Capacitance measurement system and methods

Information

  • Patent Grant
  • 9500686
  • Patent Number
    9,500,686
  • Date Filed
    Wednesday, July 27, 2011
    12 years ago
  • Date Issued
    Tuesday, November 22, 2016
    7 years ago
Abstract
A first capacitor and a second capacitor are charged until voltage at the second capacitor settles to a settling voltage. While charging, the first capacitor is alternately switched between a current source and ground. When the settling voltage is reached, charging of the first capacitor is halted. The second capacitor continues to be charged until voltage at the second capacitor reaches a reference voltage. The amount of time it takes for the settling voltage to reach the reference voltage corresponds to a measure of capacitance on the first capacitor.
Description
FIELD

Embodiments of the present invention generally relate to capacitive sensors, and methods and systems that measure capacitance.


BACKGROUND

A capacitive sensor generally includes an electrode or an array of electrodes. When an object such as a finger or stylus is brought within range of an electrode, the capacitance of the electrode is changed by an amount that depends, at least in part, on the distance from the object to the electrode. For example, a set of electrodes may be arranged in parallel to define a sensing region, and the position of an object relative to the sensing region can be determined based upon the change in capacitance per electrode induced by the object. In simple terms, a profile of capacitance versus electrode can be used to unambiguously determine the position of an object in, for example, the x-direction—the x-coordinate corresponds to the peak of the profile. A second set of parallel electrodes arrayed perpendicular to the first set can be similarly used to determine the position of the object in the y-direction. A single electrode can be used to determine proximity (the z-direction).


Accurate measurements of capacitance changes induced by an object are needed so that the position of the object can be accurately determined. Accurate measurements of the background capacitance (e.g., the about of capacitance that is present even if an object is not in proximity) are also needed to account for noise that may be introduced by changes in ambient temperature or the presence of contaminants on the surface of the sensor, for example.


SUMMARY

Capacitive sensors should be noise resistant and should be able to achieve high resolution. Embodiments in accordance with the present invention provide these and other advantages.


In one embodiment, a current source charges a first capacitor (e.g., a senor capacitor) and a second capacitor (e.g., an internal capacitor) until voltages at the capacitors equilibrate at a settling voltage. In another embodiment, a third capacitor (e.g., a modification or external capacitor) is also charged until the voltages at each capacitor equilibrate at the settling voltage. In one embodiment, the first capacitor is alternately switched between the current source and ground until the settling voltage is reached. Sensitivity is proportional to signal-to-noise ratio (SNR). Switching of the first (e.g., sensor) capacitor reduces the outside noise sources on that capacitor that could inadvertently couple into the system.


When the settling voltage is reached, the first (sensor) capacitor is disconnected from the current source. The first capacitor can be switched to ground and disconnected from the second capacitor and optional third capacitor, so no coupled noise from the sensor affects the settled voltage. The current source will continue to charge the second capacitor until voltage at the second capacitor reaches a reference voltage (the third capacitor, if used, is similarly charged). The amount of time it takes for the settling voltage to reach the reference voltage corresponds to a measure of capacitance on the first capacitor. In one embodiment, a counter counts the number of cycles generated by an oscillator as the voltage increases from the settling voltage to the reference voltage.


In one embodiment, a comparator is used to compare the voltage at the capacitor(s) to the reference voltage. In one such embodiment, a low pass filter is coupled between the capacitor(s) and the comparator to reduce the effect of high frequency noise. In another such embodiment, the voltage is increased using a single slope analog-to-digital converter (ADC) that includes the current source, the counter and the comparator. The current source can be calibrated so that the settling voltage is just below the reference voltage, so that the count of oscillator cycles will have a larger dynamic range, increasing resolution.


In summary, high sensitivity and high resolution capacitance measurement systems and methods are described. The capacitance on the first capacitor can be accurately measured in the absence of an object to more precisely determined background capacitance. In the presence of an object, the change in capacitance on the first capacitor can be accurately measured, to detect the object with increased sensitivity and/or to more precisely locate the object relative to a sensing region. These and other objects and advantages of the various embodiments of the present invention will be recognized by those of ordinary skill in the art after reading the following detailed description of the embodiments that are illustrated in the various drawing figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of this specification, illustrate various embodiments of the present invention and, together with the description, serve to explain the principles of those embodiments.



FIG. 1 illustrates one embodiment of a capacitance measuring system, with switches set in one position.



FIG. 2 illustrates one embodiment of a capacitance measuring system, with switches set in another position.



FIG. 3 illustrates voltage versus time in the presence of an object, as measured in a capacitance measuring system according to an embodiment of the present invention.



FIG. 4 illustrates voltage versus time in the absence of an object, as measured in a capacitance measuring system according to an embodiment of the present invention.



FIG. 5 is a flowchart of one embodiment of a method for measuring capacitance according to the present invention.



FIG. 6 illustrates a flowchart 600 for one embodiment of a method for setting up a capacitance measurement device according to the present invention



FIG. 7A illustrates an embodiment of a capacitance sensing front end 700 of system 100 (FIG. 1).



FIG. 7B illustrates an embodiment of a capacitance sensing front end 700 of system 100 (FIG. 1).



FIG. 8 illustrates an embodiment of a capacitance sensing front end 800 of system 100 (FIGS. 1 and 7).



FIG. 9 illustrates another embodiment of a capacitance sensing front end 900 of system 100 (FIGS. 1 and 8).



FIG. 10A illustrates an embodiment of a method for scanning a sensor or sensors including three clocks, or oscillators (SYSCLK).



FIG. 10B illustrates an embodiment of a method for scanning capacitance sensors wherein an oscillator is adjusted in response to the scan outputs.





DETAILED DESCRIPTION

Reference will now be made in detail to the various embodiments of the present invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with these embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternates, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be understood that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present invention.



FIG. 1 illustrates one embodiment of a capacitance measuring system 100. In the example of FIG. 1, system 100 includes a number of capacitors Cs(1), Cs(2), . . . , Cs(N), which may be referred to as sensor capacitors or sensing capacitors, any one of which may also be referred to herein as a first capacitor. System 100 also includes a capacitor Cint, which may be referred to as a sampling capacitor or internal capacitor and which may also be referred to herein as a second capacitor. In one embodiment, system 100 also includes a capacitor Cmod, which may be referred to as a modification capacitor or external capacitor and which may also be referred to herein as a third capacitor. The capacitor Cint may be internal to a chip, and the capacitor Cmod may be external to the chip. The capacitor Cmod, though optional, can improve noise resistance and hence can increase sensitivity. The capacitor Cmod can also reduce or eliminate large voltage swings within the system.


The system 100 also includes a current source 110. IN one embodiment, current source 110 is an adjustable, digital current source that, once adjusted, supplies a constant charging current iDAC. The current source 110 is connected to the capacitors Cint and Cmod by a bus 115. In one embodiment, the bus 115 is an analog bus.


System 100 also includes switching circuitry that includes a number of switches such as switches 120 and 121. The current source 110 can be connected to the capacitors Cs(1), Cs(2), . . . , Cs(N), depending on the position of an intervening switch such as switch 120. The capacitors Cs(1), Cs(2), . . . , Cs(N) can also be connected to ground, depending on the position of an intervening switch such as switch 121. If, for example, capacitor Cs(1) is connected to ground by closing switch 121, then switch 120 is open so that capacitor Cs(1) is disconnected from the current source 110 (see FIG. 2). Conversely, if capacitor Cs(1) is connected to current source 110 by closing switch 120, then switch 121 is opened.


In the example of FIG. 1, system 100 also includes an optional low pass filter (LPF) 130, a comparator 135, an oscillator 140, a counter (or timer) 145, and processing circuitry 150 (e.g., a microprocessor). The low pass filter 130, if present, helps to prevent the input of high frequency noise to the comparator 135.


In operation, system 100 measures the capacitance on each of the sensor capacitors Cs(1), Cs(2), . . . , Cs(N). In the example of FIG. 1, capacitance is measured on one sensor capacitor at a time. In general, the capacitance on a selected capacitor (e.g., Cs(1)) is translated into an effective resistance by switching the capacitor Cs(1) between the bus 115 and ground (effective resistance is sometimes referred to as a capacitive reactance, measured in ohms). Switching of the capacitor Cs(1) reduces the outside noise sources on that capacitor that could inadvertently couple into the system 100. The current source 110 is used to create a voltage drop across the effective resistance. The voltage drop is sampled using the sampling capacitor Cint and measured using the current source 110, oscillator 140 and counter 145.


More specifically, in the first stage of operation, the selected capacitor (e.g., Cs(1)) is connected to bus 115 and current source 110 by closing switch 120 (switch 121 is open). Change flows into the capacitors Cs(1), Cint and Cmod from the current source 110. During the first stage, the capacitor Cs(1) is alternately switched between the bus 115 and ground by appropriately opening and closing the switches 120 and 121, until the settling voltage is reached. Each time the capacitor Cs(1) is switched between bus 115 and ground, an amount of charge is removed from the parallel capacitors Cint and Cmod. Charge from the capacitors Cint and Cmod can be transferred to Cs(1) until the voltage—referred to herein as the settling voltage—is the same at each of these capacitors.


In one embodiment, the capacitors Cint and Cmod are precharged to a preset voltage (e.g., the comparator 135 reference voltage Vref) using a voltage source (not shown). By starting at a preset voltage, the time needed to reach the settling voltage can be reduced.


As mentioned above, each time the capacitor Cs(1) is switched between bus 115 and ground, an amount of charge Qsensor is removed from the parallel capacitors Cint and Cmod:

Qsensor=CsensorV.


Over time, this charge movement acts like a current:

Qsensor/t=CsensorV/t.


The amount of current depends on the capacitance of sensor Cs(1) (Csensor), the switching frequency f (the frequency at which the sensor capacitor Cs(1) is switched between bus 115 and ground), and the voltage:

Isensor=fCsensorV.


Solving for voltage:






V
=



I
sensor


fC
sensor


.





The capacitance on Cs(1) can be thought of as a resistor based on Ohm's Law, resulting an effective resistance of:

R=1/(fCsensor).


The constant charging current iDAC flows through this effective resistance. The voltage across the effective resistance is the resulting voltage on the capacitors Cint and Cmod:






V
=


1

fC
sensor





(
iDAC
)

.






Thus, the switching circuitry (e.g., switches 120 and 121) acts as a capacitance-to-voltage converter. Eventually, the charge will distribute (equilibrate) across the capacitors Cs(1), Cint and Cmod until the voltage is the same at each capacitor. The settling voltage is given by equation (1) and is based on the switching frequency f, the capacitance Csensor of Cs(1), and the amount of current iDAC. The capacitors Cint and Cmod act in effect as bypass capacitors that stabilize the resulting voltage.


Once the voltage settles to the settling voltage, the capacitor Cs(1) can be disconnected from current source 110. In addition, the capacitor Cs(1) can be switched to ground and disconnected from the capacitors Cint and Cmod (switch 121 is closed and switch 120 is opened; refer to FIG. 2), so that no coupled noise from the sensor affects the settled voltage. The settling voltage is held on the capacitors Cint and Cmod. The capacitor Cs(1) may remain connected to the capacitors Cint and Cmod, but better noise immunity is provided if it is disconnected.


Capacitance is measured in the second stage of operation. Once the capacitor Cs(1) is disconnected from current source 110 at the end of the first stage, the capacitors Cint and Cmod are charged by current source 110 until the voltage on those capacitors increases from the settling voltage to the threshold voltage (reference voltage Vref) of comparator 135. The amount of current supplied by the current source 110 in the second stage may be different from that of the first stage. A counter 145 counts the number of oscillator 140 cycles until the voltage reaches the reference voltage. The number of counts is related to the size of the capacitance Cint and Cmod:








Δ





V

t

=


iDAC


C
int

+

C
mod



.





Solving for t:






t
=




(


C
int

+

C
mod


)


Δ





V

iDAC

.





The above equation can be transformed to counts:







Counts
=




(


C
int

+

C
mod


)


Δ





V

iDAC



f
0



;





where f0 is the clock or cycle frequency of the oscillator 140 (which may be different from the frequency f of equation (1) above).


The number of counts corresponds to the about of capacitance on the capacitors Cint and Cmod, and therefore also corresponds to the amount of capacitance that was on the sensor capacitor Cs(1) (before it was switched to ground at the end of the first stage). The number of counts increases when the sensor capacitance increases.


The first and second stages described above can be repeated to measure the capacitance on each of the other sensor capacitors Cs(2), . . . , Cs(N), and then repeated again starting with sensor capacitor Cs(1). Between measurement sequences, the current source 110 can be turned off, allowing the voltage on the capacitors Cint and Cmod to decrease; in one embodiment, the voltage decreases to the comparator reference voltage Vref. At the start of the next measurement sequence, the voltage will again be set to the settling voltage, as described above.


Capacitance measuring system 100 can be used as part of an interface (e.g., a touchpad or touchscreen) in an electronic device such as, but not limited to, a computing device (e.g., desktop, laptop, notebook), a handheld device (e.g., cell phone, smart phone, music player, game player, camera), or a peripheral device (e.g., keyboard). Capacitance measuring system 100 can be incorporated as part of a sensing system that can be used, for example, to determine whether or not an object (e.g., a user's finger, a probe, a stylus, etc.) is near or in contact with a sensing region. The sensor electrodes (specifically, the traces connecting the sensor capacitors to the rest of the system) may be made of any conductive material, including substantially transparent material such as indium tin oxide (ITO).


The capacitance measuring system described herein can also be sued to detect the presence of moisture, contaminants or the like on the surface of a sensing region. In general, capacitance measuring system 100 can be used to detect an element (e.g., an object or a substance) that is proximate to a sensing region. An element in contact with the sensing region is also proximate to that region, and locating the position of an element within the sensing region also includes detecting the element.


The presence of, for example, a finger in proximity to or in contact with the sensor capacitor Cs(1) will increase the capacitance on that sensor which, as shown by equation (1) above, will decrease the effective resistance of that capacitor. The lower effective resistance results in a lower settling voltage across the capacitors Cint and Cmod. Thus, it will take longer for the current source 110 to increase the voltage from the settling voltage to the reference voltage Vref, resulting in more counts relative to the number of counts that would be recorded in the absence of a finger.



FIG. 3 illustrates voltage versus time in the presence of an object, as measured in capacitance measuring system 100 (FIG. 2) according to an embodiment of the present invention. Time t0 corresponds to the beginning of the second stage of operation mentioned above, and so the voltage held on the capacitors Cint and Cmod (and also on the bus 115) is the settling voltage. In the embodiment of FIG. 2, the voltage on the capacitors Cint and Cmod (and on the bus 115) is increased using a single slope ADC that includes the current source 110, the counter 145 and the comparator 135. Other types of ADCs (e.g., a multi-slope ADC) can be used instead of a single slope ADC. At time t1, the voltage reaches the threshold voltage (Vref) on the comparator 135. In the example of FIG. 2, the counter counts the number of cycles generated by oscillator 140 between time t0 and time t1.



FIG. 4 illustrates voltage versus time in the absence of an object, as measured in a capacitance measuring system 100 (FIG. 2) according to an embodiment of the present invention. Relative to FIG. 3, the settling voltage is higher in the absence of an object. The voltage increases from the settling voltage to the threshold voltage at the same rate as in FIG. 3 but reaches the threshold voltage faster, resulting in fewer counts between time t0 and time t1 relative to FIG. 3.


To provide consistent sensitivity, the settling voltage is calibrated. The amount of current iDAC during the first operating stage (when the sensor capacitor is alternately switched between ground and the current source 110) determines the settling voltage. In one embodiment, at startup of the system 100 (in the absence of an object), a successive approximation technique is used to find a current iDAC that results in a settling voltage that is just below the threshold voltage Vref.


For example, the current source 110 may be controlled by an eight-bit signal. In successive approximation, the most significant bit is set and the resultant settling voltage is compared to the threshold voltage. Depending on the result of the comparison, the most significant bit either remains set or is cleared, and the next most significant bit is set. This process is repeated to determine the current iDAC that results in a settling voltage that is just below the threshold voltage Vref. As can be deduced from FIGS. 3 and 4, the dynamic range of the counts with an object present versus not present is greater as a result.


As mentioned above, the amount of current provided by current source 110 during the first stage of operation (during which the capacitors Cs(1), Cint and Cmod settle to the settling voltage) and during the second stage of operation (when the voltage on the capacitors Cint and Cmod is increased from the settling voltage to the threshold voltage) can be the same or different.


With reference again to FIG. 2, processing circuitry 150 can determine the presence of an object near a sensor capacitor Cs(1), Cs(2), . . . , Cs(N) by comparing the most recent count for a capacitor to either the count recorded for that capacitor from the preceding measurement sequence or a stored baseline value. The object will be closest to the sensor capacitor that experiences the highest count. Movement of an object relative to the sensor capacitors can be detected by monitoring the count per sensor capacitor over time.


The stored baseline value will account for the presence of contaminants, for example, that may have accumulated on the surface of the sensor surface (e.g., on the surface of a touchpad). In general, the stored baseline value can account for effects that may affect the performance (accuracy) of system 100. The stored baseline value can be updated over time.



FIG. 5 is a flowchart 500 of one embodiment of a method for measuring capacitance according to the present invention. Although specific steps are disclosed in flowchart 500, such steps are exemplary. That is, embodiments of the present invention are well-suited to performing various other steps or variations of the steps recited in flowchart 500. The steps in flowchart 500 may be performed in any order different that presented and that the steps in flowchart 500 are not necessarily performed in the sequence illustrated. Furthermore, the features of the various embodiments described above can be used alone or in combination.


In block 510, with reference also to FIG. 1, a current source charges a first capacitor (e.g., sensor capacitor Cs(1)) and a second capacitor (e.g., capacitor Cint) until their respective voltages equilibrate at a settling voltage. In one embodiment, the first capacitor is switched back and forth between the current source and ground until the settling voltage is reached. In actuality, due to the switching of the first capacitor, there is charging by the current source and discharging from the first capacitor, but the net effect is charging. In one embodiment, the current source also charges a third capacitor (e.g., capacitor Cmod) until the voltages at each capacitor equilibrate at the settling voltage.


In block 520, when the settling voltage is reached, the first capacitor (Cs(1)) is disconnected from the current source. In one embodiment, the first capacitor (Cs(1)) is also switched to ground and disconnected from the capacitors Cint and Cmod. The current source continues to charge the second capacitor (Cint) and the optional third capacitor (Cmod) until voltages at the respective capacitors reach a reference voltage that is greater than the settling voltage.


In block 530, in one embodiment, oscillatory cycles are counted until the settling voltage reaches the reference voltage. In general, the amount of time it takes for the settling voltage reaches the reference voltage is determined.


Blocks 510, 520, and 530 can be repeated for each sensor capacitor Cs(1), Cs(2), . . . , Cs(N). The count per sensor capacitor can be compared across the sensor to determine the position of an object, and the count per sensor can be compared to a preceding count to detect the presence of an object (or to determine that a previously detected object is no longer presence).



FIG. 6 is a flowchart 600 of one embodiment of a method for setting up a capacitance measurement device according to the present invention. In block 610, parameters that configure the capacitance measurement device are loaded. Such parameters may include the value for the programmable current source (110, FIG. 1), routing to the capacitance sensing input under test, oscillator speeds sources for the digital conversion (140, FIG. 140 and block 530, FIG. 5), and reference voltages for the comparator (135, FIG. 1). Parameters loaded in block 610 may include other adjustable or preset values or configurations used in the capacitance measurement device. Such parameters may be used to adjust the sensitivity, interconnect, timing or output of the capacitance sensing device.


In block 620, the current source (110, FIG. 1) is set up and an external capacitor is set up (Cmod, FIG. 1). The current source may set up using parameters of block 610 and is configured to charge the sensed capacitor (see FIG. 1) at a certain rate. The external capacitor may be used to filter the capacitance sensing and provide a more stable measurement. The enabling of the external capacitor may include writing to its register location to configure the external capacitor to a certain value. In one embodiment, the external capacitor may be integrated into the sensing integrated circuit. In this embodiment, there may be four or more capacitance settings. In another embodiment, the external capacitor may be external to the sensing integrated circuit. In this embodiment, enabling the external capacitor is accomplished by enabling the pin I/O to which it is coupled.


In block 630, the external capacitor is placed on a bus (115, FIG. 1). The external capacitor may be placed on the bus by closing a switch coupled to both the bus and to the external capacitor.


In block 640, the successive approximation routine is performed. Because the external capacitor is already coupled to the bus when the successive approximation of block 640 is executed, a possible overflow condition and subsequent recalibration caused by the addition of a larger capacitor on the sensing circuit after calibration is avoided, improving the efficiency of the capacitance measurement. The overflow condition is avoided because the actual scans of the sensor have the external capacitor coupled to the bus. Because the actual scans of the sensor have the external bus coupled to the bus, coupling the external capacitor to the bus during the successive approximation step provides a better calibration.


In block 650, the sensors are scanned. Sensors may be illustrated by Cs(1), . . . , Cs(N) of FIG. 1. The scanning of the sensors is illustrated in FIG. 5 and described above.



FIG. 7A illustrates one embodiment of a capacitance sensing front end 700 of system 100 (FIG. 1). Front end 700 may include a capacitor CS to me measured. Capacitor CS may have one electrode coupled to a ground potential. The other electrode of capacitor CD may be coupled to an programmable current DAC (IDAC) 710 which is configured to supply a current to the capacitor CS and sensing front end from a voltage potential, VDD. The output of IDAC 710 and capacitor CS may be coupled alternately to an analog multiplexer bus (AMUX) 740 through switch 720 and to a ground potential through switch 722. Switch 720 may be used to couple capacitor 720 to the sensing circuitry, which is also coupled to AMUX 740. Switch 722 may be used to couple capacitor CS to ground, resetting the potential on capacitor CS. The sensing circuitry, including capacitor Cmod and comparator 750 may also be coupled to AMUX 740. In one embodiment, capacitor Cmod may have a capacitance to ground. Closing switch 720 couples capacitor CS to capacitor Cmod a comparator 750 through AMUX 740 for the scan described in FIG. 5.



FIG. 7B illustrates another embodiment of a capacitance sensing front end 700 of system 100 (FIG. 1). In this embodiment the connection of Cmod to the input of comparator 750 and to switch 720 is through a pin tap 760. Direct coupling of the comparator 750 input, Cmod and switch 720 removes parasitic capacitance that is added by the AMUX (740, FIG. 7A) and reduces noise coupling into the input of comparator 750. Removal of AMUX-induces parasitic capacitance and the reduction of noise coupling into the input of comparator 750 improves performance of the capacitance sensing circuit by providing a cleaner measured signal to the counter and processing circuitry (145 and 150, FIG. 1). While this embodiment is shown with a pin tap 760, other embodiment may include a direct connection to an internal capacitor and Cmod. In such embodiments, a pin tap may not be necessary, but a direct connection to an internal capacitor provides the same benefits to the measurement system by removing parasitic capacitance and reducing the noise coupled into the measurement circuitry.



FIG. 8 illustrates another embodiment of a capacitance sensing front end 800 of system 100 (FIGS. 1 and 7). In this embodiment, a register buffer (REG BUF) is coupled intermediate to switch 820 and pin tap 860 (analogous to switch 720 and pin tap 760, FIG. 7). In this embodiment, REG BUF 870 may be a programmable reference buffer. REG BUF 870 may be set to a number of reference voltages and use to charge the pin tap (or AMUX of FIG. 7A) to a reference voltage. In this embodiment the parasitic capacitance the capacitance sensing front end 800 and the pin tap 870 may be compensated for by rapidly charging the measurement circuit before beginning the actual scan.



FIG. 9 illustrates another embodiment of a capacitance sensing front end 900 of system 100 (FIGS. 1 and 8). In this embodiment, a second comparator 955 is coupled to pin tap 960 in parallel to comparator 950 (analogous to comparator 750, FIG. 7). In this embodiment comparators 950 and 955 may use different reference voltages VREF1 (comparator 950) and VREF2 (comparator 955). The use of two comparators allows for fast, hardware-based changes to sensitivity, which may improve performance and speed up dynamic sensing thresholds for applications with rapidly changing conditions.


Capacitance sensing is sensitive to noisy environments. High-frequency noise sources may couple into the sensing circuitry in such a way that hardware improvements alone are not sufficient to buffer or block the signal. In such situations, it may be necessary to perform a second level of processing or control. FIGS. 10A and 10B illustrate two embodiments for improving the capacitance sensing performance by measuring or interacting with a noise source.



FIG. 10A illustrates a first embodiment, three clocks, or oscillators (SYSCLK), are used to scan the sensor(s). For scan 1 1021, SYSCLK 1 1011 is the oscillator frequency. The scan output of scan 1 1021 is stored in a memory location (not shown) and a second scan, scan 2 1022 is performed using a second oscillator frequency, SYSCLK 2 1012. The output of scan 2 1022 is stored in a memory location (not shown) and a third scan, scan 3 1023 is performed using a third oscillator frequency, SYSCLK 3 1013. The output of the scan 3 is stored in a memory location (not shown). All of the stored values are then processed together. If the aggregate of all of the scans, 1, 2 and 3, is such that a conductive object is present on the sensor, the capacitance sensing circuit outputs such a result. In one embodiment, the processing of the three scans may be by voting. In this embodiment, each scan has a discrete output, on or off. If there are more “ons” than “offs,” a conductive object is determined to be present on the sensor.


While FIG. 10A illustrates an embodiment using three scans and three oscillator frequencies, one of ordinary skill in the art would understand that more or fewer scans and oscillator frequencies may be used. One of ordinary skill in the art would also understand that the number of oscillator frequencies may be fewer than the number of scans. That is, multiple scans may have the same oscillator frequencies. For such embodiments, the multiple scans may be used to remove low-frequency periodic noise from the capacitance sensing system.



FIG. 10B illustrates another embodiment of a method for scanning capacitance sensors where in the oscillator is adjusted in response to the scan outputs. In this embodiment, the output of the scan 1090 is a sensing result and a signal sent to IMO ADJUST 1080. IMO ADJUST 1080 may be used to change the internal main oscillator (IMO) frequency of the sensing device. The signal from scan 1090 may be a command to change the IMO or to keep it the same. Adjusting the IMO frequency may move the sensing circuit out of phase with possible noise sources. The output of IMO ADJUST 1080 is sent to IMO TRIM 1070, wherein the IMO frequency is trimmed for use by the capacitance sensing circuitry. The trimmed IMO frequency is then sent to SYSCLK 1060 and divided down and routed to the necessary circuit elements for performing a capacitance sensing scan. Once the scan is completed, the result may sent to the processing circuitry and again to IMO adjust 1080. The embodiment illustrated in FIG. 10B may allow for dynamic, real-time adjustment of capacitance sensing parameters in response to noise signals in the system. It also may improve the rate of scanning by not requiring multiple scans of each sensor at different frequencies to determine a result. One of ordinary skill in the art would understand that the methods illustrated by FIGS. 10A and 10B may be combined to achieve possible better noise performance still.


Embodiments of the present invention are thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the below claims.

Claims
  • 1. A system for measuring capacitance comprising: a current source coupled to a first node of a first capacitor and to a first node of a second capacitor, the current source configured to supply charge to the first and second capacitors, wherein the charge supplied to the first and second capacitors generates a voltage potential across the first and second capacitors;a first switch configured to couple the current source and the first node of the first capacitor to the first node of the second capacitor;a second switch configured to couple the first node of the first capacitor to a second node of the second capacitor; anda circuit configured to measure the voltage potential across the first and second capacitors, wherein, the second capacitor is coupled to the measurement circuit after the current source is configured and coupled to the first node of the first capacitor and after a voltage potential across the first capacitor has reached a settling voltage, andthe current source is configured to provide a charge on the first capacitor according to a predetermined charge rate.
  • 2. The system of claim 1 wherein the first and second capacitors are coupled to the current source and to the voltage measurement circuit through a multiplexer bus.
  • 3. The system of claim 1, wherein the second capacitor is coupled to the voltage measurement circuit and the current source through a pin tap.
  • 4. The system of claim 1, wherein the voltage measurement circuit comprises a first comparator comprising a first input coupled to the first and second capacitors, a second input coupled to a first reference voltage, and an output coupled to a processing means.
  • 5. The system of claim 4, wherein the voltage measurement circuit further comprises a second comparator comprising a first input coupled to the first and second capacitors, a second input coupled to a second reference voltage, and an output coupled to a processing means.
  • 6. The system of claim 1 further comprising a reference buffered coupled intermediate to the current source and the second capacitor.
  • 7. The system of claim 6, wherein the reference buffer is configured to charge the second capacitor at a rate substantially greater than the programmable current source.
  • 8. The system of claim 1, wherein the first capacitor is a capacitance sensing input configured to have a variable capacitance in response to capacitance coupling to an activating element.
  • 9. The system of claim 8, wherein the variable capacitance is capacitance between the first node of the first capacitor and a ground potential.
  • 10. The system of claim 8, wherein the variable capacitance is a mutual capacitance between the first node of the first capacitor and a drive electrode, the drive electrode configured to provide a variable voltage signal.
  • 11. A method for measuring a capacitive input comprising: configuring a current source to charge a first capacitor, wherein a first node of the first capacitor is the capacitive input and wherein the current source has an adjustable output;coupling the first capacitor and the current source to a multiplexer bus;coupling a second capacitor to the multiplexer bus;charging a first capacitor and a second capacitor until voltage at said second capacitor settles to a settling voltage derived from the current source, a settling time, and the capacitance of the first capacitor, wherein during said charging said first capacitor is switched back and forth between a current source and ground;when said settling voltage is reached, halting charging of said first capacitor while continuing to charge said second capacitor until voltage at said second capacitor reaches a reference voltage that is greater than said settling voltage; anddetermining a measure of time for said settling voltage to reach said reference voltage, wherein said measure of time corresponds to a measure of capacitance on said first capacitor.
  • 12. The method of claim 11 further comprising: charging a third capacitor until voltages at said second and third capacitors settle to said settling voltage; andafter said settling voltage is reached and said charging of said first capacitor is halted, continuing charging said third capacitor until voltage at said third capacitor reaches said reference voltage.
  • 13. The method of claim 11 wherein said charging further comprises supplying a constant charging current to said first and second capacitors using a digital current source.
  • 14. The method of claim 11 wherein said determining comprises counting a first number of oscillatory cycles until said settling voltage reaches said reference voltage, wherein said first number corresponds to said measure of capacitance on said first capacitor.
  • 15. The method of claim 14 further comprising: halting charging of said second capacitor and reducing voltage at said second capacitor to less than said threshold voltage after voltage at said second capacitor reaches said threshold voltage;charging said first and second capacitors until voltage at said second capacitor settles to said settling voltage;halting charging of said first capacitor while continuing to charge said second capacitor until voltage at said second capacitor again reaches said reference voltage when said settling voltage is again reached; andcounting a second number of oscillatory cycles until voltage at said second capacitor reaches said reference voltage.
  • 16. The method of claim 15 further comprising comparing said first and second numbers to identify a change in said measure of capacitance on said first capacitor.
  • 17. The method of claim 11 wherein said first capacitor is one of a plurality of capacitors, wherein said method further comprises measuring capacitance for each capacitor of said plurality of capacitors.
  • 18. The method of claim 11 further comprising detecting an element in sensing range of at least one of said capacitors based on capacitances measured for said plurality of capacitors.
  • 19. The method of claim 11 further comprising switching said first capacitor to ground and disconnecting said first capacitor from said second capacitor after said settling voltage is reached.
  • 20. The method of claim 11 further comprising: comparing the measure of time to a reference measure of time;adjusting an output of an internal main oscillator in response to the comparison;adjusting at least one of a plurality of trim values for the internal main oscillator after adjusting the output of the internal main oscillator;configuring an oscillator for the measuring of the capacitive input after adjusting the at least one the plurality of trim values; andrepeating the measuring of the capacitive input.
  • 21. An apparatus comprising a programmable current source coupled to a first variable capacitor and a switch network, the switch network configured to couple the programmable current source alternately to a ground potential and to a second capacitor and an input of a voltage measurement circuit, wherein the programmable current source is coupled to the second capacitor only after the voltage on the first variable capacitor and the second capacitor reaches a settling voltage.
  • 22. The apparatus of claim 21 wherein the voltage measurement comprises a first comparator comprising a first input coupled to the first and second capacitors, a second input coupled to a first reference voltage, and an output coupled to a processing means.
  • 23. The apparatus of claim 22 wherein the voltage measurement further comprises a second comparator comprising a first input coupled to the first and second capacitors, a second input coupled to a second reference voltage, and an output coupled to a processing means.
  • 24. The apparatus of claim 21 further comprising a reference buffer coupled intermediate to the switch network and the second capacitor, wherein the reference buffer is configured to charge the second capacitor at a rate substantially greater than the programmable current source.
  • 25. The system of claim 21, wherein the variable capacitor comprises a first node coupled to the measurement current source and a second node to a ground potential.
  • 26. The system of claim 21, wherein the variable capacitor is a mutual capacitor between a first node of the variable capacitor and a drive electrode, the drive electrode configured to provide a variable voltage signal.
RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 12/861,812, filed Aug. 23, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 11/823,982, filed Jun. 29, 2007, now issued as U.S. Pat. No. 7,804,307.

US Referenced Citations (454)
Number Name Date Kind
3660801 Paulfus May 1972 A
3921167 Fox Nov 1975 A
3979745 Bishop Sep 1976 A
4039940 Butler et al. Aug 1977 A
4103252 Bobick Jul 1978 A
4113378 Wirtz Sep 1978 A
4145748 Eichelberger et al. Mar 1979 A
4193063 Hitt et al. Mar 1980 A
4238711 Wallot Dec 1980 A
4264903 Bigelow Apr 1981 A
4266144 Bristol May 1981 A
4283713 Philipp Aug 1981 A
4292604 Embree et al. Sep 1981 A
4305135 Dahl et al. Dec 1981 A
4438404 Philipp Mar 1984 A
4475151 Philipp Oct 1984 A
4497575 Philipp Feb 1985 A
4558274 Carusillo Dec 1985 A
4560830 Perl Dec 1985 A
4586260 Baxter et al. May 1986 A
4614937 Poujois Sep 1986 A
4728932 Atherton Mar 1988 A
4736097 Philipp Apr 1988 A
4736191 Matzke et al. Apr 1988 A
4742331 Barrow et al. May 1988 A
4772983 Kerber et al. Sep 1988 A
4773024 Faggin et al. Sep 1988 A
4802103 Faggin et al. Jan 1989 A
4825147 Cook et al. Apr 1989 A
4831325 Watson, Jr. May 1989 A
4876534 Mead et al. Oct 1989 A
4878013 Andermo Oct 1989 A
4879461 Philipp Nov 1989 A
4879508 Andermo Nov 1989 A
4935702 Mead et al. Jun 1990 A
4940980 Tice Jul 1990 A
4953928 Anderson et al. Sep 1990 A
4962342 Mead et al. Oct 1990 A
4977480 Nishihara Dec 1990 A
5008497 Asher Apr 1991 A
5049758 Mead et al. Sep 1991 A
5055827 Philipp Oct 1991 A
5059920 Anderson et al. Oct 1991 A
5068622 Mead et al. Nov 1991 A
5073759 Mead et al. Dec 1991 A
5083044 Mead et al. Jan 1992 A
5095284 Mead Mar 1992 A
5097305 Mead et al. Mar 1992 A
5107149 Platt et al. Apr 1992 A
5109261 Mead et al. Apr 1992 A
5119038 Anderson et al. Jun 1992 A
5120996 Mead et al. Jun 1992 A
5122755 Nootbaar et al. Jun 1992 A
5122800 Philipp Jun 1992 A
5126685 Platt et al. Jun 1992 A
5146106 Anderson et al. Sep 1992 A
5160899 Anderson et al. Nov 1992 A
5165054 Platt et al. Nov 1992 A
5166562 Allen et al. Nov 1992 A
5204549 Platt et al. Apr 1993 A
5214388 Vranish et al. May 1993 A
5237879 Speeter Aug 1993 A
5243554 Allen et al. Sep 1993 A
5248873 Allen et al. Sep 1993 A
5260592 Mead et al. Nov 1993 A
5270963 Allen et al. Dec 1993 A
5276407 Mead et al. Jan 1994 A
5281862 Ma Jan 1994 A
5289023 Mead Feb 1994 A
5294889 Heep et al. Mar 1994 A
5303329 Mead et al. Apr 1994 A
5305017 Gerpheide Apr 1994 A
5323158 Ferguson, Jr. Jun 1994 A
5324958 Mead et al. Jun 1994 A
5331215 Allen et al. Jul 1994 A
5336936 Allen et al. Aug 1994 A
5339213 O'Callaghan Aug 1994 A
5349303 Gerpheide Sep 1994 A
5373245 Vranish Dec 1994 A
5374787 Miller et al. Dec 1994 A
5381515 Platt et al. Jan 1995 A
5384467 Plimon et al. Jan 1995 A
5386219 Greanias et al. Jan 1995 A
5408194 Steinbach et al. Apr 1995 A
5424756 Ho et al. Jun 1995 A
5461321 Sanders et al. Oct 1995 A
5479103 Kernahan et al. Dec 1995 A
5488204 Mead et al. Jan 1996 A
5495077 Miller et al. Feb 1996 A
5518078 Tsujioka et al. May 1996 A
5525980 Jahier et al. Jun 1996 A
5541580 Gerston et al. Jul 1996 A
5541878 LeMoncheck et al. Jul 1996 A
5543588 Bisset et al. Aug 1996 A
5543590 Gillespie et al. Aug 1996 A
5543591 Gillespie et al. Aug 1996 A
5555907 Philipp Sep 1996 A
5565658 Gerpheide et al. Oct 1996 A
5566702 Philipp Oct 1996 A
5572205 Caldwell et al. Nov 1996 A
5629891 LeMoncheck et al. May 1997 A
5648642 Miller et al. Jul 1997 A
5670915 Cooper et al. Sep 1997 A
5672959 Der Sep 1997 A
5680070 Anderson et al. Oct 1997 A
5682032 Philipp Oct 1997 A
5684487 Timko Nov 1997 A
5691513 Yamamoto et al. Nov 1997 A
5730165 Philipp Mar 1998 A
5757368 Gerpheide et al. May 1998 A
5760852 Wu et al. Jun 1998 A
5763909 Mead et al. Jun 1998 A
5763924 Lum et al. Jun 1998 A
5767457 Gerpheide et al. Jun 1998 A
5796183 Hourmand Aug 1998 A
5801340 Peter Sep 1998 A
5812698 Platt et al. Sep 1998 A
5841078 Miller et al. Nov 1998 A
5844265 Mead et al. Dec 1998 A
5854625 Frisch et al. Dec 1998 A
5861583 Schediwy et al. Jan 1999 A
5861875 Gerpheide Jan 1999 A
5864242 Allen et al. Jan 1999 A
5864392 Winklhofer et al. Jan 1999 A
5880411 Gillespie et al. Mar 1999 A
5889236 Gillespie et al. Mar 1999 A
5914465 Allen et al. Jun 1999 A
5914708 LaGrange et al. Jun 1999 A
5920309 Bisset et al. Jul 1999 A
5920310 Faggin et al. Jul 1999 A
5926566 Wang et al. Jul 1999 A
5942733 Allen et al. Aug 1999 A
5943052 Allen et al. Aug 1999 A
5949264 Lo Sep 1999 A
5969513 Clark Oct 1999 A
6023422 Allen et al. Feb 2000 A
6028271 Gillespie et al. Feb 2000 A
6028959 Wang et al. Feb 2000 A
6037929 Ogura et al. Mar 2000 A
6037930 Wolfe et al. Mar 2000 A
6060957 Kodrnja et al. May 2000 A
6067019 Scott May 2000 A
6097432 Mead et al. Aug 2000 A
6140853 Lo Oct 2000 A
6145850 Rehm Nov 2000 A
6148104 Wang et al. Nov 2000 A
6184871 Teres et al. Feb 2001 B1
6185450 Seguine et al. Feb 2001 B1
6188228 Philipp Feb 2001 B1
6188391 Seely et al. Feb 2001 B1
6191723 Lewis Feb 2001 B1
6222528 Gerpheide et al. Apr 2001 B1
6239389 Allen et al. May 2001 B1
6249447 Boylan et al. Jun 2001 B1
6262717 Donohue et al. Jul 2001 B1
6271719 Sevastopoulos Aug 2001 B1
6271720 Sevastopoulos Aug 2001 B1
6271835 Hoeksma Aug 2001 B1
6278283 Tsugai Aug 2001 B1
6280391 Olson et al. Aug 2001 B1
6288707 Philipp Sep 2001 B1
6295052 Kato et al. Sep 2001 B1
6304014 England et al. Oct 2001 B1
6320184 Winklhofer et al. Nov 2001 B1
6323846 Westerman et al. Nov 2001 B1
6326859 Goldman et al. Dec 2001 B1
6342817 Crofts et al. Jan 2002 B1
6344773 Sevastopoulos et al. Feb 2002 B1
6353200 Schwankhart Mar 2002 B1
6353337 Nasu et al. Mar 2002 B2
6366099 Reddi Apr 2002 B1
6377009 Philipp Apr 2002 B1
6377129 Rhee et al. Apr 2002 B1
6380929 Platt Apr 2002 B1
6380931 Gillespie et al. Apr 2002 B1
6414671 Gillespie et al. Jul 2002 B1
6424338 Anderson Jul 2002 B1
6430305 Decker Aug 2002 B1
6441073 Tanaka et al. Aug 2002 B1
6441682 Vinn et al. Aug 2002 B1
6445257 Cox et al. Sep 2002 B1
6448911 Somayajula Sep 2002 B1
6449195 Min et al. Sep 2002 B1
6452514 Philipp Sep 2002 B1
6457355 Philipp Oct 2002 B1
6459321 Belch Oct 2002 B1
6466036 Philipp Oct 2002 B1
6473069 Gerpheide Oct 2002 B1
6489899 Ely et al. Dec 2002 B1
6490203 Tang Dec 2002 B1
6498720 Glad Dec 2002 B2
6499359 Washeleski et al. Dec 2002 B1
6522083 Roach Feb 2003 B1
6522128 Ely et al. Feb 2003 B1
6522187 Sousa Feb 2003 B1
6523416 Takagi et al. Feb 2003 B2
6534970 Ely et al. Mar 2003 B1
6535200 Philipp Mar 2003 B2
6570557 Westerman et al. May 2003 B1
6574095 Suzuki Jun 2003 B2
6577140 Wenman Jun 2003 B1
6583632 Von Basse et al. Jun 2003 B2
6587093 Shaw et al. Jul 2003 B1
6597347 Yasutake Jul 2003 B1
6610936 Gillespie et al. Aug 2003 B2
6614313 Crofts et al. Sep 2003 B2
6624640 Lund et al. Sep 2003 B2
6639586 Gerpheide Oct 2003 B2
6642857 Schediwy et al. Nov 2003 B1
6649924 Philipp et al. Nov 2003 B1
6667740 Ely et al. Dec 2003 B2
6673308 Hino et al. Jan 2004 B2
6677932 Westerman Jan 2004 B1
6680731 Gerpheide et al. Jan 2004 B2
6683462 Shimizu Jan 2004 B2
6690066 Lin et al. Feb 2004 B1
6700392 Haase Mar 2004 B2
6705511 Dames et al. Mar 2004 B1
6714817 Daynes et al. Mar 2004 B2
6720777 Wang Apr 2004 B2
6730863 Gerpheide et al. May 2004 B1
6731121 Hsu et al. May 2004 B1
6744258 Ishio et al. Jun 2004 B2
6750852 Gillespie et al. Jun 2004 B2
6753801 Rossi Jun 2004 B2
6781577 Shigetaka Aug 2004 B2
6788221 Ely et al. Sep 2004 B1
6798218 Kasperkovitz Sep 2004 B2
6806693 Bron Oct 2004 B1
6809275 Cheng et al. Oct 2004 B1
6810442 Lin et al. Oct 2004 B1
6825673 Yamaoka Nov 2004 B1
6838887 Denen et al. Jan 2005 B2
6839052 Kramer Jan 2005 B1
6856433 Hatano et al. Feb 2005 B2
6859159 Michalski Feb 2005 B2
6861961 Sandbach et al. Mar 2005 B2
6873203 Latham, II et al. Mar 2005 B1
6879215 Roach Apr 2005 B1
6882338 Flowers Apr 2005 B2
6888536 Westerman et al. May 2005 B2
6888538 Ely et al. May 2005 B2
6891531 Lin May 2005 B2
6893724 Lin et al. May 2005 B2
6897673 Savage et al. May 2005 B2
6914547 Swaroop et al. Jul 2005 B1
6933873 Horsley et al. Aug 2005 B1
6940291 Ozick Sep 2005 B1
6946853 Gifford et al. Sep 2005 B2
6949937 Knoedgen Sep 2005 B2
6958594 Redl et al. Oct 2005 B2
6969978 Dening Nov 2005 B2
6970120 Bjornsen Nov 2005 B1
6970126 McCartney et al. Nov 2005 B1
6975123 Malang et al. Dec 2005 B1
6993607 Philipp Jan 2006 B2
6999009 Monney Feb 2006 B2
7006078 Kim Feb 2006 B2
7031886 Hargreaves Apr 2006 B1
7032051 Reay et al. Apr 2006 B2
7046230 Zadesky et al. May 2006 B2
7068039 Parker Jun 2006 B2
7075316 Umeda et al. Jul 2006 B2
7078916 Denison Jul 2006 B2
7098675 Inaba et al. Aug 2006 B2
7109978 Gillespie et al. Sep 2006 B2
7119550 Kitano et al. Oct 2006 B2
7129935 Mackey Oct 2006 B2
7148704 Philipp Dec 2006 B2
7151276 Gerlach et al. Dec 2006 B2
7158056 Wright et al. Jan 2007 B2
7158125 Sinclair et al. Jan 2007 B2
7205777 Schulz et al. Apr 2007 B2
7235983 McCartney et al. Jun 2007 B2
7245131 Kurachi et al. Jul 2007 B2
7253643 Seguine Aug 2007 B1
7262609 Reynolds Aug 2007 B2
7271608 Vermeire et al. Sep 2007 B1
7288946 Hargreaves et al. Oct 2007 B2
7301350 Hargreaves et al. Nov 2007 B2
7307485 Snyder et al. Dec 2007 B1
7333090 Tanaka et al. Feb 2008 B2
7339580 Westerman et al. Mar 2008 B2
7359816 Kumar et al. Apr 2008 B2
7375535 Kutz et al. May 2008 B1
7378810 Sutardja et al. May 2008 B1
7381031 Kawaguchi et al. Jun 2008 B2
7392431 Swoboda Jun 2008 B2
7417411 Hoffman et al. Aug 2008 B2
7417441 Reynolds Aug 2008 B2
7423437 Hargreaves et al. Sep 2008 B2
7439962 Reynolds et al. Oct 2008 B2
7449895 Ely et al. Nov 2008 B2
7450113 Gillespie et al. Nov 2008 B2
7451050 Hargreaves Nov 2008 B2
7453270 Hargreaves et al. Nov 2008 B2
7453279 Corbin, Jr. et al. Nov 2008 B2
7466307 Trent, Jr. et al. Dec 2008 B2
7479788 Bolender et al. Jan 2009 B2
7495659 Marriott et al. Feb 2009 B2
7499040 Zadesky et al. Mar 2009 B2
7504833 Seguine Mar 2009 B1
7521941 Ely et al. Apr 2009 B2
7598752 Li Oct 2009 B2
7598822 Rajagopal et al. Oct 2009 B2
7663607 Hotelling et al. Feb 2010 B2
7667468 Anderson Feb 2010 B1
7683641 Hargreaves et al. Mar 2010 B2
7804307 Bokma et al. Sep 2010 B1
7812827 Hotelling et al. Oct 2010 B2
7831070 Cheng et al. Nov 2010 B1
8040142 Bokma et al. Oct 2011 B1
8068097 Guanghai Nov 2011 B2
8082566 Stallings Dec 2011 B2
8093914 Maharyta et al. Jan 2012 B2
8144125 Peng et al. Mar 2012 B2
8144126 Wright Mar 2012 B2
8169238 Maharyta et al. May 2012 B1
8248084 Bokma et al. Aug 2012 B2
8358142 Maharyta Jan 2013 B2
20010048313 Frank Dec 2001 A1
20020000978 Gerpheide Jan 2002 A1
20020008543 Nasu et al. Jan 2002 A1
20020063688 Shaw et al. May 2002 A1
20020080014 McCarthy et al. Jun 2002 A1
20020191029 Gillespie et al. Dec 2002 A1
20030025679 Taylor et al. Feb 2003 A1
20030062889 Ely et al. Apr 2003 A1
20030063428 Nishi Apr 2003 A1
20030080755 Kobayashi May 2003 A1
20030091220 Sato et al. May 2003 A1
20030112021 Palata et al. Jun 2003 A1
20030156098 Shaw et al. Aug 2003 A1
20030160808 Foote et al. Aug 2003 A1
20030183864 Miyazawa Oct 2003 A1
20030183884 Miyazawa Oct 2003 A1
20030184315 Eberlein Oct 2003 A1
20030189419 Maki et al. Oct 2003 A1
20040041798 Kim Mar 2004 A1
20040056845 Harkcom et al. Mar 2004 A1
20040068409 Tanaka et al. Apr 2004 A1
20040169594 Ely et al. Sep 2004 A1
20040178989 Shahoian et al. Sep 2004 A1
20040178997 Gillespie et al. Sep 2004 A1
20040183560 Savage et al. Sep 2004 A1
20040217945 Miyamoto et al. Nov 2004 A1
20040239616 Collins Dec 2004 A1
20040239650 Mackey Dec 2004 A1
20040252109 Trent et al. Dec 2004 A1
20040263864 Lukacs et al. Dec 2004 A1
20050021269 Ely et al. Jan 2005 A1
20050024341 Gillespie et al. Feb 2005 A1
20050031175 Hara et al. Feb 2005 A1
20050062732 Sinclair et al. Mar 2005 A1
20050073302 Hibbs et al. Apr 2005 A1
20050073322 Hibbs et al. Apr 2005 A1
20050083110 Latham et al. Apr 2005 A1
20050099188 Baxter May 2005 A1
20050159126 Wang Jul 2005 A1
20050169768 Kawaguchi et al. Aug 2005 A1
20050270273 Marten Dec 2005 A1
20050275382 Stessman et al. Dec 2005 A1
20050280639 Taylor et al. Dec 2005 A1
20060022660 Itoh Feb 2006 A1
20060026535 Hotelling et al. Feb 2006 A1
20060032680 Elias et al. Feb 2006 A1
20060033508 Lee Feb 2006 A1
20060033724 Chaudhri et al. Feb 2006 A1
20060038793 Philipp Feb 2006 A1
20060049834 Umeda Mar 2006 A1
20060053387 Ording Mar 2006 A1
20060062889 Houston et al. Mar 2006 A1
20060066585 Lin Mar 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060097992 Gitzinger et al. May 2006 A1
20060108349 Finley et al. May 2006 A1
20060113974 Kan et al. Jun 2006 A1
20060114247 Brown Jun 2006 A1
20060119331 Jacobs et al. Jun 2006 A1
20060132111 Jacobs et al. Jun 2006 A1
20060139469 Yokota et al. Jun 2006 A1
20060152739 Silvestre Jul 2006 A1
20060164142 Stanley Jul 2006 A1
20060172767 Cathey et al. Aug 2006 A1
20060176718 Itoh Aug 2006 A1
20060187214 Gillespie et al. Aug 2006 A1
20060193156 Kaishita et al. Aug 2006 A1
20060197750 Kerr et al. Sep 2006 A1
20060197752 Hurst et al. Sep 2006 A1
20060227117 Proctor Oct 2006 A1
20060232559 Chien et al. Oct 2006 A1
20060258390 Cui et al. Nov 2006 A1
20060262101 Layton et al. Nov 2006 A1
20060267953 Peterson et al. Nov 2006 A1
20060273804 Delorme et al. Dec 2006 A1
20060290678 Lii Dec 2006 A1
20070046299 Hargreaves et al. Mar 2007 A1
20070069274 Elsass et al. Mar 2007 A1
20070074913 Geaghan et al. Apr 2007 A1
20070076897 Philipp Apr 2007 A1
20070100566 Coley May 2007 A1
20070132737 Mulligan et al. Jun 2007 A1
20070152983 Mckillop et al. Jul 2007 A1
20070164756 Lee Jul 2007 A1
20070176609 Ely et al. Aug 2007 A1
20070176903 Dahlin et al. Aug 2007 A1
20070228256 Mentzer et al. Oct 2007 A1
20070229469 Seguine Oct 2007 A1
20070236478 Geaghan et al. Oct 2007 A1
20070257894 Philipp Nov 2007 A1
20070263191 Shibazaki Nov 2007 A1
20070268243 Choo et al. Nov 2007 A1
20070268265 Xiaoping Nov 2007 A1
20070268273 Westerman et al. Nov 2007 A1
20070268274 Westerman et al. Nov 2007 A1
20070268275 Westerman et al. Nov 2007 A1
20070273659 Xiaoping et al. Nov 2007 A1
20070291013 Won Jong Dec 2007 A1
20070296709 GuangHai Dec 2007 A1
20080007529 Paun et al. Jan 2008 A1
20080007534 Peng et al. Jan 2008 A1
20080024455 Lee et al. Jan 2008 A1
20080036473 Jansson Feb 2008 A1
20080041639 Westerman et al. Feb 2008 A1
20080041640 Gillespie et al. Feb 2008 A1
20080042986 Westerman et al. Feb 2008 A1
20080042987 Westerman et al. Feb 2008 A1
20080042988 Westerman et al. Feb 2008 A1
20080042989 Westerman et al. Feb 2008 A1
20080042994 Gillespie et al. Feb 2008 A1
20080047764 Lee et al. Feb 2008 A1
20080048997 Gillespie et al. Feb 2008 A1
20080062140 Hotelling et al. Mar 2008 A1
20080068100 Goodnow et al. Mar 2008 A1
20080088595 Liu et al. Apr 2008 A1
20080100280 Masson et al. May 2008 A1
20080111714 Kremin May 2008 A1
20080116904 Reynolds et al. May 2008 A1
20080128182 Westerman et al. Jun 2008 A1
20080158178 Hotelling et al. Jul 2008 A1
20080179112 Qin et al. Jul 2008 A1
20080196945 Konstas Aug 2008 A1
20080250864 Shipton Oct 2008 A1
20080266263 Motaparti et al. Oct 2008 A1
20080278178 Philipp Nov 2008 A1
20090096758 Hotelling et al. Apr 2009 A1
20090322351 McLeod Dec 2009 A1
20100013791 Haga et al. Jan 2010 A1
20100328262 Huang et al. Dec 2010 A1
20110025629 Grivna et al. Feb 2011 A1
20110156724 Bokma et al. Jun 2011 A1
20110234523 Chang et al. Sep 2011 A1
20120043973 Kremin Feb 2012 A1
20130049771 Peng et al. Feb 2013 A1
Foreign Referenced Citations (3)
Number Date Country
0574213 Dec 1993 EP
05000604 Feb 2005 GB
0002188 Jan 2000 WO
Non-Patent Literature Citations (37)
Entry
Microchip Technology Inc., Document No. DS31002A, © 1997 Microchip Technology, Inc., p. 2-13 (cited by Applicant; available at http://ww1.microchip.com/downloads/en/DeviceDoc/31002a.pdf; no unlocked version available).
Dennis Seguine, “Capacitive Switch Scan,” Cypress Application Note AN2233a, Revision B, Apr. 14, 2005; 6 pages.
Seguine, Ryan, “Layout Guidelines for PSoC CapSense,” Cypress Semiconductor Corporation, Application Note AN2292, pp. 1-10, Jul. 22, 2005.
USPTO Advisory Action for U.S. Appl. No. 11/230,719 dated Nov. 30, 2007; 3 pages.
USPTO Final Rejection for U.S. Appl. No. 11/230,719 dated Sep. 7, 2007; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/230,719 dated Jan. 16, 2007; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/230,719 dated May 11, 2006; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/230,719 dated May 25, 2007; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/230,719 dated Aug. 28, 2006; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/230,719 dated Jan. 16, 2008; 4 pages.
“The Virtual Keyboard: I-Tech Bluetooth/Serial Virtual Laser Keyboard Available Nowl” The Virtual Laser Keyboard (VKB) Online Worldwide Shop, <http://www.virtual-laser-keyboard.com>, downloaded Apr. 13, 2006; 4 pages.
Chapweske, Adam; “The PS/2 Mouse Interface,” PS/2 Mouse Interfacing, 2001, retrieved on May 18, 2006; 10 pages.
Cypress Semiconductor Corporation, “CY8C21x34 Data Sheet,” CSR User Module, CSR V.1.0; Oct. 6, 2005; 36 pages.
Cypress Semiconductor Corporation, “Cypress Introduces PSoC(TM)-Based Capacitive Touch Sensor Solution,” Cypress Press Release; May 31, 2005; <http://www.cypress.com/portallserver>; retrieved on Feb. 5, 2007; 4 pages. Copyright 1995-2006 Cypress Semiconductor Corp.
Cypress Semiconductor Corporation, “FAN Controller CG6457AM and CG6462AM,” PSoC Mixed Signal Array Preliminary Data Sheet; May 24, 2005; 25 pages.
Cypress Semiconductor Corporation, “PSoC CY8C20x34 Technical Reference Manual (TRM),” PSoC CY8C20x34 TRM, Version 1.0, 2006; 218 pages. Copyright 2006 Cypress Semiconductor Corp.
Cypress Semiconductor Corporation, “PSboC Mixed-Signal Controllers,” Production Description; <http://www.cypress.com/portal/server>; retrieved on Sep. 27, 2005; 2 pages. copyright 1995-2005 Cypress Semiconductor Corp.
Cypress Semiconductor Corporation, “Release Notes srn017,” Jan. 24, 2007; 3 pages.
Lee, Mark; “EMC Design Considerations for PSoC CapSense Applications,” Cypress Semiconductor Corporation, Application Note AN2318; Sep. 16, 2005; 6 pages.
Mark Lee, “CapSense Best Practices,” Cypress Application Note AN2394; Oct. 19, 2006; 10 pages.
Ryan Seguine et al., “Layout Guidelines for PSoC CapSense”, Cypress Application Note AN2292, Revision B, Oct. 31, 2005, pp. 1-15.
Sedra, Adel S. et al., “Microelectronic Circuits,” 3rd Edition, Oxford University Press, pp. xiii-xx and 861-883, 1991; 20 pages.
The Authoritative Dictionary of IEEE Standards Terms, 2000, IEEE Press Publications, 7th Edition, pp. 1133-1134; 4 pages.
USPTO Final Rejection for Application No. 111729,818 dated Jul. 2, 2009; 14 pages.
USPTO Final Rejection for U.S. Appl. No. 12/861,812 dated Oct. 18, 2011; 10 pages.
USPTO Non Final Rejection for U.S. Appl. No. 11/823,982 dated Mar. 19, 2009; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/729,818 dated Dec. 17, 2008; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/861,812 dated Apr. 15, 2011; 26 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/729,818 dated Nov. 13, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/823,982 dated Oct. 6, 2009; 12 pages.
USPTO Notice of Allowance, U.S. Appl. No. 13/047,620, dated Apr. 11, 2012, 19 pages.
USPTO Restriction Requirement, U.S. Appl. No. 13/047,620, dated Feb. 27, 2012, 7 pages.
Van Ess, David; “Simulating a 555 Timer with PSoC,” Cypress Semiconductor Corporation, Application Note AN2286, May 19, 2005; 10 pages.
Wikipedia, The Free Encyclopedia “IBM PC Keyboard” http://en.wikipedia.or/wiki/PC—keyboard>accessed May 19, 2006; 3 pages.
USPTO Final Rejection for U.S. Appl. No. 13/590,390 dated Jun. 23, 2015; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 13/590,390 dated Mar. 10, 2015; 14 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/590,390 dated Jun. 29, 2016; 5 pages.
Continuation in Parts (2)
Number Date Country
Parent 12861812 Aug 2010 US
Child 13191806 US
Parent 11823982 Jun 2007 US
Child 12861812 US