Chemical mechanical polishing apparatus and method

Information

  • Patent Grant
  • 6179695
  • Patent Number
    6,179,695
  • Date Filed
    Friday, May 9, 1997
    27 years ago
  • Date Issued
    Tuesday, January 30, 2001
    24 years ago
Abstract
A chemical mechanical polishing apparatus and method can polish a surface of an object very precisely at a high speed irrespective of the presence of a local defect on the surface to be polished. By using a multiplex ring-shaped polishing pad, an effective surface to be polished is increased, and very precise and uniform polishing can be performed at a high speed. By using a plurality of polishing pads, having different diameters smaller than the diameter of the surface to be polished, provided with an interval on the same revolution radius on a revolution table, or by using a plurality of polishing pads, having the same diameter smaller than the diameter of the surface to be polished, provided at positions having different revolution radii on a revolution table, very precise and uniform polishing can be performed.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to a chemical mechanical polishing apparatus and method for precisely and efficiently polishing a substrate, such as a wafer or the like.




2. Description of the Related Art




Recently, as semiconductor devices are going to have ultrafine patterns and high steps, it is requested to very precisely flatten the surface of a substrate, such as an SOI (silicon on insulator) substrate, a semiconductor wafer of Si, GaAs, InP or the like. Chemical mechanical polishing (CMP) apparatuses, such as one to be described below, are known as processing means for very precisely flattening the surface of a substrate, such as the above-described one or the like.




As shown in

FIG. 13

, a conventional chemical mechanical polishing apparatus includes a table


3


for rotating an object to be processed which can detachably hold a substrate


4


, such as a wafer or the like, on a lower surface thereof, a polishing-tool rotating table


1


having an integrally-provided polishing pad


2


, having a diameter larger than the diameter of the substrate


4


, disposed below the rotating table


3


so as to face it, and a supply nozzle


6


for supplying the upper surface of the polishing pad


2


with an abrasive (polishing slurry)


7


. The substrate


4


is polished by providing the rotating table


3


, holding the substrate


4


, with a rotating movement indicated by an arrow B and a swinging movement indicated by a two-headed arrow C in a state of pressing the substrate


4


against the polishing pad


2


. A shaft


5


rotates the rotating table


3


with a processing pressure in an axial direction indicated by a block arrow while rotating the upper surface of the polishing pad


2


, provided as one body with the polishing-tool rotating table


1


, in the direction of an arrow A with the abrasive (polishing slurry)


7


.




In the above-described conventional approach, however, since the diameter of the polishing-tool rotating table having the polishing pad provided as one body therewith is larger than the diameter of the substrate, the following unsolved problems are present.




(1) The size of the polishing apparatus including the polishing-tool rotating table becomes large, and vibration occurs if the polishing-tool rotating table is rotated at too high a speed and hinders the very precise polishing of the surface to be polished of the substrate, serving as the object to be processed. Hence, the polishing-tool rotating table cannot be rotated at a high speed. As a result, the polishing speed (the amount of removal per unit time) cannot be increased, thereby increasing the processing cost.




(2) Since the substrate, serving as the object to be processed, is polished in a state in which the entire surface to be polished of the substrate contacts the polishing surface of the polishing pad, it is difficult to efficiently remove a local defect on the surface to be polished of the substrate if such a defect is present.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide a chemical mechanical polishing apparatus and method which can very precisely polish a surface to be polished of an object to be processed at a high speed irrespective of the presence of local defects, and which can efficiently polish the entire surface to be polished while increasing the effective contact area being polished, and which can improve the uniformity of polishing.




According to one aspect, the present invention which achieves the above-described object relates to a chemical mechanical polising apparatus for polishing a surface of an object while supplying an abrasive between the surface to be polished and a polishing surface of a polishing tool brought in contact with the surface to be polished with a predetermined processing pressure. The polishing tool includes a multiplex ring-shaped pad including a plurality of coaxially disposed ring-shaped polising pads having different diameters, and coaxially disposed cylindrical shafts for holding corresponding ones of the plurality of ring-shaped polishing pads.




According to another aspect, the present invention which achieves the above-described object relates to a chemical mechanical polishing apparatus for polishing a surface of an object by revolving and rotating a polishing surface of a polishing tool, brought in contact with the surface to be polished with a predetermined processing pressure, while supplying an abrasive between the surface to be polished and the polishing surface of the polishing tool. The polishing tool includes a multiplex ring-shaped pad including a plurality of coaxially disposed ring-shaped polishing pads having different diameters, and coaxially disposed cylindrical shafts for holding corresponding ones of the plurality of ring-shaped polishing pads. A rotation driving mechanism/linear driving mechanism for causing a corresponding one of the ring-shaped polishing pads to rotate and to move in an axial direction is connected to a corresponding one of the plurality of cylindrical shafts.




According to still another aspect, the present invention which achieves the above-described object relates to a chemical mechanical polishing apparatus, including a rotating table for rotating an object to be processed while detachably holding it, a slider for moving the rotating table in a radial direction while holding it, a revolution table for holding a plurality of polishing-tool units arranged with an equal interval in a circumferential direction so as to be rotatable and to be movable in an axial direction, a revolution driving mechanism for revolving the revolution table, and rotation driving mechanisms/linear driving mechanisms each for causing a polishing surface of a corresponding one of the plurality of polishing-tool units to rotate and to move in an axial direction. The apparatus polishes a surface of the object while supplying an abrasive between the surface to be polished and the polishing surfaces of the plurality of polishing-tool units brought in contact with the surface to be polished of the object with a predetermined processing pressure. Each of the plurality of polishing-tool units includes a multiplex ring-shaped pad including a plurality of coaxially disposed ring-shaped polising pads having different diameters, and coaxially disposed cylindrical shafts for holding corresponding ones of the plurality of ring-shaped polishing pads. A rotation driving mechanism/linear driving mechanism is connected to a corresponding one of the plurality of coaxially disposed cylindrical shafts.




According to still another aspect, the present invention which achieves the above-described object relates to a chemical mechanical polishing method for polishing a surface of an object while supplying an abrasive between the surface to be polished and a polishing tool brought in contact with the object with a predetermined processing pressure. The method includes the steps of using a multiplex ring-shaped polishing pad, including a plurality of coaxially disposed ring-shaped polishing pads having different diameters smaller than a diameter of the surface to be polished of the object to be processed, and polishing the surface to be polished by rotating and revolving the multiplex ring-shaped polishing pad in a state of contacting the surface to be polished of the object to be processed.




According to still another aspect, the present invention which achieves the above-described object relates to a chemical mechanical polishing apparatus for polishing a surface of an object while supplying an abrasive between the surface to be polished and a polishing surface of a polishing tool brought in contact with the surface to be polished with a predetermined processing pressure. The apparatus includes a rotating table for rotating the object to be processed while holding it, a slider for moving the rotating table in a radial direction while holding it, a revolution table for supporting a plurality of polishing tools, having different diameters smaller than a diameter of the object to be processed, with an interval on the same revolution radius so as to be rotatable and to be movable in an axial direction, a revolution-table rotation driving mechanism for revolving the revolution table, and rotation driving mechanisms/linear driving mechanisms each for causing a corresponding one of the plurality of polishing tools to rotate and to move in an axial direction.




According to still another aspect, the present invention which achieves the above-described object relates to a chemical mechanical polishing method for polishing a surface of an object while supplying an abrasive between the surface to be polished and a polishing surface of a polishing tool brought in contact with the surface to be polished with a predetermined processing pressure. The method includes the steps of preparing a plurality of polishing tools having respective polishing surfaces having different diameters smaller than a diameter of the surface to be polished of the object to be processed, and polishing the surface of the object by causing a polishing surface of a polishing tool selected from the plurality of polishing tools to revolve and rotate in a state of contacting the surface to be polished of the object to be processed.




According to still another aspect, the present invention which achieves the above-described object relates to a chemical mechanical polishing apparatus for polishing a surface of an object while supplying an abrasive between the surface to be polished and a polishing surface of a polishing tool brought in contact with the surface to be polished with a predetermined processing pressure. The appararus includes a rotating table for rotating the object to be processed while holding it, a slider for moving the rotating table in a radial direction while holding it, a revolution table for supporting a plurality of polishing tools, having the same diameter smaller than a diameter of the object to be processed, at positions having different revolution radii so as to be rotatable and movable in an axial direction, a revolution driving mechanism for revolving the revolution table, and rotation driving mechanisms/linear driving mechanisms each for causing a corresponding one of the plurality of polishing tools to rotate and to move in the axial direction.




According to still another aspect, the present invention which achieves the above-described object relates to a chemical mechanical polishing method for polishing a surface of an object while supplying an abrasive between the surface to be polished and a polishing surface of a polishing tool brought in contact with the surface to be polished with a predetermined processing pressure. The method includes the steps of preparing a plurality of polishing tools having respective polishing surfaces having the same diameter smaller than a diameter of the surface to be polished of the object to be processed, and polishing the surface of the object by causing a polishing surface of a polishing tool selected from the plurality of polishing tools to revolve and rotate in a state of contacting the surface to be polished of the object.




According to still another aspect, the present invention which achieves the above-described object relates to a chemical mechanical polishing apparatus for polishing a surface of an object while supplying an abrasive between the surface to be polished and a polishing surface of a polishing tool brought in contact with the surface to be polished with a predetermined processing pressure. The apparatus includes a rotating table for rotating the object to be processed while holding it, a slider for moving the rotating table in a radial direction while holding it, a revolution table for supporting a plurality of polishing tools, having different diameters smaller than a diameter of the object to be processed, with an interval on the different revolution radius so as to be rotatable and to be movable in an axial direction, a revolution-table rotation driving mechanism for revolving the revolution table, and rotation driving mechanisms/linear driving mechanisms each for causing a corresponding one of the plurality of polishing tools to rotate and to move in an axial direction.




According to still another aspect, the present invention which achieves the above-described object relates to a chemical mechanical polishing method for polishing a surface of an object while supplying an abrasive between the surface to be polished and a polishing surface of a polishing tool brought in contact with the surface to be polished with a predetermined processing pressure. The method includes the steps of preparing a plurality of polishing tools, having respective polishing surfaces having different diameters smaller than a diameter of the surface to be polished of the object to be processed, with an interval on the different revolution radius and polishing the surface to be polished of the object to be processed by causing a polishing surface of a polishing tool selected from the plurality of polishing tools to revolve and rotate in a state of contacting the surface to be polished of the object.




The foregoing and other objects, advantages and features of the present invention will become more apparent from the following detailed description of the preferred embodiments taken in conjunction with the accompanying drawings.




At one advantage, providing a diameter of the polishing pad smaller than that of the substrate to be polished reduces the vibration caused by the high speed rotation of the polishing tool. Consequently, polishing rate becomes increased.




As described in detail below, the choice of varied polishing methods allows the surface of the substrate to be entirely or partially polished with precision.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic side view illustrating the configuration of a chemical mechanical polishing apparatus according to a first embodiment of the present invention;





FIG. 2

is a diagram illustrating the relationship between a revolution table and each polishing-tool unit having a duplex ring-shaped polishing pad in the chemical mechanical polishing apparatus shown in

FIG. 1

;





FIG. 3

is a perspective view illustrating the lower surface of the duplex ring-shaped polishing pad shown in

FIG. 2

;





FIG. 4

is a schematic cross-sectional view illustrating the configuration of the polishing-tool unit having the duplex ring-shaped polishing pad shown in

FIG. 2

;





FIG. 5

is a schematic side view illustrating the configuration of a chemical mechanical polishing apparatus according to a second embodiment of the present invention;





FIG. 6

is a diagram illustrating the diameters and revolution radii of respective polishing tools in the chemical mechanical polishing apparatus shown in

FIG. 5

;





FIG. 7

is a schematic partial cross-sectional view of the chemical mechanical polishing apparatus shown in

FIG. 5

taken along line I—I shown in

FIG. 6

;





FIG. 8

is a schematic side view illustrating the configuration of a chemical mechanical polishing apparatus according to a third embodiment of the present invention;





FIG. 9

is a diagram illustrating the diameters and revolution radii of respective polishing tools in the chemical mechanical polishing apparatus shown in

FIG. 8

;





FIG. 10

is a schematic partial cross-sectional view of the chemical mechanical polishing apparatus shown in

FIG. 8

taken along line II—II shown in

FIG. 9

;





FIG. 11

is a diagram illustrating the relationship between a multiplex ring-shaped pad and a wafer in a fourth embodiment of the present invention;





FIG. 12

is a diagram illustrating the diameters and revolution radii of respective polishing tools in the chemical mechanical polishing apparatus according to a seventh embodiment of the present invention; and





FIG. 13

is a schematic perspective view illustrating the configuration of a conventional chemical mechanical polishing apparatus.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




A description will now be provided of preferred embodiments of the present invention with reference to the drawings.




First Embodiment




As shown in

FIG. 1

, a chemical mechanical polishing apparatus according to a first embodiment of the present invention includes a polishing station E


1


for causing a substrate W to be processed, such as a wafer or the like, to rotate and to horizontally move in a radial direction while detachably holding it, and a polishing head E


2


for causing respective polishing pads of a plurality of polishing-tool units


110


disposed with an equal interval in a circumferential direction above the polishing station E


1


to revolve and rotate while supporting the polishing-tool units


110


.




As shown in

FIG. 1

, the polishing station E


1


includes a slider


104


for moving a rotating table


105


in a radial direction while supporting it on the upper surface of a guide table


103


integrally provided on a base


101


, a linear driving mechanism (not shown) for moving the slider


104


, the rotating table


105


whose rotation shaft


106


is rotatably supported on the slider


104


via a radial bearing and a thrust bearing, and a rotation driving mechanism (not shown) for rotating the rotating table


105


, so as to cause the substrate W to rotate and to move in a radial direction while detachably holding it on the upper surface of the rotating table


105


.




The polishing head E


2


includes a revolution table


108


rotatably supported on a lower yoke


102




a,


extended above the polishing station E


1


, of a supporting member


102


, planted on the base


101


, via a radial bearing and a thrust bearing, and the three small-diameter polishing-tool units


110


which are disposed with an equal interval in a circumferential direction on the revolution table


108


and whose shafts


113


are supported so as to be rotatable and to be movable in a radial direction via bearings. The revolution table


108


is fixed on an output shaft of a revolution-table rotation driving mechanism


107


supported on an upper yoke


102




b


of the supporting member


102


, and is revolved at a predetermined revolution speed to cause the polishing-tool units


110


to revolve.




The three polishing-tool units


110


have the same configuration, which will be described with reference to

FIGS. 2 through 4

. The polishing-tool unit


110


includes a ring-shaped polishing pad


111


and a shaft


113


. An outer cylindrical shaft


113




a


of the shaft


113


is disposed so as to be rotatable and to be movable in a radial direction with respect to a lower supporting member


108




a


formed as one body with the revolution table


108


via bearings. An inner cylindrical shaft


113




b


of the shaft


113


is coaxially disposed within the outer cylindrical shaft


113




a


so as to be rotable and to be movable in a radial direction with respect to the outer cylindrical shaft


113




a


via bearings


115




b.


Polishing-pad holding members


112




a


and


112




b


having desired diameters are formed at lower portions of the cylindrical shafts


113




a


and


113




b,


respectively, and ring-shaped polishing pads


111




a


and


111




b


are integrally mounted on the lower surfaces of the polishing-pad holding members


112




a


and


112




b,


respectively. As shown in

FIGS. 2 and 3

, the ring-shaped polishing pads


111




a


and


111




b


have different diameters and are coaxially arranged.




Rotation driving mechanisms/linear driving mechanisms


114




a


and


114




b


(or rotation/linear driving mechanisms) mounted on the revolution table


108


are connected to the upper ends of the cylindrical shafts


113




a


and


113




b,


respectively. Thus, the ring-shaped polishing pads


111




a


and


111




b


can be independently rotated at high speeds and linearly moved in radial directions by the rotation driving mechanisms/linear driving mechanisms


114




a


and


114




b,


respectively, and can be brought in contact with the surface to be polished of the substrate W with a predetermined pressure or can be separated from the surface to be polished of the substrate W.




The number of rotations of the two ring-shaped polishing pads


111




a


and


111




b


having different diameters can be set so as to provide the same rotational circumferential speed. That is, if the radii of the ring-shaped polishing pads


111




a


and


111




b


are represented by r


1


and r


2


, respectively, the number of rotations of the outer rotation driving mechanism/linear driving mechanism


114




a


and the polishing pad


111




a


is represented by n


1


, and the number of rotations of the inner rotation driving mechanism/linear driving mechanism


114




b


and the polishing pad


11




b


is represented by n


2


, the numbers of rotation of the respective components are set so as to satisfy the relationship of r


1


·n


1


=r


2


n


2


. Accordingly, the number of rotation of the polishing pad increases as the radius of the polishing pad decreases.




Next, the operation of the first embodiment will be described. When performing chemical mechanical polishing using the inner and outer ring-shaped polishing pads


111




a


and


111




b


, the substrate W is detachably held on the upper surface of the rotating table


105


. Then, the slider


104


is moved in a radial direction to a position where the polishing pads


111


of the polishing-tool units


110


contact the substrate W.




Then, by operating the rotation driving mechanisms/linear driving mechanisms


114




a,




114




b


the respective inner and outer ring-shaped polishing pads


111




a


and


111




b


of the polishing-tool units


110


are integrally moved downward in the axial direction toward the substrate W, and the polishing pads


111




a,




111




b


are brought in contact with the surface to be polished of the substrate W so as to provide a predetermined processing pressure. While supplying an abrasive (polishing slurry) from abrasive (polishing slurry) supply means (not shown) between the substrate W and the polishing pads


111




a,




111




b,


the inner and outer ring-shaped polishing pads


111




a,




111




b


are revolved by the revolution-table rotation driving mechanism


107


, and the ring-shaped polishing pads


111




a


and


111




b


are rotated at high speeds by the rotation driving mechanisms/linear driving mechanisms


114




a


and


114




b,


respectively. At the same time, the rotating table


105


is rotated and is swung in radial directions with a short stroke to perform chemical mechanical polishing.




As described above, when polishing the substrate W by simultaneously operating the inner and outer ring-shaped polishing pads


111




a


and


111




b


of each of the polishing-tool units


110


, the inner and outer ring-shaped polishing pads


111




a


and


111




b


rotate at the same circumferential speed. Hence, it is possible to increase the effective contact surface and the effective surface being polished, and to efficiently perform high-precision polishing.




In the polishing-tool unit


110


of the first embodiment, since the inner and outer ring-shaped polishing pads


111




a


and


111




b


can move with respect to each other in an axial direction, it is possible to adjust the relative heights of the polishing pads


111




a


and


111




b,


to independently adjust and set the pressures of the inner and outer ring-shaped polishing pads


111




a


and


111




b


against the surface to be polished, and therefore to set optimum processing pressures for the respective polishing pads in accordance with the state of the surface to be polished of the substrate.




Since the surface to be polished of the substrate is polished by partially contacting the multiplex ring-shaped polishing pads having a small diameter thereto, it is possible to rotate the polishing pads at high speeds, and to very precisely polish the surface to be polished at a high speed irrespective of the presence of a local defect on the surface to be polished.




Although in the foregoing description, both of the inner and outer ring-shaped polishing pads


111




a


and


111




b


are used for polishing, only one of the ring-shaped polishing pads having different diameters may be selected and brought in contact with the surface to be polished of the object to be processed to perform polishing, because the polishing pads can be relatively moved in an axial direction.




Although in the first embodiment, a duplex ring-shaped polishing pad has been illustrated as ring-shaped polishing pads, the structure of the ring-shaped polishing pads is not limited to the duplex type, but any other multiplex ring-shaped polishing pad besides the duplex-type pad may also be used. Furthermore, the number of polishing tools is not limited to 3, but any other appropriate number may be selected.




Furthermore, instead of the ring-shaped pad which is continuous along the circumference as shown in

FIGS. 2 and 3

, a discontinuous ring-shaped pad in which a plurality of segments are arranged along the circumference with an interval may also be used.




For example, a semiconductor wafer of Si, Ge, GaAs, InP or the like, or a quartz or glass substrate on the surface of which a plurality of island-like semiconductor regions are formed is suitable as an object to be processed according to the polishing method of the first embodiment.




All of the above-described substrates require a flat surface in order to form interconnections and insulating regions patterned using photolithography. Accordingly, the surface to be polished comprises an insulating film, a metal film or a surface in which an insulating film and a metal film are mixed.




It is desirable to utilize the surface of a pad made of a nonwoven fabric, foamed polyurethane or the like as the polishing surface of the polishing tool of the first embodiment.




A liquid containing fine particles is desirable as an abrasive used in the first embodiment. More specifically, it is desirable to use silica (SiO


2


), alumina (Al


2


O


3


), manganese oxide (MnO


2


), cerium oxide (CeO) or the like for the fine particles, and to use a liquid containing NaOH, KOH, H


2


O


2


or the like as the liquid.




The diameter of the fine particles is preferably 8 nm-50 nm. The degree of agglomeration of the particles can be controlled, for example, by changing the value of pH of KOH.




When polishing the surface of a semiconductor, a sodium hydroxide solution in which silica particles are dispersed is preferable. When polishing an insulating film, a potassium hydroxide solution in which silica particles are dispersed is preferable. When polishing a metal film of tungsten or the like, an aqueous solution of hydrogen peroxide in which alumina or manganese oxide particles are dispersed is preferable.




For example, when polishing the surface of a semiconductor, if an aqueous solution of NaOH in which silica particles are dispersed is used as the abrasive, the surface of silicon reacts on NaOH to form a Na


2


SiO


3


layer. The reaction proceeds by removing the formed layer by mechanical polishing by the silica particles and a polishing cloth to expose a new silicon surface. Accordingly, such a mechanism is called chemical mechanical polishing.




Second Embodiment




As shown in

FIG. 5

, a chemical mechanical polishing apparatus according to a second embodiment of the present invention includes a polishing station E


1


for causing a substrate W to be processed, such as a wafer or the like, to rotate and to move in a radial direction while detachably holding it, and a polishing head E


2


for causing first through fourth polishing tools


210


-


213


, serving as a plurality of polishing tools, disposed above the polishing station E


1


to revolve and rotate while supporting the polishing tools


210


-


213


.




As shown in

FIGS. 5 and 7

, the polishing station E


1


includes a slider


204


for moving a rotating table


205


in a radial direction while supporting it on the upper surface of a guide table


203


integrally provided on a base


201


, a linear driving mechanism (not shown) for moving the slider


204


, the rotating table


205


whose rotation shaft


206


is rotatably supported on the slider


204


via a radial bearing


204




a


and a thrust bearing


204




b,


and a rotation driving mechanism (not shown) for rotating the rotating table


205


, so as to cause the substrate W to rotate and to move in a radial direction while detachably holding it on the upper surface of the rotating table


205


.




The polishing head E


2


includes a revolution table


208


rotatably supported on a lower yoke


202




a,


extended above the polishing station E


1


, of a supporting member


202


, planted on the base


201


, via a radial bearing


208




a


and a thrust bearing


208




b


, and the first through fourth polishing tools


210


-


213


which are supported on four portions present with an interval on the same revolution radius on the revolution table


208


so as to be rotatable and to be movable in a radial direction via bearings


215


.




The revolution table


208


is fixed on an output shaft


207




a


of a revolution-table rotation driving mechanism


207


supported on an upper yoke


202




b


of the supporting member


202


, and is revolved at a predetermined revolution speed.




The first through fourth polishing tools


210


-


213


may have the same configuration except that they have different diameters. Hence, a description will be provided of the second polishing tool


211


shown in FIG.


7


.




The upper end of a shaft


211




a


of the second polishing tool


211


is connected to an output shaft


214




a


of a rotation driving mechanism/linear driving mechanism


214


. A polishing-pad holding member


217


is connected to the lower end of the shaft


211




a


via a connecting member


216


. A polishing pad


218


is integrally mounted on the lower surface of the polishing-pad holding member


217


. It is thereby possible to cause the second polishing tool


211


to rotate at a high speed and to move in an axial direction, thereby causing the polishing pad


218


to contact the surface to be polished of the substrate W with a predetermined processing pressure or to separate from the surface to be polished of the substrate W.




The connecting member


216


and the polishing-pad holding member


217


constitute a so-called equalizing mechanism in which a convex hemispherical surface


217




a


of the polishing-pad holding member


217


is slidably fitted to a concave hemispherical surface


216




a


of the connecting member


216


. Accordingly, the surface contacting the substrate W, i.e., the polishing surface, of the polishing pad


218


is inclined in accordance with the inclination of the surface to be polished of the substrate W, serving as the object to be processed.




The same reference numerals are given to the same portions of the remaining first, third and fourth polishing tools


210


,


212


and


213


, and a description thereof will be omitted.




In the second embodiment, as shown in

FIG. 6

, if the diameters of the first, second, third and fourth polishing tools


210


,


211


,


212


and


213


are represented by D


1


, D


2


, D


3


and D


4


, respectively, the relationship of D


1


>D


2


>D


3


>D


4


holds, and the diameters of the first through fourth polishing tools


210


-


213


are set to be smaller than the diameter of the substrate W.




Next, a description will be provided of the operation of the above-described chemical mechanical polishing apparatus.




(1) The substrate W is detachably held on the upper surface of the rotating table


205


. Then, by moving the slider


204


in a radial direction, the polishing pads


218


of the first through fourth polishing tools


210


-


213


are set to positions where all of them contact the substrate W.




(2) Then, a polishing tool having a diameter corresponding to a region to be polished on the surface of the substrate W, such as a wafer or the like, serving as the object to be processed, from among the first through fourth polishing tools


210


-


213


is linearly moved and brought in contact with the surface of the substrate W with a predetermined processing pressure. While supplying an abrasive (polishing slurry) from abrasive (polishing slurry) supply means (not shown) between the substrate W and the polishing pads


218


, the polishing tool is rotated and revolved. At the same time, the rotating table


205


is rotated and is swung in radial directions with a short stroke to perform chemical mechanical polishing.




In the second embodiment, the number of polishing tools is not limited to the above-described number, i.e., 4, but may be 2, 3, or 5 or more. Furthermore, the rotation speed and the processing pressure of each of the polishing tools can be changed.




For example, a semiconductor wafer of Si, Ge, GaAs, InP or the like, or a quartz or glass substrate on the surface of which a plurality of island-like semiconductor regions are formed is suitable as an object to be processed according to the polishing method of the first embodiment.




All of the above-described substrates require a flat surface in order to form interconnections and insulating regions patterned using photolithography. Accordingly, the surface to be polished comprises an insulating film, a metal film, or a surface in which an insulating film and a metal film are mixed.




It is desirable to utilize the surface of a pad made of a nonwoven fabric, foamed polyurethane or the like as the polishing surface of the polishing tool of the second embodiment.




A liquid containing fine particles is desirable as an abrasive used in the second embodiment. More specifically, it is desirable to use silica (SiO


2


), alumina (Al


2


O


3


), manganese oxide (MnO


2


), cerium oxide (CeO) or the like for the fine particles, and to use a liquid containing NaOH, KOH, H


2


O


2


or the like as the liquid.




The diameter of the fine particles is preferably 8 nm-50 nm. The degree of agglomeration of the particles can be controlled, for example, by changing the value of pH of KOH.




When polishing the surface of a semiconductor, a sodium hydroxide solution in which silica particles are dispersed is preferable. When polishing an insulating film, a potassium hydroxide solution in which silica particles are dispersed is preferable. When polishing a metal film of tungsten or the like, an aqueous solution of hydrogen peroxide in which alumina or manganese oxide particles are dispersed is preferable.




For example, when polishing the surface of a semiconductor, if an aqueous solution of NaOH in which silica particles are dispersed is used as the abrasive, the surface of silicon reacts on NaOH to form a Na


2


SiO


3


layer. The reaction proceeds by removing the formed layer by mechanical polishing by the silica particles and the polishing cloth to expose a new silicon surface. Accordingly, such a mechanism is called chemical mechanical polishing.




Third Embodiment




As shown in

FIG. 8

, a chemical mechanical polishing apparatus according to a third embodiment of the present invention includes a polishing station E


1


for causing a substrate W to be processed, such as a wafer or the like, to rotate and to move in a radial direction while detachably holding it, and a polishing head E


2


for causing first through fourth polishing tools


310


-


313


, serving as a plurality of polishing tools, disposed above the polishing station E


1


to revolve and rotate while supporting the polishing tools


310


-


313


.




As shown in

FIGS. 8 and 10

, the polishing station E


1


includes a slider


304


for moving a rotating table


305


in a radial direction while supporting it above on the upper surface of a guide table


303


integrally provided on a base


301


, a linear driving mechanism (not shown) for moving the slider


304


, the rotating table


305


whose rotation shaft


306


is rotatably supported on the slider


304


via a radial bearing


304




a


and a thrust bearing


304




b,


and a rotation driving mechanism (not shown) for rotating the rotating table


305


, so as to cause the substrate W to rotate and move in a radial direction while detachably holding it on the upper surface


305




a


of the rotating table


305


.




The polishing head E


2


includes a revolution table


308


rotatably supported on a lower yoke


302




a


extended above the polishing station E


1


, of a supporting member


302


, planted on the base


301


, via a radial bearing


308




a


and a thrust bearing


308




b


, and the first through fourth polishing tools


310


-


313


which are supported on four portions present with an interval on the same revolution radius on the revolution table


308


so as to be rotatable and to be movable in a radial direction via bearings


315


.




The revolution table


308


is fixed on an output shaft


307




a


of a revolution-table rotation driving mechanism


307


supported on an upper yoke


302




b


of the supporting member


302


, and is revolved at a predetermined revolution speed.




The first through fourth polishing tools


310


-


313


may have the same configuration except that they have different revolution radii. Hence, a description will be provided of the second polishing tool


311


shown in FIG.


10


.




The upper end of a shaft


311




a


of the second polishing tool


311


is connected to an output shaft


314




a


of a rotation driving mechanism/linear driving mechanism


314


. A polishing-pad holding member


317


is connected to the lower end of the shaft


311




a


via a connecting member


316


. A polishing pad


318


is integrally mounted on the lower surface of the polishing-pad holding member


317


. It is thereby possible to cause the second polishing tool


311


to rotate at a high speed and to move in an axial direction, thereby causing the polishing pad


318


to contact the surface to be polished of the substrate W with a predetermined processing pressure or to separate from the surface to be polished of the substrate W.




The connecting member


316


and the polishing-pad holding member


317


constitute a so-called equalizing mechanism in which a convex hemispherical surface


317




a


of the polishing-pad holding member


317


is slidably fitted to a concave hemispherical surface


316




a


of the connecting member


316


. Accordingly, the surface contacting the substrate W, i.e., the polishing surface, of the polishing pad


318


is inclined in accordance with the inclination of the surface to be polished of the substrate W, serving as the object to be processed.




The same reference numerals are given to the same portions of the remaining first, third and fourth polishing tools


310


,


312


and


313


, and a description thereof will be omitted.




In the third embodiment, as shown in

FIG. 9

, if the revolution radii of the first, second, third and fourth polishing tools


310


,


311


,


312


and


313


are represented by r


1


, r


2


, r


3


and r


4


, respectively, the relationship of r


1


>r


2


>r


3


>r


4


holds, and the diameters of the polishing pads of the respective polishing tools are set to be smaller than the radius of the substrate W.




Next, a description will be provided of the operation of the third embodiment.




(1) The substrate W is detachably held on the upper surface of the rotating table


305


. Then, by moving the slider


304


in a radial direction, the polishing pads


318


of the first through fourth polishing tools


310


-


313


are set to positions where all of them contact the substrate W.




(2) Then, by moving the first through fourth polishing tools


310


-


313


in an axial direction toward the substrate W, the respective polishing pads


318


are brought in contact with the surface to be polished of the substrate W with a predetermined processing pressure. While supplying an abrasive (polishing slurry) from abrasive (polishing slurry) supply means (not shown) between the substrate W and the polishing pads


318


, the first through fourth polishing tools


310


-


313


are rotated and are revolved at a high speed. At the same time, the rotating table


305


is rotated and is swung in radial directions with a short stroke to perform chemical mechanical polishing.




In the above-described processes, by setting the rotation speeds of the first through polishing tools


310


-


313


so that the relative circumferential speeds of the respective polishing pads


318


of the polishing tools


310


-


313


with respect to the substrate W have the same value, the amounts of removal by the respective polishing tools


310


-


313


can be unified.




Furthermore, by arranging the system such that the rotation speed and the processing pressure of each of the plurality of polishing tools can be changed, and that if a local defect, such as a projection or the like, is present on the surface to be polished of the substrate W, the rotation speed or the processing pressure of a polishing tool contacting the defect portion is set to be greater than the rotation speeds of other polishing tools, the polished surface of the substrate can be uniformly flattened.




In the third embodiment, the number of polishing tools is not limited to the above-described number, i.e., 4, but may be 2, 3 or even 5, or more. Furthermore, the rotation speed and the processing pressure of each of the polishing tools can be changed.




For example, a semiconductor wafer of Si, Ge, GaAs, InP or the like, or a quartz or glass substrate on the surface of which a plurality of island-like semiconductor regions are formed is suitable as an object to be processed according to the polishing method of the first embodiment.




All of the above-described substrates require a flat surface in order to form interconnections and insulating regions patterned using photolithography. Accordingly, the surface to be polished comprises an insulating film, a metal film, or a surface in which an insulating film and a metal film are mixed.




It is desirable to utilize the surface of a pad made of a monwoven fabric, foamed polyurethane or the like as the polishing surface of the polishing tool of the third embodiment.




A liquid containing fine particles is desirable as an abrasive used in the third embodiment. More specifically, it is desirable to use silica (SiO


2


), alumina (Al


2


O


3


), manganese oxide (MnO


2


), cerium oxide (CeO) or the like for the fine particles, and to use a liquid containing NaOH, KOH, H


2


O


2


or the like as the liquid.




The diameter of the fine particles is preferably 8 nm-50 nm. The degree of agglomeration of the particles can be controlled, for example, by changing the value of pH of KOH.




When polishing the surface of a semiconductor, a sodium hydroxide solution in which silica particles are dispersed is preferable. When polishing an insulating film, a potassium hydroxide solution in which silica particles are dispersed is preferable. When polishing a metal film of tungsten or the like, an aqueous solution of hydrogen peroxide in which alumina or manganese oxide particles are dispersed is preferable.




For example, when polishing the surface of a semiconductor, if an aqueous solution of NaOH in which silica particles are dispersed is used as the abrasive, the surface of silicon reacts on NaOH to form a Na


2


SiO


3


layer. The reaction proceeds by removing the formed layer by mechanical polishing by the silica particles and a polishing cloth to expose a new silicon surface. Accordingly, such a mechanism is called chemical mechanical polishing.




Fourth Embodiment




In a fourth embodiment of the present invention, as shown in

FIG. 11

, partial polishing is performed using the multiplex ring-shaped pad described in the first embodiment. More specifically, as shown in

FIG. 11

, by providing a driving mechanism


1101


for moving the surface of the object to be polished relative to the multiplex ring-shaped pad for the rotating table


105


, the polishing-tool unit is brought in contact with a part of the surface of the wafer, so that the surface to be polished can be entirely or partially polished using the polishing-tool unit in contact with the surface to be polished. Alternatively, by providing the driving mechanism


1101


for the multiplex ring-shaped pad and moving the multiplex ring-shaped pad, the surface to be polished can be entirely or partially polished. In another approach, by providing the driving mechanisms


1101


for both of the rotating table and the muliplex ring-shaped pad and simultaneously moving the two components, the surface to be polished can be entirely or partially polished. Furthermore, by providing a swinging mechanism


1102


for the rotating table and swinging the rotating table, complicated polishing can be performed. It is also possible to provide a swinging mechanism (not shown) for the multiplex ring-shaped pad and to swing the multiplex ring-shaped pad. It is also possible to provide the swinging mechanism for only one of the rotating table and the multiplex ring-shaped pad, or to provide the swinging mechanisms for both of these components and simultaneously swing the two components.




Fifth Embodiment




In a fifth embodiment of the present invention, the first polishing tool


210


used in the second embodiment is replaced by the multiplex ring-shaped pad described in the first embodiment.




The multiplex ring-shaped pad replaces not only the first polishing tool


210


, but also may replace one of the first through fourth polishing tools, or two or three or any combination of the first through fourth polishing tools.




Sixth Embodiment




In a sixth embodiment of the present invention, the first polishing tool


310


used in the third embodiment is replaced by the multiplex ring-shaped pad described in the first embodiment.




The multiplex ring-shaped pad replaces not only the first polishing tool


310


, but also may replace one of the first through fourth polishing tools, or two or three or any combination of the first through fourth polishing tools.




Seventh Embodiment




In a seventh embodiment of the present invention, the polishing tools, respectively having different diameter, are replaced in the third embodiment.




In the seventh embodiment, as shown in

FIG. 12

, if the diameters of the first, second, third, and fourth polishing tools


710


,


711


,


712


,


713


are presented by D


1


, D


2


, D


3


, D


4


, respectively, the relationship of D


1


>D


2


>D


3


>D


4


holds, and the diameters of the first through fourth polishing tools


710


-


713


are set to be smaller than the diameter of the substrate W.




Moreover, if the revolution radii of the first, second, third, and fourth polishing tools


710


,


711


,


712


,


713


are presented by r


1


, r


2


, r


3


, r


4


, respectively, the relationship of r


1


>r


2


>r


3


>r


4


holds, and the diameters of the first through fourth polishing tools


710


-


713


are set to be smaller than the diameter of the substrate W.




The seventh embodiment has the same operation as the third embodiment. Although in the seventh embodiment, the diameters of the respective polishing tools


710


-


713


are not limited to the relationship of revolution radii, r


1


>r


2


>r


3


r


4


. The choice of the diameters of the respective polishing tools


710


-


713


to the relationship of revolution radii depends on each case.




And in the seventh embodiment, replacement of the polishing tool having the multiplex polishing pad to the first polishing tool


710


can be allowed. The first polishing tool


710


through the fourth polishing tool


713


can be respectively replaced to the multiplex polishing pad. And the number of the replacement of said four polishing tools is not limited to 1, but any other appropriate number may be selected.




Moreover, the number of the replacement of polishing tools is not limited to 4, but any other apprpriate number may be selected.




The individual components shown in outline in the drawings are all well-known, per se, in the chemical mechanical polishing apparatus and method arts and their specific construction and operation are not critical to the operation or the best mode for carrying out the invention.




While the present invention has been described with respect to what are presently considered to be the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, the present invention is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.



Claims
  • 1. A chemical mechanical polishing apparatus for polishing a surface of an object, comprising:a polishing station for holding the object to be polished; a polishing tool for polishing the object, said polishing tool comprising: a multiplex ring-shaped pad including at least first and second coaxially disposed ring-shaped polishing pads having different diameters, and coaxially disposed cylindrical shafts for holding a corresponding one of said polishing pads; a support member for supporting said polishing tool; and a rotation/linear driving mechanism connected to each said cylindrical shaft, with each said driving mechanism operating said corresponding polishing pad to rotate and move in an axial direction.
  • 2. A chemical mechanical polishing apparatus, comprising:a rotating table for rotating an object to be processed; a slider for moving said rotating table in a radial direction; a plurality of polishing-tool units for polishing the object, with each said polishing-tool unit comprising: a multiplex ring-shaped pad having at least first and second coaxially disposed ring-shaped polishing pads having different diameters, and a plurality of coaxially disposed cylindrical shafts for holding a corresponding one of said ring-shaped polishing pads; a revolution table for holding said polishing-tool units arranged in equal intervals in a circumferential direction so as to be rotatable and to be movable in an axial direction; a revolution driving mechanism for revolving said revolution table; a plurality of rotation/linear driving mechanisms for operating said polishing-tool units, wherein one of said rotation/linear driving mechanisms is connected to one of said cylindrical shafts, with each said driving mechanism operating said corresponding polishing pad to rotate and to move in an axial direction.
  • 3. A chemical mechanical polishing apparatus according to claim 1, further comprising driving means for rotating said first and second polishing pads.
  • 4. A chemical mechanical polishing apparatus according to claim 1, further comprising driving means for revolving said polishing tool about an axis of said polishing tool support member.
  • 5. A chemical mechanical polishing apparatus according to claim 1, wherein at least two of said polishing tools are provided.
  • 6. A polishing apparatus comprising:an object holding means; a plurality of polishing tools each including a plurality of a cylindrical shafts, wherein said cylindrical shafts of each said polishing tool have different diameters and are coaxially disposed, and said cylindrical shafts are movable in an axial direction; and a support table for supporting said polishing tools and revolving said polishing tools about a revolution axis.
  • 7. A polishing apparatus comprising:an object holding means; and a plurality of a differently-sized polishing tools each including a plurality of a cylindrical shafts, wherein said cylindrical shafts of each said polishing tool are coaxially disposed, and wherein the largest diameter of one of said polishing tools is different from the largest diameter of a second one of said polishing tools.
  • 8. A polishing apparatus comprising:an object holding means; a plurality of a polishing tools each including a plurality of a cylindrical shafts; and a support table for supporting said polishing tools and revolving said polishing tools about a revolution axis, wherein said cylindrical shafts of each said polishing tool have different diameters and are coaxially disposed, and wherein a distance between the revolution axis and a first one of said polishing tools is different from a distance between the revolution axis and a second one of said polishing tools.
  • 9. A chemical mechanical polishing apparatus according to claim 1, wherein each said rotation/linear driving mechanism can adjust and control a rotational speed of its corresponding polishing pad.
  • 10. A chemical mechanical polishing apparatus according to claim 2, wherein each said rotation/linear driving mechanism can adjust and control a rotational speed of its corresponding polishing pad.
  • 11. A polishing apparatus comprising:an object holding means which holds an object; and a plurality of polishing tools each including a plurality of a cylindrical shafts, wherein said cylindrical shafts of each said polishing tool have different diameters and are coaxially disposed, and said cylindrical shafts are movable in an axial direction, and wherein said polishing tool is arranged so as to rotate around an axis and said object holding means holds the object so that a center of the object is not on said axis.
  • 12. A chemical mechanical polishing apparatus according to claim 1, wherein said coaxially disposed ring-shaped polishing pads having the different diameters are set to rotate at the same circumferential speed.
  • 13. A chemical mechanical polishing apparatus according to claim 2, wherein said coaxially disposed ring-shaped polishing pads having the different diameters are set to rotate at the same circumferential speed.
  • 14. A polishing apparatus comprising:an object holding means which holds an object; and a plurality of a polishing tools each including a plurality of a cylindrical shafts, wherein said cylindrical shafts of each said polishing tool have different diameters and are coaxially disposed, and the largest diameter cylindrical shaft in one of said polishing tools is different from the largest diameter cylindrical shaft in a second of said polishing tools, and wherein said polishing tool is arranged so as to rotate around an axis and said object holding means holds the object so that a center of the object is not on said axis.
  • 15. A polishing apparatus comprising:an object holding means which holds an object; and a plurality of a polishing tools each including a plurality of a cylindrical shafts, wherein said cylindrical shafts of each said polishing tool have different diameters and are coaxially disposed, and a distance between a revolution axis and a first one of said polishing tools is different from a distance between the revolution axis and a second one of said polishing tools, and wherein said polishing tool is arranged so as to rotate round an axis and said object holding means holds the object so that a center of the object is not on said axis.
  • 16. A chemical mechanical polishing apparatus according to claim 1, wherein said rotation/linear driving mechanism can independently adjust and control an amount of linear movement of a corresponding one of said ring-shaped polishing pads.
  • 17. A chemical mechanical polishing apparatus according to claim 2, wherein said rotation/linear driving mechanism can independently adjust and control an amount of linear movement of a corresponding one of said ring-shaped polishing pads.
  • 18. A chemical mechanical polishing apparatus according to claim 9, wherein said rotation/linear driving mechanism can independently adjust and control an amount of linear movement of a corresponding one of said ring-shaped polishing pads.
  • 19. A chemical mechanical polishing apparatus according to claim 10, wherein said rotation/linear driving mechanism can independently adjust and control an amount of linear movement of a corresponding one of said ring-shaped polishing pads.
  • 20. A chemical mechanical polishing apparatus for polishing a surface of an object, comprising:a rotating table for rotating the object to be processed; a slider for moving said rotating table in a radial direction; a plurality of polishing tools, each having different diameters smaller than a diameter of the object to be processed; a revolution table for supporting said polishing tools at positions having the same revolution radii so as to be rotatable and to be movable in an axial direction; a revolution-table rotation driving mechanism for revolving said revolution table; and a rotation/linear driving mechanism cooperating with each of said polishing tools to drive a corresponding polishing tool to rotate and to move in an axial direction.
  • 21. A chemical mechanical polishing apparatus according to claim 20, wherein each of said plurality of polishing tools has an equalizing mechanism for inclining a polishing surface thereof in accordance with an inclination of the surface to be polished.
  • 22. A chemical mechanical polishing apparatus according to claim 20, wherein a rotation speed and a processing pressure of each of said plurality of polishing tools can be changed.
  • 23. A chemical mechanical polishing apparatus according to claim 21, wherein a rotation speed and a processing pressure of each of said plurality of polishing tools can be changed.
  • 24. A chemical mechanical polishing apparatus for polishing a surface of an object, comprising:a rotating table for rotating the object to be processed; a slider for moving said rotating table in a radial direction; a plurality of polishing tools, having the same diameter smaller than a diameter of the object to be processed, at positions having different revolution radii so as to be rotatable and to be movable in an axial direction; a revolution table for supporting said plurality of polishing tools; a revolution driving mechanism for revolving said revolution table; and a rotation/linear driving mechanism connected to each one of said plurality of polishing tools, with each driving mechanism driving a corresponding one of said polishing tools to rotate and to move in an axial direction.
  • 25. A chemical mechanical polishing apparatus according to claim 24, wherein each of said polishing tools has an equalizing mechanism for inclining a polishing surface thereof in accordance with an inclination of the surface to be polished.
  • 26. A chemical mechanical polishing apparatus according to claim 24, further comprising means for changing a rotation speed and a processing pressure of each of the plurality of polishing tools.
  • 27. A chemical mechanical polishing apparatus according to claim 25, further comprising means for changing a rotation speed and a processing pressure of each of the plurality of polishing tools.
  • 28. A chemical mechanical polishing apparatus for polishing a surface of an object, comprising:a rotating table for rotating the object to be processed; a slider for moving said rotating table in a radial direction; a plurality of polishing tools, each having different diameters from each other but all being smaller than a diameter of the object to be processed; a revolution table for supporting said plurality of polishing tools at positions having different radii so as to be rotatable and to be movable in an axial direction; a revolution-table rotation driving mechanism for revolving said revolution table; and a plurality of rotation/linear driving mechanisms for causing a corresponding one of said plurality of polishing tools to rotate and to move in an axial direction.
  • 29. A chemical mechanical polishing apparatus according to claim 28, wherein each of said plurality of polishing tools has an equalizing mechanism for inclining a polishing surface thereof in accordance with an inclination of the surface to be polished.
  • 30. A chemical mechanical polishing apparatus according to claim 28, further comprising means for changing a rotation speed and a processing pressure of each of said plurality of polishing tools.
  • 31. A chemical mechanical polishing apparatus according to claim 29, further comprising means for changing a rotation speed and a processing pressure of each of said plurality of polishing tools.
  • 32. A chemical mechanical polishing apparatus according to claim 20, wherein at least one of said polishing tools has multiplex ring shaped polishing tools having different diameters.
  • 33. A chemical mechanical polishing apparatus according to claim 24, wherein at least one of said polishing tools has multiplex ring shaped polishing tools having different diameters.
  • 34. A chemical mechanical polishing apparatus according to claim 28, wherein at least one of said polishing tools has multiplex ring shaped polishing tools having different diameters.
  • 35. A chemical mechanical polishing apparatus for polishing a surface of an object, comprising:a polishing station for holding the object to be polished; a polishing tool for polishing the object, with said polishing tool comprising: a multiplex ring-shaped polishing-pad holding unit comprising at least first and second coaxially disposed ring-shaped polishing-pad holding units having different diameters, with each said holding unit holding a ring-shaped polishing pad; coaxially disposed cylindrical shafts for holding a corresponding one of the plurality of said ring-shaped polishing pads; and a rotation/linear driving mechanism connected to each said cylindrical shaft, with each said driving mechanism operating said corresponding polishing-pad holding unit to rotate and to move in an axial direction.
  • 36. A chemical mechanical polishing apparatus according to claim 35, further comprising a rotation/linear driving mechanism connected to each said cylindrical shaft, with each said driving mechanism operating said corresponding polishing-pad holding unit to rotate and to move in an axial direction.
  • 37. A chemical mechanical polishing apparatus according to claim 35, further comprising driving means for rotating said first and second polishing-pad holding units.
  • 38. A chemical mechanical polishing apparatus according to claim 35, further comprising driving means for revolving said polishing tool about an axis of revolution table.
  • 39. A chemical mechanical polishing apparatus according to claim 35, wherein at least two of said polishing tools are provided.
  • 40. A chemical mechanical polishing apparatus according to claim 35, wherein said multiplex ring-shaped polishing-pad holding unit is used for partially polishing with said ring-shaped polishing pad.
  • 41. A polishing apparatus comprising:an object holding means; a polishing tool including a plurality of coaxially disposed cylindrical shafts, wherein said cylindrical shafts have different diameters, and said cylindrical shafts are movable in an axial direction; and a support table for supporting said polishing tools and revolving said polishing tool about a revolution axis.
  • 42. A polishing apparatus according to claim 41, further comprising means for rotating said cylindrical shafts.
  • 43. A polishing apparatus according to claim 41, further comprising rotation driving means for controlling a rotational speed of said cylindrical shafts.
  • 44. A polishing apparatus according to claim 41, further comprising linear driving means for controlling an amount of linear movement of said cylindrical shafts.
  • 45. A polishing apparatus according to claim 41, wherein said polishing tool can partially polish an object.
  • 46. A polishing apparatus comprising:an object holding means which holds an object; and a polishing tool including a plurality of coaxially disposed cylindrical shafts, wherein said cylindrical shafts have different diameters, and said cylindrical shafts are movable in an axial direction, and wherein said polishing tool is arranged so as to rotate around an axis and said object holding means holds the object so that a center of the object is not on said axis.
  • 47. A polishing apparatus according to claim 46, further comprising means for rotating said cylindrical shafts.
  • 48. A polishing apparatus according to claim 46, further comprising rotation driving means for controlling a rotational speed of said cylindrical shafts.
  • 49. A polishing apparatus according to claim 46, further comprising linear driving means for controlling an amount of linear movement of said cylindrical shafts.
  • 50. A polishing apparatus according to claim 46, wherein said polishing tool can partially polish an object.
Priority Claims (5)
Number Date Country Kind
8-140738 May 1996 JP
8-141080 May 1996 JP
8-191446 Jul 1996 JP
9-132765 May 1997 JP
9-132888 May 1997 JP
US Referenced Citations (9)
Number Name Date Kind
2629975 Desenberg Mar 1953
4128968 Jones Dec 1978
4826271 Takahashi et al. May 1989
4842354 Takahashi et al. Jun 1989
4956944 Ando et al. Sep 1990
5113280 Kawasaki et al. May 1992
5399233 Murazumi et al. Mar 1995
5792709 Robinson et al. Aug 1998
5800253 Ikemoto Sep 1998
Foreign Referenced Citations (1)
Number Date Country
2819828 Nov 1978 DE