin et al. | Oct 2008 | B2 |
7447011 | Wade et al. | Nov 2008 | B2 |
7457112 | Fukuda et al. | Nov 2008 | B2 |
7467024 | Flitsch | Dec 2008 | B2 |
7476362 | Angros | Jan 2009 | B2 |
7483269 | Marvin, Jr. et al. | Jan 2009 | B1 |
7505264 | Hall et al. | Mar 2009 | B2 |
7554811 | Scicluna et al. | Jun 2009 | B2 |
7568122 | Mechalke et al. | Jul 2009 | B2 |
7570455 | Deguchi et al. | Aug 2009 | B2 |
7573715 | Mojaver et al. | Aug 2009 | B2 |
7584851 | Hong et al. | Sep 2009 | B2 |
7612996 | Atkins et al. | Nov 2009 | B2 |
7625027 | Kiaie et al. | Dec 2009 | B2 |
7630196 | Hall et al. | Dec 2009 | B2 |
7635246 | Neeper et al. | Dec 2009 | B2 |
7643289 | Ye et al. | Jan 2010 | B2 |
7646596 | Ng | Jan 2010 | B2 |
7729107 | Atkins et al. | Jun 2010 | B2 |
7778031 | Merrow et al. | Aug 2010 | B1 |
7789267 | Hutchinson et al. | Sep 2010 | B2 |
7848106 | Merrow | Dec 2010 | B2 |
7890207 | Toscano et al. | Feb 2011 | B2 |
7904211 | Merrow et al. | Mar 2011 | B2 |
7908029 | Slocum, III | Mar 2011 | B2 |
7911778 | Merrow | Mar 2011 | B2 |
7920380 | Merrow et al. | Apr 2011 | B2 |
7929303 | Merrow | Apr 2011 | B1 |
7932734 | Merrow et al. | Apr 2011 | B2 |
7940529 | Merrow et al. | May 2011 | B2 |
7945424 | Garcia et al. | May 2011 | B2 |
7987018 | Polyakov et al. | Jul 2011 | B2 |
7995349 | Merrow et al. | Aug 2011 | B2 |
7996174 | Garcia et al. | Aug 2011 | B2 |
8041449 | Noble et al. | Oct 2011 | B2 |
8086343 | Slocum, III | Dec 2011 | B2 |
8095234 | Polyakov et al. | Jan 2012 | B2 |
8102173 | Merrow | Jan 2012 | B2 |
8116079 | Merrow | Feb 2012 | B2 |
8117480 | Merrow et al. | Feb 2012 | B2 |
8140182 | Noble et al. | Mar 2012 | B2 |
8160739 | Toscano et al. | Apr 2012 | B2 |
8238099 | Merrow | Aug 2012 | B2 |
8279603 | Merrow et al. | Oct 2012 | B2 |
8305751 | Merrow | Nov 2012 | B2 |
8405971 | Merrow et al. | Mar 2013 | B2 |
8466699 | Merrow et al. | Jun 2013 | B2 |
8467180 | Merrow et al. | Jun 2013 | B2 |
8482915 | Merrow | Jul 2013 | B2 |
8499611 | Merrow et al. | Aug 2013 | B2 |
8547123 | Merrow et al. | Oct 2013 | B2 |
8549912 | Merrow et al. | Oct 2013 | B2 |
8628239 | Merrow et al. | Jan 2014 | B2 |
8631698 | Merrow et al. | Jan 2014 | B2 |
8655482 | Merrow | Feb 2014 | B2 |
8687349 | Truebenbach | Apr 2014 | B2 |
8687356 | Merrow | Apr 2014 | B2 |
9196518 | Hofmeister | Nov 2015 | B1 |
20010006453 | Glorioso et al. | Jul 2001 | A1 |
20010044023 | Johnson et al. | Nov 2001 | A1 |
20010046118 | Yamanashi et al. | Nov 2001 | A1 |
20010048590 | Behl et al. | Dec 2001 | A1 |
20020009391 | Marquiss et al. | Jan 2002 | A1 |
20020026258 | Suzuki et al. | Feb 2002 | A1 |
20020030981 | Sullivan et al. | Mar 2002 | A1 |
20020044416 | Harmon et al. | Apr 2002 | A1 |
20020051338 | Jiang et al. | May 2002 | A1 |
20020071248 | Huang et al. | Jun 2002 | A1 |
20020079422 | Jiang | Jun 2002 | A1 |
20020090320 | Burow et al. | Jul 2002 | A1 |
20020116087 | Brown | Aug 2002 | A1 |
20020161971 | Dimitri et al. | Oct 2002 | A1 |
20020172004 | Ives et al. | Nov 2002 | A1 |
20030035271 | Lelong et al. | Feb 2003 | A1 |
20030043550 | Ives | Mar 2003 | A1 |
20030206397 | Allgeyer et al. | Nov 2003 | A1 |
20040165489 | Goodman et al. | Aug 2004 | A1 |
20040230399 | Shin | Nov 2004 | A1 |
20040236465 | Butka et al. | Nov 2004 | A1 |
20040251866 | Gan | Dec 2004 | A1 |
20040264121 | Orriss et al. | Dec 2004 | A1 |
20050004703 | Christie | Jan 2005 | A1 |
20050010836 | Bae et al. | Jan 2005 | A1 |
20050012498 | Lee et al. | Jan 2005 | A1 |
20050018397 | Kay et al. | Jan 2005 | A1 |
20050055601 | Wilson et al. | Mar 2005 | A1 |
20050057849 | Twogood et al. | Mar 2005 | A1 |
20050062463 | Kim | Mar 2005 | A1 |
20050069400 | Dickey et al. | Mar 2005 | A1 |
20050109131 | Wanek et al. | May 2005 | A1 |
20050116702 | Wanek et al. | Jun 2005 | A1 |
20050131578 | Weaver | Jun 2005 | A1 |
20050179457 | Min et al. | Aug 2005 | A1 |
20050207059 | Cochrane | Sep 2005 | A1 |
20050219809 | Muncaster et al. | Oct 2005 | A1 |
20050225338 | Sands et al. | Oct 2005 | A1 |
20050270737 | Wilson et al. | Dec 2005 | A1 |
20060010353 | Haugh | Jan 2006 | A1 |
20060023331 | Flechsig et al. | Feb 2006 | A1 |
20060028802 | Shaw et al. | Feb 2006 | A1 |
20060066974 | Akamatsu et al. | Mar 2006 | A1 |
20060130316 | Takase et al. | Jun 2006 | A1 |
20060190205 | Klein et al. | Aug 2006 | A1 |
20060227517 | Zayas et al. | Oct 2006 | A1 |
20060250766 | Blaalid et al. | Nov 2006 | A1 |
20070018673 | Hsieh | Jan 2007 | A1 |
20070034368 | Atkins et al. | Feb 2007 | A1 |
20070035874 | Wendel et al. | Feb 2007 | A1 |
20070035875 | Hall et al. | Feb 2007 | A1 |
20070053154 | Fukuda et al. | Mar 2007 | A1 |
20070082907 | Canada et al. | Apr 2007 | A1 |
20070127202 | Scicluna et al. | Jun 2007 | A1 |
20070127206 | Wade et al. | Jun 2007 | A1 |
20070152655 | Ham et al. | Jul 2007 | A1 |
20070183871 | Hofmeister et al. | Aug 2007 | A1 |
20070185676 | Ding | Aug 2007 | A1 |
20070195497 | Atkins | Aug 2007 | A1 |
20070248142 | Rountree et al. | Oct 2007 | A1 |
20070253157 | Atkins et al. | Nov 2007 | A1 |
20070286045 | Onagi et al. | Dec 2007 | A1 |
20080007865 | Orriss et al. | Jan 2008 | A1 |
20080030945 | Mojaver et al. | Feb 2008 | A1 |
20080112075 | Farquhar et al. | May 2008 | A1 |
20080238460 | Kress et al. | Oct 2008 | A1 |
20080239564 | Farquhar et al. | Oct 2008 | A1 |
20080282275 | Zaczek et al. | Nov 2008 | A1 |
20080282278 | Barkley | Nov 2008 | A1 |
20080317575 | Yamazaki et al. | Dec 2008 | A1 |
20090028669 | Rebstock | Jan 2009 | A1 |
20090082907 | Stuvel et al. | Mar 2009 | A1 |
20090122443 | Farquhar et al. | May 2009 | A1 |
20090142169 | Garcia et al. | Jun 2009 | A1 |
20090153992 | Garcia et al. | Jun 2009 | A1 |
20090153993 | Garcia et al. | Jun 2009 | A1 |
20090153994 | Merrow et al. | Jun 2009 | A1 |
20090175705 | Nakao et al. | Jul 2009 | A1 |
20090261047 | Merrow | Oct 2009 | A1 |
20090261228 | Merrow | Oct 2009 | A1 |
20090261229 | Merrow | Oct 2009 | A1 |
20090262444 | Polyakov et al. | Oct 2009 | A1 |
20090262445 | Noble et al. | Oct 2009 | A1 |
20090262454 | Merrow | Oct 2009 | A1 |
20090262455 | Merrow | Oct 2009 | A1 |
20090265032 | Toscano et al. | Oct 2009 | A1 |
20090265043 | Merrow et al. | Oct 2009 | A1 |
20090265136 | Garcia et al. | Oct 2009 | A1 |
20090297328 | Slocum, III | Dec 2009 | A1 |
20100074404 | Ito | Mar 2010 | A1 |
20100083732 | Merrow et al. | Apr 2010 | A1 |
20100165498 | Merrow et al. | Jul 2010 | A1 |
20100165501 | Polyakov et al. | Jul 2010 | A1 |
20100168906 | Toscano et al. | Jul 2010 | A1 |
20100172722 | Noble et al. | Jul 2010 | A1 |
20100193661 | Merrow | Aug 2010 | A1 |
20100194253 | Merrow et al. | Aug 2010 | A1 |
20100195236 | Merrow et al. | Aug 2010 | A1 |
20100230885 | Di Stefano | Sep 2010 | A1 |
20100249993 | Mitsuyoshi | Sep 2010 | A1 |
20100265609 | Merrow et al. | Oct 2010 | A1 |
20100265610 | Merrow et al. | Oct 2010 | A1 |
20100279439 | Shah | Nov 2010 | A1 |
20100302678 | Merrow | Dec 2010 | A1 |
20110011844 | Merrow et al. | Jan 2011 | A1 |
20110012631 | Merrow et al. | Jan 2011 | A1 |
20110012632 | Merrow et al. | Jan 2011 | A1 |
20110013362 | Merrow et al. | Jan 2011 | A1 |
20110013665 | Merrow et al. | Jan 2011 | A1 |
20110013666 | Merrow et al. | Jan 2011 | A1 |
20110013667 | Merrow et al. | Jan 2011 | A1 |
20110064546 | Merrow | Mar 2011 | A1 |
20110074458 | Di Stefano et al. | Mar 2011 | A1 |
20110148020 | Kogure | Jun 2011 | A1 |
20110157825 | Merrow et al. | Jun 2011 | A1 |
20110172807 | Merrow | Jul 2011 | A1 |
20110185811 | Merrow et al. | Aug 2011 | A1 |
20110189934 | Merrow | Aug 2011 | A1 |
20110236163 | Smith et al. | Sep 2011 | A1 |
20110261483 | Campbell et al. | Oct 2011 | A1 |
20110305132 | Merrow et al. | Dec 2011 | A1 |
20110310724 | Martino | Dec 2011 | A1 |
20120023370 | Truebenbach | Jan 2012 | A1 |
20120034054 | Polyakov et al. | Feb 2012 | A1 |
20120050903 | Campbell et al. | Mar 2012 | A1 |
20120106351 | Gohel et al. | May 2012 | A1 |
20120321435 | Truebenbach | Dec 2012 | A1 |
20130071224 | Merrow et al. | Mar 2013 | A1 |
20130096718 | Friedman et al. | Apr 2013 | A1 |
20130108253 | Akers et al. | May 2013 | A1 |
20130181576 | Shiozawa et al. | Jul 2013 | A1 |
20130200915 | Panagas | Aug 2013 | A1 |
20130256967 | Carvalho | Oct 2013 | A1 |
20130345836 | Ikushima | Dec 2013 | A1 |
20140093214 | Detofsky et al. | Apr 2014 | A1 |
20140148949 | Graca et al. | May 2014 | A1 |
20140271064 | Merrow et al. | Sep 2014 | A1 |
20140306728 | Arena et al. | Oct 2014 | A1 |
20170059635 | Orchanian et al. | Mar 2017 | A1 |
20190064252 | Bowyer et al. | Feb 2019 | A1 |
20190064254 | Bowyer et al. | Feb 2019 | A1 |
20190064261 | Bowyer et al. | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
583716 | May 1989 | AU |
1114109 | Dec 1995 | CN |
1177187 | Mar 1998 | CN |
1192544 | Sep 1998 | CN |
2341188 | Sep 1999 | CN |
3786944 | Nov 1993 | DE |
69111634 | May 1996 | DE |
69400145 | Oct 1996 | DE |
19701548 | Aug 1997 | DE |
19804813 | Sep 1998 | DE |
69614460 | Jun 2002 | DE |
69626584 | Dec 2003 | DE |
19861388 | Aug 2007 | DE |
0210497 | Feb 1987 | EP |
0242970 | Oct 1987 | EP |
0 277 634 | Aug 1988 | EP |
0356977 | Mar 1990 | EP |
0442642 | Aug 1991 | EP |
0466073 | Jan 1992 | EP |
582017 | Feb 1994 | EP |
0617570 | Sep 1994 | EP |
0635836 | Jan 1995 | EP |
741508 | Nov 1996 | EP |
0757320 | Feb 1997 | EP |
0757351 | Feb 1997 | EP |
0776009 | May 1997 | EP |
0840476 | May 1998 | EP |
1 045 301 | Oct 2000 | EP |
1209557 | May 2002 | EP |
1234308 | Aug 2002 | EP |
1422713 | May 2004 | EP |
1612798 | Jan 2006 | EP |
1760722 | Mar 2007 | EP |
2241118 | Aug 1991 | GB |
2276275 | Sep 1994 | GB |
2299436 | Oct 1996 | GB |
2312984 | Nov 1997 | GB |
2328782 | Mar 1999 | GB |
2439844 | Jan 2008 | GB |
61-115279 | Jun 1986 | JP |
62-177621 | Aug 1987 | JP |
62-239394 | Oct 1987 | JP |
62-251915 | Nov 1987 | JP |
63-002160 | Jan 1988 | JP |
63-016482 | Jan 1988 | JP |
63-062057 | Mar 1988 | JP |
63-201946 | Aug 1988 | JP |
63-004483 | Sep 1988 | JP |
63-214972 | Sep 1988 | JP |
63-269376 | Nov 1988 | JP |
S63-195697 | Dec 1988 | JP |
64-089034 | Apr 1989 | JP |
2-091565 | Mar 1990 | JP |
2-098197 | Apr 1990 | JP |
2-185784 | Jul 1990 | JP |
2-199690 | Aug 1990 | JP |
2-278375 | Nov 1990 | JP |
2-297770 | Dec 1990 | JP |
3-078160 | Apr 1991 | JP |
3-105704 | May 1991 | JP |
H05-319520 | Dec 1993 | JP |
6-004220 | Jan 1994 | JP |
6-004981 | Jan 1994 | JP |
6-162645 | Jun 1994 | JP |
6-181561 | Jun 1994 | JP |
6-215515 | Aug 1994 | JP |
6-274943 | Sep 1994 | JP |
6-314173 | Nov 1994 | JP |
7-007321 | Jan 1995 | JP |
7-029364 | Jan 1995 | JP |
H07-010212 | Jan 1995 | JP |
7-037376 | Feb 1995 | JP |
7-056654 | Mar 1995 | JP |
7-111078 | Apr 1995 | JP |
7-115497 | May 1995 | JP |
7-201082 | Aug 1995 | JP |
7-226023 | Aug 1995 | JP |
7-230669 | Aug 1995 | JP |
7-257525 | Oct 1995 | JP |
1982246 | Oct 1995 | JP |
7-307059 | Nov 1995 | JP |
8007994 | Jan 1996 | JP |
8-030398 | Feb 1996 | JP |
8-030407 | Feb 1996 | JP |
8-079672 | Mar 1996 | JP |
8-106776 | Apr 1996 | JP |
8-110821 | Apr 1996 | JP |
8-167231 | Jun 1996 | JP |
8-212015 | Aug 1996 | JP |
8-244313 | Sep 1996 | JP |
8-263525 | Oct 1996 | JP |
8-263909 | Oct 1996 | JP |
8-297957 | Nov 1996 | JP |
2553315 | Nov 1996 | JP |
9-044445 | Feb 1997 | JP |
9-064571 | Mar 1997 | JP |
9-082081 | Mar 1997 | JP |
2635127 | Jul 1997 | JP |
9-306094 | Nov 1997 | JP |
H09-319466 | Dec 1997 | JP |
10-040021 | Feb 1998 | JP |
10-049365 | Feb 1998 | JP |
10-064173 | Mar 1998 | JP |
10-098521 | Apr 1998 | JP |
2771297 | Jul 1998 | JP |
10-275137 | Oct 1998 | JP |
10-281799 | Oct 1998 | JP |
10-320128 | Dec 1998 | JP |
10-340139 | Dec 1998 | JP |
2862679 | Mar 1999 | JP |
11-134852 | May 1999 | JP |
11-139839 | May 1999 | JP |
2906930 | Jun 1999 | JP |
11-203201 | Jul 1999 | JP |
11-213182 | Aug 1999 | JP |
11-327800 | Nov 1999 | JP |
11-353128 | Dec 1999 | JP |
11-353129 | Dec 1999 | JP |
3-008086 | Feb 2000 | JP |
2000-056935 | Feb 2000 | JP |
2000-066845 | Mar 2000 | JP |
2000-112831 | Apr 2000 | JP |
2000-113563 | Apr 2000 | JP |
2000-114759 | Apr 2000 | JP |
2000-125290 | Apr 2000 | JP |
2000-132704 | May 2000 | JP |
2000-149431 | May 2000 | JP |
3052183 | Jun 2000 | JP |
2000-228686 | Aug 2000 | JP |
2000-235762 | Aug 2000 | JP |
2000-236188 | Aug 2000 | JP |
2000-242598 | Sep 2000 | JP |
2000-278647 | Oct 2000 | JP |
3097994 | Oct 2000 | JP |
2000-305860 | Nov 2000 | JP |
2001-005501 | Jan 2001 | JP |
2001-023270 | Jan 2001 | JP |
2001-100925 | Apr 2001 | JP |
3-207947 | Sep 2001 | JP |
3-210662 | Sep 2001 | JP |
3-212859 | Sep 2001 | JP |
3-214490 | Oct 2001 | JP |
3-240821 | Dec 2001 | JP |
2002-42446 | Feb 2002 | JP |
3-295071 | Jun 2002 | JP |
2007087498 | Apr 2007 | JP |
2007-188615 | Jul 2007 | JP |
2007-220184 | Aug 2007 | JP |
2007-293936 | Nov 2007 | JP |
2007-305206 | Nov 2007 | JP |
2007-305290 | Nov 2007 | JP |
4-017134 | Dec 2007 | JP |
2007-328761 | Dec 2007 | JP |
2008-503824 | Feb 2008 | JP |
4-143989 | Sep 2008 | JP |
4-172658 | Oct 2008 | JP |
4-214288 | Jan 2009 | JP |
4-247385 | Apr 2009 | JP |
4-259956 | Apr 2009 | JP |
4-307440 | Aug 2009 | JP |
4-325923 | Sep 2009 | JP |
5-035053 | Sep 2012 | JP |
5-035415 | Sep 2012 | JP |
5-066896 | Nov 2012 | JP |
5-068257 | Nov 2012 | JP |
5-073566 | Nov 2012 | JP |
5-073803 | Nov 2012 | JP |
5-101603 | Dec 2012 | JP |
5-173718 | Apr 2013 | JP |
5-189163 | Apr 2013 | JP |
5-204725 | Jun 2013 | JP |
5-223551 | Jun 2013 | JP |
1998-0035445 | Aug 1998 | KR |
10-0176527 | Nov 1998 | KR |
10-0214308 | Aug 1999 | KR |
10-0403039 | Oct 2003 | KR |
10-2007-0024354 | Mar 2007 | KR |
10-2013-0111915 | Oct 2013 | KR |
45223 | Jan 1998 | SG |
387574 | Apr 2000 | TW |
WO-8901682 | Feb 1989 | WO |
WO-9706532 | Feb 1997 | WO |
WO-0049487 | Aug 2000 | WO |
WO-0067253 | Nov 2000 | WO |
WO-0109627 | Feb 2001 | WO |
WO-0141148 | Jun 2001 | WO |
WO-03013783 | Feb 2003 | WO |
WO-03021597 | Mar 2003 | WO |
WO-03021598 | Mar 2003 | WO |
WO-03067385 | Aug 2003 | WO |
WO-2004006260 | Jan 2004 | WO |
WO-2004114286 | Dec 2004 | WO |
WO-2005024830 | Mar 2005 | WO |
WO-2005024831 | Mar 2005 | WO |
WO-2005109131 | Nov 2005 | WO |
WO-2006030185 | Mar 2006 | WO |
WO-2006048611 | May 2006 | WO |
WO-2006100441 | Sep 2006 | WO |
WO-2006100445 | Sep 2006 | WO |
WO-2007031729 | Mar 2007 | WO |
Entry |
---|
U.S. Appl. No. 15/688,048, filed Aug. 28, 2017, Automated Test System Having Orthogonal Robots. |
U.S. Appl. No. 15/688,073, filed Aug. 28, 2017, Automated Test System Having Multiple Stages. |
U.S. Appl. No. 15/688,104, filed Aug. 28, 2017, Automated Test System Employing Robotics. |
U.S. Appl. No. 16/105,179, filed Aug. 20, 2018, Carrier-Based Test System. |
International Search Report for PCT/US2018/046740, 3 pages (dated Dec. 5, 2018). |
Written Opinion for PCT/US2018/046740, 5 pages (dated Dec. 5, 2018). |
Abraham et al., “Thermal Proximity Imaging of Hard-Disk Substrates”, IEEE Transactions on Mathematics 36:3997-4004, Nov. 2000. |
Abramovitch, “Rejecting Rotational Disturbances on Small Disk Drives Using Rotational Accelerometers”, Proceedings of the 1996 IFAC World Congress in San Francisco, CA, 8 pages (Jul. 1996). |
Ali et al., “Modeling and Simulation of Hard Disk Drive Final Assembly Using a HDD Template” Proceedings of the 2007 Winter Simulation Conference, IEEE pp. 1641-1650 (2007). |
Anderson et al., “Clinical chemistry: concepts and applications”, The McGraw-Hill Companies, Inc., pp. 131-132, 2003. |
Anderson et al., “High Reliability Variable Load Time Controllable Vibration Free Thermal Processing Environment”, Delphion, 3 pages (Dec. 1993). hhtps://www.delphion.com/tdbs/tdb?order=93A +63418 (retrieved Mar. 18, 2009). |
Asbrand, “Engineers at One Company Share the Pride and the Profits of Successful Product Design”, Professional Issues, 4 pages, 1987. |
Bair et al., “Measurements of Asperity Temperatures of a Read/Write Head Slider Bearing in Hard Magnetic Recording Disks”, Journal of Tribology 113:547-554, Jul. 1991. |
Bakken et al., “Low Cost, Rack Mounted, Direct Access Disk Storage Device”, Delphion, 2 pages (Mar. 1977). http://www.delphion.com/tdbs/tdb (retrieved Mar. 3, 2005). |
Biber et al., “Disk Drive Drawer Thermal Management”, Advances in Electronic Packaging vol. 1:43-46, 1995. |
Christensen, “How Can Great firms Fail? Insights from the hard Disk Drive Industry”, Harvard Business School Press, pp. 1-26, 2006. |
Chung et al., “Vibration Absorber for Reduction of the In-plane Vibration in an Optical Disk Drive”, IEEE Transactions on Consumer Electronics, Vo. 48, May 2004. |
Curtis et al., “InPhase Professional Archive Drive Architecture”, InPhase Technologies, Inc., 6 pages (Dec. 17, 2007) http://www.science.edu/TechoftheYear/Nominees/InPhase. |
Exhibit 1 in Xyratex Technology, LTD v. Teradyne, Inc.; Newspaper picture that displays the CSO tester; 1990. |
Exhibit 1314 in Xyratex Technology, LTD. V. Teradyne, Inc.; Case, “Last products of Disk-File Development at Hursley and Millbrook,” IBM, Oct. 12, 1990. |
Exhibit 1315 in Xyratex Technology, LTD. V. Teradyne, Inc.; Case, “History of Disk-File Development at Hursley and Millbrook,” IBM, Oct. 17, 1990. |
Exhibit 1326 in Xyratex Technology, LTD v. Teradyne, Inc.; Image of the back of Exhibit 1 and Exhibit 2 photos, which display the photos dates; 1990. |
Exhibit 2 in Xyratex Technology, LTD v. Teradyne, Inc.; Photos of the CSO tester obtained from Hitachi; 1990. |
Findeis et al., “Vibration Isolation Techniques Sutiable for Portable Electronic Speckle Pattern Interferometry”, Proc. SPIE vol. 4704, pp. 159-167, 2002 http://www.ndt.uct.ac.za/Paoers/soiendt2002.odf. |
FlexStar Technology, “A World of Storage Testing Solutions,” http://www.flexstar.com, 1 page (1999). |
FlexStar Technology, “Environment Chamber Products,” http://www.flexstar.com, 1 page (1999). |
FlexStar Technology, “FlexStar's Family of Products,” http://www.flexstar.com, 1 page (1999). |
FlexStar Technology, 30E/Cascade Users Manual, Doc #98-36387-00 Rev. 1.8, pp. 1-33, Jun. 1, 2004. |
Frankovich, “The Basics of Vibration Isolation Using Elastomeric Materials”, Aearo EAR Specialty Composites, 8 pages (2005) http://www.isoloss.com/11dfs/engineering/BasicsoNibrationisolation. |
Grochowski et al., “Future Trends in Hard Disk Drives”, IEEE Transactions on Magnetics, 32(3): 1850-1854 (May 1996). |
Gurumurthi et al., “Disk Drive Roadmap from the Thermal Perspective: A Case for Dynamic Thermal Management”, International Symposium on Computer Architecture Proceedings of the 32nd Annual International Symposium on Computer Architecture, Technical Report CSE-05-001, pp. 38-49 (Feb. 2005). |
Gurumurthi et al., “Thermal Issues in Disk Drive Design: Challenges and Possible Solutions”, ACM Transactions on Storage, 2(1): 41-73 (Feb. 2006). |
Gurumurthi, “The Need fortemperature-Aware Storage Systems”, The Tenth Intersociety conference on Thermal and Thermomechanical Phenomena in Electronics, pp. 387-394, 2006. |
Haddad et al., “A new Mounting Adapter For Computer Peripherals with Improved Reliability, Thermal Distribution, Low Noise and Vibration Reduction”, ISPS, Advances in Information Storage and Processing Systems, 1:97-108, 1995. |
Henderson, “HAD High Aerial Densities Require Solid Test Fixtures”, Flexstar Technology, 3 pages (Feb. 26, 2007). |
HighBeam Research website “ACT debuts six-zone catalytic gas heater. (American Catalytic Technologies offers new heaters)”, 4 pages (Oct. 26, 1998). http://www.highbeam.com. |
HighBeam Research website “Asynchronous Testing Increases Throughput”, 7 pages (Dec. 1, 2000). http://www.highbeam.com. |
HighBeam Research website “Credence announces Production Release of the EPRO AQ Series for Integrated Test and Back-end Processing”, 4 pages (1995). http://www.highbeam.com. |
HighBeam Research website “Test Multiple Parts At Once for Air Leaks. (Brief Article)”, 1 page (1999) http://www.highbeam.com. |
Iwamiya, “Hard Drive Cooling Using a Thermoelectric Cooler”, EEP—vol. 19-2, Advances in Electronic Packaging, vol. 2:2203-2208, ASME 1997. |
Johnson et al., “Performance Measurements of Tertiary Storage Devices”, Proceedings of the 24th VLDB Conference, New York, pp. 50-61, 1998. |
Ku, “Investigation of Hydrodynamic Bearing Friction in Data Storage information System Spindle Motors”, ISPSvol. 1, Advances in Information Storage and Processing Systems, pp. 159-165, ASME 1995. |
Lindner, “Disk drive mounting”, IBM Technical Disclosure Brochure, vol. 16, No. 3, pp. 903-904, Aug. 1973. |
Low, Y.L. et al., “Thermal network model for temperature prediction in hard disk drive”, Microsyst Technol, 15: 1653-1656 (2009). |
McAuley, “Recursive Time Trapping for Synchronization of Product and Chamber Profiles for Stress Test”, Delphion, 3 pages (Jun. 1988), https://www.delphion.com/tdbs/tdb, (retrieved Mar. 18, 2009). |
Morgenstern, Micropolis Drives Target High-end Apps; Technology Provides Higher Uninterrupted Data Transfer. (Applications; Microdisk AV LS 3020 and 1050AV and I 760AV LT Stackable Hard Drive Systems) (Product Announcement) MacWeek, vol. 8, No. 6, p. 8; Feb. 7, 1994. |
Morris, “Zero Cost Power and Cooling Monitor System”, 3 pages (Jun. 1994) https://www.delphion.com/tdbs/tdb (retrieved Jan. 15, 2008). |
Nagarajan, “Survey of Cleaning and cleanliness Measurement in Disk Drive Manufacture”, North Carolina Department of Environment and Natural Resources, 13-21 (Feb. 1997). |
Park, “Vibration and Noise Reduction of an Optical Disk Drive by Using a Vibration Absorber Methods and Apparatus for Securing Disk Drives in a Disk”, IEEE Transactions on Consumer Electronics, vol. 48, Nov. 2002. |
Prater et al., “Thermal and Heat-Flow Aspects of Actuators for Hard Disk Drives”, InterSociety Conference on Thermal Phenomena, pp. 261-268, 1994. |
Ruwart et al., “Performance Impact of External Vibration on Consumer-grade and enterprise-class Disk Drives”, Proceedings ofthe 22nd IEEE/13th Goddard Conference on Mass Storage Systems and Technologies, 2005. |
Schroeder et al., “Disk Failures in the Real World: What does an MTTP of 1,000,000 hours mean to you?”, In FAST'07: 5th USENIX Conference on File and Storage Technologies, San Jose, CA, Feb. 14-16, 2007. |
Schulze et al., “How Reliable is a Raid?,” COMPCON Spring apos; 89. Thirty-Fourth IEEE Computer Society International Conference: Intellectual Leverage, Digest of papers; pp. 118-123, Feb. 27-Mar. 3, 1989. |
Seagate Product Marketing, “Seagate's Advanced Multidrive System (SAMS) Rotational Vibration Feature”, Publication TP-229D, Feb. 2000. |
Suwa et al., “Evaluation System for Residual Vibration from HDD Mounting Mechanism” IEEE Transactions on Magnetics, vol. 35, No. 2, pp. 868-873, Mar. 1999. |
Suwa et al., “Rotational Vibration Suppressor” IBM Technical Disclosure Bulletin Oct. 1991. |
Terwiesch et al., “An Exploratory Study of International Product Transfer and Production Ramp-Up in the Data Storage Industry”, The Information Storage Industry Center, University of California, pp. 1-31, 1999. www-iros.ucsd.edu/sloan/. |
Tzeng, “Dynamic Torque Characteristics of Disk-Drive Spindle Bearings”, ISPS—vol. 1, Advances in Information Storage and Processing Systems, pp. 57-63, ASME 1995. |
Tzeng, “Measurements of Transient Thermal Strains in a Disk-Drive Actuator”, InterSociety conference on Thermal Phenomena, pp. 269-274, 1994. |
Wilson—7000 disk Drive Analyzer Product Literature, date accessed Jan. 28, 2009, 2 pages. |
Winchester, “Automation Specialists Use Machine Vision as a System Development Tool”, IEE Computing & Control Engineering, Jun./Jul. 2003. |
Xyratex Product Test brochure, “Automated Production Test Solutions”, 2006. |
Xyratex Technology, LTD. V. Teradyne, Inc., Amended Joint Trial Exhibit List of Xyratex and Teradyne. Case No. CV 08-04545 SJO (PLAx), Nov. 12, 2009. |
Xyratex Technology, LTD. V. Teradyne, Inc., Teradyne, Inc's Prior Art Notice Pursuant to 35; U.S.C. Section 282. Case No. CV 08-04545 SJO (PLAx), Oct. 16, 2009. |
Xyratex to Debut its New Automated Test Solution for 2.5-Inch Disk Drives at DISKCON USA 2004, PR Newswire Europe (2004). |
Xyratex, “Continuous Innovation—Production Test Systems” www.xyratex.com/Products/production-test-system (1995-2008). |
Xyratex, “Key Advantages—Production Test Systems” www.xyratex.com/Products/production-test-system (1995-2008). |
Xyratex, “Process Challenges in the Hard Drive Industry” slide presentation, Asian Diskcon (2006). |
Xyratex, “Production Test Systems” www.xyratex.com/Products/production-test-system (1995-2008). |
Xyratex, “Single cell—Production Test Systems” www.xyratex.com/Products/production-test-system (1995-2008). |
Xyratex, “Storage Infrastructure” www.xyratex.com/Products/storage-infrastructure/default.aspx (1995-2008). |
Xyratex, “Testing Drives Colder—Production Test Systems” www.xyratex.com/Products/production-test-system (1995-2008). |
International Preliminary Report on Patentability for PCT/US2018/046740, 6 pages (dated Mar. 12, 2020). |
Number | Date | Country | |
---|---|---|---|
20190064305 A1 | Feb 2019 | US |