Chimeric antigen receptors targeting B-cell maturation antigen

Information

  • Patent Grant
  • 11912776
  • Patent Number
    11,912,776
  • Date Filed
    Tuesday, March 15, 2022
    2 years ago
  • Date Issued
    Tuesday, February 27, 2024
    2 months ago
Abstract
The invention provides CARs (CARs) that specifically bind to BCMA (B-Cell Maturation Antigen). The invention further relates to engineered immune cells comprising such CARs, CAR-encoding nucleic acids, and methods of making such CARs, engineered immune cells, and nucleic acids. The invention further relates to therapeutic methods for use of these CARs and engineered immune cells for the treatment of a condition associated with malignant cells expressing BCMA (e.g., cancer).
Description
REFERENCE TO SEQUENCE LISTING

This application is being filed electronically via EFS-Web and includes an electronically submitted sequence listing in .txt format. The .txt file contains a sequence listing entitled “ALGN_003_04US_SeqList_ST25.txt” created on Jan. 29, 2019, and having a size of ˜372,605 bytes. The sequence listing contained in this .txt file is part of the specification and is incorporated herein by reference in its entirety.


FIELD

The invention relates to chimeric antigen receptors (CAR). CARs are able to redirect immune cell specificity and reactivity toward a selected target exploiting the ligand-binding domain properties. In particular, the invention relates to CARs that specifically bind to B-Cell Maturation Antigen (BCMA specific CARs). The invention further relates to polynucleotides encoding BCMA specific CAR and isolated cells expressing BCMA specific CARs at their surface. The invention further relates to methods for engineering immune cells expressing BCMA specific CARs at their surface. The invention is particularly useful for the treatment of B-cell lymphomas and leukemia. The invention further relates to immune cells comprising the BCMA specific CARs (BCMA specific CAR-T cells), compositions comprising the BCMA specific CAR-T cells, and methods of using the BCMA specific CAR-T cells for treating conditions associated with malignant cells expressing BCMA (e.g., cancer).


BACKGROUND

Multiple myeloma is a malignancy characterized by an accumulation of clonal plasma cells (see, e.g., Lonial et al., Clinical Cancer Res., 77(6): 1264-1277 (2011)). Current therapies for MM often cause remissions, but nearly all patients eventually relapse and die (see, e.g., Rajkumar, Nature Rev. Clinical Oncol, 5(8): 479-491 (2011)).


Adoptive transfer of T cells genetically modified to recognize malignancy-associated antigens is showing promise as a new approach to treating cancer (see, e.g., Brenner et al., Current Opinion in Immunology, 22(2): 251-257 (2010); Rosenberg et al., Nature Reviews Cancer, 8(4): 299-308 (2008)). T cells can be genetically modified to express chimeric antigen receptors (CARs), which are fusion proteins comprised of an antigen recognition moiety and T cell activation domains (see, e.g., Eshhar et al., Proc. Natl. Acad. Sci. USA, 90(2): 720-724 (1993), and Sadelain et al., Curr. Opin. Immunol, 21(2): 215-223 (2009)).


B-cell maturation antigen (BCMA, CD269, or TNFRSF17) is a member of the tumor necrosis factor receptor (TNFR) superfamily. BCMA was identified in a malignant human T cell lymphoma containing a t(4;16) translocation. The gene is selectively expressed in the B-cell lineage with the highest expression in plasmablasts and plasma cells, antibody secreting cells. BCMA binds two ligands, B-cell activation factor (BAFF) (also called B-lymphoctye stimulator (BLyS) and APOL-related leukocyte expressed ligand (TALL-1)) and a proliferation-inducing ligand (APRIL) with affinity of 1 uM and 16 nM, respectively. Binding of APRIL or BAFF to BCMA promotes a signaling cascade involving NF-kappa B, Elk-1, c-Jun N-terminal kinase and the p38 mitogen-activated protein kinase, which produce signals for cell survival and proliferation. BCMA is also expressed on malignant B cells and several cancers that involve B lymphocytes including multiple myeloma, plasmacytoma, Hodgkin's Lymphoma, and chronic lymphocytic leukemia. In autoimmune diseases where plasmablasts are involved such as systemic lupus erythematosus (SLE) and rheumatoid arthritis, BCMA expressing antibody-producing cells secrete autoantibodies that attack self.


In the case of multiple myeloma, about 24,000 new cases are newly diagnosed in the United States each year, and this number represents about 15% of the newly diagnosed hematological cancers in the United States. An average of 11,000 deaths result from multiple myeloma each year, and the average 5-year survival rate is about 44%, with median survival of 50-55 months. Current treatment for multiple myeloma is focused on plasma cells apoptosis and/or decreasing osteoclast activity (e.g., chemotherapy, thalidomide, lenalidomide, bisphosphonates, and/or proteasome inhibitors such as bortezomib (VELCADE®) or carfilzomib). However, multiple myeloma remains an incurable disease, and almost all patients have developed resistance to these agents and eventually relapse. Accordingly, an alternative treatment to multiple myeloma, such as using an anti-BCMA antagonist including BCMA specific CARs and BCMA specific CAR-T cells, would make a superior therapeutic agent.


SUMMARY

Chimeric antigen receptors (CARs) that bind to BCMA are provided. It is demonstrated that certain BCMA specific CARs are effective when expressed in T cells to activate T cells upon contact with BCMA. Advantageously, the BCMA specific CARs provided herein bind human and cynomolgous monkey BCMA. Also advantageously, the BCMA specific CAR-T cells provided herein exhibit degranulation activity, increased interferon gamma production, and/or cytotoxic activity upon contact with BCMA-expressing cells.


In one aspect, the invention provides a BCMA specific CAR comprising an extracellular ligand-binding domain, a first transmembrane domain, and an intracellular signaling domain, wherein the extracellular ligand-binding domain domain comprises (a) a heavy chain variable (VH) region comprising (i) a VH complementarity determining region one (CDR1) comprising the sequence SYX1MX2, wherein X1 is A or P; and X2 is T, N, or S (SEQ ID NO: 301), GFTFX1SY, wherein X1 is G or S (SEQ ID NO: 302), or GFTFX1SYX2MX3, wherein X1 is G or S, X2 is A or P; and X3 is T, N, or S (SEQ ID NO: 303); (ii) a VH CDR2 comprising the sequence AX1X2X3X4GX5X6X7X8YADX9X10KG, wherein X1 is I, V, T, H, L, A, or C; X2 is S, D, G, T, I, L, F, M, or V; X3 is G, Y, L, H, D, A, S, or M; X4 is S, Q, T, A, F, or W; X5 is G or T; X6 is N, S, P, Y, W, or F; X7 is S, T, I, L, T, A, R, V, K, G, or C; X8 is F, Y, P, W, H, or G; X9 is V, R, or L; and X10 is G or T (SEQ ID NO: 305), or X1X2X3X4X5X6, wherein X1 is S, V, I, D, G, T, L, F, or M; X2 is G, Y, L, H, D, A, S, or M; X3 is S, G, F, or W; X4 is G or S; X5 is G or T; and X6 is N, S, P, Y, or W (SEQ ID NO: 306); and iii) a VH CDR3 comprising the sequence VSPIX1X2X3X4, wherein X1 is A or Y; X2 is A or S; and X3 is G, Q, L, P, or E (SEQ ID NO: 307), or YWPMX1X2, wherein X1 is D, S, T, or A; and X2 is I, S, L, P, or D (SEQ ID NO: 308); and/or (b) a light chain variable (VL) region comprising (i) a VL CDR1 comprising the sequence X1X2X3X4X5X6X7X8X9X10X11X12, wherein X1 is R, G, W, A, or C; X2 is A, P, G, L, C, or S; X3 is S, G, or R; X4 is Q, C, E, V, or I; X5 is S, L, P, G, A, R, or D; X6 is V, G, or I; X7 is S, E, D, or P; X8 is S, P, F, A, M, E, V, N, D, or Y; X9 is I, T, V, E, S, A, M, Q, Y, H, or R; X10 is Y or F; X11 is L, W, or P; and X12 is A, S, or G (SEQ ID NO: 309); (ii) a VL CDR2 comprising the sequence X1ASX2RAX3, wherein X1 is G or D; X2 is S or I; and X3 is T or P (SEQ ID NO: 310); and (iii) a VL CDR3 comprising the sequence QQYX1X2X3PX4T, wherein X1 is G, Q, E, L, F, A, S, M, K, R, or Y; X2 is S, R, T, G, V, F, Y, D, A, H, V, E, K, or C; X3 is W, F, or S; and X4 is L or I (SEQ ID NO: 311), or QQYX1X2X3PX4, wherein X1 is G, Q, E, L, F, A, S, M, R, K, or Y; X2 is S, R, T, G, R, V, D, A, H, E, K, C, F, or Y; X3 is W, S, or F; and X4 is L or I (SEQ ID NO: 312).


In another aspect, the invention provides a BCMA specific CAR comprising an extracellular ligand-binding domain, a first transmembrane domain, and an intracellular signaling domain, wherein the extracellular domain comprises a single chain Fv fragment (scFv) comprising a heavy chain variable (VH) region comprising three CDRs from the VH region comprising the sequence shown in SEQ ID NO: 33, 72, 39, 76, 83, 92, 25, or 8; and a light chain variable (VL) region comprising three CDRs from the VL region shown in SEQ ID NO: 34, 73, 40, 77, 84, 93, 18, or 80. In some embodiments, the VH region can comprise the sequence shown in SEQ ID NO: 33, 72, 39, 76, 83, 92, 25, or 8, or a variant thereof with one or several conservative amino acid substitutions in residues that are not within a CDR and/or the VL region can comprise the amino acid sequence shown in SEQ ID NO: 34, 73, 40, 77, 84, 93, 18, or 80, or a variant thereof with one or several amino acid substitutions in amino acids that are not within a CDR.


In some embodiments, the extracellular ligand-binding domain domain of a BCMA specific CAR provided herein comprises (a) a heavy chain variable (VH) region comprising (i) a VH complementarity determining region one (CDR1) comprising the sequence shown in SEQ ID NO: 150, 151, 152, 156, 157, 129, 130, or 131; (ii) a VH CDR2 comprising the sequence shown in 153, 154, 187, 188, 165, 166, 162, 159, 190, 191, 169, 154, 139, 140, 132, or 133; and (iii) a VH CD3 comprising the sequence shown in 155, 161, 134, or 137; and/or (b) a light chain variable region (VL) comprising (i) a VL CDR1 comprising the sequence shown in SEQ ID NO: 209, 249, 226, 251, 262, 271, 217, or 377; (ii) a VL CDR2 comprising the sequence shown in SEQ ID NO: 221, 252, or 210; and (iii) a VL CDR3 comprising the sequence shown in SEQ ID NO: 222, 225, 227, 253, 263, 272, 216, or 214.


In some embodiments, the extracellular ligand-binding domain domain of a BCMA specific CAR provided herein comprises (a) a heavy chain variable (VH) region comprising (i) a VH complementarity determining region one (CDR1) comprising the sequence shown in SEQ ID NO: 150, 151, or 152; (ii) a VH CDR2 comprising the sequence shown in 153 or 154; and (iii) a VH CD3 comprising the sequence shown in 155; and/or (b) a light chain variable region (VL) comprising (i) a VL CDR1 comprising the sequence shown in SEQ ID NO: 209; (ii) a VL CDR2 comprising the sequence shown in SEQ ID NO: 221, and (iii) a VL CDR2 comprising the sequence shown in SEQ ID NO: 222.


In some embodiments, the extracellular ligand-binding domain domain of a BCMA specific CAR provided herein comprises (a) a heavy chain variable (VH) region comprising (i) a VH complementarity determining region one (CDR1) comprising the sequence shown in SEQ ID NO: 150, 151, or 152; (ii) a VH CDR2 comprising the sequence shown in 187 or 188; and (iii) a VH CD3 comprising the sequence shown in 155; and/or (b) a light chain variable region (VL) comprising (i) a VL CDR1 comprising the sequence shown in SEQ ID NO: 249; (ii) a VL CDR2 comprising the sequence shown in SEQ ID NO: 221, and (iii) a VL CDR3 comprising the sequence shown in SEQ ID NO: 225.


In some embodiments, the extracellular ligand-binding domain domain of a BCMA specific CAR provided herein comprises (a) a heavy chain variable (VH) region comprising (i) a VH complementarity determining region one (CDR1) comprising the sequence shown in SEQ ID NO: 150, 151, or 152; (ii) a VH CDR2 comprising the sequence shown in 165 or 166; and (iii) a VH CD3 comprising the sequence shown in 155; and/or (b) a light chain variable region (VL) comprising (i) a VL CDR1 comprising the sequence shown in SEQ ID NO: 226; (ii) a VL CDR2 comprising the sequence shown in SEQ ID NO: 221, and (iii) a VL CDR3 comprising the sequence shown in SEQ ID NO: 227.


In some embodiments, the extracellular ligand-binding domain domain of a BCMA specific CAR provided herein comprises (a) a heavy chain variable (VH) region comprising (i) a VH complementarity determining region one (CDR1) comprising the sequence shown in SEQ ID NO: 156, 151, or 157; (ii) a VH CDR2 comprising the sequence shown in 162 or 159; and (iii) a VH CD3 comprising the sequence shown in 161; and/or (b) a light chain variable region (VL) comprising (i) a VL CDR1 comprising the sequence shown in SEQ ID NO: 251; (ii) a VL CDR2 comprising the sequence shown in SEQ ID NO: 252, and (iii) a VL CDR3 comprising the sequence shown in SEQ ID NO: 253.


In some embodiments, the extracellular ligand-binding domain domain of a BCMA specific CAR provided herein comprises (a) a heavy chain variable (VH) region comprising (i) a VH complementarity determining region one (CDR1) comprising the sequence shown in SEQ ID NO: 156, 151, or 157; (ii) a VH CDR2 comprising the sequence shown in 190 or 191; and (iii) a VH CD3 comprising the sequence shown in 161; and/or (b) a light chain variable region (VL) comprising (i) a VL CDR1 comprising the sequence shown in SEQ ID NO: 262; (ii) a VL CDR2 comprising the sequence shown in SEQ ID NO: 252, and (iii) a VL CDR3 comprising the sequence shown in SEQ ID NO: 263.


In some embodiments, the extracellular ligand-binding domain domain of a BCMA specific CAR provided herein comprises (a) a heavy chain variable (VH) region comprising (i) a VH complementarity determining region one (CDR1) comprising the sequence shown in SEQ ID NO: 150, 151, or 152; (ii) a VH CDR2 comprising the sequence shown in 169 or 154; and (iii) a VH CD3 comprising the sequence shown in 155; and/or (b) a light chain variable region (VL) comprising (i) a VL CDR1 comprising the sequence shown in SEQ ID NO: 271; (ii) a VL CDR2 comprising the sequence shown in SEQ ID NO: 221, and (iii) a VL CDR3 comprising the sequence shown in SEQ ID NO: 272.


In some embodiments, the extracellular ligand-binding domain domain of a BCMA specific CAR provided herein comprises (a) a heavy chain variable (VH) region comprising (i) a VH complementarity determining region one (CDR1) comprising the sequence shown in SEQ ID NO: 129, 130, or 131; (ii) a VH CDR2 comprising the sequence shown in 139 or 140; and (iii) a VH CD3 comprising the sequence shown in 134; and/or (b) a light chain variable region (VL) comprising (i) a VL CDR1 comprising the sequence shown in SEQ ID NO: 217; (ii) a VL CDR2 comprising the sequence shown in SEQ ID NO: 210, and (iii) a VL CDR3 comprising the sequence shown in SEQ ID NO: 216.


In some embodiments, the extracellular ligand-binding domain domain of a BCMA specific CAR provided herein comprises (a) a heavy chain variable (VH) region comprising (i) a VH complementarity determining region one (CDR1) comprising the sequence shown in SEQ ID NO: 129, 130, or 131; (ii) a VH CDR2 comprising the sequence shown in 132 or 133; and (iii) a VH CD3 comprising the sequence shown in 137; and/or (b) a light chain variable region (VL) comprising (i) a VL CDR1 comprising the sequence shown in SEQ ID NO: 377; (ii) a VL CDR2 comprising the sequence shown in SEQ ID NO: 210, and (iii) a VL CDR3 comprising the sequence shown in SEQ ID NO: 214.


In some embodiments, the intracellular signaling domain comprises a CD3ζ signaling domain. In some embodiments, the intracellular signaling domain comprises a 4-1BB domain. In some embodiments, the CAR can further comprise another intracellular signaling domain. In some embodiments, the additional intracellular signaling domain can comprise a 4-1 BB domain.


In some embodiments, the CAR can comprise a stalk domain between the extracellular ligand-binding domain and the first transmembrane domain. In some embodiments, the stalk domain can be selected from the group consisting of: a human CD8α hinge, an IgG1 hinge, and an FcγRIIIα hinge.


In some embodiments, the first transmembrane domain can comprise a CD8α chain transmembrane domain.


In some embodiments, the CAR can comprise a CD20 epitope.


In some embodiments, the CAR can comprise another extracellular ligand-binding domain which is not specific for BCMA.


In some embodiments, the BCMA specific CAR can comprise the amino acid sequence shown in SEQ ID NO: 396.


In some embodiments of a CAR, the extracellular ligand-binding domain(s), the first transmembrane domain, and intracellular signaling domain(s) are on a single polypeptide.


In some embodiments, the CAR can comprise a second transmembrane domain, wherein the first transmembrane domain and the extracellular ligand-binding domain(s) are on a first polypeptide, and wherein the second transmembrane domain and the intracellular signaling domain(s) are on a second polypeptide, wherein the first transmembrane domain comprises a transmembrane domain from the α chain of the high-affinity IgE receptor (FcεRI) and the second transmembrane domain comprises a transmembrane domain from the γ or β chain of FcεRI. In some embodiments, the CAR can comprise a third polypeptide comprising a third transmembrane domain fused to an intracellular signaling domain from a co-stimulatory molecule, wherein the third transmembrane domain comprises a transmembrane domain from the γ or β chain of FcεRI.


In another aspect, the invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a BCMA specific CAR as described herein.


In another aspect, the invention provides an expression vector comprising a nucleic acid sequence encoding a BCMA specific CAR antibody as described herein.


In another aspect, the invention provides engineered immune cell expressing at its cell surface membrane a BCMA specific CAR as described herein. In some embodiments, the engineered immunce cell can comprise another CAR which is not specific for BCMA. In some embodiments, the engineered immunce cell can comprise a polynucleotide encoding a suicide polypeptide. In some embodiments, the suicide polypeptide is RQR8.


In some embodiments, the immune cell can be derived from an inflammatory T-lymphocyte, a cytotoxic T-lymphocyte, a regulatory T-lymphocyte, or a helper T-lymphocyte.


In some embodiments, the engineered immune cell can comprise a disruption one or more endogenous genes, wherein the endogenous gene encodes TCRα, TCRβ, CD52, glucocorticoid receptor (GR), deoxycytidine kinase (DCK), or an immune checkpoint protein such as for example programmed death-1 (PD-1).


In some embodiments, immune cell is obtained from a healthy donor. In some embodiments, the immune cell is obtained from a patient.


In another aspect, the invention provides an engineered immune cell expressing at its cell surface membrane a BCMA specific CAR as described herein for use as a medicament. In some embodiments, the medicament is for use in treatment of a B-cell related cancer selecting from the group consisting of multiple myeloma, malignant plasma cell neoplasm, Hodgkin's lymphoma, nodular lymphocyte predominant Hodgkin's lymphoma, Kahler's disease and Myelomatosis, plasma cell leukemia, plasmacytoma, B-cell prolymphocytic leukemia, hairy cell leukemia, B-cell non-Hodgkin's lymphoma (NHL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia (ALL), chronic myeloid leukemia (CML), follicular lymphoma, Burkitt's lymphoma, marginal zone lymphoma, mantle cell lymphoma, large cell lymphoma, precursor B-lymphoblastic lymphoma, myeloid leukemia, Waldenstrom's macroglobulienemia, diffuse large B cell lymphoma, follicular lymphoma, marginal zone lymphoma, mucosa-associated lymphatic tissue lymphoma, small cell lymphocytic lymphoma, mantle cell lymphoma, Burkitt lymphoma, primary mediastinal (thymic) large B-cell lymphoma, lymphoplasmactyic lymphoma, Waldenström macroglobulinemia, nodal marginal zone B cell lymphoma, splenic marginal zone lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, T cell/histiocyte-rich large B-cell lymphoma, primary central nervous system lymphoma, primary cutaneous diffuse large B-cell lymphoma (leg type), EBV positive diffuse large B-cell lymphoma of the elderly, diffuse large B-cell lymphoma associated with inflammation, intravascular large B-cell lymphoma, ALK-positive large B-cell lymphoma, plasmablastic lymphoma, large B-cell lymphoma arising in HHV8-associated multicentric Castleman disease, B-cell lymphoma unclassified with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma, B-cell lymphoma unclassified with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma, and other B-cell related lymphoma.


In another aspect, the invention provides a method of engineering an immune cell comprising: providing an immune cell; and expressing at the surface of the cell at least one BCMA specific CAR as described herein.


In some embodiments, the method comprises: providing an immune cell; introducing into the cell at least one polynucleotide encoding said BCMA specific CAR; and expressing said polynucleotide into the cell.


In some embodiments, the method comprises providing an immune cell; introducing into the cell at least one polynucleotide encoding said BCMA specific CAR; and introducing at least one other CAR which is not specific for BCMA.


In another aspect, the invention provides a method of treating a subject suffering from a condition associated with malignant cells, the method comprising: providing a immune cell expressing at the surface a BCMA specific CAR as described herein; and administering said immune cells to said patient.


In another aspect, the invention provides a pharmaceutical composition comprising an engineered immune cell as described herein.


In another aspect, the invention provides a method of treating a condition associated with malignant cells expressing BCMA in a subject comprising administering to a subject in need thereof an effective amount of a pharmaceutical composition of claim comprising an engineered immune cell as described herein. In some embodiments, the condition is a cancer. In some embodiments, the cancer is a B-cell related cancer selecting from the group consisting of multiple myeloma, malignant plasma cell neoplasm, Hodgkin's lymphoma, nodular lymphocyte predominant Hodgkin's lymphoma, Kahler's disease and Myelomatosis, plasma cell leukemia, plasmacytoma, B-cell prolymphocytic leukemia, hairy cell leukemia, B-cell non-Hodgkin's lymphoma (NHL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia (ALL), chronic myeloid leukemia (CML), follicular lymphoma, Burkitt's lymphoma, marginal zone lymphoma, mantle cell lymphoma, large cell lymphoma, precursor B-lymphoblastic lymphoma, myeloid leukemia, Waldenstrom's macroglobulienemia, diffuse large B cell lymphoma, follicular lymphoma, marginal zone lymphoma, mucosa-associated lymphatic tissue lymphoma, small cell lymphocytic lymphoma, mantle cell lymphoma, Burkitt lymphoma, primary mediastinal (thymic) large B-cell lymphoma, lymphoplasmactyic lymphoma, Waldenström macroglobulinemia, nodal marginal zone B cell lymphoma, splenic marginal zone lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, T cell/histiocyte-rich large B-cell lymphoma, primary central nervous system lymphoma, primary cutaneous diffuse large B-cell lymphoma (leg type), EBV positive diffuse large B-cell lymphoma of the elderly, diffuse large B-cell lymphoma associated with inflammation, intravascular large B-cell lymphoma, ALK-positive large B-cell lymphoma, plasmablastic lymphoma, large B-cell lymphoma arising in HHV8-associated multicentric Castleman disease, B-cell lymphoma unclassified with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma, B-cell lymphoma unclassified with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma, and other B-cell related lymphoma.


In another aspect, the invention provides a method of inhibiting tumor growth or progression in a subject who has malignant cells expressing BCMA, comprising administering to the subject in need thereof an effective amount of a pharmaceutical composition comprising an engineered immune cell as described herein.


In another aspect, the invention provides a method inhibiting metastasis of malignant cells expressing BCMA in a subject, comprising administering to the subject in need thereof an effective amount of the pharmaceutical composition comprising an engineered immune cell as described herein.


In another aspect, the invention provides a method inducing tumor regression in a subject who has malignant cells expressing BCMA, comprising administering to the subject in need thereof an effective amount of the pharmaceutical composition of a pharmaceutical composition comprising an engineered immune cell as described herein.


In some embodiments, any of the above methods further comprises administering one or more additional therapies, such as for example, a monoclonal antibody and/or a chemotherapeutic. In some embodiments, the monoclonal antibody can be, for example, an antibody that binds to a checkpoint inhibitor such as, for example, an anti-PD-1 antibody or an anti-PD-L1 antibody. In some embodiments, any of the above methods further comprises administering a nucleoside analog therapy, such as for example fludarabine or clofarabine, to the subject.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a graph summarizing the results of treatment with BCMA specific CAR-T cells in the MM1.S tumor model.



FIG. 2 depicts a graph summarizing the results of treatment with BCMA specific CAR-T cells in the Molp8 tumor model.





DETAILED DESCRIPTION

The invention disclosed herein provides chimeric antigen receptors (CARs) and immune cells comprising CARs (CAR-T cells) that specifically bind to BCMA (e.g., human BCMA). The invention also provides polynucleotides encoding these CARs, compositions comprising these CAR-T cells, and methods of making and using these CARs and CAR-T cells. The invention also provides methods for treating a condition associated with malignant BCMA expression in a subject, such as cancer.


General Techniques


The practice of the invention will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry and immunology, which are within the skill of the art. Such techniques are explained fully in the literature, such as, Molecular Cloning: A Laboratory Manual, second edition (Sambrook et al., 1989) Cold Spring Harbor Press; Oligonucleotide Synthesis (M. J. Gait, ed., 1984); Methods in Molecular Biology, Humana Press; Cell Biology: A Laboratory Notebook (J. E. Cellis, ed., 1998) Academic Press; Animal Cell Culture (R. I. Freshney, ed., 1987); Introduction to Cell and Tissue Culture (J. P. Mather and P. E. Roberts, 1998) Plenum Press; Cell and Tissue Culture: Laboratory Procedures (A. Doyle, J. B. Griffiths, and D. G. Newell, eds., 1993-1998) J. Wiley and Sons; Methods in Enzymology (Academic Press, Inc.); Handbook of Experimental Immunology (D. M. Weir and C. C. Blackwell, eds.); Gene Transfer Vectors for Mammalian Cells (J. M. Miller and M. P. Calos, eds., 1987); Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Current Protocols in Immunology (J. E. Coligan et al., eds., 1991); Short Protocols in Molecular Biology (Wiley and Sons, 1999); Immunobiology (C. A. Janeway and P. Travers, 1997); Antibodies (P. Finch, 1997); Antibodies: a practical approach (D. Catty., ed., IRL Press, 1988-1989); Monoclonal antibodies: a practical approach (P. Shepherd and C. Dean, eds., Oxford University Press, 2000); Using antibodies: a laboratory manual (E. Harlow and D. Lane (Cold Spring Harbor Laboratory Press, 1999); The Antibodies (M. Zanetti and J. D. Capra, eds., Harwood Academic Publishers, 1995).


Definitions


The term “extracellular ligand-binding domain” as used herein refers to an oligo- or polypeptide that is capable of binding a ligand. Preferably, the domain will be capable of interacting with a cell surface molecule. For example, the extracellular ligand-binding domain may be chosen to recognize a ligand that acts as a cell surface marker on target cells associated with a particular disease state.


The term “stalk domain” or “hinge domain” are used interchangeably herein to refer to any oligo- or polypeptide that functions to link the transmembrane domain to the extracellular ligand-binding domain. In particular, stalk domains are used to provide more flexibility and accessibility for the extracellular ligand-binding domain.


The term “intracellular signaling domain” refers to the portion of a protein which transduces the effector signal function signal and directs the cell to perform a specialized function.


A “co-stimulatory molecule” as used herein refers to the cognate binding partner on a T cell that specifically binds with a co-stimulatory ligand, thereby mediating a co-stimulatory response by the cell, such as, but not limited to proliferation. Co-stimulatory molecules include, but are not limited to an MHC class I molecule, BTLA and Toll ligand receptor. Examples of costimulatory molecules include CD27, CD28, CD8, 4-1 BB (CD137), OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3 and a ligand that specifically binds with CD83 and the like.


A “co-stimulatory ligand” refers to a molecule on an antigen presenting cell that specifically binds a cognate co-stimulatory signal molecule on a T cell, thereby providing a signal which, in addition to the primary signal provided by, for instance, binding of a TCR/CD3 complex with an MHC molecule loaded with peptide, mediates a T cell response, including, but not limited to, proliferation activation, differentiation and the like. A co-stimulatory ligand can include but is not limited to CD7, B7-1 (CD80), B7-2 (CD86), PD-L1, PD-L2, 4-1 BBL, OX40L, inducible costimulatory ligand (ICOS-L), intercellular adhesion molecule (ICAM, CD30L, CD40, CD70, CD83, HLA-G, MICA, M1CB, HVEM, lymphotoxin β receptor, 3/TR6, ILT3, ILT4, an agonist or antibody that binds Toll ligand receptor and a ligand that specifically binds with B7-H3. A co-stimulatory ligand also encompasses, inter alia, an antibody that specifically binds with a co-stimulatory molecule present on a T cell, such as but not limited to, CD27, CD28, 4-1BB, OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LTGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83.


An “antibody” is an immunoglobulin molecule capable of specific binding to a target, such as a carbohydrate, polynucleotide, lipid, polypeptide, etc., through at least one antigen recognition site, located in the variable region of the immunoglobulin molecule. As used herein, the term encompasses not only intact polyclonal or monoclonal antibodies, but also fragments thereof (such as Fab, Fab′, F(ab′)2, Fv), single chain (scFv) and domain antibodies (including, for example, shark and camelid antibodies), and fusion proteins comprising an antibody, and any other modified configuration of the immunoglobulin molecule that comprises an antigen recognition site. An antibody includes an antibody of any class, such as IgG, IgA, or IgM (or sub-class thereof), and the antibody need not be of any particular class. Depending on the antibody amino acid sequence of the constant region of its heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2. The heavy-chain constant regions that correspond to the different classes of immunoglobulins are called alpha, delta, epsilon, gamma, and mu, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.


The term “antigen binding fragment” or “antigen binding portion” of an antibody, as used herein, refers to one or more fragments of an intact antibody that retain the ability to specifically bind to a given antigen (e.g., BCMA). Antigen binding functions of an antibody can be performed by fragments of an intact antibody. Examples of binding fragments encompassed within the term “antigen binding fragment” of an antibody include Fab; Fab′; F(ab′)2; an Fd fragment consisting of the VH and CH1 domains; an Fv fragment consisting of the VL and VH domains of a single arm of an antibody; a single domain antibody (dAb) fragment (Ward et al., Nature 341:544-546, 1989), and an isolated complementarity determining region (CDR).


An antibody, an antibody conjugate, or a polypeptide that “preferentially binds” or “specifically binds” (used interchangeably herein) to a target (e.g., BCMA protein) is a term well understood in the art, and methods to determine such specific or preferential binding are also well known in the art. A molecule is said to exhibit “specific binding” or “preferential binding” if it reacts or associates more frequently, more rapidly, with greater duration and/or with greater affinity with a particular cell or substance than it does with alternative cells or substances. An antibody “specifically binds” or “preferentially binds” to a target if it binds with greater affinity, avidity, more readily, and/or with greater duration than it binds to other substances. For example, an antibody that specifically or preferentially binds to a BCMA epitope is an antibody that binds this epitope with greater affinity, avidity, more readily, and/or with greater duration than it binds to other BCMA epitopes or non-BCMA epitopes. It is also understood that by reading this definition, for example, an antibody (or moiety or epitope) that specifically or preferentially binds to a first target may or may not specifically or preferentially bind to a second target. As such, “specific binding” or “preferential binding” does not necessarily require (although it can include) exclusive binding. Generally, but not necessarily, reference to binding means preferential binding.


A “variable region” of an antibody refers to the variable region of the antibody light chain or the variable region of the antibody heavy chain, either alone or in combination. As known in the art, the variable regions of the heavy and light chain each consist of four framework regions (FR) connected by three complementarity determining regions (CDRs) also known as hypervariable regions. The CDRs in each chain are held together in close proximity by the FRs and, with the CDRs from the other chain, contribute to the formation of the antigen binding site of antibodies. There are at least two techniques for determining CDRs: (1) an approach based on cross-species sequence variability (i.e., Kabat et al. Sequences of Proteins of Immunological Interest, (5th ed., 1991, National Institutes of Health, Bethesda MD)); and (2) an approach based on crystallographic studies of antigen-antibody complexes (Al-lazikani et al., 1997, J. Molec. Biol. 273:927-948). As used herein, a CDR may refer to CDRs defined by either approach or by a combination of both approaches.


A “CDR” of a variable domain are amino acid residues within the variable region that are identified in accordance with the definitions of the Kabat, Chothia, the accumulation of both Kabat and Chothia, AbM, contact, and/or conformational definitions or any method of CDR determination well known in the art. Antibody CDRs may be identified as the hypervariable regions originally defined by Kabat et al. See, e.g., Kabat et al., 1992, Sequences of Proteins of Immunological Interest, 5th ed., Public Health Service, NIH, Washington D.C. The positions of the CDRs may also be identified as the structural loop structures originally described by Chothia and others. See, e.g., Chothia et al., Nature 342:877-883, 1989. Other approaches to CDR identification include the “AbM definition,” which is a compromise between Kabat and Chothia and is derived using Oxford Molecular's AbM antibody modeling software (now Accelrys®), or the “contact definition” of CDRs based on observed antigen contacts, set forth in MacCallum et al., J. Mol. Biol., 262:732-745, 1996. In another approach, referred to herein as the “conformational definition” of CDRs, the positions of the CDRs may be identified as the residues that make enthalpic contributions to antigen binding. See, e.g., Makabe et al., Journal of Biological Chemistry, 283:1156-1166, 2008. Still other CDR boundary definitions may not strictly follow one of the above approaches, but will nonetheless overlap with at least a portion of the Kabat CDRs, although they may be shortened or lengthened in light of prediction or experimental findings that particular residues or groups of residues or even entire CDRs do not significantly impact antigen binding. As used herein, a CDR may refer to CDRs defined by any approach known in the art, including combinations of approaches. The methods used herein may utilize CDRs defined according to any of these approaches. For any given embodiment containing more than one CDR, the CDRs may be defined in accordance with any of Kabat, Chothia, extended, AbM, contact, and/or conformational definitions.


As used herein, “monoclonal antibody” refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations, which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the invention may be made by the hybridoma method first described by Kohler and Milstein, Nature 256:495, 1975, or may be made by recombinant DNA methods such as described in U.S. Pat. No. 4,816,567. The monoclonal antibodies may also be isolated from phage libraries generated using the techniques described in McCafferty et al., Nature 348:552-554, 1990, for example.


As used herein, “humanized” antibody refers to forms of non-human (e.g. murine) antibodies that are chimeric immunoglobulins, immunoglobulin chains, or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen binding subsequences of antibodies) that contain minimal sequence derived from non-human immunoglobulin. Preferably, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementarity determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat, or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, the humanized antibody may comprise residues that are found neither in the recipient antibody nor in the imported CDR or framework sequences, but are included to further refine and optimize antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region or domain (Fc), typically that of a human immunoglobulin. Preferred are antibodies having Fc regions modified as described in WO 99/58572. Other forms of humanized antibodies have one or more CDRs (CDR L1, CDR L2, CDR L3, CDR H1, CDR H2, or CDR H3) which are altered with respect to the original antibody, which are also termed one or more CDRs “derived from” one or more CDRs from the original antibody.


As used herein, “human antibody” means an antibody having an amino acid sequence corresponding to that of an antibody produced by a human and/or which has been made using any of the techniques for making human antibodies known to those skilled in the art or disclosed herein. This definition of a human antibody includes antibodies comprising at least one human heavy chain polypeptide or at least one human light chain polypeptide. One such example is an antibody comprising murine light chain and human heavy chain polypeptides. Human antibodies can be produced using various techniques known in the art. In one embodiment, the human antibody is selected from a phage library, where that phage library expresses human antibodies (Vaughan et al., Nature Biotechnology, 14:309-314, 1996; Sheets et al., Proc. Natl. Acad. Sci. (USA) 95:6157-6162, 1998; Hoogenboom and Winter, J. Mol. Biol., 227:381, 1991; Marks et al., J. Mol. Biol., 222:581, 1991). Human antibodies can also be made by immunization of animals into which human immunoglobulin loci have been transgenically introduced in place of the endogenous loci, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. This approach is described in U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; and 5,661,016. Alternatively, the human antibody may be prepared by immortalizing human B lymphocytes that produce an antibody directed against a target antigen (such B lymphocytes may be recovered from an individual or from single cell cloning of the cDNA, or may have been immunized in vitro). See, e.g., Cole et al. Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77, 1985; Boerner et al., J. Immunol., 147 (1):86-95, 1991; and U.S. Pat. No. 5,750,373.


The term “chimeric antibody” is intended to refer to antibodies in which the variable region sequences are derived from one species and the constant region sequences are derived from another species, such as an antibody in which the variable region sequences are derived from a mouse antibody and the constant region sequences are derived from a human antibody.


The terms “polypeptide”, “oligopeptide”, “peptide” and “protein” are used interchangeably herein to refer to chains of amino acids of any length, preferably, relatively short (e.g., 10-100 amino acids). The chain may be linear or branched, it may comprise modified amino acids, and/or may be interrupted by non-amino acids. The terms also encompass an amino acid chain that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component. Also included within the definition are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, etc.), as well as other modifications known in the art. It is understood that the polypeptides can occur as single chains or associated chains.


A “monovalent antibody” comprises one antigen binding site per molecule (e.g., IgG or Fab). In some instances, a monovalent antibody can have more than one antigen binding sites, but the binding sites are from different antigens.


A “bivalent antibody” comprises two antigen binding sites per molecule (e.g., IgG). In some instances, the two binding sites have the same antigen specificities. However, bivalent antibodies may be bispecific.


A “bispecific,” “dual-specific” or “bifunctional” antibody is a hybrid antibody having two different antigen binding sites. The two antigen binding sites of a bispecific antibody bind to two different epitopes, which may reside on the same or different protein targets.


Antibodies of the invention can be produced using techniques well known in the art, e.g., recombinant technologies, phage display technologies, synthetic technologies or combinations of such technologies or other technologies readily known in the art (see, for example, Jayasena, S. D., Clin. Chem., 45: 1628-50, 1999 and Fellouse, F. A., et al, J. Mol. Biol., 373(4):924-40, 2007).


As known in the art, “polynucleotide,” or “nucleic acid,” as used interchangeably herein, refer to chains of nucleotides of any length, and include DNA and RNA. The nucleotides can be deoxyribonucleotides, ribonucleotides, modified nucleotides or bases, and/or their analogs, or any substrate that can be incorporated into a chain by DNA or RNA polymerase. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and their analogs. If present, modification to the nucleotide structure may be imparted before or after assembly of the chain. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component. Other types of modifications include, for example, “caps”, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoamidates, carbamates, etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), those containing pendant moieties, such as, for example, proteins (e.g., nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalators (e.g., acridine, psoralen, etc.), those containing chelators (e.g., metals, radioactive metals, boron, oxidative metals, etc.), those containing alkylators, those with modified linkages (e.g., alpha anomeric nucleic acids, etc.), as well as unmodified forms of the polynucleotide(s). Further, any of the hydroxyl groups ordinarily present in the sugars may be replaced, for example, by phosphonate groups, phosphate groups, protected by standard protecting groups, or activated to prepare additional linkages to additional nucleotides, or may be conjugated to solid supports. The 5′ and 3′ terminal OH can be phosphorylated or substituted with amines or organic capping group moieties of from 1 to 20 carbon atoms. Other hydroxyls may also be derivatized to standard protecting groups. Polynucleotides can also contain analogous forms of ribose or deoxyribose sugars that are generally known in the art, including, for example, 2′-O-methyl-, 2′-O-allyl, 2′-fluoro- or 2′-azido-ribose, carbocyclic sugar analogs, alpha- or beta-anomeric sugars, epimeric sugars such as arabinose, xyloses or lyxoses, pyranose sugars, furanose sugars, sedoheptuloses, acyclic analogs and abasic nucleoside analogs such as methyl riboside. One or more phosphodiester linkages may be replaced by alternative linking groups. These alternative linking groups include, but are not limited to, embodiments wherein phosphate is replaced by P(O)S (“thioate”), P(S)S (“dithioate”), (O)NR2 (“amidate”), P(O)R, P(O)OR′, CO or CH2 (“formacetal”), in which each R or R′ is independently H or substituted or unsubstituted alkyl (1-20 C) optionally containing an ether (—O—) linkage, aryl, alkenyl, cycloalkyl, cycloalkenyl or araldyl. Not all linkages in a polynucleotide need be identical. The preceding description applies to all polynucleotides referred to herein, including RNA and DNA.


As known in the art a “constant region” of an antibody refers to the constant region of the antibody light chain or the constant region of the antibody heavy chain, either alone or in combination.


As used herein, “substantially pure” refers to material which is at least 50% pure (i.e., free from contaminants), more preferably, at least 90% pure, more preferably, at least 95% pure, yet more preferably, at least 98% pure, and most preferably, at least 99% pure.


A “host cell” includes an individual cell or cell culture that can be or has been a recipient for vector(s) for incorporation of polynucleotide inserts. Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in genomic DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation. A host cell includes cells transfected in vivo with a polynucleotide(s) of this invention.


As used herein, “immune cell” refers to a cell of hematopoietic origin functionally involved in the initiation and/or execution of innate and/or adaptative immune response.


As known in the art, the term “Fc region” is used to define a C-terminal region of an immunoglobulin heavy chain. The “Fc region” may be a native sequence Fc region or a variant Fc region. Although the boundaries of the Fc region of an immunoglobulin heavy chain might vary, the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof. The numbering of the residues in the Fc region is that of the EU index as in Kabat. Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md., 1991. The Fc region of an immunoglobulin generally comprises two constant regions, CH2 and CH3.


As used in the art, “Fc receptor” and “FcR” describe a receptor that binds to the Fc region of an antibody. The preferred FcR is a native sequence human FcR. Moreover, a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcγRI, FcγRII, and FcγRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcγRII receptors include FcγRIIA (an “activating receptor”) and FcγRIIB (an “inhibiting receptor”), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. FcRs are reviewed in Ravetch and Kinet, Ann. Rev. Immunol., 9:457-92, 1991; Capel et al., Immunomethods, 4:25-34, 1994; and de Haas et al., J. Lab. Clin. Med., 126:330-41, 1995. “FcR” also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., J. Immunol., 117:587, 1976; and Kim et al., J. Immunol., 24:249, 1994).


The term “compete”, as used herein with regard to an antibody, means that a first antibody, or an antigen binding fragment (or portion) thereof, binds to an epitope in a manner sufficiently similar to the binding of a second antibody, or an antigen binding portion thereof, such that the result of binding of the first antibody with its cognate epitope is detectably decreased in the presence of the second antibody compared to the binding of the first antibody in the absence of the second antibody. The alternative, where the binding of the second antibody to its epitope is also detectably decreased in the presence of the first antibody, can, but need not be the case. That is, a first antibody can inhibit the binding of a second antibody to its epitope without that second antibody inhibiting the binding of the first antibody to its respective epitope. However, where each antibody detectably inhibits the binding of the other antibody with its cognate epitope or ligand, whether to the same, greater, or lesser extent, the antibodies are said to “cross-compete” with each other for binding of their respective epitope(s). Both competing and cross-competing antibodies are encompassed by the invention. Regardless of the mechanism by which such competition or cross-competition occurs (e.g., steric hindrance, conformational change, or binding to a common epitope, or portion thereof), the skilled artisan would appreciate, based upon the teachings provided herein, that such competing and/or cross-competing antibodies are encompassed and can be useful for the methods disclosed herein.


As used herein “autologous” means that cells, a cell line, or population of cells used for treating patients are originating from said patient or from a Human Leucocyte Antigen (HLA) compatible donor.


As used herein “allogeneic” means that cells or population of cells used for treating patients are not originating from said patient but from a donor.


As used herein, “treatment” is an approach for obtaining beneficial or desired clinical results. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, one or more of the following: reducing the proliferation of (or destroying) neoplastic or cancerous cells, inhibiting metastasis of neoplastic cells, shrinking or decreasing the size of BCMA expressing tumor, remission of a BCMA associated disease (e.g., cancer), decreasing symptoms resulting from a BCMA associated disease (e.g., cancer), increasing the quality of life of those suffering from a BCMA associated disease (e.g., cancer), decreasing the dose of other medications required to treat a BCMA associated disease (e.g., cancer), delaying the progression of a BCMA associated disease (e.g., cancer), curing a BCMA associated disease (e.g., cancer), and/or prolong survival of patients having a BCMA associated disease (e.g., cancer).


“Ameliorating” means a lessening or improvement of one or more symptoms as compared to not administering a BCMA antibody or a BCMA antibody conjugate. “Ameliorating” also includes shortening or reduction in duration of a symptom.


As used herein, an “effective dosage” or “effective amount” of drug, compound, or pharmaceutical composition is an amount sufficient to effect any one or more beneficial or desired results. For prophylactic use, beneficial or desired results include eliminating or reducing the risk, lessening the severity, or delaying the outset of the disease, including biochemical, histological and/or behavioral symptoms of the disease, its complications and intermediate pathological phenotypes presenting during development of the disease. For therapeutic use, beneficial or desired results include clinical results such as reducing incidence or amelioration of one or more symptoms of various BCMA associated diseases or conditions (such as for example multiple myeloma), decreasing the dose of other medications required to treat the disease, enhancing the effect of another medication, and/or delaying the progression of the BCMA associated disease of patients. An effective dosage can be administered in one or more administrations. For purposes of this invention, an effective dosage of drug, compound, or pharmaceutical composition is an amount sufficient to accomplish prophylactic or therapeutic treatment either directly or indirectly. As is understood in the clinical context, an effective dosage of a drug, compound, or pharmaceutical composition may or may not be achieved in conjunction with another drug, compound, or pharmaceutical composition. Thus, an “effective dosage” may be considered in the context of administering one or more therapeutic agents, and a single agent may be considered to be given in an effective amount if, in conjunction with one or more other agents, a desirable result may be or is achieved.


An “individual” or a “subject” is a mammal, more preferably, a human. Mammals also include, but are not limited to, farm animals, sport animals, pets, primates, horses, dogs, cats, mice and rats.


As used herein, “vector” means a construct, which is capable of delivering, and, preferably, expressing, one or more gene(s) or sequence(s) of interest in a host cell. Examples of vectors include, but are not limited to, viral vectors, naked DNA or RNA expression vectors, plasmid, cosmid or phage vectors, DNA or RNA expression vectors associated with cationic condensing agents, DNA or RNA expression vectors encapsulated in liposomes, and certain eukaryotic cells, such as producer cells.


As used herein, “expression control sequence” means a nucleic acid sequence that directs transcription of a nucleic acid. An expression control sequence can be a promoter, such as a constitutive or an inducible promoter, or an enhancer. The expression control sequence is operably linked to the nucleic acid sequence to be transcribed.


As used herein, “pharmaceutically acceptable carrier” or “pharmaceutical acceptable excipient” includes any material which, when combined with an active ingredient, allows the ingredient to retain biological activity and is non-reactive with the subject's immune system. Examples include, but are not limited to, any of the standard pharmaceutical carriers such as a phosphate buffered saline solution, water, emulsions such as oil/water emulsion, and various types of wetting agents. Preferred diluents for aerosol or parenteral administration are phosphate buffered saline (PBS) or normal (0.9%) saline. Compositions comprising such carriers are formulated by well known conventional methods (see, for example, Remington's Pharmaceutical Sciences, 18th edition, A. Gennaro, ed., Mack Publishing Co., Easton, PA, 1990; and Remington, The Science and Practice of Pharmacy 21st Ed. Mack Publishing, 2005).


The term “kon”, as used herein, refers to the rate constant for association of an antibody to an antigen.


The term “koff”, as used herein, refers to the rate constant for dissociation of an antibody from the antibody/antigen complex.


The term “KD”, as used herein, refers to the equilibrium dissociation constant of an antibody-antigen interaction.


Reference to “about” a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se. For example, description referring to “about X” includes description of “X.” Numeric ranges are inclusive of the numbers defining the range.


It is understood that wherever embodiments are described herein with the language “comprising,” otherwise analogous embodiments described in terms of “consisting of” and/or “consisting essentially of” are also provided.


Where aspects or embodiments of the invention are described in terms of a Markush group or other grouping of alternatives, the invention encompasses not only the entire group listed as a whole, but each member of the group individually and all possible subgroups of the main group, but also the main group absent one or more of the group members. The invention also envisages the explicit exclusion of one or more of any of the group members in the claimed invention.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control. Throughout this specification and claims, the word “comprise,” or variations such as “comprises” or “comprising” will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers. Unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular.


Exemplary methods and materials are described herein, although methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the invention. The materials, methods, and examples are illustrative only and not intended to be limiting.


BCMA Specific CARs and Methods of Making Thereof


The invention provides CARs that bind to BCMA (e.g., human BCMA (e.g., SEQ ID NO: 354 or accession number: Q02223-2). BCMA specific CARs provided herein include single chain CARS and multichain CARs. The CARs have the ability to redirect T cell specificity and reactivity toward BCMA in a non-MHC-restricted manner, exploiting the antigen-binding properties of monoclonal antibodies. The non-MHC-restricted antigen recognition gives T cells expressing CARs the ability to recognize an antigen independent of antigen processing, thus bypassing a major mechanism of tumor escape.


In some embodiments, CARs provided herein comprise an extracellular ligand-binding domain (e.g., a single chain variable fragment (scFv)), a transmembrane domain, and an intracellular signaling domain. In some embodiments, the extracellular ligand-binding domain, transmembrane domain, and intracellular signaling domain are in one polypeptide, i.e., in a single chain. Multichain CARs and polypeptides are also provided herein. In some embodiments, the multichain CARs comprise: a first polypeptide comprising a transmembrane domain and at least one extracellular ligand-binding domain, and a second polypeptide comprising a transmembrane domain and at least one intracellular signaling domain, wherein the polypeptides assemble together to form a multichain CAR.


In some embodiments, a BCMA specific multichain CAR is based on the high affinity receptor for IgE (FcεRI). The FcεRI expressed on mast cells and basophiles triggers allergic reactions. FcεRI is a tetrameric complex composed of a single α subunit, a single β subunit, and two disulfide-linked γ subunits. The a subunit contains the IgE-binding domain. The β and γ subunits contain ITAMs that mediate signal transduction. In some embodiments, the extracellular domain of the FcRα chain is deleted and replaced by a BCMA specific extracellular ligand-binding domain. In some embodiments, the multichain BCMA specific CAR comprises an scFv that binds specifically to BCMA, the CD8α hinge, and the ITAM of the FcRβ chain. In some embodiments, the CAR may or may not comprise the FcRγ chain.


In some embodiments, the extracellular ligand-binding domain comprises an scFv comprising the light chain variable (VL) region and the heavy chain variable (VH) region of a target antigen specific monoclonal antibody joined by a flexible linker. Single chain variable region fragments are made by linking light and/or heavy chain variable regions by using a short linking peptide (Bird et al., Science 242:423-426, 1988). An example of a linking peptide is the GS linker having the amino acid sequence (GGGGS)3 (SEQ ID NO: 333), which bridges approximately 3.5 nm between the carboxy terminus of one variable region and the amino terminus of the other variable region. Linkers of other sequences have been designed and used (Bird et al., 1988, supra). In general, linkers can be short, flexible polypeptides and preferably comprised of about 20 or fewer amino acid residues. Linkers can in turn be modified for additional functions, such as attachment of drugs or attachment to solid supports. The single chain variants can be produced either recombinantly or synthetically. For synthetic production of scFv, an automated synthesizer can be used. For recombinant production of scFv, a suitable plasmid containing polynucleotide that encodes the scFv can be introduced into a suitable host cell, either eukaryotic, such as yeast, plant, insect or mammalian cells, or prokaryotic, such as E. coli. Polynucleotides encoding the scFv of interest can be made by routine manipulations such as ligation of polynucleotides. The resultant scFv can be isolated using standard protein purification techniques known in the art.


In some embodiments, the extracellular ligand-binding domain comprises (a) a VH region comprising (i) a VH complementarity determining region one (CDR1) comprising the sequence SYX1MX2, wherein X1 is A or P; and X2 is T, N, or S (SEQ ID NO: 301), GFTFX1SY, wherein X1 is G or S (SEQ ID NO: 302), or GFTFX1SYX2MX3, wherein X1 is G or S, X2 is A or P; and X3 is T, N, or S (SEQ ID NO: 303); (ii) a VH CDR2 comprising the sequence AX1X2X3X4GX5X6X7X8YADX9X19KG, wherein X1 is I, V, T, H, L, A, or C; X2 is S, D, G, T, I, L, F, M, or V; X3 is G, Y, L, H, D, A, S, or M; X4 is S, Q, T, A, F, or W; X5 is G or T; X6 is N, S, P, Y, W, or F; X7 is S, T, I, L, T, A, R, V, K, G, or C; X8 is F, Y, P, W, H, or G; X9 is V, R, or L; and X10 is G or T (SEQ ID NO: 305), or X1X2X3X4X5X6, wherein X1 is S, V, I, D, G, T, L, F, or M; X2 is G, Y, L, H, D, A, S, or M; X3 is S, G, F, or W; X4 is G or S; X5 is G or T; and X6 is N, S, P, Y, or W (SEQ ID NO: 306); and iii) a VH CDR3 comprising the sequence VSPIX1X2X3X4, wherein X1 is A or Y; X2 is A or S; and X3 is G, Q, L, P, or E (SEQ ID NO: 307), or YWPMX1X2, wherein X1 is D, S, T, or A; and X2 is I, S, L, P, or D (SEQ ID NO: 308); and a VL region comprising (i) a VL CDR1 comprising the sequence X1X2X3X4X5X6X7X8X9X10X11X12, wherein X1 is R, G, W, A, or C; X2 is A, P, G, L, C, or S; X3 is S, G, or R; X4 is Q, C, E, V, or I; X5 is S, L, P, G, A, R, or D; X6 is V, G, or I; X7 is S, E, D, or P; X8 is S, P, F, A, M, E, V, N, D, or Y; X9 is I, T, V, E, S, A, M, Q, Y, H, or R; X10 is Y or F; X11 is L, W, or P; and X12 is A, S, or G (SEQ ID NO: 309); (ii) a VL CDR2 comprising the sequence X1ASX2RAX3, wherein X1 is G or D; X2 is S or I; and X3 is T or P (SEQ ID NO: 310); and (iii) a VL CDR3 comprising the sequence QQYX1X2X3PX4T, wherein X1 is G, Q, E, L, F, A, S, M, K, R, or Y; X2 is S, R, T, G, V, F, Y, D, A, H, V, E, K, or C; X3 is W, F, or S; and X4 is L or I (SEQ ID NO: 311), or QQYX1X2X3PX4, wherein X1 is G, Q, E, L, F, A, S, M, R, K, or Y; X2 is S, R, T, G, R, V, D, A, H, E, K, C, F, or Y; X3 is W, S, or F; and X4 is L or I (SEQ ID NO: 312). In some embodiments, the VH and VL are linked together by a flexible linker. In some embodiments a flexible linker comprises the amino acid sequence shown in SEQ ID NO: 333.


In another aspect, provided is CAR, which specifically binds to BCMA, wherein the CAR comprises an extracellular ligand-binding domain comprising: a VH region comprising a VH CDR1, VH CDR2, and VH CDR3 of the VH sequence shown in SEQ ID NO: 2, 3, 7, 8, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 83, 87, 92, 78, 95, 97, 99, 101, 104, 106, 110, 112, 114, 76, 118, 120, 122, 112, 125, 127, 313, or 314; and/or a VL region comprising VL CDR1, VL CDR2, and VL CDR3 of the VL sequence shown in SEQ ID NO: 1, 4, 5, 6, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 34, 36, 38, 40, 41, 43, 45, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 317, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 94, 96, 98, 100, 102, 103, 105, 107, 108, 109, 111, 113, 115, 116, 117, 119, 121, 123, 124, 126, 128, 315, or 316. In some embodiments, the VH and VL are linked together by a flexible linker. In some embodiments a flexible linker comprises the amino acid sequence shown in SEQ ID NO: 333.


In some embodiments, a CAR of the invention comprises an extracellular ligand-binding domain having any one of partial light chain sequence as listed in Table 1 and/or any one of partial heavy chain sequence as listed in Table 1. In Table 1, the underlined sequences are CDR sequences according to Kabat and in bold according to Chothia, except for the following heavy chain CDR2 sequences, in which the Chothia CDR sequences are underlined and the Kabat CDR sequences are in bold: P5A2_VHVL, A02_Rd4_0.6 nM_C06, A02_Rd4_0.6 nM_C09 A02_Rd4_6 nM_C16, A02_Rd4_6 nM_C03, A02_Rd4_6 nM_C01, A02_Rd4_6 nM_C26 A02_Rd4_6 nM_C25, A02_Rd4_6 nM_C22, A02_Rd4_6 nM_C19, A02_Rd4_0.6 nM_C03 A02_Rd4_6 nM_C07, A02_Rd4_6 nM_C23, A02_Rd4_0.6 nM_C18, A02_Rd4_6 nM_C10, A02_Rd4_6 nM_C05, A02_Rd4_0.6 nM_C10, A02_Rd4_6 nM_C04, A02_Rd4_0.6 nM_C26, A02_Rd4_0.6 nM_C13, A02_Rd4_0.6 nM_C01, A02_Rd4_6 nM_C08, P5C1_VHVL, C01_Rd4_6 nM_C24, C01_Rd4_6 nM_C26, C01_Rd4_6 nM_C10, C01_Rd4_0.6 nM_C27 C01_Rd4_6 nM_C20, C01_Rd4_6 nM_C12, C01_Rd4_0.6 nM_C16, C01_Rd4_0.6 nM_C09, C01_Rd4_6 nM_C09, C01_Rd4_0.6 nM_C03, C01_Rd4_0.6 nM_C06, C01_Rd4_6 nM_C04, COMBO_Rd4_0.6 nM_C22, COMBO_Rd4_6 nM_C21, COMBO_Rd4_6 nM_C10, COMBO_Rd4_0.6 nM_C04, COMBO_Rd4_6 nM_C25, COMBO_Rd4_0.6 nM_C21, COMBO_Rd4_6 nM_C11, COMBO_Rd4_0.6 nM_C20, COMBO_Rd4_6 nM_C09, COMBO_Rd4_6 nM_C08, COMBO_Rd4_0.6 nM_C19, COMBO_Rd4_0.6 nM_C02, COMBO_Rd4_0.6 nM_C23, COMBO_Rd4_0.6 nM_C29, COMBO_Rd4_0.6 nM_C09, COMBO_Rd4_6 nM_C12, COMBO_Rd4_0.6 nM_C30, COMBO_Rd4_0.6 nM_C14, COMBO_Rd4_6 nM_C07, COMBO_Rd4_6 nM_C02, COMBO_Rd4_0.6 nM_C05, COMBO_Rd4_0.6 nM_C17, COMBO_Rd4_6 nM_C22, and COMBO_Rd4_0.6 nM_C11.











TABLE 1





mAb
Light Chain
Heavy Chain







P6E01/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


P6E01
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYGSPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 1)
(SEQ ID NO: 2)





P6E01/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


H3.AQ
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYGSPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 1)
(SEQ ID NO: 3)





L1.LGF/
EIVLTQSPGTLSLSPGERATLSCRASQSLGSFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KW/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


P6E01
TISRLEPEDFAVYYCKHYGWPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 4)
(SEQ ID NO: 2)





L1.LGF/
EIVLTQSPGTLSLSPGERATLSCRASQSLGSFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.NY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


P6E01
TISRLEPEDFAVYYCQHYNYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 5)
(SEQ ID NO: 2)





L1.GDF/
EIVLTQSPGTLSLSPGERATLSCRASQSVGDFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.NY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


P6E01
TISRLEPEDFAVYYCQHYNYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 6)
(SEQ ID NO: 2)





L1.LGF/
EIVLTQSPGTLSLSPGERATLSCRASQSLGSFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KW/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AL
TISRLEPEDFAVYYCKHYGWPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARARVSPIAALMDYWGQGTLVTVS



(SEQ ID NO: 4)
S (SEQ ID NO: 7)





L1.LGF/
EIVLTQSPGTLSLSPGERATLSCRASQSLGSFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KW/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AP
TISRLEPEDFAVYYCKHYGWPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAPMDYWGQGTLVTVSS



(SEQ ID NO: 4)
(SEQ ID NO: 8)





L1.LGF/
EIVLTQSPGTLSLSPGERATLSCRASQSLGSFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KW/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AQ
TISRLEPEDFAVYYCKHYGWPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 4)
(SEQ ID NO: 3)





L1.LGF/
EIVLTQSPGTLSLSPGERATLSCRASQSLGSFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.PY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AP
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAPMDYWGQGTLVTVSS



(SEQ ID NO: 9)
(SEQ ID NO: 8)





L1.LGF/
EIVLTQSPGTLSLSPGERATLSCRASQSLGSFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.PY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AQ
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 9)
(SEQ ID NO: 3)





L1.LGF/
EIVLTQSPGTLSLSPGERATLSCRASQSLGSFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.NY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AL
TISRLEPEDFAVYYCQHYNYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARARVSPIAALMDYWGQGTLVTVS



(SEQ ID NO: 10)
S (SEQ ID NO: 7)





L1.LGF/
EIVLTQSPGTLSLSPGERATLSCRASQSLGSFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.NY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AP
TISRLEPEDFAVYYCQHYNYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAPMDYWGQGTLVTVSS



(SEQ ID NO: 10)
(SEQ ID NO: 8)





L1.LGF/
EIVLTQSPGTLSLSPGERATLSCRASQSLGSFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.NY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AQ
TISRLEPEDFAVYYCQHYNYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 10)
(SEQ ID NO: 3)





L1.GDF/
EIVLTQSPGTLSLSPGERATLSCRASQSVGDFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KW/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AL
TISRLEPEDFAVYYCKHYGWPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARARVSPIAALMDYWGQGTLVTVS



(SEQ ID NO: 11)
S (SEQ ID NO: 7)





L1.GDF/
EIVLTQSPGTLSLSPGERATLSCRASQSVGDFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KW/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AP
TISRLEPEDFAVYYCKHYGWPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAPMDYWGQGTLVTVSS



(SEQ ID NO: 11)
(SEQ ID NO: 8)





L1.GDF/
EIVLTQSPGTLSLSPGERATLSCRASQSVGDFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KW/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AQ
TISRLEPEDFAVYYCKHYGWPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 11)
(SEQ ID NO: 3)





L1.GDF/
EIVLTQSPGTLSLSPGERATLSCRASQSVGDFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.PY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AQ
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 12)
(SEQ ID NO: 3)





L1.GDF/
EIVLTQSPGTLSLSPGERATLSCRASQSVGDFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.NY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AL
TISRLEPEDFAVYYCQHYNYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARARVSPIAALMDYWGQGTLVTVS



(SEQ ID NO: 13)
S (SEQ ID NO: 7)





L1.GDF/
EIVLTQSPGTLSLSPGERATLSCRASQSVGDFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.NY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AP
TISRLEPEDFAVYYCQHYNYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAPMDYWGQGTLVTVSS



(SEQ ID NO: 13)
(SEQ ID NO: 8)





L1.GDF/
EIVLTQSPGTLSLSPGERATLSCRASQSVGDFYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.NY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AQ
TISRLEPEDFAVYYCQHYNYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 14)
(SEQ ID NO: 3)





L3.KW/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


P6E01
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCKHYGWPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 15)
(SEQ ID NO: 2)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


P6E01
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 16)
(SEQ ID NO: 2)





L3.NY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


P6E01
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYNYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 17)
(SEQ ID NO: 2)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYPSWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PS/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


P6E01
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 18)
(SEQ ID NO: 2)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSAHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.AH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


P6E01
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 19)
(SEQ ID NO: 2)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSFFLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.FF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


P6E01
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 20)
(SEQ ID NO: 2)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSPHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


P6E01
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 21)
(SEQ ID NO: 2)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


P6E01
TISRLEPEDFAVYYCKYYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 22)
(SEQ ID NO: 2)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


P6E01
TISRLEPEDFAVYYCKFYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 23)
(SEQ ID NO: 2)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


H2.QR
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADQRKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 16)
(SEQ ID NO: 24)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


H2.DY
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAID YSGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 16)
(SEQ ID NO: 25)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


H2.YQ
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISYQGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 16)
(SEQ ID NO: 26)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


H2.LT
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISLTGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 16)
(SEQ ID NO: 27)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


H2.HA
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISHAGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 16)
(SEQ ID NO: 28)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


H2.QL
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADQLKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 16)
(SEQ ID NO: 29)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


H3.YA
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIYAGMDYWGQGTLVTVSS



(SEQ ID NO: 16)
(SEQ ID NO: 30)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


H3.AE
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAEMDYWGQGTLVTVSS



(SEQ ID NO: 16)
(SEQ ID NO: 31)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


H3.AQ
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 16)
(SEQ ID NO: 3)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


H3.TA
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


Q
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCTRVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 16)
(SEQ ID NO: 32)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


P6E01
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 16)
(SEQ ID NO: 2)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYPSWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PS/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADQRKGRFTISRDNSKNTLY


H2.QR
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 18)
(SEQ ID NO: 24)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYPSWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PS/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAID YSGGNTFYADSVKGRFTISRDNSKNTLY


H2.DY
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 18)
(SEQ ID NO: 25)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYPSWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PS/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISYQGGNTFYADSVKGRFTISRDNSKNTLY


H2.YQ
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 18)
(SEQ ID NO: 26)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYPSWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PS/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISLTGGNTFYADSVKGRFTISRDNSKNTLY


H2.LT
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 18)
(SEQ ID NO: 27)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYPSWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PS/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISHAGGNTFYADSVKGRFTISRDNSKNTLY


H2.HA
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 18)
(SEQ ID NO: 28)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYPSWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PS/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADQLKGRFTISRDNSKNTLY


H2.QL
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 18)
(SEQ ID NO: 29)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYPSWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PS/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.YA
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIYAGMDYWGQGTLVTVSS



(SEQ ID NO: 18)
(SEQ ID NO: 30)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYPSWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PS/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AE
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAEMDYWGQGTLVTVSS



(SEQ ID NO: 18)
(SEQ ID NO: 31)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYPSWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PS/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AQ
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 18)
(SEQ ID NO: 3)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYPSWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PS/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.TA
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCTRVSPIAAQMDYWGQGTLVTVSS


Q
(SEQ ID NO: 18)
(SEQ ID NO: 32)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSAHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.AH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADQRKGRFTISRDNSKNTLY


H2.QR
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 19)
(SEQ ID NO: 24)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSAHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.AH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAID YSGGNTFYADSVKGRFTISRDNSKNTLY


H2.DY
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 19)
(SEQ ID NO: 25)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSAHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.AH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISYQGGNTFYADSVKGRFTISRDNSKNTLY


H2.YQ
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 19)
(SEQ ID NO: 26)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSAHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.AH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISLTGGNTFYADSVKGRFTISRDNSKNTLY


H2.LT
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 19)
(SEQ ID NO: 27)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSAHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.AH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISHAGGNTFYADSVKGRFTISRDNSKNTLY


H2.HA
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 19)
(SEQ ID NO: 28)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSAHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.AH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADQLKGRFTISRDNSKNTLY


H2.QL
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 19)
(SEQ ID NO: 29)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSAHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.AH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.YA
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIYAGMDYWGQGTLVTVSS



(SEQ ID NO: 19)
(SEQ ID NO: 30)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSAHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.AH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AE
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAEMDYWGQGTLVTVSS



(SEQ ID NO: 19)
(SEQ ID NO: 31)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSAHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.AH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AQ
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 19)
(SEQ ID NO: 3)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSAHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.AH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.TAQ
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCTRVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 19)
(SEQ ID NO: 32)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSFFLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.FF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADQRKGRFTISRDNSKNTLY


H2.QR
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 20)
(SEQ ID NO: 24)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSFFLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.FF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIDYSGGNTFYADSVKGRFTISRDNSKNTLY


H2.DY
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 20)
(SEQ ID NO: 25)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSFFLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.FF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISYQGGNTFYADSVKGRFTISRDNSKNTLY


H2.YQ
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 20)
(SEQ ID NO: 26)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSFFLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.FF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISLTGGNTFYADSVKGRFTISRDNSKNTLY


H2.LT
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 20)
(SEQ ID NO: 27)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSFFLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.FF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISHAGGNTFYADSVKGRFTISRDNSKNTLY


H2.HA
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 20)
(SEQ ID NO: 28)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSFFLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.FF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADQLKGRFTISRDNSKNTLY


H2.QL
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 20)
(SEQ ID NO: 29)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSFFLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.FF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.YA
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIYAGMDYWGQGTLVTVSS



(SEQ ID NO: 20)
(SEQ ID NO: 30)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSFFLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.FF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AE
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAEMDYWGQGTLVTVSS



(SEQ ID NO: 20)
(SEQ ID NO: 31)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSFFLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.FF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AQ
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 20)
(SEQ ID NO: 3)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSFFLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.FF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.TA
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCTRVSPIAAQMDYWGQGTLVTVSS


Q
(SEQ ID NO: 20)
(SEQ ID NO: 32)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSPHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADQRKGRFTISRDNSKNTLY


H2.QR
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 21)
(SEQ ID NO: 24)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSPHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISHAGGNTFYADSVKGRFTISRDNSKNTLY


H2.HA
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 21)
(SEQ ID NO: 28)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSPHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AE
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAEMDYWGQGTLVTVSS



(SEQ ID NO: 21)
(SEQ ID NO: 31)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSPHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AQ
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 21)
(SEQ ID NO: 3)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSPHYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L1.PH/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.TAQ
TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCTRVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 21)
(SEQ ID NO: 32)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADQRKGRFTISRDNSKNTLY


H2.QR
TISRLEPEDFAVYYCKYYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 22)
(SEQ ID NO: 24)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAID YSGGNTFYADSVKGRFTISRDNSKNTLY


H2.DY
TISRLEPEDFAVYYCKYYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 22)
(SEQ ID NO: 25)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISYQGGNTFYADSVKGRFTISRDNSKNTLY


H2.YQ
TISRLEPEDFAVYYCKYYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 22)
(SEQ ID NO: 26)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISLTGGNTFYADSVKGRFTISRDNSKNTLY


H2.LT
TISRLEPEDFAVYYCKYYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 22)
(SEQ ID NO: 27)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISHAGGNTFYADSVKGRFTISRDNSKNTLY


H2.HA
TISRLEPEDFAVYYCKYYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 22)
(SEQ ID NO: 28)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADQLKGRFTISRDNSKNTLY


H2.QL
TISRLEPEDFAVYYCKYYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 22)
(SEQ ID NO: 29)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.YA
TISRLEPEDFAVYYCKYYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIYAGMDYWGQGTLVTVSS



(SEQ ID NO: 22)
(SEQ ID NO: 30)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KY/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.TAQ
TISRLEPEDFAVYYCKYYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCTRVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 22)
(SEQ ID NO: 32)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAID YSGGNTFYADSVKGRFTISRDNSKNTLY


H2.DY
TISRLEPEDFAVYYCKFYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 23)
(SEQ ID NO: 25)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISYQGGNTFYADSVKGRFTISRDNSKNTLY


H2.YQ
TISRLEPEDFAVYYCKFYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 23)
(SEQ ID NO: 26)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISLTGGNTFYADSVKGRFTISRDNSKNTLY


H2.LT
TISRLEPEDFAVYYCKFYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 23)
(SEQ ID NO: 27)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADQLKGRFTISRDNSKNTLY


H2.QL
TISRLEPEDFAVYYCKFYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 23)
(SEQ ID NO: 29)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.YA
TISRLEPEDFAVYYCKFYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIYAGMDYWGQGTLVTVSS



(SEQ ID NO: 23)
(SEQ ID NO: 30)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AE
TISRLEPEDFAVYYCKFYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAEMDYWGQGTLVTVSS



(SEQ ID NO: 23)
(SEQ ID NO: 31)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.AQ
TISRLEPEDFAVYYCKFYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 23)
(SEQ ID NO: 3)





L3.PY/
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA


L3.KF/
QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY


H3.TAQ
TISRLEPEDFAVYYCKFYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCTRVSPIAAQMDYWGQGTLVTVSS



(SEQ ID NO: 23)
(SEQ ID NO: 32)





P5A2_VHVL
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA



QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISDSGGSTYYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYGSWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDIWGQGTLVTVSS



(SEQ ID NO: 34)
(SEQ ID NO: 33)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSVIYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


0.6nM_C06
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISDSGGSAWYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYQRWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMSLWGQGTLVTVSS



(SEQ ID NO: 36)
(SEQ ID NO: 35)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


0.6nM_C09
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISDSGGSMWYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYQSWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMSLWGQGTLVTVSS



(SEQ ID NO: 38)
(SEQ ID NO: 37)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSDIYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


6n
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISdFGGSTYYADSVKGRFTISRDNSKNTLY


M_C16
TISRLEPEDFAVYYCQQYQTWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDIWGQGTLVTVSS


(P5AC16)
(SEQ ID NO: 40)
(SEQ ID NO: 39)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSNLYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


6nM_C03
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISDSGGSTYYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYQGWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDIWGQGTLVTVSS



(SEQ ID NO: 41)
(SEQ ID NO: 33)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSAYYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


6nM_C01
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAITASGGSTYYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYERWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMSLWGQGTLVTVSS



(SEQ ID NO: 43)
(SEQ ID NO: 42)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSLYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


6nM_C26
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISDSGGSTYYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYQVWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMSLWGQGTLVTVSS



(SEQ ID NO: 45)
(SEQ ID NO: 44)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


6nM_C25
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISdSGGSRWYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYLDWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMTPWGQGTLVTVSS



(SEQ ID NO: 47)
(SEQ ID NO: 46)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


6nM_C22
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAVLdSGGSTYYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYQVWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMTPWGQGTLVTVSS



(SEQ ID NO: 49)
(SEQ ID NO: 48)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSVIYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


6nM_C19
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISdSGGSRWYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYLAWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMSDWGQGTLVTVSS



(SEQ ID NO: 51)
(SEQ ID NO: 50)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


0.6nM_C03
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISdSGGSKWYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYFTWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMSLWGQGTLVTVSS



(SEQ ID NO: 53)
(SEQ ID NO: 52)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSPyYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


6nM_C07
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYERWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 55)
(SEQ ID NO: 54)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSVEYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


6nM_C23
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISdSGGSGWYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYARWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMSLWGQGTLVTVSS



(SEQ ID NO: 57)
(SEQ ID NO: 56)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSEIYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


0.6nM_C18
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAVLdSGGSTYYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYFGWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMSLWGQGTLVTVSS



(SEQ ID NO: 59)
(SEQ ID NO: 58)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVEMSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


6nM_C10
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISdSGGSGWYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYAHWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMTPWGQGTLVTVSS



(SEQ ID NO: 61)
(SEQ ID NO: 60)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


6nM_C05
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIFaSGGSTYYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYQRWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMTPWGQGTLVTVSS



(SEQ ID NO: 63)
(SEQ ID NO: 62)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSAQYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


0.6nM_C10
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISgWGGSLPYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYQRWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 65)
(SEQ ID NO: 64)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSAIYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


6nM_C04
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIMsSGGPLYYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYQVWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMALWGQGTLVTVSS



(SEQ ID NO: 67)
(SEQ ID NO: 66)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCGPSQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


0.6nM_C26
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAILmSGGSTYYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYQSWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMSLWGQGTLVTVSS



(SEQ ID NO: 69)
(SEQ ID NO: 68)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYWAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


0.6nM_C13
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISdSGGYRYYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYESWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMSLWGQGTLVTVSS



(SEQ ID NO: 71)
(SEQ ID NO: 70)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRGGQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


0.6nM_C01
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAILsSGGSTYYADSVKGRFTISRDNSKNTLY


(P5AC1)
TISRLEPEDFAVYYCQQYQSWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDIWGQGTLVTVSS



(SEQ ID NO: 73)
(SEQ ID NO: 72)





A02_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSFIYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


6nM_C08
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAILdSGGSTYYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYGSWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMSPWGQGTLVTVSS



(SEQ ID NO: 75)
(SEQ ID NO: 74)





P5C1_VHVL
EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


(PC1)
QQKPGQAPRLLIYDASSRAPGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSTYYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYSTSPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 77)
(SEQ ID NO: 76)





C01_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSPEYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


6nM_C24
QQKPGQAPRLLIYDASSRAPGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYSVWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 79)
(SEQ ID NO: 78)





C01_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSAIYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


6nM_C26
QQKPGQAPRLLIYDASSRAPGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYSAWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 317)
(SEQ ID NO: 78)





C01_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSvYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


6nM_C10
QQKPGQAPRLLIYDASSRAPGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYSTWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 79)
(SEQ ID NO: 78)





CO1_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


0.6nM_C27
QQKPGQAPRLLIYDASSRAPGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYSRWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 81)
(SEQ ID NO: 78)





C01_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSPIYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


6nM_C20
QQKPGQAPRLLIYDASSRAPGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYSAFPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 82)
(SEQ ID NO: 78)





C01_Rd4_
EIVLTQSPGTLSLSPGERATLSCWLSQSVSSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


6nM_C12
QQKPGQAPRLLIYDASSRAPGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGgSGGWSYYADSVKGRFTISRDNSKNTLY


(PC1C12)
TISRLEPEDFAVYYCQQYSEWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 84)
(SEQ ID NO: 83)





C01_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


0.6nM_C16
QQKPGQAPRLLIYDASSRAPGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYSSWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 85)
(SEQ ID NO: 78)





C01_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSIFLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


0.6nM_C09
QQKPGQAPRLLIYDASSRAPGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYSAWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 86)
(SEQ ID NO: 78)





C01_Rd4_
EIVLTQSPGTLSLSPGERATLSCACSQSVSSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


6nM_C09
QQKPGQAPRLLIYDASSRAPGIPDRFSGSGSGTDFTL
PGKGLEWVSATVgSGGSIGYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYSAWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 88)
(SEQ ID NO: 87)





C01_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASCDVSSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


0.6nM_C03
QQKPGQAPRLLIYDASSRAPGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGgSGGSLPYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYMRSPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 89)
(SEQ ID NO: 78)





C01_Rd4_
EIVLTQSPGTLSLSPGERATLSCRASEAVPSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


0.6nM_C06
QQKPGQAPRLLIYDASSRAPGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGgSGGSLPYADSVKGTISRDNSKNTLYLQM



TISRLEPEDFAVYYCQQYSAFPLTFGQGTKVEIK
NSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 90)
(SEQ ID NO: 78)





C01_Rd4_
EIVLTQSPGTLSLSPGERATLSCCSSQSVSSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


6nM_C04
QQKPGQAPRLLIYDASSRAPGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGgSGGSLPYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQQYSAFPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 91)
(SEQ ID NO: 78)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASVRVSSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


Rd4_0.6nM_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISdSGGSRWYADSVKGRFTISRDNSKNTLY


C22
TISRLEPEDFAVYYCQQYMKWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCTRYWPMDIWGQGTLVTVSS


(COM22)
(SEQ ID NO: 93)
(SEQ ID NO: 92)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSAAYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGgSGGSLPYADSVKGRFTISRDNSKNTLY


6nM_C21
TISRLEPEDFAVYYCQQYMCWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 94)
(SEQ ID NO: 78)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYWGWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGgSGGSIHYADSVKGRFTISRDNSKNTLY


6nM_C10
TISRLEPEDFAVYYCQQYQCWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 96)
(SEQ ID NO: 95)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAHIgSGGSTYYADSVKGRFTISRDNSKNTLY


0.6nM_C04
TISRLEPEDFAVYYCQQYQSWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 98)
(SEQ ID NO: 97)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSpYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGgSGGSTYYADSVKGRFTISRDNSKNTLY


6nM_C25
TISRLEPEDFAVYYCQQYQSWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDPWGQGTLVTVSS



(SEQ ID NO: 100)
(SEQ ID NO: 99)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGgSGGSLPYADSVKGRFTISRDNSKNTLY


0.6nM_C21
TISRLEPEDFAVYYCQQYQSWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 38)
(SEQ ID NO: 78)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSPIYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLGYADSVKGRFTISRDNSKNTLY


6nM_C11
TISRLEPEDFAVYYCQQYKAWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 102)
(SEQ ID NO: 101)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSYLYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY


0.6nM_C20
TISRLEPEDFAVYYCQQYMEWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 103)
(SEQ ID NO: 78)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSAQYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIFASGGSTYYADSVKGRFTISRDNSKNTLY


6nM_C09
TISRLEPEDFAVYYCQQYQAWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 105)
(SEQ ID NO: 104)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGTWTYYADSVKGRFTISRDNSKNTLY


6nM_C08
TISRLEPEDFAVYYCQQYQKWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 107)
(SEQ ID NO: 106)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSAVYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY


0.6nM_C19
TISRLEPEDFAVYYCQQYRAWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 108)
(SEQ ID NO: 78)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASIAVSSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY


0.6nM_C02
TISRLEPEDFAVYYCQQYMVWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 109)
(SEQ ID NO: 78)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRPRQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSALFGSGGSTYYADSVKGRFTISRDNSKNTLY


0.6nM_C23
TISRLEPEDFAVYYCQQYQDWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 111)
(SEQ ID NO: 110)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY


0.6nM_C29
TISRLEPEDFAVYYCQQYQSWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDIWGQGTLVTVSS



(SEQ ID NO: 38)
(SEQ ID NO: 112)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY


0.6nM_C09
TISRLEPEDFAVYYCQQYQEWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDIWGQGTLVTVSS



(SEQ ID NO: 113)
(SEQ ID NO: 112)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSASYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAALGSGGSTYYADSVKGRFTISRDNSKNTLY


6nM_C12
TISRLEPEDFAVYYCQQYMSWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 115)
(SEQ ID NO: 114)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSYMYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLIYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSTYYADSVKGRFTISRDNSKNTLY


0.6nM_C30
TISRLEPEDFAVYYCQQYKSWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 116)
(SEQ ID NO: 76)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSALYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY


0.6nM_C14
TISRLEPEDFAVYYCQQYYGWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDIWGQGTLVTVSS



(SEQ ID NO: 117)
(SEQ ID NO: 112)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQPISSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY


6nM_C07
TISRLEPEDFAVYYCQQYQGWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMADWGQGTLVTVSS



(SEQ ID NO: 119)
(SEQ ID NO: 118)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISDSGGFVYYADSVKGRFTISRDNSKNTLY


6nM_C02
TISRLEPEDFAVYYCQQYEFWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 121)
(SEQ ID NO: 120)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSTYYADSVKGRFTISRDNSKNTLY


0.6nM_C05
TISRLEPEDFAVYYCQQYMSWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMSLWGQGTLVTVSS



(SEQ ID NO: 123)
(SEQ ID NO: 122)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQGISSTYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIGGSGGSLPYADSVKGRFTISRDNSKNTLY


0.6nM_C17
TISRLEPEDFAVYYCQQYAYWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDIWGQGTLVTVSS



(SEQ ID NO: 124)
(SEQ ID NO: 112)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSACLDSGGSTYYADSVKGRFTISRDNSKNTLY


6nM_C22
TISRLEPEDFAVYYCQQYQGWPLTFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMDSWGQGTLVTVSS



(SEQ ID NO: 126)
(SEQ ID NO: 125)





COMBO_
EIVLTQSPGTLSLSPGERATLSCRASQSVSVRYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQA


Rd4_
QQKPGQAPRLLMYDASIRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAALGSGGSTYYADSVKGRFTISRDNSKNTLY


0.6nM_C11
TISRLEPEDFAVYYCQQYGSWPITFGQGTKVEIK
LQMNSLRAEDTAVYYCARYWPMSLWGQGTLVTVSS



(SEQ ID NO: 128)
(SEQ ID NO: 127)





P6DY
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYPSWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA



QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAIDYSGGNTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYPYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIASGMDYWGQGTLVTVSS



(SEQ ID NO: 18)
(SEQ ID NO: 25)





P6AP
EIVLTQSPGTLSLSPGERATLSCRASQLGSFYLAWYQ
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMTWVRQA



QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLT
PGKGLEWVSAISGSGGNTFYADSVKGRFTISRDNSKNTLY



ISRLEPEDFAVYYCQHYNYPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARVSPIAAPMDYWGQGTLVTVSS



(SEQ ID NO: 80)
(SEQ ID NO: 8)





Consensus
EIVLTQSPGTLSLSPGERATLSCX1X2X3X4X5X6X7X8
EVQLLESGGGLVQPGGSLRLSCAASGFTFX1SYX2MX3WVR



X9X10X11X12WYQQKPGQAPRLLMYX13ASX14RAX15GI
QAPGKGLEWVSAX4X5X6X7GX8X9X10X11YADX12X13KGRFT



PDRFSGSGSGTDFTLTISRLEPEDFAVYYCX16X17Y
ISRDNSKNTLYLQMNSLRAEDTAVYYCARVSPIX14X15X16



X18X19PPSFTFGQGTKVEIK, wherein X1 is R,
MDYWGQGTLVTVSS, wherein X1 is G or S, X2



G, W, A, or C; X2 is A, P, G, L, C,
is A or P; X3 is T, N, or S; X4 is I, V,



or S; X3 is S, G, or R; X4 is Q, C, E,
T, H, L, A, or C; X5 is D, G, T, I, L, F,



V, or I; X5 is S, P, G, A, R, or D;
M, or V; X6 is G, Y, S, L, H, D, A, S, or



X6 is V, G, I, or L; X7 is S, E, D, P,
M; X7 is S, Q, T, A, F, or W; X8 is G or



or G; X8 is S, P, F, A, M, E, V, N, D,
T; X9 is N, S, P, Y, W, or F; X10 is S, T,



or Y; X9 is I, T, V, E, S, A, M, Q, Y,
I, L, T, A, R, V, K, G, or C; X11 is F,



H, R, or F; X10 is Y or F; X11 is L, W,
Y, P, W, H, or G; X12 is V, R, or L; X13



or P; X12 is A, S, or G, X13 is G or
is G or T; X14 is A or Y; X15 is A or S;



D; X14 is S or I; X15 is T or P; X16
and X16 is G, Q, L, P, or E (SEQ ID NO:



is Q or K; X17 is H or Y; X18 is G, N,
313);



or P; and X19 is S, W, or Y
or



(SEQ ID NO: 315);
EVQLLESGGGLVQPGGSLRLSCAASGFTFX1SYX2MX3WVR



or
QAPGKGLEWVSAX4X5X6X7GX8X9X10X11YADX12X13KGRFT



EIVLTQSPGTLSLSPGERATLSCX1X2X3X4X5X6X7X8
ISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMX14X15WG



X9X10X11X12WYQQKPGQAPRLLMYX13ASX14RAX15GI
QGTLVTVSS, wherein X1 is G or S, X2 is A



PDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYX16
or P; X3 is T, N, or S; X4 is I, V, T, H,



X17X18PX19FGQGTKVEIK, wherein X1 is R,
L, A, or C; X5 is S, D, G, T, I, L, F, M,



G, W, A, or C; X2 is A, P, G, L, C,
or V; X6 is G, Y, L, H, D, A, S, or M; X7



or S; X3 is S, G, or R; X4 is Q, C, E,
is S, Q, T, A, F, or W; X8 is G or T; X9



V, or I; X5 is S, L, P, G, A, R, or D;
is N, S, P, Y, W, or F; X10 is S, T, I,



X6 is V, G, or I; X7 is S, E, D, or P;
L, T, A, R, V, K, G, or C; X11 is F, Y,



X8 is S, P, F, A, M, E, V, N, D, or
P, W, H, or G; X12 is V, R, or L; X13 is



Y; X9 is I, T, V, E, S,A, M, Q, Y, H,
G or T; X14 is D, S, T, or A; and X15 is



or R; X10 is Y or F; X11 is L, W, or
I, S, L, P, or D (SEQ ID NO: 314)



P; X12 is A, S, or G, X13 is G or D;




X14 is S or I; X15 is T or P; X16 is G,




Q, E, L, F, A, S, M, R, K, or Y; X17




is S, R, T, G, R, V, D, A, H, E, K,




C, F, or Y; X18 is W, S, or F; and




X19 is L or I (SEQ ID NO: 316)






P4G4
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQA



QQKPGQAPRLLIYGASSRAYGIPDRFSGSGSGTDFTL
PGKGLEWVSAISASGGSTYYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYGSPPLFTFGQGTKVEIK
LQMNSLRAEDTAVYYCARLSWSGAFDNWGQGTLVTVSS



(SEQ ID NO: 401)
(SEQ ID NO: 378)





P1A11
EIVLTQSPGTLSLSPGERATLSCRASQNVSSSYLAWY
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYAMSWVRQA



QQKPGQAPRLLIYGASYRATGIPDRFSGSGSGTDFTL
PGKGLEWVSAISGSGGSTFYADSVKGRFTISRDNSKNTLY



TISRLEPEDFAVYYCQHYGSPPSFTFGQGTKVEIK
LQMNSLRAEDTAVYYCATVGTSGAFGIWGQGTLVTVSS



(SEQ ID NO: 379)
(SEQ ID NO: 380)









Also provided herein are CDR portions of extracellular ligand-binding domains of CARs to BCMA (including Chothia, Kabat CDRs, and CDR contact regions). Determination of CDR regions is well within the skill of the art. It is understood that in some embodiments, CDRs can be a combination of the Kabat and Chothia CDR (also termed “combined CRs” or “extended CDRs”). In some embodiments, the CDRs are the Kabat CDRs. In other embodiments, the CDRs are the Chothia CDRs. In other words, in embodiments with more than one CDR, the CDRs may be any of Kabat, Chothia, combination CDRs, or combinations thereof. Table 2 provides examples of CDR sequences provided herein.









TABLE 2







Heavy Chain










mAb
CDRH1
CDRH2
CDRH3





P6E01
SYAMT (SEQ ID NO:
AISGSGGNTFYA
VSPIASGMD


For the following mAbs:
129) (Kabat);
DSVKG (SEQ ID
Y (SEQ ID


P6E01/P6E01; 
GFTFGSY (SEQ ID
NO: 132) (Kabat)
NO: 134)


L1.LGF/L3.KW/P6EO1;
NO: 130) (Chothia);
SGSGGN (SEQ



L1.LGF/L3.NY/P6E01;
GFTFGSYAMT (SEQ
ID NO: 133)



L1.GDF/L3.NY/P6E01;
ID NO: 131)
(Chothia)



L3.KW/P6E01;
(extended)




L3.PY/P6E01;





L3.NY/P6E01;





L3.PY/L1.PS/P6E01;





L3.PY/L1.AH/P6E01;





L3.PY/L1.FF/P6E01;





L3.PY/L1.PH/P6E01;





L3.PY/L3.KY/P6E01;





L3.PY/L3.KF/P6E01;





and L3.PY/P6E01.








H3.AQ
SYAMT (SEQ ID NO:
AISGSGGNTFYA
VSPIAAQMD


For the following mAbs:
129) (Kabat);
DSVKG (SEQ ID
Y (SEQ ID


P6E01/H3.AQ;
GFTFGSY (SEQ ID
NO: 132) (Kabat)
NO: 135)


L1.LGF/L3.KW/H3.AQ;
NO: 130) (Chothia);
SGSGGN (SEQ



L1.LGF/L3.PY/H3.AQ
GFTFGSYAMT (SEQ
ID NO: 133)




ID NO: 131)
(Chothia)




(extended)







H3.AL
SYAMT (SEQ ID NO:
AISGSGGNTFYA
VSPIAALMD


For the following mAbs:
129) (Kabat);
DSVKG (SEQ ID
Y


L1.LGF/L3.KW/H3.AL;
GFTFGSY (SEQ ID
NO: 132) (Kabat)
(SEQ ID NO:


L1.LGF/L3.NY/H3.AL;
NO: 130) (Chothia);
SGSGGN (SEQ
136)


and
GFTFGSYAMT (SEQ
ID NO: 133)



L1.GDF/L3.NY/H3.AL.
ID NO: 131)
(Chothia)




(extended)







H3.AP
SYAMT (SEQ ID NO:
AISGSGGNTFYA
VSPIAAPMD


For the following mAbs:
129) (Kabat);
DSVKG (SEQ ID
Y


L1.LGF/L3.KW/H3.AP;
GFTFGSY (SEQ ID
NO: 132) (Kabat)
(SEQ ID NO:


L1.LGF/L3.PY/H3.AP;
NO: 130) (Chothia);
SGSGGN (SEQ
137)


L1.LGF/L3NY/H3.AP;
GFTFGSYAMT (SEQ
ID NO: 133)



L1.GDF/L3.KW/H3.AP;
ID NO: 131)
(Chothia)



L1.GDF/L3NY/H3.AP;
(extended)




P6AP.








H2.QR
SYAMT (SEQ ID NO:
AISGSGGNTFYA
VSPIASGMD


For the following mAbs:
129) (Kabat);
DQRKG (SEQ ID
Y (SEQ ID


L3.PY/H2.QR;
GFTFGSY (SEQ ID
NO: 138) (Kabat)
NO: 134)


L3.PY/L1.PS/H2.QR;
NO: 130) (Chothia);
SGSGGN (SEQ



L3.PY/L1.AH/H2.QR;
GFTFGSYAMT (SEQ
ID NO: 133)



L3.PY/L1.FF/H2.QR;
ID NO: 131)
(Chothia)



L3.PY/L1.PH/H2.QR;
(extended)




and





L3.PY/L3.KY/H2.QR.








H2.DY
SYAMT (SEQ ID NO:
AIDYSGGNTFYA
VSPIASGMD


For the following mAbs:
129) (Kabat);
DSVKG (SEQ ID
Y (SEQ ID


L3.PY/H2.DY; P6DY;
GFTFGSY (SEQ ID
NO: 139) (Kabat)
NO: 134)


L3.PY/L1.PS/H2.DY;
NO: 130) (Chothia);
DYSSGN (SEQ



L3.PY/L1.AH/H2.DY;
GFTFGSYAMT (SEQ
ID NO: 140)



L3.PY/L1.FF/H2.DY;
ID NO: 131)
(Chothia)



L3.PY/L3.KY/H2.DY;
(extended)




and





L3.PY/L3.KF/H2.DY.








H2.YQ
SYAMT (SEQ ID NO:
AISYQGGNTFYA
VSPIASGMD


For the following mAbs:
129) (Kabat);
DSVKG (SEQ ID
Y (SEQ ID


L3.PY/H2.YQ;
GFTFGSY (SEQ ID
NO: 141) (Kabat)
NO: 134)


L3.PY/L1.PS/H2.YQ;
NO: 130) (Chothia);
SYQGGN (SEQ



L3.PY/L1.AH/H2.YQ;
GFTFGSYAMT (SEQ
ID NO: 142)



L3.PY/L1.FF/H2.YQ;
ID NO: 131)
(Chothia)



L3.PY/L3.KY/H2.YQ;
(extended)




and





L3.PY/L3.KF/H2.YQ.








H2.LT
SYAMT (SEQ ID NO:
AISLTGGNTFYA
VSPIASGMD


For the following mAbs:
129) (Kabat);
DSVKG (SEQ ID
Y (SEQ ID


L3.PY/H2.LT;
GFTFGSY (SEQ ID
NO: 143) (Kabat)
NO: 134)


L3.PY/L1.PS/H2.LT;
NO: 130) (Chothia);
SLTGGN (SEQ



L3.PY/L1.AH/H2.LT;
GFTFGSYAMT (SEQ
ID NO: 144)



L3.PY/L1.FF/H2.LT;
ID NO: 131)
(Chothia)



L3.PY/L3.KY/H2.LT;
(extended)




and





L3.PY/L3.KF/H2.LT.








H2.HA
SYAMT (SEQ ID NO:
AISHAGGNTFYA
VSPIASGMD


For the following mAbs:
129) (Kabat);
DSVKG (SEQ ID
Y (SEQ ID


L3.PY/H2.HA;
GFTFGSY (SEQ ID
NO: 145) (Kabat)
NO: 134)


L3.PY/L1.AH/H2.HA;
NO: 130) (Chothia);
SHAGGN (SEQ



L3.PY/L1.FF/H2.HA;
GFTFGSYAMT (SEQ
ID NO: 146)



L3.PY/L1.PH/H2.HA;
ID NO: 131)
(Chothia)



and
(extended)




L3.PY/L3.KY/H2.HA.








H2.QL
SYAMT (SEQ ID NO:
AISGSGGNTFYA
VSPIASGMD


For the following mAbs:
129) (Kabat);
DQLKG (SEQ ID
Y (SEQ ID


L3.PY/H2.QL;
GFTFGSY (SEQ ID
NO: 147) (Kabat)
NO: 134)


L3.PY/L1.PS/H2.QL;
NO: 130) (Chothia);
SGSGGN (SEQ



L3.PY/L1.AH/H2.QL;
GFTFGSYAMT (SEQ
ID NO: 133)



L3.PY/L1.FF/H2.QL;
ID NO: 131)
(Chothia)



L3.PY/L3.KY/H2.QL;
(extended)




and





L3.PY/L3.KF/H2.QL.








H3.YA
SYAMT (SEQ ID NO:
AISGSGGNTFYA
VSPIYAGMD


For the following mAbs:
129) (Kabat);
DSVKG (SEQ ID
Y (SEQ ID


L3.PY/H3.YA;
GFTFGSY (SEQ ID
NO: 132) (Kabat)
NO: 148)


L3.PY/L1.PS/H3.YA;
NO: 130) (Chothia);
SGSGGN (SEQ



L3.PY/L1.AH/H3.YA;
GFTFGSYAMT (SEQ
ID NO: 133)



L3.PY/L1.FF/H3.YA;
ID NO: 131)
(Chothia)



L3.PY/L3.KY/H3.YA;
(extended)




and





L3.PY/L3.KF/H3.YA.








H3.AE
SYAMT (SEQ ID NO:
AISGSGGNTFYA
VSPIAAEMD


For the following mAbs:
129) (Kabat);
DSVKG (SEQ ID
Y (SEQ ID


L3.PY/H3.AE;
GFTFGSY (SEQ ID
NO: 132) (Kabat)
NO: 149)


L3.PY/L1.AH/H3.AE;
NO: 130) (Chothia);
SGSGGN (SEQ



L3.PY/L1.FF/H3.AE;
GFTFGSYAMT (SEQ
ID NO: 133)



L3.PY/L1.PH/H3.AE;
ID NO: 131)
(Chothia)



and
(extended)




L3.PY/L3.KF/H3.AE.








H3.TAQ
SYAMT (SEQ ID NO:
AISGSGGNTFYA
VSPIAAQMD


For the following mAbs:
129) (Kabat);
DSVKG (SEQ ID
Y (SEQ ID


L3.PY/H3.TAQ;
GFTFGSY (SEQ ID
NO: 132) (Kabat)
NO: 135)


L3.PY/L1.PS/H3.TAQ;
NO: 130) (Chothia);
SGSGGN (SEQ



L3.PY/L1.AH/H3.TAQ;
GFTFGSYAMT (SEQ
ID NO: 133)



L3.PY/L1.FF/H3.TAQ;
ID NO: 131)
(Chothia)



L3.PY/L1.PH/H3.TAQ;
(extended)




and





L3.PY/L3.KF/H3.TAQ.








P5A2_VHVL and
SYAMN (SEQ ID NO:
AISDSGGSTYYA
YWPMDI


A02_Rd4_6nM_C03
150) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 153)
155)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SDSGGS (SEQ




ID NO: 152)
ID NO: 154)




(extended)
(Chothia)






COMBO_Rd4_0.6nM_C17;
SYPMS (SEQ ID NO:
AIGGSGGSLPYA
YWPMDI


COMBO_Rd4_0.6nM_C14;
156) (Kabat);
DSVKG
(SEQ ID NO:


COMBO_Rd4_0.6nM_C29;
GFTFSSY (SEQ ID
(SEQ ID NO: 158)
155)


and
NO: 151) (Chothia);
(Kabat)



COMBO_Rd4_0.6nM_C09
GFTFSSYPMS (SEQ
GGSGGS (SEQ




ID NO: 157)
ID NO: 159)




(extended)
(Chothia)






C01_Rd4_6nM_C04;
SYPMS (SEQ ID NO:
AIGGSGGSLPYA
YWPMDS


C01_Rd4_0.6nM_C03;
156) (Kabat);
DSVKG
(SEQ ID NO:


C01_Rd4_0.6nM_C06;
GFTFSSY (SEQ ID
(SEQ ID NO: 158)
161)


COMBO_Rd4_0.6nM_C02;
NO: 151) (Chothia);
(Kabat)



COMBO_Rd4_6nM_C21;
GFTFSSYPMS (SEQ
GGSGGS (SEQ



C01_Rd4_6nM_C26;
ID NO: 157)
ID NO: 159)



COMBO_Rd4_0.6nM_C19;
(extended)
(Chothia)



C01_Rd4_6nM_C24;





C01_Rd4_6nM_C20;





C01_Rd4_0.6nM_C09;





COMBO_Rd4_0.6nM_C21;





C01_Rd4_0.6nM_C04_C27;





C01_Rd4_0.6nM_C16;





C01_Rd4_6nM_C10;





COMBO_Rd4_0.6nM_C20








P5C1_VHVL (PC1) and
SYPMS (SEQ ID NO:
AIGGSGGSTYYA
YWPMDS


COMBO_Rd4_0.6nM_C30
156) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 162)
161)



NO: 151) (Chothia);
(Kabat)




GFTFSSYPMS (SEQ
GGSGGS (SEQ




ID NO: 157)
ID NO: 159)




(extended)
(Chothia)






A02_Rd4_0.6nM_C06
SYAMN (SEQ ID NO:
AISDSGGSAWY
YWPMSL



150) (Kabat);
ADSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 163)
164)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SDSGGS (SEQ




ID NO: 152)
ID NO: 154)




(extended)
(Chothia)






A02_Rd4_0.6nM_C09
SYAMN (SEQ ID NO:
AISDSGGSAWY
YWPMSL



150) (Kabat);
ADSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 163)
164)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SDSGGS (SEQ




ID NO: 152)
ID NO: 154)




(extended)
(Chothia)






A02_Rd4_0.6nM_C16;
SYAMN (SEQ ID NO:
AISDFGGSTYYA
YWPMDI


A02_Rd4_6nM_C16
150) (Kabat);
DSVKG
(SEQ ID NO:


(P5A16)
GFTFSSY (SEQ ID
(SEQ ID NO: 165)
155)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SDFGGS (SEQ




ID NO: 152)
ID NO: 166)




(extended)
(Chothia)






A02_Rd4_6nM_C01
SYAMN (SEQ ID NO:
AITASGGSTYYA
YWPMSL



150) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 167)
164)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
TASGGS (SEQ




ID NO: 152)
ID NO: 168)




(extended)
(Chothia)






A02_Rd4_6nM_C26
SYAMN (SEQ ID NO:
AISDSGGSTYYA
YWPMSL



150) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 153)
164)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SDSGGS (SEQ




ID NO: 152)
ID NO: 154)




(extended)
(Chothia)






A02_Rd4_6nM_C25
SYAMN (SEQ ID NO:
AISDSGGSRWY
YWPMTP



150) (Kabat);
ADSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 169)
170)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SDSGGS (SEQ




ID NO: 152)
ID NO: 154)




(extended)
(Chothia)






A02_Rd4_6nM_C22
SYAMN (SEQ ID NO:
AVLDSGGSTYY
YWPMTP



150) (Kabat);
ADSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 171)
170)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
LDSGGS (SEQ




ID NO: 152)
ID NO: 172)




(extended)
(Chothia)






A02_Rd4_6nM_C19
SYAMN (SEQ ID NO:
AISDSGGSRWY
YWPMSD



150) (Kabat);
ADSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 169)
173)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SDSGGS (SEQ




ID NO: 152)
ID NO: 154)




(extended)
(Chothia)






A02_Rd4_0.6nM_C03
SYAMN (SEQ ID NO:
AISDSGGSKWY
YWPMSL



150) (Kabat);
ADSVKG (SEQ
(SEQ ID NO:



GFTFSSY (SEQ ID
ID NO: 174)
164)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SDSGGS (SEQ




ID NO: 152)
ID NO: 154)




(extended)
(Chothia)






A02_Rd4_6nM_C07
SYAMN (SEQ ID NO:
AIGGSGGSLPYA
YWPMDS



150) (Kabat);
DSVKG(SEQ ID
(SEQ ID NO:



GFTFSSY (SEQ ID
NO: 158) (Kabat)
161)



NO: 151) (Chothia);
GGSGGS (SEQ




GFTFSSYAMN (SEQ
ID NO: 159)




ID NO: 152)
(Chothia)




(extended)







A02_Rd4_6nM_C23
SYAMN (SEQ ID NO:
AISDSGGSGWY
YWPMSL



150) (Kabat);
ADSVKG (SEQ
(SEQ ID NO:



GFTFSSY (SEQ ID
ID NO: 175)
164)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SDSGGS (SEQ




ID NO: 152)
ID NO: 154)




(extended)
(Chothia)






A02_Rd4_0.6nM_C18
SYAMN (SEQ ID NO:
AVLDSGGSTYY
YWPMSL



150) (Kabat);
ADSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 171)
164)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
LDSGGS (SEQ




ID NO: 152)
ID NO: 172)




(extended)
(Chothia)






A02_Rd4_6nM_C10
SYAMN (SEQ ID NO:
AISDSGGSCWY
YWPMTP



150) (Kabat);
ADSVKG (SEQ
(SEQ ID NO:



GFTFSSY (SEQ ID
ID NO: 176)
170)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SDSGGS (SEQ




ID NO: 152)
ID NO: 154)




(extended)
(Chothia)






A02_Rd4_6nM_C05
SYAMN (SEQ ID NO:
AIFASGGSTYYA
YWPMTP



150) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 177)
170)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
FASGGS (SEQ




ID NO: 152)
ID NO: 178)




(extended)
(Chothia)






A02_Rd4_0.6nM_C10
SYAMN (SEQ ID NO:
AISGWGGSLPY
YWPMDS



150) (Kabat);
ADSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 304)
161)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SGWGGS (SEQ




ID NO: 152)
ID NO: 179)




(extended)
(Chothia)






A02_Rd4_6nM_C04
SYAMN (SEQ ID NO:
AIMSSGGPLYYA
YWPMAL



150) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 180)
182)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
MSSGGP (SEQ




ID NO: 152)
ID NO: 181)




(extended)
(Chothia)






A02_Rd4_0.6nM_C26
SYAMN (SEQ ID NO:
AILMSGGSTYYA
YWPMSL



150) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 183)
164)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
LMSGGS (SEQ




ID NO: 152)
ID NO: 184)




(extended)
(Chothia)






A02_Rd4_0.6nM_C13
SYAMN (SEQ ID NO:
AISDSGGYRYYA
YWPMSL



150) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 185)
164)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SDSGGY (SEQ




ID NO: 152)
ID NO: 186)




(extended)
(Chothia)






A02_Rd4_0.6nM_C01
SYAMN (SEQ ID NO:
AILSSGGSTYYA
YWPMDI


(P5AC1)
150) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 187)
155)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
LSSGGS (SEQ




ID NO: 152)
ID NO: 188)




(extended)
(Chothia)






A02_Rd4_6nM_C08
SYAMN (SEQ ID NO:
AILDSGGSTYYA
YWPMSP



150) (Kabat);
DSVKG (SEQ ID
(SEQ ID NO:



GFTFSSY (SEQ ID
NO: 160) (Kabat)
189)



NO: 151) (Chothia);
LDSGGS (SEQ




GFTFSSYAMN (SEQ
ID NO: 172)




ID NO: 152)
(Chothia)




(extended)







C01_Rd4_6nM_C12
SYPMS (SEQ ID NO:
AIGGSGGWSYY
YWPMDS


(PC1C12)
156) (Kabat);
ADSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 190)
161)



NO: 151) (Chothia);
(Kabat)




GFTFSSYPMS (SEQ
GGSGGW (SEQ




ID NO: 157)
ID NO: 191)




(extended)
(Chothia)






C01_Rd4_6nM_C09
SYPMS (SEQ ID NO:
ATVGSGGSIGYA
YWPMDS



156) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO:
161)



NO: 151) (Chothia);
192) (Kabat)




GFTFSSYPMS (SEQ
VGSGGS (SEQ




ID NO: 157)
ID NO: 193)




(extended)
(Chothia)






COMBO_Rd4_0.6nM_C22
SYAMN (SEQ ID NO:
AISDSGGSRWY
YWPMDI


(COM22)
150) (Kabat);
ADSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 169)
155)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SDSGGS (SEQ




ID NO: 152)
ID NO: 154)




(extended)
(Chothia)






COMBO_Rd4_0.6nM_C10
SYPMS (SEQ ID NO:
AIGGSGGSIHYA
YWPMDS



156) (Kabat);
DSVKG (SEQ ID
(SEQ ID NO:



GFTFSSY (SEQ ID
NO: 194) (Kabat)
161)



NO: 151) (Chothia);
GGSGGS (SEQ




GFTFSSYPMS (SEQ
ID NO: 159)




ID NO: 157)
(Chothia)




(extended)







COMBO_Rd4_0.6nM_C04
SYPMS (SEQ ID NO:
AHIGSGGSTYYA
YWPMDS



156) (Kabat);
DSVKG (SEQ ID
(SEQ ID NO:



GFTFSSY (SEQ ID
NO: 195) (Kabat)
161)



NO: 151) (Chothia);
IGSGGS (SEQ ID




GFTFSSYPMS (SEQ
NO: 196)




ID NO: 157)
(Chothia)




(extended)







COMBO_Rd4_0.6nM_C25
SYPMS (SEQ ID NO:
AIGGSGGSTYYA
YWPMDP



156) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 162)
197)



NO: 151) (Chothia);
(Kabat)




GFTFSSYPMS (SEQ
GGSGGS (SEQ




ID NO: 157)
ID NO: 159)




(extended)
(Chothia)






COMBO_Rd4_6nM_C21
SYPMS (SEQ ID NO:
AIGGSGGSLPYA
YWPMDS



156) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 158)
161)



NO: 151) (Chothia);
(Kabat)




GFTFSSYPMS (SEQ
GGSGGS (SEQ




ID NO: 157)
ID NO: 159)




(extended)
(Chothia)






COMBO_Rd4_6nM_C11
SYPMS (SEQ ID NO:
AIGGSGGSLGYA
YWPMDS



156) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO:
161)



NO: 151) (Chothia);
198) (Kabat)




GFTFSSYPMS (SEQ
GGSGGS (SEQ




ID NO: 157)
ID NO: 159)




(extended)
(Chothia)






COMBO_Rd4_6nM_C09
SYPMS (SEQ ID NO:
AIFASGGSTYYA
YWPMDS



156) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 177)
161)



NO: 151) (Chothia);
(Kabat)




GFTFSSYPMS (SEQ
FASGGS (SEQ




ID NO: 157)
ID NO: 178)




(extended)
(Chothia)






COMBO_Rd4_6nM_C08
SYPMS (SEQ ID NO:
AIGGSGTWTYY
YWPMDS



156) (Kabat);
ADSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 199)
161)



NO: 151) (Chothia);
(Kabat)




GFTFSSYPMS (SEQ
GGSGTW (SEQ




ID NO: 157)
ID NO: 200)




(extended)
(Chothia)






COMBO_Rd4_0.6nM_C23
SYPMS (SEQ ID NO:
ALFGSGGSTYY
YWPMDS



156) (Kabat);
ADSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 201)
161)



NO: 151) (Chothia);
(Kabat)




GFTFSSYPMS (SEQ
FGSGGS




ID NO: 157)
(SEQ ID NO: 202)




(extended)
(Chothia)






COMBO_Rd4_0.6nM_C12
SYPMS (SEQ ID NO:
AALGSGGSTYY
YWPMDS



156) (Kabat);
ADSVKG (SEQ
(SEQ ID NO:



GFTFSSY (SEQ ID
ID NO: 203)
161)



NO: 151) (Chothia);
(Kabat)




GFTFSSYPMS (SEQ
LGSGGS (SEQ




ID NO: 157)
ID NO: 204)




(extended)
(Chothia)






COMBO_Rd4_6nM_C07
SYPMS (SEQ ID NO:
AIGGSGGSLPYA
YWPMAD



156) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 158)
205)



NO: 151) (Chothia);
(Kabat)




GFTFSSYPMS (SEQ
GGSGGS (SEQ




ID NO: 157)
ID NO: 159)




(extended)
(Chothia)






COMBO_Rd4_6nM_C02
SYAMN (SEQ ID NO:
AISDSGGFVYYA
YWPMDS



150) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 206)
161)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
SDSGGF (SEQ




ID NO: 152)
ID NO: 207)




(extended)
(Chothia)






COMBO_Rd4_6nM_C05
SYAMN (SEQ ID NO:
AIGGSGGSTYYA
YWPMSL



150) (Kabat);
DSVKG
(SEQ ID NO:



GFTFSSY (SEQ ID
(SEQ ID NO: 162)
164)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
GGSGGS (SEQ




ID NO: 152)
ID NO: 159)




(extended)
(Chothia)






COMBO_Rd4_6nM_C22
SYAMN (SEQ ID NO:
ACLDSGGSTYY
YWPMDS



150) (Kabat);
ADSVKG (SEQ
(SEQ ID NO:



GFTFSSY (SEQ ID
ID NO: 208)
161)



NO: 151) (Chothia);
(Kabat)




GFTFSSYAMN (SEQ
LDSGGS (SEQ




ID NO: 152)
ID NO: 172)




(extended)
(Chothia)






COMBO_Rd4_6nM_C11
SYPMS (SEQ ID NO:
AALGSGGSTYY
YWPMSL



156) (Kabat);
ADSVKG (SEQ
(SEQ ID NO:



GFTFSSY (SEQ ID
ID NO: 203)
164)



NO: 151) (Chothia);
(Chothia)




GFTFSSYPMS (SEQ
LGSGGS (SEQ




ID NO: 157)
ID NO: 204)




(extended)
(Chothia)






Heavy chain consensus
SYX1MX2, wherein X1
AX1X2X3X4GX5X6
VSPIX1X2X3



is A or P; and X2 is T,
X7X8YADX9X10KG,
MDY, wherein



N, or S (Kabat) (SEQ
wherein X1 is I,
X1 is A or Y;



ID NO: 301)
V, T, H, L, A, or
X2 is A or S;



GFTFX1SY, wherein
C; X2 is S, D, G,
and X3 is G,



X1 is G or S (Chothia)
T, I, L, F, M, or V;
Q, L, P, or E



(SEQ ID NO: 302)
X3 is G, Y, L, H,
(SEQ ID NO:



GFTFX1SYX2MX3,
D, A, S, or M; X4
307)



wherein X1 is G or S,
is S, Q, T, A, F, or
YWPMX1X2,



X2 is A or P; and X3 is
W; X5 is G or T; X6
wherein X1 is



T, N, or S (SEQ ID
is N, S, P, Y, W,
D, S, T, or A;



NO: 303) (extended)
or F; X7 is S, T, I,
and X2 is I, S,




L, T, A, R, V, K,
L, P, or D




G, or C; X8 is F,
(SEQ ID NO:




Y, P, W, H, or G;
308)




X9 is V, R, or L;





and X10 is G or T





(Kabat)





(SEQ ID NO:





305)





X1X2X3X4X5X6,





wherein X1 is S,





V, I, D, G, T, L, F,





or M; X2 is G, Y,





L, H, D, A, S, or





M; X3 is S, G, F,





or W; X4 is G or





S; X5 is G or T;





and X6 is N, S, P,





Y, or W (Chothia)





(SEQ ID NO:





306)






P4G4
SYAMS (SEQ ID NO:
SASGGS (SEQ
LSWSGAFD



381) (Kabat);
ID NO: 383)
N (SEQ ID



GFTFSSY (SEQ ID
(Chothia)
NO: 385)



NO: 151) (Chothia);
AISASGGSTYYA




GFTFSSYAMS (SEQ
DSVKG (SEQ ID




ID NO: 382)
NO: 384) (Kabat)




(extended)







P1A11
SYAMS (SEQ ID NO:
SGSGGS (SEQ
VGTSGAFGI



386) (Kabat);
ID NO: 389)
(SEQ ID NO:



GFTFRSY (SEQ ID
(Chothia)
391)



NO: 387)
AISGSGGSTFYA




GFTFRSYAMS (SEQ
DSVKG (SEQ ID




ID NO: 388)
NO: 390) (Kabat)










Light Chain










mAb
CDRL1
CDRL2
CDRL3





P6E01
RASQSVSSSYLA
GASSRAT (SEQ
QHYGSPPSF


For the following mAbs:
(SEQ ID NO: 209)
ID NO: 210)
T (SEQ ID


P6E01/P6E01; and


NO: 211)


P6E01/H3.AQ.








L1.LGF/L3.KW
RASQSLGSFYLA
GASSRAT (SEQ
KHYGWPPS


For the following mAbs:
(SEQ ID NO: 212)
ID NO: 210)
FT (SEQ ID


L1.LGF/L3.KW/P6E01;


NO: 213)


L1.LGF/L3.KW/H3.AL;





L1.LGF/L3.KW/H3.AP;





and





L1.LGF/L3.KW/H3.AQ








L1.LGF/L3.NY
RASQSLGSFYLA
GASSRAT (SEQ
QHYNYPPSF


For the following mAbs:
(SEQ ID NO: 212)
ID NO: 210)
T (SEQ ID


L1.LGF/L3.NY/P6E01;


NO: 214)


L1.LGF/L3.NY/H3.AL;





L1.LGF/L3.NY/H3.AP;





and





L1.LGF/L3.NY/H3AQ








L1.GDF/L3.NY
RASQSVGDFYLA
GASSRAT (SEQ
QHYNYPPSF


For the following mAbs:
(SEQ ID NO: 215)
ID NO: 210)
T (SEQ ID


L1.GDF/L3.NY/P6E01;


NO: 214)


L1.GDF/L3.NY/H3.AL;





L1.GDF/L3.NY/H3.AP;





and





L1.GDF/L3.NY/H3.AQ








L1.LGF/L3.PY
RASQSLGSFYLA
GASSRAT (SEQ
QHYPYPPSFT


For the following mAbs:
(SEQ ID NO: 212)
ID NO: 210)
(SEQ ID NO:


L1.LGF/L3.PY/H3.AP;


216)


and





L1.LGF/L3.PY/H3.AQ








L1.GDF/L3.KW
RASQSVGDFYLA
GASSRAT (SEQ
KHYGWPPS


For the following mAbs:
(SEQ ID NO: 215)
ID NO: 210)
FT (SEQ ID


L1.GDF/L3.KW/H3.AL;


NO: 213)


L1.GDF/L3.KW/H3.AP;





and 





L1.GDF/L3.KW/H3.AQ








L1.GDF/L3.PY/H3.AQ
RASQSVGDFYLA
GASSRAT (SEQ
QHYPYPPSF



(SEQ ID NO: 215)
ID NO: 210)
T (SEQ ID





NO: 216)





L3.KW/P6E01
RASQSVSSSYLA
GASSRAT (SEQ
KHYGWPPS



(SEQ ID NO: 209)
ID NO: 210)
FT (SEQ ID





NO: 213)





L3.PY
RASQSVSSSYLA
GASSRAT (SEQ
QHYPYPPSF


For the following mAbs:
(SEQ ID NO: 209)
ID NO: 210)
T


L3.PY/P6E01;


(SEQ ID NO:


L3.PY/H2.QR;


216)


L3.PY/H2.DY;





L3.PY/H2.YQ;





L3.PY/H2.LT;





L3.PY/H2.HA;





L3.PY/H2.QL;





L3.PY/H3.YA;





L3.PY/H3.AE;





L3.PY/H3.AQ;





L3.PY/H3.TAQ








L3.NY/P6E01
RASQSVSSSYLA
GASSRAT (SEQ
QHYNYPPSF



(SEQ ID NO: 209)
ID NO: 210)
T





(SEQ ID NO:





214)





L3.PY/L1.PS
RASQSVSSSYPS
GASSRAT (SEQ
QHYPYPPSF


For the following mAbs:
(SEQ ID NO: 217)
ID NO: 210)
T


L3.PY/L1.PS/P6E01;


(SEQ ID NO:


P6DY;


216)


L3.PY/L1.PS/H2.QR;





L3.PY/L1.PS/H2.DY;





L3.PY/L1.PS/H2.YQ;





L3.PY/L1.PS/H2.LT;





L3.PY/L1.PS/H2.HA;





L3.PY/L1.PS/H2.QL;





L3.PY/L1.PS/H3.YA;





L3.PY/L1.PS/H3.AE;





L3.PY/L1.PS/H3.AQ;





L3.PY/L1.PS/H3.TAQ;








L3.PY/L1.AH
RASQSVSAHYLA
GASSRAT (SEQ
QHYPYPPSF


For the following mAbs:
(SEQ ID NO: 218)
ID NO: 210)
T


L3.PY/L1.AH/P6E01;


(SEQ ID NO:


L3.PY/L1.AH/H2.QR;


216)


L3.PY/L1.AH/H2.DY;





L3.PY/L1.AH/H2.YQ;





L3.PY/L1.AH/H2.LT;





L3.PY/L1.AH/H2.HA;





L3.PY/L1.AH/H2.QL;





L3.PY/L1.AH/H3.YA;





L3.PY/L1.AH/H3.AE;





L3.PY/L1.AH/H3.AQ;





L3.PY/L1.AH/H3.TAQ








L3.PY/L1.FF
RASQSVSSFFLA
GASSRAT (SEQ
QHYPYPPSF


For the following mAbs:
(SEQ ID NO: 219)
ID NO: 210)
T


L3.PY/L1.FF/P6E01;


(SEQ ID NO:


L3.PY/L1.FF/H2.QR;


216)


L3.PY/L1.FF/H2.DY;





L3.PY/L1.FF/H2.YQ;





L3.PY/L1.FF/H2.LT;





L3.PY/L1.FF/H2.HA;





L3.PY/L1.FF/H2.QL;





L3.PY/L1.FF/H3.YA;





L3.PY/L1.FF/H3.AE;





L3.PY/L1.FF/H3.AQ;





and





L3.PY/L1.FF/H3.TAQ








L3.PY/L1.PH
RASQSVSPHYLA
GASSRAT (SEQ
QHYPYPPSF


For the following mAbs:
(SEQ ID NO: 219)
ID NO: 210)
T


L3.PY/L1.PH/P6E01;


(SEQ ID NO:


L3.PY/L1.PH/H2.QR;


216)


L3.PY/L1.PH/H2.HA;





L3.PY/L1.PH/H3.AE;





L3.PY/L1.PH/H3.AQ;





and





L3.PY/L1.PH/H3.TAQ








L3.PY/L3.KY
RASQSVSSSYLA
GASSRAT (SEQ
KYYPYPPSF


For the following mAbs:
(SEQ ID NO: 209)
ID NO: 210)
T


L3.PY/L3.KY/P6E01;


(SEQ ID NO:


L3.PY/L3.KY/H2.QR;


220)


L3.PY/L3.KY/H2.DY;





L3.PY/L3.KY/H2.YQ;





L3.PY/L3.KY/H2.LT;





L3.PY/L3.KY/H2.HA;





L3.PY/L3.KY/H2.QL;





L3.PY/L3.KY/H3.YA;





and





L3.PY/L3.KY/H3.TAQ








L3.PY/L3.KF
RASQSVSSSYLA
GASSRAT (SEQ
KFYPYPPSF


For the following mAbs:
(SEQ ID NO: 209)
ID NO: 210)
T (SEQ ID


L3.PY/L3.KF/H2.DY;


NO: 220)


L3.PY/L3.KF/H2.YQ;





L3.PY/L3.KF/H2.LT;





L3.PY/L3.KF/H2.QL;





L3.PY/L3.KF/H3.YA;





L3.PY/L3.KF/H3.AE;





L3.PY/L3.KF/H3.AQ;





and





L3.PY/L3.KF/H3.TAQ








P5A2_VHVL (P5A)
RASQSVSSSYLA
DASIRAT
QQYGSWPL



(SEQ ID NO: 209)
(SEQ ID NO: 221)
T (SEQ ID





NO: 222)





A02_Rd4_0.6nM_C06
RASQSVSVIYLA
DASIRAT
QQYQRWPL



(SEQ ID NO: 223)
(SEQ ID NO: 221)
T





(SEQ ID NO:





224)





A02_Rd4_0.6nM_C09;
RASQSVSSSYLA
DASIRAT
QQYQSWPL


COMBO_Rd_0.6nM_C29;
(SEQ ID NO: 209)
(SEQ ID NO: 221)
T


and


(SEQ ID NO:


COMBO_Rd4_0.6nM_C21


225)





A02_Rd4_6nM_C16
RASQSVSDIYLA
DASIRAT
QQYQTWPL


(P5AC16)
(SEQ ID NO: 226)
(SEQ ID NO: 221)
T (SEQ ID





NO: 227)





A02_Rd4_6nM_C03
RASQSVSNIYLA
DASIRAT
QQYQGWPL



(SEQ ID NO: 228)
(SEQ ID NO: 221)
T (SEQ ID





NO: 229)





A02_Rd4_6nM_C01
RASQSVSAYYLA
DASIRAT
QQYERWPL



(SEQ ID NO: 230)
(SEQ ID NO: 221)
T





(SEQ ID NO:





231)





A02_Rd4_6nM_C26
RASQSVSSIYLA
DASIRAT
QQYQVWPL



(SEQ ID NO: 232)
(SEQ ID NO: 221)
T





(SEQ ID NO:





233)





A02_Rd4_6nM_C25
RASQSVSSSYLA
DASIRAT
QQYLDWPL



(SEQ ID NO: 209)
(SEQ ID NO: 221)
T





(SEQ ID NO:





234)





A02_Rd4_6nM_C22
RASQSVSSSYLA
DASIRAT
QQYQVWPL



(SEQ ID NO: 209)
(SEQ ID NO: 221)
T





(SEQ ID NO:





233)





A02_Rd4_6nM_C19
RASQSVSVIYLA
DASIRAT
QQYLAWPLT



(SEQ ID NO: 223)
(SEQ ID NO: 221)
(SEQ ID NO:





236)





A02_Rd4_0.6nM_C03
RASQSVSSSYLA
DASIRAT
QQYFTWPLT



(SEQ ID NO: 209)
(SEQ ID NO: 221)
(SEQ ID NO:





237)





A02_Rd4_6nM_C07
RASQSVSPYYLA
DASIRAT
QQYERWPL



(SEQ ID NO: 238)
(SEQ ID NO: 221)
T





(SEQ ID NO:





231)





A02_Rd4_6nM_C23
RASQSVSVEYLA
DASIRAT
QQYARWPL



(SEQ ID NO: 239)
(SEQ ID NO: 221)
T





(SEQ ID NO:





240)





A02_Rd4_0.6nM_C18
RASQSVSEIYLA
DASIRAT
QQYFGWPL



(SEQ ID NO: 241)
(SEQ ID NO: 221)
T





(SEQ ID NO:





242)





A02_Rd4_6nM_C10
RASQSVEMSYLA
DASIRAT
QQYAHWPL



(SEQ ID NO: 243)
(SEQ ID NO: 221)
T





(SEQ ID NO:





244)





A02_Rd4_6nM_C05
RASQSVSSSYLA
DASIRAT
QQYQRWPL



(SEQ ID NO: 209)
(SEQ ID NO: 221)
T





(SEQ ID NO:





224)





A02_Rd4_0.6nM_C10
RASQSVSAQYLA
DASIRAT
QQYQRWPL



(SEQ ID NO: 245)
(SEQ ID NO: 221)
T





(SEQ ID NO:





224)





A02_Rd4_6nM_C04
RASQSVSAIYLA
DASIRAT
QQYQVWPL



(SEQ ID NO: 235)
(SEQ ID NO: 221)
T





(SEQ ID NO:





233)





A02_Rd4_0.6nM_C26
GPSQSVSSSYLA
DASIRAT
QQYQSWPL



(SEQ ID NO: 246)
(SEQ ID NO: 221)
T





(SEQ ID NO:





225)





A02_Rd4_0.6nM_C13
RASQSVSSSYWA
DASIRAT
QQYESWPL



(SEQ ID NO: 247)
(SEQ ID NO: 221)
T





(SEQ ID NO:





248)





A02_Rd4_0.6nM_C01
RGGQSVSSSYLA
DASIRAT
QQYQSWPL


(P5AC1)
(SEQ ID NO: 249)
(SEQ ID NO: 221)
T





(SEQ ID NO:





225)





A02_Rd4_6nM_C08
RASQSVSFIYLA
DASIRAT
QQYGSWPL



(SEQ ID NO: 250)
(SEQ ID NO: 221)
T (SEQ ID





NO: 222)





P5C1_VHVL (PC1)
RASQSVSSTYLA
DASSRAP
QQYSTSPLT



(SEQ ID NO: 251)
(SEQ ID NO: 252)
(SEQ ID NO:





253)





C01_Rd4_6nM_C24
RASQSVSPEYLA
DASSRAP
QQYSVWPL



(SEQ ID NO: 254)
(SEQ ID NO: 252)
T





(SEQ ID NO:





255)





C01_Rd4_6nM_C26
RASQSVSAIYLA
DASSRAP
QQYSAWPL



(SEQ ID NO: 235)
(SEQ ID NO: 252)
T





(SEQ ID NO:





256)





C01_Rd4_6nM_C10
RASQSVSSVYLA
DASSRAP
QQYSTWPL



(SEQ ID NO: 257)
(SEQ ID NO: 252)
T





(SEQ ID NO:





258)





C01_Rd4_0.6nM_C27
RASQSVSSTYLA
DASSRAP
QQYSRWPL



(SEQ ID NO: 251)
(SEQ ID NO: 252)
T





(SEQ ID NO:





259)





C01_Rd4_6nM_C20
RASQSVSPIYLA
DASSRAP
QQYSAFPLT



(SEQ ID NO: 260)
(SEQ ID NO: 252)
(SEQ ID NO:





261)





C01_Rd4_6nM_C12
WLSQSVSSTYLA
DASSRAP
QQYSEWPL


(PC1C12)
(SEQ ID NO: 262)
(SEQ ID NO: 252)
T





(SEQ ID NO:





263)





C01_Rd4_0.6nM_C16
RASQSVSSTYLA
DASSRAP
QQYSSWPL



(SEQ ID NO: 251)
(SEQ ID NO: 252)
T





(SEQ ID NO:





264)





C01_Rd4_0.6nM_C09
RASQSVSSIFLA
DASSRAP
QQYSAWPL



(SEQ ID NO: 265)
(SEQ ID NO: 252)
T





(SEQ ID NO:





256)





C01_Rd4_6nM_C09
ACSQSVSSTYLA
DASSRAP
QQYSAWPL



(SEQ ID NO: 266)
(SEQ ID NO: 252)
T





(SEQ ID NO:





256)





C01_Rd4_0.6nM_C03
RASCDVSSTYLA
DASSRAP
QQYMRSPL



(SEQ ID NO: 267)
(SEQ ID NO: 252)
T





(SEQ ID NO:





268)





C01_Rd4_0.6nM_C06
RASEAVPSTYLA
DASSRAP
QQYSAFPLT



(SEQ ID NO: 269)
(SEQ ID NO: 252)
(SEQ ID NO:





261)





C01_Rd4_0.6nM_C04
CSSQSVSSTYLA
DASSRAP
QQYSAFPLT



(SEQ ID NO: 270)
(SEQ ID NO: 252)
(SEQ ID NO:





261)





COMBO_Rd4_0.6nM_C22
RASVRVSSTYLA
DASIRAT
QQYMKWPL


(COM22)
(SEQ ID NO: 271)
(SEQ ID NO: 221)
T





(SEQ ID NO:





272)





COMBO_Rd4_6nM_C21
RASQSVSAAYLA
DASIRAT
QQYMCWPL



(SEQ ID NO: 273)
(SEQ ID NO: 221)
T





(SEQ ID NO:





274)





COMBO_Rd4_6nM_C10
RASQSVSSSYWG
DASIRAT
QQYQCWPL



(SEQ ID NO: 275)
(SEQ ID NO: 221)
T





(SEQ ID NO:





276)





COMBO_Rd4_0.6nM_C04
RASQSVSSTYLA
DASIRAT
QQYQSWPL



(SEQ ID NO: 251)
(SEQ ID NO: 221)
T





(SEQ ID NO:





225)





COMBO_Rd4_6nM_C25
RASQSVSSPYLA
DASIRAT
QQYQSWPL



(SEQ ID NO: 277)
(SEQ ID NO: 221)
T





(SEQ ID NO:





225)





COMBO_Rd4_6nM_C11
RASQSVSPIYLA
DASIRAT
QQYKAWPL



(SEQ ID NO: 260)
(SEQ ID NO: 221)
T





(SEQ ID NO:





278)





COMBO_Rd4_0.6nM_C20
RASQSVSYLYLA
DASIRAT
QQYMEWPL



(SEQ ID NO: 279)
(SEQ ID NO: 221)
T





(SEQ ID NO:





280)





COMBO_Rd4_6nM_C09
RASQSVSAQYLA
DASIRAT
QQYQAWPL



(SEQ ID NO: 245)
(SEQ ID NO: 221)
T





(SEQ ID NO:





281)





COMBO_Rd4_6nM_C08
RASQSVSSSYLA
DASIRAT
QQYQKWPL



(SEQ ID NO: 209)
(SEQ ID NO: 221)
T





(SEQ ID NO:





282)





COMBO_Rd4_0.6nM_C19
RASQSVSAVYLA
DASIRAT
QQYRAWPL



(SEQ ID NO: 283)
(SEQ ID NO: 221)
T





(SEQ ID NO:





284)





COMBO_Rd4_0.6nM_C02
RASIAVSSTYLA
DASIRAT
QQYMVWPL



(SEQ ID NO: 285)
(SEQ ID NO: 221)
T





(SEQ ID NO:





286)





COMBO_Rd4_0.6nM_C23
RPRQSVSSSYLA
DASIRAT
QQYQDWPL



(SEQ ID NO: 287)
(SEQ ID NO: 221)
T





(SEQ ID NO:





288)





COMBO_Rd4_0.6nM_C09
RASQSVSSTYLA
DASIRAT
QQYQEWPL



(SEQ ID NO: 251)
(SEQ ID NO: 221)
T





(SEQ ID NO:





289)





COMBO_Rd4_6nM_C12
RASQSVSASYLA
DASIRAT
QQYMSWPL



(SEQ ID NO: 290)
(SEQ ID NO: 221)
T





(SEQ ID NO:





291)





COMBO_Rd4_0.6nM_C30
RASQSVSYMYLA
DASIRAT
QQYKSWPL



(SEQ ID NO: 292)
(SEQ ID NO: 221)
T





(SEQ ID NO:





293)





COMBO_Rd4_0.6nM_C14
RASQSVSAIYLA
DASIRAT
QQYYGWPL



(SEQ ID NO: 235)
(SEQ ID NO: 221)
T





(SEQ ID NO:





294)





COMBO_Rd4_6nM_C07
RASQPISSSYLA
DASIRAT
QQYQGWPL



(SEQ ID NO: 295)
(SEQ ID NO: 221)
T





(SEQ ID NO:





229)





COMBO_Rd4_6nM_C02
RASQSVSSSYLA
DASIRAT
QQYEFWPL



(SEQ ID NO: 209)
(SEQ ID NO: 221)
T





(SEQ ID NO:





296)





COMBO_Rd4_0.6nM_C05
RASQSVSSTYLA
DASIRAT
QQYMSWPL



(SEQ ID NO: 251)
(SEQ ID NO: 221)
T





(SEQ ID NO:





291)





COMBO_Rd4_0.6nM_C17
RASQGISSTYLA
DASIRAT
QQYAYWPL



(SEQ ID NO: 297)
(SEQ ID NO: 221)
T





(SEQ ID NO:





298)





COMBO_Rd4_6nM_C22
RASQSVSSSYLA
DASIRAT
QQYQGWPL



(SEQ ID NO: 209)
(SEQ ID NO: 221)
T





(SEQ ID NO:





229)





COMBO_Rd4_0.6nM_C11
RASQSVSVRYLA
DASIRAT
QQYGSWPIT



(SEQ ID NO: 299)
(SEQ ID NO: 221)
(SEQ ID NO:





300)





Light chain consensus
X1X2X3X4X5X6X7X8X9
X1ASX2RAX3,
X1X2YX3X4PP



X10X11X12, wherein X1
wherein X1 is G or
SFT, wherein



is R, G, W, A, or C; X2
D; X2 is S or I;
X1 is Q or K;



is A, P, G, L, C, or S;
and X3 is T or P
X2 is H or Y;



X3 is S, G, or R; X4 is
(SEQ ID NO: 310)
X3 is G, N, or



Q, C, E, V, or I; X5 is

P; and X4 is



S, P, G, A, R, or D; X6

S, W, or Y



is V, G, I, or L; X7 is S,

(SEQ ID NO:



E, D, P, or G; X8 is S,

311)



P, F, A, M, E, V, N, D,

QQYX1X2X3P



or Y; X9 is I, T, V, E, F

X4T, wherein



S, A, M, Q, Y, H, or R;

X1 is G, Q, E,



X10 is Y or F; X11 is L,

L, F, A, S, M,



W, or P; and X12 is A,

K, R, or Y; X2



S, or G (SEQ ID NO:

is S, R, T, G,



309)

V, F, Y, D, A,





H, V, E, K, or





C; X3 is W, F,





or S; and X4





is L or I (SEQ





ID NO: 312)





P4G4
RASQSVSSSYLA
GASSRAY (SEQ
QHYGSPPLF



(SEQ ID NO: 209)
ID NO: 392)
T (SEQ ID





NO: 393)





P1A11
RASQNVSSSYLA
GASYRAT (SEQ
QHYGSPPSF



(SEQ ID NO: 379)
ID NO: 395)
T (SEQ ID





NO: 211)





P6AP
RASQLGSFYLA
GASSRAT (SEQ
QHYNYPPSF



(SEQ ID NO: 377)
ID NO: 210)
T (SEQ ID





NO: 214)









The invention encompasses modifications to the CARs and polypeptides of the invention variants shown in Table 1, including functionally equivalent CARs having modifications which do not significantly affect their properties and variants which have enhanced or decreased activity and/or affinity. For example, the amino acid sequence may be mutated to obtain an antibody with the desired binding affinity to BCMA. Modification of polypeptides is routine practice in the art and need not be described in detail herein. Examples of modified polypeptides include polypeptides with conservative substitutions of amino acid residues, one or more deletions or additions of amino acids which do not significantly deleteriously change the functional activity, or which mature (enhance) the affinity of the polypeptide for its ligand, or use of chemical analogs.


Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an antibody with an N-terminal methionyl residue or the antibody fused to an epitope tag. Other insertional variants of the antibody molecule include the fusion to the N- or C-terminus of the antibody of an enzyme or a polypeptide which increases the half-life of the antibody in the blood circulation.


Substitution variants have at least one amino acid residue in the antibody molecule removed and a different residue inserted in its place. The sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated. Conservative substitutions are shown in Table 2.1 under the heading of “conservative substitutions.” If such substitutions result in a change in biological activity, then more substantial changes, denominated “exemplary substitutions” in Table 2.1, or as further described below in reference to amino acid classes, may be introduced and the products screened.









TABLE 2.1







Amino Acid Substitutions











Original Residue





(naturally



occurring
Conservative
Exemplary



amino acid)
Substitutions
Substitutions







Ala (A)
Val
Val; Leu; Ile



Arg (R)
Lys
Lys; Gln; Asn



Asn (N)
Gln
Gln; His; Asp, Lys; Arg



Asp (D)
Glu
Glu; Asn



Cys (C)
Ser
Ser; Ala



Gln (Q)
Asn
Asn; Glu



Glu (E)
Asp
Asp; Gln



Gly (G)
Ala
Ala



His (H)
Arg
Asn; Gln; Lys; Arg



Ile (I)
Leu
Leu; Val; Met; Ala;





Phe; Norleucine



Leu (L)
Ile
Norleucine; Ile; Val;





Met; Ala; Phe



Lys (K)
Arg
Arg; Gln; Asn



Met (M)
Leu
Leu; Phe; Ile



Phe (F)
Tyr
Leu; Val; Ile; Ala; Tyr



Pro (P)
Ala
Ala



Ser (S)
Thr
Thr



Thr (T)
Ser
Ser



Trp (W)
Tyr
Tyr; Phe



Tyr (Y)
Phe
Trp; Phe; Thr; Ser



Val (V)
Leu
Ile; Leu; Met; Phe;





Ala; Norleucine










In some embodiments, the invention provides a CAR comprising an extracellular ligand-binding domain that binds to BCMA and competes for binding to BCMA with a CAR described herein, including P6E01/P6E01, P6E01/H3.AQ, L1.LGF/L3.KW/P6E01; L1.LGF/L3.NY/P6E01, L1.GDF/L3.NY/P6E01, L1.LG F/L3.KW/H3.AL, L1.LGF/L3.KW/H3.AP, L1.LG F/L3.KW/H3.AQ, L1.LG F/L3.PY/H3.AP, L1.LGF/L3.PY/H3.AQ, L1.LG F/L3.NY/H3.AL, L1.LG F/L3.NY/H3.AP, L1.LG F/L3.NY/H3.AQ, L1.GDF/L3.KW/H3.AL, L1.GDF/L3.KW/H3.AP, L1.GDF/L3.KW/H3.AQ, L1.GDF/L3.PY/H3.AQ, L1.GDF/L3.NY/H3.AL, L1.GDF/L3.NY/H3.AP, L1.GDF/L3.NY/H3.AQ, L3.KW/P6E01, L3.PY/P6E01, L3.NY/P6E01, L3.PY/L1.PS/P6E01, L3.PY/L1.AH/P6E01, L3.PY/L1.FF/P6E01, L3.PY/L1.PH/P6E01, L3.PY/L3.KY/P6E01, L3.PY/L3.KF/P6E01, L3.PY/H2.QR, L3.PY/H2.DY, L3.PY/H2.YQ, L3.PY/H2.LT, L3.PY/H2.HA, L3.PY/H2.QL, L3.PY/H3.YA, L3.PY/H3.AE, L3.PY/H3.AQ, L3.PY/H3.TAQ, L3.PY/P6E01, L3.PY/L1.PS/H2.QR, L3.PY/L1.PS/H2.DY, L3.PY/L1.PS/H2.YQ, L3.PY/L1.PS/H2.LT, L3.PY/L1.PS/H2.HA, L3.PY/L1.PS/H2.QL, L3.PY/L1.PS/H3.YA, L3.PY/L1.PS/H3.AE, L3.PY/L1.PS/H3.AQ, L3.PY/L1.PS/H3.TAQ, L3.PY/L1.AH/H2.QR, L3.PY/L1.AH/H2.DY, L3.PY/L1.AH/H2.YQ, L3.PY/L1.AH/H2.LT, L3.PY/L1.AH/H2.HA, L3.PY/L1.AH/H2.QL, L3.PY/L1.AH/H3.YA, L3.PY/L1.AH/H3.AE, L3.PY/L1.AH/H3.AQ, L3.PY/L1.AH/H3.TAQ, L3.PY/L1.FF/H2.QR, L3.PY/L1.FF/H2.DY, L3.PY/L1.FF/H2.YQ, L3.PY/L1.FF/H2.LT, L3.PY/L1.FF/H2.HA, L3.PY/L1.FF/H2.QL, L3.PY/L1.FF/H3.YA, L3.PY/L1.FF/H3.AE, L3.PY/L1.FF/H3.AQ, L3.PY/L1.FF/H3.TAQ, L3.PY/L1.PH/H2.QR, L3.PY/L1.PH/H2.HA, L3.PY/L1.PH/H3.AE, L3.PY/L1.PH/H3.AQ, L3.PY/L1.PH/H3.TAQ, L3.PY/L3.KY/H2.QR, L3.PY/L3.KY/H2.DY, L3.PY/L3.KY/H2.YQ L3.PY/L3.KY/H2.LT, L3.PY/L3.KY/H2.HA, L3.PY/L3.KY/H2.QL, L3.PY/L3.KY/H3.YA L3.PY/L3.KY/H3.TAQ, L3.PY/L3.KF/H2.DY, L3.PY/L3.KF/H2.YQ, L3.PY/L3.KF/H2.LT L3.PY/L3.KF/H2.QL, L3.PY/L3.KF/H3.YA, L3.PY/L3.KF/H3.AE, L3.PY/L3.KF/H3.AQ L3.PY/L3.KF/H3.TAQ, P5A2_VHVL, A02_Rd4_0.6 nM_C06, A02_Rd4_0.6 nM_C09 A02_Rd4_6 nM_C16, A02_Rd4_6 nM_C03, A02_Rd4_6 nM_C01, A02_Rd4_6 nM_C26 A02_Rd4_6 nM_C25, A02_Rd4_6 nM_C22, A02_Rd4_6 nM_C19, A02_Rd4_0.6 nM_C03 A02_Rd4_6 nM_C07, A02_Rd4_6 nM_C23, A02_Rd4_06 nM_C18, A02_Rd4_6 nM_C10 A02_Rd4_6 nM_C05, A02_Rd4_0.6 nM_C10, A02_Rd4_6 nM_C04, A02_Rd4_0.6 nM_C26 A02_Rd4_0.6 nM_C13, A02_Rd4_0.6 nM_C01, A02_Rd4_6 nM_C08, P5C1_VHVL, C01_Rd4_6 nM_C24, C01_Rd4_6 nM_C26, C01_Rd4_6 nM_C10, C01_Rd4_0.6 nM_C27 C01_Rd4_6 nM_C20, C01_Rd4_6 nM_C12, C01_Rd4_0.6 nM_C16, C01_Rd4_0.6 nM_C09 C01_Rd4_6 nM_C09, C01_Rd4_0.6 nM_C03, C01_Rd4_0.6 nM_C06, C01_Rd4_6 nM_C04 COMBO_Rd4_0.6 nM_C22, COMBO_Rd4_6 nM_C21, COMBO_Rd4_6 nM_C10, COMBO_Rd4_0.6 nM_C04, COMBO_Rd4_6 nM_C25, COMBO_Rd4_0.6 nM_C21, COMBO_Rd4_6 nM_C11, COMBO_Rd4_0.6 nM_C20, COMBO_Rd4_6 nM_C09, COMBO_Rd4_6 nM_C08, COMBO_Rd4_0.6 nM_C19, COMBO_Rd4_0.6 nM_C02, COMBO_Rd4_0.6 nM_C23, COMBO_Rd4_0.6 nM_C29, COMBO_Rd4_0.6 nM_C09, COMBO_Rd4_6 nM_C12, COMBO_Rd4_0.6 nM_C30, COMBO_Rd4_0.6 nM_C14, COMBO_Rd4_6 nM_C07, COMBO_Rd4_6 nM_C02, COMBO_Rd4_0.6 nM_C05, COMBO_Rd4_0.6 nM_C17, COMBO_Rd4_6 nM_C22, COMBO_Rd4_0.6 nM_C11, or COMBO_Rd4_0.6 nM_C29.


In some embodiments, the invention provides a CAR, which specifically binds to BCMA, wherein the CAR comprises a VH region comprising a sequence shown in SEQ ID NO: 33; and/or a VL region comprising a sequence shown in SEQ ID NO: 34. In some embodiments, the invention provides a CAR, which specifically binds to BCMA, wherein the CAR comprises a VH region comprising a sequence shown in SEQ ID NO: 33, 72, 39, 76, 83, 92, 25, or 8; and/or a VL region comprising a sequence shown in SEQ ID NO: 34, 73, 40, 77, 84, 93, 18, or 80. In some embodiments, the invention also provides CARs comprising CDR portions of antibodies to BCMA antibodies based on CDR contact regions. CDR contact regions are regions of an antibody that imbue specificity to the antibody for an antigen. In general, CDR contact regions include the residue positions in the CDRs and Vernier zones which are constrained in order to maintain proper loop structure for the antibody to bind a specific antigen. See, e.g., Makabe et al., J. Biol. Chem., 283:1156-1166, 2007. Determination of CDR contact regions is well within the skill of the art.


The binding affinity (KD) of the BCMA specific CAR as described herein to BCMA (such as human BCMA (e.g., (SEQ ID NO: 354) can be about 0.002 to about 6500 nM. In some embodiments, the binding affinity is about any of 6500 nm, 6000 nm, 5986 nm, 5567 nm, 5500 nm, 4500 nm, 4000 nm, 3500 nm, 3000 nm, 2500 nm, 2134 nm, 2000 nm, 1500 nm, 1000 nm, 750 nm, 500 nm, 400 nm, 300 nm, 250 nm, 200 nM, 193 nM, 100 nM, 90 nM, 50 nM, 45 nM, 40 nM, 35 nM, 30 nM, 25 nM, 20 nM, 19 nm, 18 nm, 17 nm, 16 nm, 15 nM, 10 nM, 8 nM, 7.5 nM, 7 nM, 6.5 nM, 6 nM, 5.5 nM, 5 nM, 4 nM, 3 nM, 2 nM, 1 nM, 0.5 nM, 0.3 nM, 0.1 nM, 0.01 nM, or 0.002 nM. In some embodiments, the binding affinity is less than about any of 6500 nm, 6000 nm, 5500 nm, 5000 nm, 4000 nm, 3000 nm, 2000 nm, 1000 nm, 900 nm, 800 nm, 250 nM, 200 nM, 100 nM, 50 nM, 30 nM, 20 nM, 10 nM, 7.5 nM, 7 nM, 6.5 nM, 6 nM, 5 nM, 4.5 nM, 4 nM, 3.5 nM, 3 nM, 2.5 nM, 2 nM, 1.5 nM, 1 nM, or 0.5 nM.


The intracellular signaling domain of a CAR according to the invention is responsible for intracellular signaling following the binding of extracellular ligand-binding domain to the target resulting in the activation of the immune cell and immune response. The intracellular signaling domain has the ability to activate of at least one of the normal effector functions of the immune cell in which the CAR is expressed. For example, the effector function of a T cell can be a cytolytic activity or helper activity including the secretion of cytokines.


In some embodiments, an intracellular signaling domain for use in a CAR can be the cytoplasmic sequences of, for example without limitation, the T cell receptor and co-receptors that act in concert to initiate signal transduction following antigen receptor engagement, as well as any derivative or variant of these sequences and any synthetic sequence that has the same functional capability. Intracellular signaling domains comprise two distinct classes of cytoplasmic signaling sequences: those that initiate antigen-dependent primary activation, and those that act in an antigen-independent manner to provide a secondary or co-stimulatory signal. Primary cytoplasmic signaling sequences can comprise signaling motifs which are known as immunoreceptor tyrosine-based activation motifs of ITAMs. ITAMs are well defined signaling motifs found in the intracytoplasmic tail of a variety of receptors that serve as binding sites for syk/zap70 class tyrosine kinases. Examples of ITAM used in the invention can include as non limiting examples those derived from TCRζ, FcRγ, FcRβ, FcRε, CD3γ, CD3δ, CD3ε, CD5, CD22, CD79a, CD79b and CD66d. In some embodiments, the intracellular signaling domain of the CAR can comprise the CD3ζ signaling domain which has amino acid sequence with at least about 70%, preferably at least 80%, more preferably at least 90%, 95%, 97%, or 99% sequence identity with an amino acid sequence shown in SEQ. ID NO: 324. In some embodiments the intracellular signaling domain of the CAR of the invention comprises a domain of a co-stimulatory molecule.


In some embodiments, the intracellular signaling domain of a CAR of the invention comprises a part of co-stimulatory molecule selected from the group consisting of fragment of 41BB (GenBank: AAA53133.) and CD28 (NP_006130.1). In some embodiments, the intracellular signaling domain of the CAR of the invention comprises amino acid sequence which comprises at least 70%, preferably at least 80%, more preferably at least 90%, 95%, 97%, or 99% sequence identity with an amino acid sequence shown in SEQ. ID NO: 323 and SEQ. ID NO: 327.


CARs are expressed on the surface membrane of the cell. Thus, the CAR can comprise a transmembrane domain. Suitable transmembrane domains for a CAR disclosed herein have the ability to (a) be expressed at the surface of a cell, preferably an immune cell such as, for example without limitation, lymphocyte cells or Natural killer (NK) cells, and (b) interact with the ligand-binding domain and intracellular signaling domain for directing cellular response of immune cell against a predefined target cell. The transmembrane domain can be derived either from a natural or from a synthetic source. The transmembrane domain can be derived from any membrane-bound or transmembrane protein. As non-limiting examples, the transmembrane polypeptide can be a subunit of the T cell receptor such as α, β, γ or δ, polypeptide constituting CD3 complex, IL-2 receptor p55 (a chain), p75 (β chain) or γ chain, subunit chain of Fc receptors, in particular Fcγ receptor III or CD proteins. Alternatively, the transmembrane domain can be synthetic and can comprise predominantly hydrophobic residues such as leucine and valine. In some embodiments said transmembrane domain is derived from the human CD8α chain (e.g., NP_001139345.1). The transmembrane domain can further comprise a stalk domain between the extracellular ligand-binding domain and said transmembrane domain. A stalk domain may comprise up to 300 amino acids, preferably 10 to 100 amino acids and most preferably 25 to 50 amino acids. Stalk region may be derived from all or part of naturally occurring molecules, such as from all or part of the extracellular region of CD8, CD4, or CD28, or from all or part of an antibody constant region. Alternatively the stalk domain may be a synthetic sequence that corresponds to a naturally occurring stalk sequence, or may be an entirely synthetic stalk sequence. In some embodiments said stalk domain is a part of human CD8α chain (e.g., NP_001139345.1). In another particular embodiment, said transmembrane and hinge domains comprise a part of human CD8α chain, preferably which comprises at least 70%, preferably at least 80%, more preferably at least 90%, 95% 97%, or 99% sequence identity with amino acid sequence selected from the group consisting of SEQ ID NO: 318. In some embodiments, CARs disclosed herein can comprise an extracellular ligand-binding domain that specifically binds BCMA, CD8α human hinge and transmembrane domains, the CD3ζ signaling domain, and 4-1BB signaling domain.


Table 3 provides exemplary sequences of domains which can be used in the CARs disclosed herein.









TABLE 3







Exemplary sequences of CAR Components













SEQ





ID



Domain
Amino Acid Sequence
NO:






CD8α signal
MALPVTALLLPLALLLHAARP
318



peptide








FcγRIIIα hinge
GLAVSTISSFFPPGYQ
319






CD8α hinge
TTTPAPRPPTPAPTIASQPLSLRPE
320




ACRPAAGGAVHTRGLDFACD







IgG1 hinge
EPKSPDKTHTCPPCPAPPVAGPSVF
321




LFPPKPKDTLMIARTPEVTCWVDVS





HEDPEVKFNWYVDGVEVHNAKTKPR





EEQYNSTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALPAPIEKTISKAKGQ





PREPQVYTLPPSRDELTKNQVSLTC





LVKGFYPSDIAVEWESNGQPENNYK





TTPPVLDSDGSFFLYSKLTVDKSRW





QQGNVFSCSVMHEALHNHYTQKSLS





LSPGK







CD8α
IYIWAPLAGTCGVLLLSLVITLYC
322



transmembrane





(TM) domain








41BB
KRGRKKLLYIFKQPFMRPVQTTQEE
323



intracellular
DGCSCRFPEEEEGGCEL




signaling





domain





(ISD)








CD3ζ
RVKFSRSADAPAYQQGQNQLYNELN
324



intracellular
LGRREEYDVLDKRRGRDPEMGGKPR




signaling
RKNPQEGLYNELQKDKMAEAYSEIG




domain
MKGERRRGKGHDGLYQGLSTATKDT




(ISD)
YDALHMQALPPR







FcϵRIα-TM-IC
FFIPLLVVILFAVDTGLFISTQQQV
325



(FcϵRIα chain
TFLLKIKRTRKGFRLLNPHPKPNPK




transmembrane
NN




and





intracellular





domain)








FcϵRIβ-ΔITAM
MDTESNRRANLALPQEPSSVPAFEV
326



(FcϵRIβ
LEISPQEVSSGRLLKSASSPPLHTW




chain without
LTVLKKEQEFLGVTQILTAMICLCF




ITAM)
GTVVCSVLDISHIEGDIFSSFKAGY





PFWGAIFFSISGMLSIISERRNATY





LVRGSLGANTASSIAGGTGITILII





NLKKSLAYIHIHSCQKFFETKCFMA





SFSTEIVVMMLFLTILGLGSAVSLT





ICGAGEELKGNKVPE







41BB-IC(41BB
KRGRKKLLYIFKQPFMRPVQTTQEE
327



co-stimulatory
DGCSCRFPEEEEGGCEL




domain)








CD28-IC (CD28
RSKRSRGGHSDYMNMTPRRPGPTRK
328



co-stimulatory
HYQPYAPPRDFAAYRS




domain)








FcϵRIγ-SP
MIPAVVLLLLLLVEQAAA
329



(signal





peptide)








FcϵRI γ-ΔITAM
LGEPQLCYILDAILFLYGIVLTLLY
330



(FcϵRIγ
CRLKIQVRKAAITSYEKS




chain without





ITAM)








GSG-P2A
GSGATNFSLLKQAGDVEENPGP
331



(GSG-P2A





ribosomal skip





polypeptide)








GSG-T2A
GSGEGRGSLLTCGDVEENPGP
332



(GSG-T2A





ribosomal skip





polypeptide)









Downregulation or mutation of target antigens is commonly observed in cancer cells, creating antigen-loss escape variants. Thus, to offset tumor escape and render immune cell more specific to target, the BCMA specific CAR can comprise one or more additional extracellular ligand-binding domains, to simultaneously bind different elements in target thereby augmenting immune cell activation and function. In one embodiment, the extracellular ligand-binding domains can be placed in tandem on the same transmembrane polypeptide, and optionally can be separated by a linker. In some embodiments, said different extracellular ligand-binding domains can be placed on different transmembrane polypeptides composing the CAR. In some embodiments, the invention relates to a population of CARs, each CAR comprising a different extracellular ligand-binding domain. In a particular, the invention relates to a method of engineering immune cells comprising providing an immune cell and expressing at the surface of the cell a population of CARs, each CAR comprising different extracellular ligand-binding domains. In another particular embodiment, the invention relates to a method of engineering an immune cell comprising providing an immune cell and introducing into the cell polynucleotides encoding polypeptides composing a population of CAR each one comprising different extracellular ligand-binding domains. By population of CARs, it is meant at least two, three, four, five, six or more CARs each one comprising different extracellular ligand-binding domains. The different extracellular ligand-binding domains according to the invention can preferably simultaneously bind different elements in target thereby augmenting immune cell activation and function. The invention also relates to an isolated immune cell which comprises a population of CARs each one comprising different extracellular ligand-binding domains.


In another aspect, the invention provides polynucleotides encoding any of the CARs and polypeptides described herein. Polynucleotides can be made and expressed by procedures known in the art.


In another aspect, the invention provides compositions (such as a pharmaceutical compositions) comprising any of the cells of the invention. In some embodiments, the composition comprises a cell comprising a polynucleotide encoding any of the CARs described herein. In still other embodiments, the composition comprises either or both of the polynucleotides shown in SEQ ID NO: 367 and SEQ ID NO:368 below:











P5A heavy chain variable region



(SEQ ID NO: 367)



GAGGTGCAGCTGCTGGAATCTGGCGGAGGACTGGT






GCAGCCTGGCGGCTCTCTGAGACTGTCTTGTGCCG






CCAGCGGCTTCACCTTCAGCAGCTACGCCATGAAC






TGGGTGCGCCAGGCCCCTGGCAAAGGCCTGGAATG






GGTGTCCGCCATCAGCGATAGCGGCGGCAGCACCT






ACTACGCCGATAGCGTGAAGGGCCGGTTCACCATC






AGCCGGGACAACAGCAAGAACACCCTGTACCTGCA






GATGAACAGCCTGCGGGCCGAGGACACCGCCGTGT






ACTACTGTGCCANATACTGGCCCATGGACATCTGG






GGCCAGGGAACCTTGGTCACCGTCTCCTCA






P5A light chain variable region



(SEQ ID NO: 368)



GAGATCGTGCTGACACAGAGCCCTGGCACCCTGAG






CCTGTCTCCAGGCGAAAGAGCCACCCTGTCCTGCA






AAGCCAGCCAGAGCGTGTCCAGCAGCTACCTGGCC






TGGTATCAGCAAAAGCCCGGCCAGGCTCCCCGGCT






GCTGATGTACGATGCCAGCATCAGAGCCACCGGCA






TCCCCGACAGATTTTCCGGCTCTGGCAGCGGCACC






GACTTCACCCTGACCATCAGCAGACTGGAACCCGA






GGACTTCGCCGTGTACTACTGCCAGCAGTACGGCA






GCTGGCCCCTGACATTTGGCCAGGGCACAAAGGT






GGAGATCAAA






In other embodiments, the composition comprises either or both of the polynucleotides shown in SEQ ID NO: 369 and SEQ ID NO: 370 below:











P5AC1 heavy chain variable region



(SEQ ID NO: 369)



GAGGTGCAGCTGCTGGAATCTGGCGGAGGACTGGT






GCAGCCTGGCGGCTCTCTGAGACTGTCTTGTGCCG






CCAGCGGCTTCACCTTCAGCAGCTACGCCATGAAC






TGGGTGCGCCAGGCCCCTGGTAAAGGTTTGGAATG






GGTTTCTGCTATTCTGTCGTCTGGTGGTTCTACTT






ACTATGCCGATTCTGTTAAGGGTAGATTCACCATT






TCTAGAGACAACTCTAAGAACACCTTGTACTTGCA






AATGAACTCCTTGAGAGCTGAAGATACTGCTGTTT






ATTACTGTGCTAGATACTGGCCAATGGATATTTGG






GGTCAAGGTACTCTGGTCACCGTCTCCTCA






P5AC1 light chain variable region



(SEQ ID NO: 370)



GAGATCGTGCTGACACAGAGCCCTGGCACCCTGAG






CCTGTCTCCTGGTGAAAGAGCTACTTTGTCTTGTA






GAGGGGGTCAATCCGTTTCCTCTTCTTATTTGGCT






TGGTATCAACAAAAACCAGGTCAAGCTCCAAGATT






ATTGATGTACGATGCTTCTATTAGAGCCACCGGTA






TTCCAGATAGATTTTCTGGTTCTGGTTCCGGTACT






GATTTCACTTTGACTATCTCTAGATTGGAACCAGA






AGATTTCGCTGTTTACTACTGTCAACAATATCAGT






CTTGGCCATTGACTTTTGGTCAAGGTACAAAGGTT






GAAATCAAA






In other embodiments, the composition comprises either or both of the polynucleotides shown in SEQ ID NO: 371 and SEQ ID NO: 372 below:











PC1 heavy chain variable region



(SEQ ID NO: 371)



GAGGTGCAGCTGCTGGAATCTGGCGGAGGACTGGT






GCAGCCTGGCGGCTCTCTGAGACTGTCTTGTGCCG






CCAGCGGCTTCACCTTCAGCAGCTACCCTATGAGC






TGGGTGCGCCAGGCCCCTGGCAAAGGACTGGAATG






GGTGTCCGCCATCGGAGGCTCTGGCGGCAGCACCT






ACTACGCCGATAGCGTGAAGGGCCGGTTCACCATC






AGCCGGGACAACAGCAAGAACACCCTGTACCTGCA






AATGAACAGCCTGCGGGCCGAGGACACCGCCGTGT






ACTACTGTGCCAGATACTGGCCCATGGACAGCTGG






GGCCAGGGAACTTTGGTCACCGTCTCCTCA






PC1 light chain variable region



(SEQ ID NO: 372)



GAGATCGTGCTGACACAGAGCCCTGGCACCCTGAG






CCTGTCTCCAGGCGAAAGAGCCACCCTGTCCTGCA






AAGCCAGCCAGAGCGTGTCCAGCACATACCTGGCC






TGGTATCA GCAAAAGCCCGGCCAGGCTCCCCGGC






TGCTGATCTACGATGCCTCTTCTAGAGCCCCTGG






CATCCCCGACAGATTCAGCGGCTCTGGCAGCGGCA






CCGACTTCACCCTGACCATCAGCAGACTGGAACC






CGAGGACTTCGCCGTGTACTACTGCCAGCAGTACA






GCACCAGCCCCCTGACCTTTGGCCAGGGCACAAA






GGTGGAGATCAAA.






In other embodiments, the composition comprises either or both of the polynucleotides shown in SEQ ID NO: 373 and SEQ ID NO: 374 below:











PC1C12 heavy chain variable region



(SEQ ID NO: 373)



GAGGTGCAGCTGCTGGAATCTGGCGGAGGACTGGT






GCAGCCTGGCGGCTCTCTGAGACTGTCTTGTGCCG






CCAGCGGCTTCACCTTCAGCAGCTACCCTATGAGC






TGGGTGCGCCAGGCCCCTGGTAAAGGTTTGGAATG






GGTTTCTGCTATTGGTGGTTCAGGTGGTTGGAGTT






ATTATGCCGATTCTGTTAAGGGTAGATTCACCATT






TCTAGAGACAACTCTAAGAACACCTTGTACTTGCA






AATGAACTCCTTGAGAGCTGAAGATACTGCTGTTT






ATTACTGTGCTAGATACTGGCCAATGGATTCTTGG






GGTCAAGGTACTCTGGTCACCGTCTCCTCA






PC1C12 light chain variable region



(SEQ ID NO: 374)



GAGATCGTGCTGACACAGAGCCCTGGCACCCTGAG






CCTGTCTCCTGGTGAAAGAGCTACTTTGTCTTGTT






GGTTGTCTCAATCTGTTTCCTCTACTTACTTGGCT






TGGTATCAACAAAAACCAGGTCAAGCTCCAAGATT






ATTGATCTACGATGCTTCTTCTAGAGCACCAGGTA






TTCCAGATAGATTTTCTGGTTCTGGTTCCGGTACT






GATTTCACTTTGACTATCTCTAGATTGGAACCAGA






AGATTTCGCTGTTTACTACTGCCAACAATACTCTG






AGTGGCCATTGACTTTTGGTCAAGGTACAAAGGTT






GAAATCAAA.






In other embodiments, the composition comprises either or both of the polynucleotides shown in SEQ ID NO: 375 and SEQ ID NO: 376 below:











COM22 heavy chain variable region



(SEQ ID NO: 375)



GAGGTGCAGCTGCTGGAATCTGGCGGAGGACTGGT






GCAGCCTGGCGGCTCTCTGAGACTGTCTTGTGCCG






CCAGCGGCTTCACCTTCAGCAGCTACGCCATGAAC






TGGGTGCGCCAGGCCCCTGGTAAAGGTTTGGAATG






GGTTTCTGCTATTTCTGATTCTGGTGGTTCTAGGT






GGTATGCCGATTCTGTTAAGGGTAGATTCACCATT






TCTAGAGACAACTCTAAGAACACCTTGTACTTGCA






AATGAACTCCTTGAGAGCTGAAGATACTGCTGTTT






ATTACTGTACGCGGTACTGGCCAATGGATATTTGG






GGTCAAGGTACTCTGGTCACCGTCTCCTCA






COM22 light chain variable region



(SEQ ID NO: 376)



GAGATCGTGCTGACACAGAGCCCTGGCACCCTGAG






CCTGTCTCCTGGTGAAAGAGCTACTTTGTCTTGTT






GGTTGTCTCAATCTGTTTCCTCTACTTACTTGGCT






TGGTATCAACAAAAACCAGGTCAAGCTCCAAGATT






ATTGATCTACGATGCTTCTTCTAGAGCACCAGGTA






TTCCAGATAGATTTTCTGGTTCTGGTTCCGGTACT






GATTTCACTTTGACTATCTCTAGATTGGAACCAGA






AGATTTCGCTGTTTACTACTGCCAACAATACTCTG






AGTGGCCATTGACTTTTGGTCAAGGTACAAAGGTT






GAAATCAAA.






Expression vectors, and administration of polynucleotide compositions are further described herein.


In another aspect, the invention provides a method of making any of the polynucleotides described herein.


Polynucleotides complementary to any such sequences are also encompassed by the invention. Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules include HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.


Polynucleotides may comprise a native sequence (i.e., an endogenous sequence that encodes an antibody or a portion thereof) or may comprise a variant of such a sequence. Polynucleotide variants contain one or more substitutions, additions, deletions and/or insertions such that the immunoreactivity of the encoded polypeptide is not diminished, relative to a native immunoreactive molecule. The effect on the immunoreactivity of the encoded polypeptide may generally be assessed as described herein. Variants preferably exhibit at least about 70% identity, more preferably, at least about 80% identity, yet more preferably, at least about 90% identity, and most preferably, at least about 95% identity to a polynucleotide sequence that encodes a native antibody or a portion thereof.


Two polynucleotide or polypeptide sequences are said to be “identical” if the sequence of nucleotides or amino acids in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A “comparison window” as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, or 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.


Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M. O., 1978, A model of evolutionary change in proteins—Matrices for detecting distant relationships. In Dayhoff, M. O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J., 1990, Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D. G. and Sharp, P. M., 1989, CABIOS 5:151-153; Myers, E. W. and Muller W., 1988, CABIOS 4:11-17; Robinson, E. D., 1971, Comb. Theor. 11:105; Santou, N., Nes, M., 1987, Mol. Biol. Evol. 4:406-425; Sneath, P. H. A. and Sokal, R. R., 1973, Numerical Taxonomy the Principles and Practice of Numerical Taxonomy, Freeman Press, San Francisco, CA; Wilbur, W. J. and Lipman, D. J., 1983, Proc. Natl. Acad. Sci. USA 80:726-730.


Preferably, the “percentage of sequence identity” is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e. the window size) and multiplying the results by 100 to yield the percentage of sequence identity.


Variants may also, or alternatively, be substantially homologous to a native gene, or a portion or complement thereof. Such polynucleotide variants are capable of hybridizing under moderately stringent conditions to a naturally occurring DNA sequence encoding a native antibody (or a complementary sequence).


Suitable “moderately stringent conditions” include prewashing in a solution of 5×SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50° C.-65° C., 5×SSC, overnight; followed by washing twice at 65° C. for 20 minutes with each of 2×, 0.5× and 0.2×SSC containing 0.1% SDS.


As used herein, “highly stringent conditions” or “high stringency conditions” are those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5×Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2×SSC (sodium chloride/sodium citrate) and 50% formamide at 55° C., followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55° C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.


It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated by the invention. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of the invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).


The polynucleotides of this invention can be obtained using chemical synthesis, recombinant methods, or PCR. Methods of chemical polynucleotide synthesis are well known in the art and need not be described in detail herein. One of skill in the art can use the sequences provided herein and a commercial DNA synthesizer to produce a desired DNA sequence.


For preparing polynucleotides using recombinant methods, a polynucleotide comprising a desired sequence can be inserted into a suitable vector, and the vector in turn can be introduced into a suitable host cell for replication and amplification, as further discussed herein. Polynucleotides may be inserted into host cells by any means known in the art. Cells are transformed by introducing an exogenous polynucleotide by direct uptake, endocytosis, transfection, F-mating or electroporation. Once introduced, the exogenous polynucleotide can be maintained within the cell as a non-integrated vector (such as a plasmid) or integrated into the host cell genome. The polynucleotide so amplified can be isolated from the host cell by methods well known within the art. See, e.g., Sambrook et al., 1989.


Alternatively, PCR allows reproduction of DNA sequences. PCR technology is well known in the art and is described in U.S. Pat. Nos. 4,683,195, 4,800,159, 4,754,065 and 4,683,202, as well as PCR: The Polymerase Chain Reaction, Mullis et al. eds., Birkauswer Press, Boston, 1994.


RNA can be obtained by using the isolated DNA in an appropriate vector and inserting it into a suitable host cell. When the cell replicates and the DNA is transcribed into RNA, the RNA can then be isolated using methods well known to those of skill in the art, as set forth in Sambrook et al., 1989, supra, for example.


Suitable cloning vectors may be constructed according to standard techniques, or may be selected from a large number of cloning vectors available in the art. While the cloning vector selected may vary according to the host cell intended to be used, useful cloning vectors will generally have the ability to self-replicate, may possess a single target for a particular restriction endonuclease, and/or may carry genes for a marker that can be used in selecting clones containing the vector. Suitable examples include plasmids and bacterial viruses, e.g., pUC18, pUC19, Bluescript (e.g., pBS SK+) and its derivatives, mp18, mp19, pBR322, pMB9, CoIE1, pCR1, RP4, phage DNAs, and shuttle vectors such as pSA3 and pAT28. These and many other cloning vectors are available from commercial vendors such as BioRad, Strategene, and Invitrogen.


Expression vectors generally are replicable polynucleotide constructs that contain a polynucleotide according to the invention. It is implied that an expression vector must be replicable in the host cells either as episomes or as an integral part of the chromosomal DNA. Suitable expression vectors include but are not limited to plasmids, viral vectors, including adenoviruses, adeno-associated viruses, retroviruses, cosmids, and expression vector(s) disclosed in PCT Publication No. WO 87/04462. Vector components may generally include, but are not limited to, one or more of the following: a signal sequence; an origin of replication; one or more marker genes; suitable transcriptional controlling elements (such as promoters, enhancers and terminator). For expression (i.e., translation), one or more translational controlling elements are also usually required, such as ribosome binding sites, translation initiation sites, and stop codons.


The vectors containing the polynucleotides of interest can be introduced into the host cell by any of a number of appropriate means, including electroporation, transfection employing calcium chloride, rubidium chloride, calcium phosphate, DEAE-dextran, or other substances; microprojectile bombardment; lipofection; and infection (e.g., where the vector is an infectious agent such as vaccinia virus). The choice of introducing vectors or polynucleotides will often depend on features of the host cell.


A polynucleotide encoding a BCMA specific CAR disclosed herein may exist in an expression cassette or expression vector (e.g., a plasmid for introduction into a bacterial host cell, or a viral vector such as a baculovirus vector for transfection of an insect host cell, or a plasmid or viral vector such as a lentivirus for transfection of a mammalian host cell). In some embodiments, a polynucleotide or vector can include a nucleic acid sequence encoding ribosomal skip sequences such as, for example without limitation, a sequence encoding a 2A peptide. 2A peptides, which were identified in the Aphthovirus subgroup of picornaviruses, causes a ribosomal “skip” from one codon to the next without the formation of a peptide bond between the two amino acids encoded by the codons (see (Donnelly and Elliott 2001; Atkins, Wills et al. 2007; Doronina, Wu et al. 2008)). By “codon” is meant three nucleotides on an mRNA (or on the sense strand of a DNA molecule) that are translated by a ribosome into one amino acid residue. Thus, two polypeptides can be synthesized from a single, contiguous open reading frame within an imRNA when the polypeptides are separated by a 2A oligopeptide sequence that is in frame. Such ribosomal skip mechanisms are well known in the art and are known to be used by several vectors for the expression of several proteins encoded by a single messenger RNA.


To direct transmembrane polypeptides into the secretory pathway of a host cell, in some embodiments, a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) is provided in a polynucleotide sequence or vector sequence. The secretory signal sequence is operably linked to the transmembrane nucleic acid sequence, i.e., the two sequences are joined in the correct reading frame and positioned to direct the newly synthesized polypeptide into the secretory pathway of the host cell. Secretory signal sequences are commonly positioned 5′ to the nucleic acid sequence encoding the polypeptide of interest, although certain secretory signal sequences may be positioned elsewhere in the nucleic acid sequence of interest (see, e.g., Welch et al., U.S. Pat. No. 5,037,743; Holland et al., U.S. Pat. No. 5,143,830). In some embodiments the signal peptide comprises the amino acid sequence shown in SEQ ID NO: 318 or 329. Those skilled in the art will recognize that, in view of the degeneracy of the genetic code, considerable sequence variation is possible among these polynucleotide molecules. In some embodiments, nucleic acid sequences of the invention are codon-optimized for expression in mammalian cells, preferably for expression in human cells. Codon-optimization refers to the exchange in a sequence of interest of codons that are generally rare in highly expressed genes of a given species by codons that are generally frequent in highly expressed genes of such species, such codons encoding the amino acids as the codons that are being exchanged.


In some embodiments, a polynucleotide according to the invention comprises the nucleic acid sequence selected from the group consisting of: SEQ. ID NO: 1397. The invention relates to polynucleotides comprising a nucleic acid sequence that has at least 70%, preferably at least 80%, more preferably at least 90%, 95%, 97%, or 99% sequence identity with nucleic acid sequence selected from the group consisting of SEQ ID NO: 1397.


Methods of Engineering an Immune Cell


Methods of preparing immune cells for use in immunotherapy are provided herein. In some embodiments, the methods comprise introducing a CAR according to the invention into immune cells, and expanding the cells. In some embodiments, the invention relates to a method of engineering an immune cell comprising: providing a cell and expressing at the surface of the cell at least one CAR as described above. Methods for engineering immune cells are described in, for example, PCT Patent Application Publication Nos. WO/2014/039523, WO/2014/184741, WO/2014/191128, WO/2014/184744, and WO/2014/184143, each of which is incorporated herein by reference in its entirety. In some embodiments, the method comprises: transfecting the cell with at least one polynucleotide encoding CAR as described above, and expressing the polynucleotides in the cell.


In some embodiments, the polynucleotides are present in lentiviral vectors for stable expression in the cells.


In some embodiments, the method can further comprise a step of genetically modifying a cell by inactivating at least one gene expressing, for example without limitation, a component of the TCR, a target for an immunosuppressive agent, an HLA gene, and/or an immune checkpoint protein such as, for example, PDCD1 or CTLA-4. By inactivating a gene it is intended that the gene of interest is not expressed in a functional protein form. In some embodiments, the gene to be inactivated is selected from the group consisting of, for example without limitation, TCRα, TCRβ, CD52, GR, PD-1, and CTLA-4. In some embodiments the method comprises inactivating one or more genes by introducing into the cells a rare-cutting endonuclease able to selectively inactivate a gene by selective DNA cleavage. In some embodiments the rare-cutting endonuclease can be, for example, a transcription activator-like effector nuclease (TALE-nuclease) or Cas9 endonuclease.


In some embodiments, an additional catalytic domain is used with a rare-cutting endonuclease to enhance its capacity to inactivate targeted genes. For example, an additional catalytic domain can be a DNA end-processing enzyme. Non-limiting examples of DNA end-processing enzymes include 5-3′ exonucleases, 3-5′ exonucleases, 5-3′ alkaline exonucleases, 5′ flap endonucleases, helicases, hosphatase, hydrolases and template-independent DNA polymerases. Non-limiting examples of such catalytic domain comprise of a protein domain or catalytically active derivate of the protein domain selected from the group consisting of hExoI (EXO1_HUMAN), Yeast ExoI (EXO1_YEAST), E. coli ExoI, Human TREX2, Mouse TREX1, Human TREX1, Bovine TREX1, Rat TREX1, TdT (terminal deoxynucleotidyl transferase) Human DNA2, Yeast DNA2 (DNA2_YEAST). In some embodiments, an additional catalytic domain can have a 3′-5′-exonuclease activity, and In some embodiments, said additional catalytic domain is TREX, more preferably TREX2 catalytic domain (WO2012/058458). In some embodiments, said catalytic domain is encoded by a single chain TREX polypeptide. The additional catalytic domain may be fused to a nuclease fusion protein or chimeric protein. In some embodiments, the additional catalytic domain is fused using, for example, a peptide linker.


In some embodiments, the method further comprises a step of introducing into cells an exogeneous nucleic acid comprising at least a sequence homologous to a portion of the target nucleic acid sequence, such that homologous recombination occurs between the target nucleic acid sequence and the exogeneous nucleic acid. In some embodiments, said exogenous nucleic acid comprises first and second portions which are homologous to region 5′ and 3′ of the target nucleic acid sequence, respectively. The exogenous nucleic acid may also comprise a third portion positioned between the first and the second portion which comprises no homology with the regions 5′ and 3′ of the target nucleic acid sequence. Following cleavage of the target nucleic acid sequence, a homologous recombination event is stimulated between the target nucleic acid sequence and the exogenous nucleic acid. In some embodiments, homologous sequences of at least about 50 bp, greater than about 100 bp, or greater than about 200 bp can be used within the donor matrix. The exogenous nucleic acid can be, for example without limitation, from about 200 bp to about 6000 bp, more preferably from about 1000 bp to about 2000 bp. Shared nucleic acid homologies are located in regions flanking upstream and downstream the site of the break, and the nucleic acid sequence to be introduced is located between the two arms.


In some embodiments, a nucleic acid successively comprises a first region of homology to sequences upstream of said cleavage; a sequence to inactivate a targeted gene selected from the group consisting of TCRα, TCRβ, CD52, glucocorticoid receptor (GR), deoxycytidine kinase (DCK), and an immune checkpoint protein such as for example programmed death-1 (PD-1); and a second region of homology to sequences downstream of the cleavage. The polynucleotide introduction step can be simultaneous, before or after the introduction or expression of the rare-cutting endonuclease. Depending on the location of the target nucleic acid sequence wherein break event has occurred, such exogenous nucleic acid can be used to knock-out a gene, e.g. when exogenous nucleic acid is located within the open reading frame of the gene, or to introduce new sequences or genes of interest. Sequence insertions by using such exogenous nucleic acid can be used to modify a targeted existing gene, by correction or replacement of the gene (allele swap as a non-limiting example), or to up- or down-regulate the expression of the targeted gene (promoter swap as non-limiting example), the targeted gene correction or replacement. In some embodiments, inactivation of a genes selected from the group consisting of TCRα, TCRβ, CD52, GR, DCK, and immune checkpoint proteins, can be done at a precise genomic location targeted by a specific TALE-nuclease, wherein said specific TALE-nuclease catalyzes a cleavage and wherein the exogenous nucleic acid successively comprising at least a region of homology and a sequence to inactivate one targeted gene selected from the group consisting of TCRα, TCRβ, CD52, GR, DCK, immune checkpoint proteins which is integrated by homologous recombination. In some embodiments, several genes can be, successively or at the same time, inactivated by using several TALE-nucleases respectively and specifically targeting one defined gene and several specific polynucleotides for specific gene inactivation.


In some embodiments, the method comprises inactivation of one or more additional genes selected from the group consisting of TCRα, TCRβ, CD52, GR, DCK, and immune checkpoint proteins. In some embodiments, inactivation of a gene can be accomplished by introducing into the cells at least one rare-cutting endonuclease such that the rare-cutting endonuclease specifically catalyzes cleavage in a targeted sequence of the cell genome; and optionally, introducing into the cells an exogenous nucleic acid successively comprising a first region of homology to sequences upstream of the cleavage, a sequence to be inserted in the genome of the cell, and a second region of homology to sequences downstream of the cleavage; wherein the introduced exogenous nucleic acid inactivates a gene and integrates at least one exogenous polynucleotide sequence encoding at least one recombinant protein of interest. In some embodiments, the exogenous polynucleotide sequence is integrated within a gene encoding a protein selected from the group consisting of TCRα, TCRβ, CD52, GR, DCK, and immune checkpoint protein.


In another aspect, a step of genetically modifying cells can comprise: modifying T cells by inactivating at least one gene expressing a target for an immunosuppressive agent, and; expanding the cells, optionally in presence of the immunosuppressive agent. An immunosuppressive agent is an agent that suppresses immune function by one of several mechanisms of action. An immunosuppressive agent can diminish the extent and/or voracity of an immune response. Non-limiting examples of immunosuppressive agents include calcineurin inhibitors, targets of rapamycin, interleukin-2 α-chain blockers, inhibitors of inosine monophosphate dehydrogenase, inhibitors of dihydrofolic acid reductase, corticosteroids, and immunosuppressive antimetabolites. Some cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T cells or by inhibiting the activation of helper cells. The methods according to the invention allow conferring immunosuppressive resistance to T cells for immunotherapy by inactivating the target of the immunosuppressive agent in T cells. As non-limiting examples, targets for immunosuppressive agent can be a receptor for an immunosuppressive agent such as for example without limitation CD52, glucocorticoid receptor (GR), FKBP family gene members, and cyclophilin family gene members.


In some embodiments, the genetic modification of the method involves expression, in provided cells to engineer, of one rare-cutting endonuclease such that the rare-cutting endonuclease specifically catalyzes cleavage in one targeted gene, thereby inactivating the targeted gene. In some embodiments, a method of engineering cells comprises at least one of the following steps: providing a T cell, such as from a cell culture or from a blood sample; selecting a gene in the T cell expressing a target for an immunosuppressive agent; introducing into the T cell a rare-cutting endonuclease able to selectively inactivate by DNA cleavage, preferably by double-strand break the gene encoding a target for the immunosuppressive agent, and expanding the cells, optionally in presence of the immunosuppressive agent.


In some embodiments, the method comprises: providing a T cell, such as from a cell culture or from a blood sample; selecting a gene in the T cell wherein the gene expresses a target for an immunosuppressive agent; transfecting the T cell with nucleic acid encoding a rare-cutting endonuclease able to selectively inactivate by DNA cleavage, preferably by double-strand break the gene encoding a target for the immunosuppressive agent, and expressing the rare-cutting endonucleases into the T cells; and expanding the cells, optionally in presence of the immunosuppressive agent.


In some embodiments, the rare-cutting endonuclease specifically targets CD52 or GR. In some embodiments, the gene selected for inactivation encodes CD52, and the immunosuppressive treatment comprises a humanized antibody targeting CD52 antigen. In some embodiments, the gene selected for inactivation encodes GR, and the immunosuppressive treatment comprises a corticosteroid such as dexamethasone. In some embodiments, the gene selected for inactivation is a FKBP family gene member or a variant thereof and the immunosuppressive treatment comprises FK506, also known as Tacrolimus or fujimycin. In some embodiments, the FKBP family gene member is FKBP12 or a variant thereof. In some embodiments, gene selected for inactivation is a cyclophilin family gene member or a variant thereof and the immunosuppressive treatment comprises cyclosporine.


In some embodiments, the rare-cutting endonuclease can be, for example, a meganuclease, a zinc finger nuclease, or a TALE-nuclease (TALEN). In some embodiments, the rare-cutting endonuclease is a TALE-nuclease.


Also provided herein are methods of engineering T cells, suitable for immunotherapy, wherein the methods comprise: genetically modifying T cells by inactivating at least immune checkpoint protein. In some embodiments the immune checkpoint protein is, for example, PD-1 and/or CTLA-4.In some embodiments, methods of genetically modifying a cell comprises: modifying T cells by inactivating at least one immune checkpoint protein; and expanding the cells. Immune checkpoint proteins include, but are not limited to Programmed Death 1 (PD-1, also known as PDCD1 or CD279, accession number: NM_005018), Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4, also known as CD152, GenBank accession number AF414120.1), LAG3 (also known as CD223, accession number: NM_002286.5), Tim3 (also known as HAVCR2, GenBank accession number: JX049979.1), BTLA (also known as CD272, accession number: NM_181780.3), BY55 (also known as CD160, GenBank accession number: CR541888.1), TIGIT (also known as VSTM3, accession number: NM_173799), B7H5 (also known as C10orf54, homolog of mouse vista gene, accession number: NM_022153.1), LAIR1 (also known as CD305, GenBank accession number: CR542051.1), SIGLEC10 (GeneBank accession number: AY358337.1), 2B4 (also known as CD244, accession number: NM_001166664.1), which directly inhibit immune cells. For example, CTLA-4 is a cell-surface protein expressed on certain CD4 and CD8 T cells; when engaged by its ligands (B7-1 and B7-2) on antigen presenting cells, T cell activation and effector function are inhibited.


In some embodiments, said method to engineer cells comprises at least one of the following steps: providing a T cell, such as from a cell culture or from a blood sample; introducing into the T cell a rare-cutting endonuclease able to selectively inactivate by DNA cleavage, preferably by double-strand break one gene encoding a immune checkpoint protein; and expanding the cells. In some embodiments, the method comprises: providing a T cell, such as from a cell culture or from a blood sample; transfecting said T cell with nucleic acid encoding a rare-cutting endonuclease able to selectively inactivate by DNA cleavage, preferably by double-strand break a gene encoding a immune checkpoint protein; expressing the rare-cutting endonucleases into the T cells; expanding the cells. In some embodiments, the rare-cutting endonuclease specifically targets a gene selected from the group consisting of: PD-1, CTLA-4, LAG3, Tim3, BTLA, BY55, TIGIT, B7H5, LAIR1, SIGLEC10, 2B4, TCRα, and TCRβ. In some embodiments, the rare-cutting endonuclease can be a meganuclease, a zinc finger nuclease or a TALE-nuclease. In some embodiments, the rare-cutting endonuclease is a TALE-nuclease.


In some embodiments, the present invention can be particularly suitable for allogeneic immunotherapy. In such embodiments, cells may be modified by a method comprising: inactivating at least one gene encoding a component of the T cell receptor (TCR) in T cells; and expanding the T cells. In some embodiments, the genetic modification of the method relies on the expression, in provided cells to engineer, of one rare-cutting endonuclease such that the rare-cutting endonuclease specifically catalyzes cleavage in one targeted gene thereby inactivating the targeted gene. In some embodiments, said method to engineer cells comprises at least one of the following steps: providing a T cell, such as from a cell culture or from a blood sample; introducing into the T cell a rare-cutting endonuclease able to selectively inactivate by DNA cleavage, preferably by double-strand break at least one gene encoding a component of the T cell receptor (TCR), and expanding the cells.


In some embodiments, the method comprises: providing a T cell, such as from a cell culture or from a blood sample; transfecting said T cell with nucleic acid encoding a rare-cutting endonuclease able to selectively inactivate by DNA cleavage, preferably by double-strand break at least one gene encoding a component of the T cell receptor (TCR); expressing the rare-cutting endonucleases into the T cells; sorting the transformed T cells, which do not express TCR on their cell surface; and expanding the cells.


In some embodiments, the rare-cutting endonuclease can be a meganuclease, a zinc finger nuclease or a TALE-nuclease. In some embodiments, the rare-cutting endonuclease is a TALE-nuclease. In some embodiments the TALE-nucleases recognize and cleave a sequence encoding TCRα or TCRβ. In some embodiments a TALE-nuclease comprises a polypeptide sequence selected from the amino acid sequence shown in SEQ ID NO: 334, 335, 336, 337, 338, 339, 340, or 341


TALE-Nuclease Polypeptide Sequences:











Repeat TRAC T01-L



(SEQ ID NO: 334)



LTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGL






TPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLT






PQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTP






EQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPE






QVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQV






VAIASNIGGKQALETVQALLPVLCQAHGLTPEQVV






AIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVA






IASNIGGKQALETVQALLPVLCQAHGLTPQQVVAI






ASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIA






SNIGGKQALETVQALLPVLCQAHGLTPQQVVAIAS






NGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASN






IGGKQALETVQALLPVLCQAHGLTPQQVVAIASNG






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDG






GKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGG






RPALE






Repeat TRAC T01-R



(SEQ ID NO: 335)



LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGL






TPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLT






PEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTP






EQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQ






QVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQV






VAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVA






IASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAI






ASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIA






SNIGGKQALETVQALLPVLCQAHGLTPEQVVAIAS






HDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASN






IGGKQALETVQALLPVLCQAHGLTPEQVVAIASHD






GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNG






GKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGG






RPALE






Repeat TRBC T01-L



(SEQ ID NO: 336)



LTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGL






TPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLT






PQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTP






QQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQ






QVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQV






VAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASNIGGKQALETVQALLPVLCQAHGLTPQQVVA






IASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAI






ASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIA






SHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIAS






NIGGKQALETVQALLPVLCQAHGLTPQQVVAIASN






GGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHD






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIG






GKQALETVQALLPVLCQAHGLTPQQVVAIASNGGG






RPALE






Repeat TRBC T01-R



(SEQ ID NO: 337)



NPQRSTVWYLTPQQVVAIASNNGGKQALETVQRLL






PVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLP






VLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPV






LCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVL






CQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLC






QAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQ






AHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQA






HGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAH






GLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG






LTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGL






TPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLT






PQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTP






QQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQ






QVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQV






VAIASNGGGRPALE






Repeat TRBC T02-L



(SEQ ID NO: 338)



LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGL






TPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLT






PEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTP






EQVVAIASNIGGKQALETVQALLPVLCQAHGLTPE






QVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQV






VAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVV






AIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVA






IASNIGGKQALETVQALLPVLCQAHGLTPQQVVAI






ASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIA






SNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIAS






NGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASH






DGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNN






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDG






GKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGG






RPALE






Repeat TRBC T02-R



(SEQ ID NO: 339)



LTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGL






TPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLT






PQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTP






EQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQ






QVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASNIGGKQALETVQALLPVLCQAHGLTPQQV






VAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVA






IASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAI






ASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIA






SNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIAS






NNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASH






DGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNG






GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGG






GKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGG






RPALE






Repeat CD52_T02-L



(SEQ ID NO: 340)



LTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGL






TPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLT






PEQVVAIASHDGGKQALETVORLLPVLCQAHGLTP






QQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPE






QVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQ






VVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQV






VAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASNIGGKQALETVQALLPVLCQAHGLTPEQVVA






IASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAI






ASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIA






SHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIAS






NIGGKQALETVQALLPVLCQAHGLTPEQVVAIASH






DGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHD






GGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIG






GKQALETVQALLPVLCQAHGLTPQQVVAIASNGGG






RPALE






Repeat CD52_T02-R



(SEQ ID NO: 341)



LTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGL






TPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLT






PEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTP






QQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPE






QVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQ






VVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQV






VAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVV






AIASNIGGKQALETVQALLPVLCQAHGLTPEQVVA






IASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAI






ASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIA






SNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIAS






NNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASN






GGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNI






GGKQALETVQALLPVLCQAHGLTPEQVVAIASHDG






GKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGG






RPALE






In another aspect, one another step of genetically modifying cell can be a method of expanding TCRα deficient T cells comprising introducing into the T cell pTα (also known as preTCRα) or a functional variant thereof and expanding the cells, optionally through stimulation of the CD3 complex. In some embodiments, the method comprises: a) transfecting the cells with nucleic acid encoding at least a fragment of pTα to support CD3 surface expression; b) expressing said pTα into the cells; and c) expanding the cells, optionally through stimulation of the CD3 complex.


Also provided are methods of preparing T cells for immunotherapy comprising steps of the method for expansion for T cell. In some embodiments, the pTα polynucleotide sequence can be introduced randomly or by homologous recombination. In some embodiments, the insertion can be associated with the inactivation of the TCRα gene. Different functional variants of pTα can be used. A “functional variant” of the peptide refers to a molecule substantially similar to either the entire peptide or a fragment thereof. A “fragment” of the pTα or functional variant thereof refers to any subset of the molecule, that is, a shorter peptide than the full-length pTα. In some embodiments, pTα or functional variants can be, for example, full-length pTα or a C-terminal truncated pTα version. C-terminal truncated pTα lacks in C-terminal end one or more residues. As non limiting examples, C-terminal truncated pTα version lacks 18, 48, 62, 78, 92, 110 or 114 residues from the C-terminus of the protein. Amino acid sequence variants of the peptide can be prepared by mutations in the DNA which encodes the peptide. Such functional variants include, for example, deletions from, or insertions or substitutions of, residues within the amino acid sequence. Any combination of deletion, insertion, and substitution may also be made to arrive at the final construct, provided that the final construct possesses the desired activity, in particular the restoration of a functional CD3 complex. In preferred embodiment, at least one mutation is introduced in the different pTα versions as described above to affect dimerization. As non limiting example, mutated residue can be at least W46R, D22A, K24A, R102A or R117A of the human pTα protein or aligned positions using CLUSTALW method on pTα family or homologue member. Preferably pTα or variant thereof as described above comprise the mutated residue W46R or the mutated residues D22A, K24A, R102A and R117A. In some embodiments, said pTα or variants are also fused to a signal-transducing domain such as CD28, OX40, ICOS, CD27, CD137 (4-1 BB) and CD8 as non limiting examples. The extracellular domain of pTα or variants as described above can be fused to a fragment of the TCRα protein, particularly the transmembrane and intracellular domain of TCRα. pTα variants can also be fused to the intracellular domain of TCRα.


In some embodiments, pTα versions can be fused to an extracellular ligand-binding domain. In some embodiments, pTα or functional variant thereof is fused to a single chain antibody fragment (scFv) comprising the light and the heavy variable fragment of a target antigen specific monoclonal antibody joined by a flexible linker.


The term “TCRα deficient T cell” refers to an isolated T cell that lacks expression of a functional TCRα chain. This may be accomplished by different means, as non limiting examples, by engineering a T cell such that it does not express any functional TCRα on its cell surface or by engineering a T cell such that it produces very little functional TCRα chain on its surface or by engineering a T cell to express mutated or truncated form of TCRα chain. TCRα deficient cells can no longer be expanded through CD3 complex. Thus, to overcome this problem and to allow proliferation of TCRα deficient cells, pTα or functional variant thereof is introduced into the cells, thus restoring a functional CD3 complex. In some embodiments, the method further comprises introducing into said T cells rare-cutting endonucleases able to selectively inactivate by DNA cleavage one gene encoding one component of the T cell receptor (TCR). In some embodiments, the rare-cutting endonuclease is a TALE-nuclease.


In another aspect, engineered T cells obtained by the methods described herein can be contacted with bispecific antibodies. For example, the T cells can be contacted with bispecific antibodies ex vivo prior to administration to a patient, or in vivo following administration to a patient. Bispecific antibodies comprise two variable regions with distinct antigen properties that facilitate bringing the engineered cells into proximity to a target antigen. As a non-limiting example, a bispecific antibody can be directed against a tumor marker and lymphocyte antigen, such as for example without limitation CD3, and has the potential to redirect and activate any circulating T cells against tumors.


In some embodiments, polynucleotides encoding polypeptides according to the present invention can be mRNA which is introduced directly into the cells, for example by electroporation. In some embodiments, cytoPulse technology can be used to transiently permeabilize living cells for delivery of material into the cells. Parameters can be modified in order to determine conditions for high transfection efficiency with minimal mortality.


Also provided herein are methods of transfecting T cell. In some embodiments, the method comprises: contacting a T cell with RNA and applying to T cell an agile pulse sequence consisting of: (a) an electrical pulse with a voltage range from about 2250 to 3000 V per centimeter; (b) a pulse width of 0.1 ms; (c) a pulse interval of about 0.2 to 10 ms between the electrical pulses of step (a) and (b); (d) an electrical pulse with a voltage range from about 2250 to 3000 V with a pulse width of about 100 ms and a pulse interval of about 100 ms between the electrical pulse of step (b) and the first electrical pulse of step (c); and (e) four electrical pulses with a voltage of about 325 V with a pulse width of about 0.2 ms and a pulse interval of 2 ms between each of 4 electrical pulses. In some embodiments, a method of transfecting T cell comprising contacting said T cell with RNA and applying to T cell an agile pulse sequence comprising: (a) an electrical pulse with a voltage of about 2250, 2300, 2350, 2400, 2450, 2500, 2550, 2400, 2450, 2500, 2600, 2700, 2800, 2900 or 3000V per centimeter; (b) a pulse width of 0.1 ms; (c) and a pulse interval of about 0.2, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 ms between the electrical pulses of step (a) and (b); (d) one electrical pulse with a voltage range from about 2250, of 2250, 2300, 2350, 2400, 2450, 2500, 2550, 2400, 2450, 2500, 2600, 2700, 2800, 2900 or 3000V with a pulse width of 100 ms and a pulse interval of 100 ms between the electrical pulse of step (b) and the first electrical pulse of step (c); and (e) 4 electrical pulses with a voltage of about 325 V with a pulse width of about 0.2 ms and a pulse interval of about 2 ms between each of 4 electrical pulses. Any values included in the value range described above are disclosed in the present application. Electroporation medium can be any suitable medium known in the art. In some embodiments, the electroporation medium has conductivity in a range spanning about 0.01 to about 1.0 milliSiemens.


In some embodiments, as non limiting examples, an RNA encodes a rare-cutting endonuclase, one monomer of the rare-cutting endonuclease such as half-TALE-nuclease, a CAR, at least one component of the multi-chain chimeric antigen receptor, a pTα or functional variant thereof, an exogenous nucleic acid, and/or one additional catalytic domain.


Engineered Immune Cells


The invention also provides engineered immune cells comprising any of the CAR polynucleotides described herein. In some embodiments, a CAR can be introduced into an immune cell as a transgene via a plasmid vector. In some embodiments, the plasmid vector can also contain, for example, a selection marker which provides for identification and/or selection of cells which received the vector.


CAR polypeptides may be synthesized in situ in the cell after introduction of polynucleotides encoding the CAR polypeptides into the cell. Alternatively, CAR polypeptides may be produced outside of cells, and then introduced into cells. Methods for introducing a polynucleotide construct into cells are known in the art. In some embodiments, stable transformation methods can be used to integrate the polynucleotide construct into the genome of the cell. In other embodiments, transient transformation methods can be used to transiently express the polynucleotide construct, and the polynucleotide construct not integrated into the genome of the cell. In other embodiments, virus-mediated methods can be used. The polynucleotides may be introduced into a cell by any suitable means such as for example, recombinant viral vectors (e.g. retroviruses, adenoviruses), liposomes, and the like. Transient transformation methods include, for example without limitation, microinjection, electroporation or particle bombardment. Polynucleotides may be included in vectors, such as for example plasmid vectors or viral vectors.


Also provided herein are isolated cells and cell lines obtained by the above-described methods of engineering cells provided herein. In some embodiments, an isolated cell comprises at least one CAR as described above. In some embodiments, an isolated cell comprises a population of CARs, each CAR comprising different extracellular ligand-binding domains.


Also provided herein are isolated immune cells obtained according to any one of the methods described above. Any immune cell capable of expressing heterologous DNAs can be used for the purpose of expressing the CAR of interest. In some embodiments, the immune cell is a T cell. In some embodiments, an immune cell can be derived from, for example without limitation, a stem cell. The stem cells can be adult stem cells, non-human embryonic stem cells, more particularly non-human stem cells, cord blood stem cells, progenitor cells, bone marrow stem cells, induced pluripotent stem cells, totipotent stem cells or hematopoietic stem cells. Representative human cells are CD34+ cells. The isolated cell can also be a dendritic cell, killer dendritic cell, a mast cell, a NK-cell, a B-cell or a T cell selected from the group consisting of inflammatory T-lymphocytes, cytotoxic T-lymphocytes, regulatory T-lymphocytes or helper T-lymphocytes. In some embodiments, the cell can be derived from the group consisting of CD4+ T-lymphocytes and CD8+ T-lymphocytes.


Prior to expansion and genetic modification, a source of cells can be obtained from a subject through a variety of non-limiting methods. Cells can be obtained from a number of non-limiting sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In some embodiments, any number of T cell lines available and known to those skilled in the art, may be used. In some embodiments, cells can be derived from a healthy donor, from a patient diagnosed with cancer or from a patient diagnosed with an infection. In some embodiments, cells can be part of a mixed population of cells which present different phenotypic characteristics.


Also provided herein are cell lines obtained from a transformed T cell according to any of the above-described methods. Also provided herein are modified cells resistant to an immunosuppressive treatment. In some embodiments, an isolated cell according to the invention comprises a polynucleotide encoding a CAR.


The immune cells of the invention can be activated and expanded, either prior to or after genetic modification of the T cells, using methods as generally described, for example without limitation, in U.S. Pat. Nos. 6,352,694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and U.S. Patent Application Publication No. 20060121005. T cells can be expanded in vitro or in vivo. Generally, the T cells of the invention can be expanded, for example, by contact with an agent that stimulates a CD3 TCR complex and a co-stimulatory molecule on the surface of the T cells to create an activation signal for the T cell. For example, chemicals such as calcium ionophore A23187, phorbol 12-myristate 13-acetate (PMA), or mitogenic lectins like phytohemagglutinin (PHA) can be used to create an activation signal for the T cell.


In some embodiments, T cell populations may be stimulated in vitro by contact with, for example, an anti-CD3 antibody, or antigen-binding fragment thereof, or an anti-CD2 antibody immobilized on a surface, or by contact with a protein kinase C activator (e.g., bryostatin) in conjunction with a calcium ionophore. For co-stimulation of an accessory molecule on the surface of the T cells, a ligand that binds the accessory molecule is used. For example, a population of T cells can be contacted with an anti-CD3 antibody and an anti-CD28 antibody, under conditions appropriate for stimulating proliferation of the T cells. Conditions appropriate for T cell culture include an appropriate media (e.g., Minimal Essential Media or RPMI Media 1640 or, X-vivo 5, (Lonza)) that may contain factors necessary for proliferation and viability, including serum (e.g., fetal bovine or human serum), interleukin-2 (IL-2), insulin, IFN-γ, IL-4, IL-7, GM-CSF, IL-10, IL-2, IL-15, TGFp, and TNF, or any other additives for the growth of cells known to the skilled artisan. Other additives for the growth of cells include, but are not limited to, surfactant, plasmanate, and reducing agents such as N-acetyl-cysteine and 2-mercaptoethanoi. Media can include RPMI 1640, A1M-V, DMEM, MEM, a-MEM, F-12, X-Vivo 1, and X-Vivo 20, Optimizer, with added amino acids, sodium pyruvate, and vitamins, either serum-free or supplemented with an appropriate amount of serum (or plasma) or a defined set of hormones, and/or an amount of cytokine(s) sufficient for the growth and expansion of T cells. Antibiotics, e.g., penicillin and streptomycin, are included only in experimental cultures, not in cultures of cells that are to be infused into a subject. The target cells are maintained under conditions necessary to support growth, for example, an appropriate temperature (e.g., 37° C.) and atmosphere (e.g., air plus 5% CO2). T cells that have been exposed to varied stimulation times may exhibit different characteristics


In some embodiments, the cells of the invention can be expanded by co-culturing with tissue or cells. The cells can also be expanded in vivo, for example in the subject's blood after administrating the cell into the subject.


In some embodiments, an isolated cell according to the present invention comprises one inactivated gene selected from the group consisting of CD52, GR, PD-1, CTLA-4, LAG3, Tim3, BTLA, BY55, TIGIT, B7H5, LAIR1, SIGLEC10, 2B4, HLA, TCRα and TCRβ and/or expresses a CAR, a multi-chain CAR and/or a pTα transgene. In some embodiments, an isolated cell comprises polynucleotides encoding polypeptides comprising a multi-chain CAR. In some embodiments, the isolated cell according to the present invention comprises two inactivated genes selected from the group consisting of: CD52 and GR, CD52 and TCRα, CDR52 and TCRβ, GR and TCRα, GR and TCRβ, TCRα and TCRβ, PD-1 and TCRα, PD-1 and TCRβ, CTLA-4 and TCRα, CTLA-4 and TCRβ, LAG3 and TCRα, LAG3 and TCRβ, Tim3 and TCRα, Tim3 and TCRβ, BTLA and TCRα, BTLA and TCRβ, BY55 and TCRα, BY55 and TCRβ, TIGIT and TCRα, TIGIT and TCRβ, B7H5 and TCRα, B7H5 and TCRβ, LAIR1 and TCRα, LAIR1 and TCRβ, SIGLEC10 and TCRα, SIGLEC10 and TCRβ, 2B4 and TCRα, 2B4 and TCRβ and/or expresses a CAR, a multi-chain CAR and a pTα transgene.


In some embodiments, TCR is rendered not functional in the cells according to the invention by inactivating TCRα gene and/or TCRβ gene(s). In some embodiments, a method to obtain modified cells derived from an individual is provided, wherein the cells can proliferate independently of the major histocompatibility complex (MHC) signaling pathway. Modified cells, which can proliferate independently of the MHC signaling pathway, susceptible to be obtained by this method are encompassed in the scope of the present invention. Modified cells disclosed herein can be used in for treating patients in need thereof against Host versus Graft (HvG) rejection and Graft versus Host Disease (GvHD); therefore in the scope of the present invention is a method of treating patients in need thereof against Host versus Graft (HvG) rejection and Graft versus Host Disease (GvHD) comprising treating said patient by administering to said patient an effective amount of modified cells comprising inactivated TCRα and/or TCRβ genes.


In some embodiments, the immune cells are engineered to be resistant to one or more chemotherapy drugs. The chemotherapy drug can be, for example, a purine nucleotide analogue (PNA), thus making the immune cell suitable for cancer treatment combining adoptive immunotherapy and chemotherapy. Exemplary PNAs include, for example, clofarabine, fludarabine, and cytarabine, alone or in combination. PNAs are metabolized by deoxycytidine kinase (dCK) into mono-, di-, and tri-phosphate PNA. Their tri-phosphate forms compete with ATP for DNA synthesis, act as pro-apoptotic agents, and are potent inhibitors of ribonucleotide reductase (RNR), which is involved in trinucleotide production. Provided herein are BCMA specific CAR-T cells comprising an inactivated dCK gene. In some embodiments, the dCK knockout cells are made by transfection of T cells using polynucleotides encoding specific TAL-nuclease directed against dCK genes by, for example, electroporation of mRNA. The dCK knockout BCMA specific CAR-T cells are resistant to PNAs, including for example clorofarabine and/or fludarabine, and maintain T cell cytotoxic activity toward BCMA-expressing cells.


In some embodiments, isolated cells or cell lines of the invention can comprise a pTα or a functional variant thereof. In some embodiments, an isolated cell or cell line can be further genetically modified by inactivating the TCRα gene.


In some embodiments, the CAR-T cell comprises a polynucleotide encoding a suicide polypeptide, such as for example RQR8. See, e.g., WO2013153391A, which is hereby incorporated by reference in its entirety. In CAR-T cells comprising the polynucleotide, the suicide polypeptide is expressed at the surface of a CAR-T cell. In some embodiments, the suicide polypeptide comprises the amino acid sequence shown in SEQ ID NO: 342.











(SEQ ID NO: 342)



CPYSNPSLCSGGGGSELPTQGTFSNVSTNVSPAKPTTTACPY






SNPSLCSGGGGSPAPRPPTPAPTIASQPLSLRPEACRPAAGG






AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRN






RRRVCKCPRPVV







The suicide polypeptide may also comprise a signal peptide at the amino terminus. In some embodiments, the suicide polypeptide comprises the amino acid sequence shown in SEQ ID NO: 400.











(SEQ ID NO: 400)



MGTSLLCWMALCLLGADHADACPYSNPSLCSGGGGSELPTQG






TFSNVSTNVSPAKPTTTACPYSNPSLCSGGGGSPAPRPPTPA






PTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAG






TCGVLLLSLVITLYCNHRNRRRVCKCPRPVV







When the suicide polypeptide is expressed at the surface of a CAR-T cell, binding of rituximab to the R epitopes of the polypeptide causes lysis of the cell. More than one molecule of rituximab may bind per polypeptide expressed at the cell surface. Each R epitope of the polypeptide may bind a separate molecule of rituximab. Deletion of BCMA specific CAR-T cells may occur in vivo, for example by administering rituximab to a patient. The decision to delete the transferred cells may arise from undesirable effects being detected in the patient which are attributable to the transferred cells, such as for example, when unacceptable levels of toxicity are detected.


In some embodiments, the CAR-T cell comprises a selected epitope within the scFv having a specificity to be recognized by a specific antibody. See, e.g., PCT application “mAb-DRIVEN CHIMERIC ANTIGEN RECEPTOR SYSTEMS FOR SORTING/DEPLETING ENGINEERED IMMUNE CELLS,” filed on Jan. 25, 2016, which is hereby incorporated by reference in its entirety. Such an epitope facilitates sorting and/or depleting the CAR-T cells. The epitope can be selected from any number of epitopes known in the art. In some embodiments, the epitope can be a target of a monoclonal antibody approved for medical use, such as, for example without limitation, the CD20 epitope recognized by rituximab. In some embodiments, the epitope comprises the amino acid sequence shown in SEQ ID NO: 397.











(SEQ ID NO: 397)



CPYSNPSLC







In some embodiments, the epitope is located within the CAR. For example without limitation, the epitope can be located between the scFv and the hinge of a CAR. In some embodiments, two instances of the same epitope, separate by linkers, may be used in the CAR. For example, the polypeptide comprising the amino acid sequence shown in SEQ ID NO: 398 can be used within a CAR, located between the light chain variable region and the hinge.











(SEQ ID NO: 398)



GSGGGGSCPYSNPSLCSGGGGSCPYSNPSLCSGGGGS







In some embodiments, the epitope-specific antibody may be conjugated with a cytotoxic drug. It is also possible to promote CDC cytotoxicity by using engineered antibodies on which are grafted component(s) of the complement system. In some embodiments, activation of the CAR-T cells can be modulated by depleting the cells using an antibody which recognizes the epitope.


Therapeutic Applications


Isolated cells obtained by the methods described above, or cell lines derived from such isolated cells, can be used as a medicament. In some embodiments, such a medicament can be used for treating cancer. In some embodiments, the cancer is multiple myeloma malignant plasma cell neoplasm, Hodgkin's lymphoma, nodular lymphocyte predominant Hodgkin's lymphoma, Kahler's disease and Myelomatosis, plasma cell leukemia, plasmacytoma, B-cell prolymphocytic leukemia, hairy cell leukemia, B-cell non-Hodgkin's lymphoma (NHL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia (ALL), chronic myeloid leukemia (CML), follicular lymphoma, Burkitt's lymphoma, marginal zone lymphoma, mantle cell lymphoma, large cell lymphoma, precursor B-lymphoblastic lymphoma, myeloid leukemia, Waldenstrom's macroglobulienemia, diffuse large B cell lymphoma, follicular lymphoma, marginal zone lymphoma, mucosa-associated lymphatic tissue lymphoma, small cell lymphocytic lymphoma, mantle cell lymphoma, Burkitt lymphoma, primary mediastinal (thymic) large B-cell lymphoma, lymphoplasmactyic lymphoma, Waldenström macroglobulinemia, nodal marginal zone B cell lymphoma, splenic marginal zone lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, T cell/histiocyte-rich large B-cell lymphoma, primary central nervous system lymphoma, primary cutaneous diffuse large B-cell lymphoma (leg type), EBV positive diffuse large B-cell lymphoma of the elderly, diffuse large B-cell lymphoma associated with inflammation, intravascular large B-cell lymphoma, ALK-positive large B-cell lymphoma, plasmablastic lymphoma, large B-cell lymphoma arising in HHV8-associated multicentric Castleman disease, B-cell lymphoma unclassified with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma, B-cell lymphoma unclassified with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma, or another B-cell related lymphomas.


In some embodiments, an isolated cell according to the invention, or cell line derived from the isolated cells, can be used in the manufacture of a medicament for treatment of a cancer in a patient in need thereof.


Also provided herein are methods for treating patients. In some embodiments the method comprises providing an immune cell of the invention to a patient in need thereof. In some embodiments, the method comprises a step of administrating transformed immune cells of the invention to a patient in need thereof.


In some embodiments, T cells of the invention can undergo robust in vivo T cell expansion and can persist for an extended amount of time.


Methods of treatment of the invention can be ameliorating, curative or prophylactic. The method of the invention may be either part of an autologous immunotherapy or part of an allogenic immunotherapy treatment. The invention is particularly suitable for allogeneic immunotherapy. T cells from donors can be transformed into non-alloreactive cells using standard protocols and reproduced as needed, thereby producing CAR-T cells which may be administered to one or several patients. Such CAR-T cell therapy can be made available as an “off the shelf” therapeutic product.


Cells that can be used with the disclosed methods are described in the previous section. Treatment can be used to treat patients diagnosed with, for example, cancer. Cancers that may be treated include, for example without limitation, cancers that involve B lymphocytes, including any of the above-listed cancers. Types of cancers to be treated with the CARs and CAR-T cells of the invention include, but are not limited to certain leukemia or lymphoid malignancies. Adult tumors/cancers and pediatric tumors/cancers are also included. In some embodiments, the treatment can be in combination with one or more therapies against cancer selected from the group of antibodies therapy, chemotherapy, cytokines therapy, dendritic cell therapy, gene therapy, hormone therapy, laser light therapy and radiation therapy.


In some embodiments, treatment can be administrated into patients undergoing an immunosuppressive treatment. Indeed, the invention preferably relies on cells or population of cells, which have been made resistant to at least one immunosuppressive agent due to the inactivation of a gene encoding a receptor for such immunosuppressive agent. In this aspect, the immunosuppressive treatment should help the selection and expansion of the T cells according to the invention within the patient. The administration of the cells or population of cells according to the invention may be carried out in any convenient manner, including by aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation. The compositions described herein may be administered to a patient subcutaneously, intradermally, intratumorally, intranodally, intramedullary, intramuscularly, by intravenous or intralymphatic injection, or intraperitoneally. In one embodiment, the cell compositions of the invention are preferably administered by intravenous injection.


In some embodiments the administration of the cells or population of cells can comprise administration of, for example, about 104 to about 109 cells per kg body weight including all integer values of cell numbers within those ranges. In some embodiments the administration of the cells or population of cells can comprise administration of about 105 to 106 cells per kg body weight including all integer values of cell numbers within those ranges. The cells or population of cells can be administrated in one or more doses. In some embodiments, said effective amount of cells can be administrated as a single dose. In some embodiments, said effective amount of cells can be administrated as more than one dose over a period time. Timing of administration is within the judgment of managing physician and depends on the clinical condition of the patient. The cells or population of cells may be obtained from any source, such as a blood bank or a donor. While individual needs vary, determination of optimal ranges of effective amounts of a given cell type for a particular disease or conditions within the skill of the art. An effective amount means an amount which provides a therapeutic or prophylactic benefit. The dosage administrated will be dependent upon the age, health and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment and the nature of the effect desired. In some embodiments, an effective amount of cells or composition comprising those cells are administrated parenterally. In some embodiments, administration can be an intravenous administration. In some embodiments, administration can be directly done by injection within a tumor.


In some embodiments of the invention, cells are administered to a patient in conjunction with (e.g., before, simultaneously or following) any number of relevant treatment modalities, including but not limited to treatment with agents such as monoclonal antibody therapy, CCR2 antagonist (e.g., INC-8761), antiviral therapy, cidofovir and interleukin-2, Cytarabine (also known as ARA-C) or nataliziimab treatment for MS patients or efaliztimab treatment for psoriasis patients or other treatments for PML patients. In some embodiments, BCMA specific CAR-T cells are administered to a patient in conjunction with one or more of the following: an anti-PD-1 antibody (e.g., nivolumab, pembrolizumab, or PF-06801591), an anti-PD-L1 antibody (e.g., avelumab, atezolizumab, or durvalumab), an anti-OX40 antibody (e.g., PF-04518600), an anti-4-1 BB antibody (e.g., PF-05082566), an anti-MCSF antibody (e.g., PD-0360324), an anti-GITR antibody, and/or an anti-TIGIT antibody. In some embodiments, a BCMA specific CAR comprising the amino acid sequence shown in SEQ ID NO: 396 is administered to a patient in conjunction with anti-PD-L1 antibody avelumab. In further embodiments, the T cells of the invention may be used in combination with chemotherapy, radiation, immunosuppressive agents, such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies, or other immunoablative agents such as CAMPATH, anti-CD3 antibodies or other antibody therapies, cytoxin, fludaribine, cyclosporin, FK506, rapamycin, mycoplienolic acid, steroids, FR901228, cytokines, and/or irradiation. These drugs inhibit either the calcium dependent phosphatase calcineurin (cyclosporine and FK506) or inhibit the p70S6 kinase that is important for growth factor induced signaling (rapamycin) (Henderson, Naya et al. 1991; Liu, Albers et al. 1992; Bierer, Hollander et al. 1993). In a further embodiment, the cell compositions of the invention are administered to a patient in conjunction with (e.g., before, simultaneously or following) bone marrow transplantation, T cell ablative therapy using either chemotherapy agents such as, fludarabine, external-beam radiation therapy (XRT), cyclophosphamide, or antibodies such as OKT3 or CAMPATH, In some embodiments, the cell compositions of the invention are administered following B-cell ablative therapy such as agents that react with CD20, e.g., Rituxan. For example, in one embodiment, subjects may undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation. In certain embodiments, following the transplant, subjects receive an infusion of the expanded immune cells of the invention. In some embodiments, expanded cells are administered before or following surgery.


Kits


The invention also provides kits for use in the instant methods. Kits of the invention include one or more containers comprising a polynucleotide encoding a BCMA specific CAR, or an engineered immune cell comprising a polynucleotide encoding a BCMA specific CAR as described herein, and instructions for use in accordance with any of the methods of the invention described herein. Generally, these instructions comprise a description of administration of the engineered immune cell for the above described therapeutic treatments.


The instructions relating to the use of the engineered immune cells as described herein generally include information as to dosage, dosing schedule, and route of administration for the intended treatment. The containers may be unit doses, bulk packages (e.g., multi-dose packages) or sub-unit doses. Instructions supplied in the kits of the invention are typically written instructions on a label or package insert (e.g., a paper sheet included in the kit), but machine-readable instructions (e.g., instructions carried on a magnetic or optical storage disk) are also acceptable.


The kits of this invention are in suitable packaging. Suitable packaging includes, but is not limited to, vials, bottles, jars, flexible packaging (e.g., sealed Mylar or plastic bags), and the like. Also contemplated are packages for use in combination with a specific device, such as an inhaler, nasal administration device (e.g., an atomizer) or an infusion device such as a minipump. A kit may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The container may also have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is a BCMA antibody. The container may further comprise a second pharmaceutically active agent.


Kits may optionally provide additional components such as buffers and interpretive information. Normally, the kit comprises a container and a label or package insert(s) on or associated with the container.


The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the invention in any way. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.


Representative materials of the present invention were deposited in the American Type Culture Collection (ATCC) on Feb. 9, 2016. The biological deposit having ATCC Accession No. PTA-122834 is a vector comprising a polynucleotide encoding a BCMA specific CAR. The deposit was made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. The deposit will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Pfizer, Inc. and ATCC, which assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 U.S.C. Section 122 and the Commissioner's rules pursuant thereto (including 37 C.F.R. Section 1.14 with particular reference to 886 OG 638).


The assignee of the present application has agreed that if a culture of the materials on deposit should die or be lost or destroyed when cultivated under suitable conditions, the materials will be promptly replaced on notification with another of the same. Availability of the deposited material is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.


EXAMPLES
Example 1
Determination of Kinetics and Affinity of BCMA/Human IgG Interactions at 25° C. and/or 37° C.

This example determines the kinetics and affinity of various anti-BCMA antibodies at 25° C. and 37° C.


All experiments were performed on a Bio-Rad Proteon XPR36 surface Plasmon resonance biosensor (Bio-Rad, Hercules, CA). An array of anti-BCMA antibodies was prepared using an amine-coupling method on a Bio-Rad GLC Sensor Chip similar to that described in Abdiche, et al., Anal. Biochem. 411, 139-151 (2011). The analysis temperature for the immobilization was 25° C. and the running buffer was HBS-T+ (10 mM HEPES, 150 mM NaCl, 0.05% Tween-20, pH 7.4). Channels were activated in the analyte (horizontal) direction by injecting a mixture of 1 mM ECD and 0.25 mM NHS for 3 minutes at a flow rate of 30 μL/min. IgGs were immobilized on the activated spots by injecting them in the ligand (vertical) direction at 20 μg/mL in 10 mM Acetate pH 4.5 buffer for 1.5 minutes at 30 μg/mL. The activated surfaces were blocked by injecting 1M ethanolamine, pH 8.5 in the analyte direction for 3 minutes at 30 μL/min.


The analysis temperature for the BCMA binding analysis was 3TC or 25° C. in a running buffer of HBS-T+, supplemented with 1 mg/mL BSA. A kinetic titration method was employed for the interaction analysis as described in Abdiche, et al. Human BCMA (huBCMA) or cynomolgus monkey BCMA (cyBCMA) analyte was injected in the analyte direction using a series of injections from low to high concentration. The concentrations used were 0.08 nM, 0.4 nM, 2 nM, 10 nM and 50 nM (a 5-membered series, with a 5-fold dilution factor and top concentration of 50 nM). The association time for a given analyte dilution was two minutes. Immediately after the 50 nM BCMA injection, dissociation was monitored for 2 hours. Prior to the BCMA analyte injections, buffer was injected 5 times using the same association and dissociation times at the BCMA analyte cycles to prepare a buffer blank sensorgram for double-referencing purposes (double referencing as described in Myszka, J. Mol. Recognit. 12, 279-284 (1999).


The sensorgrams were double-referenced and fit to a 1:1 Langmuir with mass transport kinetic titration model in BIAevaluation Software version 4.1.1 (GE Lifesciences, Piscataway, NJ). The kinetics and affinity parameters for various anti-BCMA antibodies of the invention are shown in Tables 4A-4C. The antibodies shown in Tables 4A-4C share the same VH and VL regions as the CARs shown in Table 1 having the same name.













TABLE 4A






ka
kd
t1/2
KD


Sample
(1/Ms)
(1/s)
(min)
(pM)



















A02_Rd4_6nM_C01
1.2E+06
2.8E−05
411
24


A02_Rd4_6nM_C16
1.1E+06
6.2E−05
187
59


Combo_Rd4_0.6nM_C29
6.6E+06
1.4E−04
83
21


L3PY/H3TAQ
2.6E+06
1.4E−04
84
53




















TABLE 4B










T ½ (min)
KD (nM)



ka (1/Ms)
kd (1/s)
to
to



huBCMA
huBCMA
huBCMA
huBCMA


Antibody
@ 25° C.
@25° C.
@25° C.
@ 25° C.





P6E01/P6E01
1.04E+06
4.15E−03
2.8
4.0


P6E01/H3.AQ
8.35E+05
3.45E−04
33.53
0.41


L1.LGF/L3.KW/P6E01
8.31E+05
7.55E−03
1.53
9.08


L1.LGF/L3.NY/P6E01
1.33E+06
4.40E−03
2.63
3.32


L1.GDF/L3.NY/P6E01
1.60E+06
5.92E−03
1.95
3.70


L1.LGF/L3.KW/H3.AL
4.28E+05
1.23E−03
9.40
2.87


L1.LGF/L3.KW/H3.AP
9.28E+05
2.27E−03
5.10
2.44


L1.LGF/L3.KW/H3.AQ
5.24E+05
9.56E−04
12.09
1.82


L1.LGF/L3.PY/H3.AP
4.57E+05
9.69E−04
11.92
2.12


L1.LGF/L3.PY/H3.AQ
9.31E+05
8.86E−04
13.04
0.95


L1.LGF/L3.NY/H3.AL
7.63E+05
9.70E−04
11.91
1.27


L1.LGF/L3.NY/H3.AP
9.36E+05
5.33E−04
21.67
0.57


L1.LGF/L3.NY/H3.AQ
6.66E+05
2.99E−04
38.61
0.45


L1.GDF/L3.KW/H3.AL
4.45E+05
3.90E−03
2.96
8.76


L1.GDF/L3.KW/H3.AP
1.17E+06
4.61E−03
2.51
3.93


L1.GDF/L3.KW/H3.AQ
7.97E+05
3.48E−03
3.32
4.37


L1.GDF/L3.PY/H3.AQ
1.42E+06
1.35E−02
0.86
9.49


L1.GDF/L3.NY/H3.AL
9.07E+05
4.03E−03
2.87
4.44


L1.GDF/L3.NY/H3.AP
1.41E+06
1.41E−03
8.21
1.00


L1.GDF/L3.NY/H3.AQ
9.84E+05
7.22E−04
16.00
0.73


L3.KW/P6E01
7.40E+05
3.15E−04
36.66
0.43


L3.PY/P6E01
7.12E+05
2.28E−04
50.74
0.32


L3.NY/P6E01
8.76E+05
3.84E−04
30.08
0.44








T ½ (min)
KD (nM)



ka (1/Ms)
kd (1/s)
to
to



huBCMA
huBCMA
huBCMA
huBCMA


Antibody
@ 37° C.
@37° C.
@37° C.
@ 37° C.





L3.PY/L1.PS/P6E01
2.49E+06
1.13E−03
10.21
0.45


L3.PY/L1.AH/P6E01
2.55E+06
1.26E−03
9.19
0.49


L3.PY/L1.FF/P6E01
2.39E+06
1.41E−03
8.18
0.59


L3.PY/L1.PH/P6E01
2.81E+06
9.13E−04
12.65
0.32


L3.PY/L3.KY/P6E01
3.18E+06
1.09E−03
10.65
0.34


L3.PY/L3.KF/P6E01
2.88E+06
2.08E−03
5.56
0.72


L3.PY/H2.QR
2.56E+06
1.19E−03
9.75
0.46


L3.PY/H2.DY
2.60E+06
1.38E−03
8.37
0.53


L3.PY/H2.YQ
2.58E+06
1.56E−03
7.41
0.60


L3.PY/H2.LT
2.40E+06
1.29E−03
8.95
0.54


L3.PY/H2.HA
2.43E+06
1.47E−03
7.89
0.60


L3.PY/H2.QL
2.64E+06
2.18E−03
5.31
0.82


L3.PY/H3.YA
3.15E+06
1.18E−03
9.82
0.37


L3.PY/H3.AE
3.29E+06
1.39E−03
8.32
0.42


L3.PY/H3.AQ
3.08E+06
1.73E−03
6.69
0.56


L3.PY/H3.TAQ
3.08E+06
1.14E−03
10.13
0.37


L3.PY/P6E01
2.65E+06
1.96E−03
5.91
0.74


L3.PY/L1.PS/H2.QR
3.97E+06
1.03E−01
0.11
25.85


L3.PY/L1.PS/H2.DY
3.22E+06
3.61E−03
3.20
1.12


L3.PY/L1.PS/H2.YQ
3.35E+06
4.30E−03
2.69
1.28


L3.PY/L1.PS/H2.LT
3.40E+06
4.65E−03
2.49
1.37


L3.PY/L1.PS/H2.HA
3.30E+06
1.06E−02
1.09
3.21


L3.PY/L1.PS/H2.QL
1.52E+07
3.14E−01
0.04
20.64


L3.PY/L1.PS/H3.YA
3.07E+06
9.05E−03
1.28
2.95


L3.PY/L1.PS/H3.AE
3.14E+06
1.46E−03
7.93
0.46


L3.PY/L1.PS/H3.AQ
3.26E+06
1.79E−03
6.46
0.55


L3.PY/L1.PS/H3.TAQ
3.25E+06
2.46E−03
4.70
0.76


L3.PY/L1.AH/H2.QR
3.13E+06
1.81E−03
6.39
0.58


L3.PY/L1.AH/H2.DY
3.05E+06
1.52E−03
7.62
0.50


L3.PY/L1.AH/H2.YQ
2.42E+06
1.93E−03
6.00
0.80


L3.PY/L1.AH/H2.LT
3.16E+06
1.23E−03
9.38
0.39


L3.PY/L1.AH/H2.HA
3.33E+06
1.81E−03
6.37
0.54


L3.PY/L1.AH/H2.QL
3.04E+06
1.60E−03
7.22
0.53


L3.PY/L1.AH/H3.YA
3.00E+06
1.50E−03
7.73
0.50


L3.PY/L1.AH/H3.AE
3.32E+06
1.73E−03
6.70
0.52


L3.PY/L1.AH/H3.AQ
3.03E+06
1.97E−03
5.85
0.65


L3.PY/L1.AH/H3.TAQ
3.27E+06
1.19E−03
9.68
0.37


L3.PY/L1.FF/H2.QR
3.47E+06
1.77E−03
6.54
0.51


L3.PY/L1.FF/H2.DY
4.14E+06
2.71E−03
4.27
0.65


L3.PY/L1.FF/H2.YQ
3.32E+06
1.52E−03
7.61
0.46


L3.PY/L1.FF/H2.LT
3.30E+06
1.67E−03
6.92
0.51


L3.PY/L1.FF/H2.HA
3.49E+06
2.19E−03
5.29
0.63


L3.PY/L1.FF/H2.QL
3.48E+06
1.40E−03
8.28
0.40


L3.PY/L1.FF/H3.YA
3.50E+06
1.80E−03
6.41
0.51


L3.PY/L1.FF/H3.AE
3.82E+06
2.63E−03
4.39
0.69


L3.PY/L1.FF/H3.AQ
3.32E+06
1.54E−03
7.51
0.46


L3.PY/L1.FF/H3.TAQ
3.52E+06
1.89E−03
6.12
0.54


L3.PY/L1.PH/H2.QR
3.69E+06
2.36E−03
4.89
0.64


L3.PY/L1.PH/H2.HA
2.37E+06
1.16E−03
9.99
0.49


L3.PY/L1.PH/H3.AE
3.68E+06
1.34E−03
8.61
0.36


L3.PY/L1.PH/H3.AQ
3.08E+06
1.59E−03
7.27
0.52


L3.PY/L1.PH/H3.TAQ
3.58E+06
2.13E−03
5.43
0.59


L3.PY/L3.KY/H2.QR
2.95E+06
9.90E−04
11.67
0.34


L3.PY/L3.KY/H2.DY
3.19E+06
6.42E−04
18.00
0.20


L3.PY/L3.KY/H2.YQ
2.14E+06
1.65E−03
7.02
0.77


L3.PY/L3.KY/H2.LT
2.92E+06
9.06E−04
12.75
0.31


L3.PY/L3.KY/H2.HA
3.29E+06
1.63E−03
7.10
0.49


L3.PY/L3.KY/H2.QL
3.65E+06
2.08E−03
5.56
0.57


L3.PY/L3.KY/H3.YA
3.30E+06
9.12E−04
12.67
0.28


L3.PY/L3.KY/H3.TAQ
2.79E+06
6.49E−04
17.79
0.23


L3.PY/L3.KF/H2.DY
2.74E+06
1.82E−03
6.35
0.67


L3.PY/L3.KF/H2.YQ
1.96E+06
2.23E−03
5.18
1.14


L3.PY/L3.KF/H2.LT
2.75E+06
1.91E−03
6.05
0.69


L3.PY/L3.KF/H2.QL
2.07E+06
1.25E−03
9.26
0.60


L3.PY/L3.KF/H3.YA
3.12E+06
1.47E−03
7.85
0.47


L3.PY/L3.KF/H3.AE
3.07E+06
1.55E−03
7.44
0.51


L3.PY/L3.KF/H3.AQ
3.48E+06
2.27E−03
5.09
0.65


L3.PY/L3.KF/H3.TAQ
2.82E+06
1.62E−03
7.12
0.58








T ½ (min)
KD (nM)



ka (1/Ms)
kd (1/s)
to
to



cyBCMA
cyBCMA
cyBCMA
cyBCMA


Antibody
@ 25° C.
@25° C.
@25° C.
@ 25° C.





P6E01/P6E01

7.02E−02
0.16
115.4


P6E01/H3.AQ
1.08E+06
7.40E−03
1.6
6.9


L1.LGF/L3.KW/P6E01
4.55E+05
1.95E−02
0.6
42.8


L1.LGF/L3.NY/P6E01
9.20E+05
1.05E−02
1.1
11.4


L1.GDF/L3.NY/P6E01
1.20E+06
7.67E−03
1.5
6.4


L1.LGF/L3.KW/H3.AL
2.90E+05
1.21E−02
1.0
41.8


L1.LGF/L3.KW/H3.AP
5.54E+05
1.54E−02
0.7
27.8


L1.LGF/L3.KW/H3.AQ
5.27E+05
3.55E−03
3.3
6.7


L1.LGF/L3.PY/H3.AP
3.64E+05
1.30E−02
0.9
35.8


L1.LGF/L3.PY/H3.AQ
1.00E+06
4.77E−03
2.4
4.8


L1.LGF/L3.NY/H3.AL
6.35E+05
1.48E−02
0.8
23.2


L1.LGF/L3.NY/H3.AP
8.30E+05
5.57E−03
2.1
6.7


L1.LGF/L3.NY/H3.AQ
7.51E+05
1.48E−03
7.8
2.0


L1.GDF/L3.KW/H3.AL
3.18E+05
1.80E−02
0.6
56.7


L1.GDF/L3.KW/H3.AP
8.14E+05
2.03E−02
0.6
24.9


L1.GDF/L3.KW/H3.AQ
8.02E+05
5.65E−03
2.0
7.0


L1.GDF/L3.PY/H3.AQ
1.55E+06
1.66E−02
0.7
10.7


L1.GDF/L3.NY/H3.AL
9.00E+05
2.19E−02
0.5
24.3


L1.GDF/L3.NY/H3.AP
1.36E+06
7.02E−03
1.6
5.2


L1.GDF/L3.NY/H3.AQ
1.18E+06
1.36E−03
8.5
1.2


L3.KW/P6E01
7.63E+05
2.57E−03
4.5
3.4


L3.PY/P6E01
8.55E+05
2.93E−03
3.9
3.4


L3.NY/P6E01
1.01E+06
2.87E−03
4.0
2.8








T ½ (min)
KD (nM)



ka (1/Ms)
kd (1/s)
to
to



cyBCMA
cyBCMA
cyBCMA
cyBCMA


Antibody
@ 37° C.
@37° C.
@37° C.
@ 37° C.





L3.PY/L1.PS/P6E01
2.17E+06
6.06E−03
1.91
2.79


L3.PY/L1.AH/P6E01
2.16E+06
5.72E−03
2.02
2.65


L3.PY/L1.FF/P6E01
2.45E+06
5.91E−03
1.96
2.41


L3.PY/L1.PH/P6E01
2.17E+06
7.89E−03
1.46
3.63


L3.PY/L3.KY/P6E01
2.27E+06
5.02E−03
2.30
2.21


L3.PY/L3.KF/P6E01
2.39E+06
8.30E−03
1.39
3.48


L3.PY/H2.QR
2.18E+06
6.58E−03
1.76
3.02


L3.PY/H2.DY
2.24E+06
6.18E−03
1.87
2.76


L3.PY/H2.YQ
2.46E+06
6.21E−03
1.86
2.53


L3.PY/H2.LT
2.09E+06
7.57E−03
1.53
3.63


L3.PY/H2.HA
1.99E+06
7.55E−03
1.53
3.79


L3.PY/H2.QL
2.05E+06
1.26E−02
0.91
6.16


L3.PY/H3.YA
2.87E+06
5.40E−03
2.14
1.88


L3.PY/H3.AE
2.82E+06
5.04E−03
2.29
1.79


L3.PY/H3.AQ
2.77E+06
5.39E−03
2.14
1.94


L3.PY/H3.TAQ
2.57E+06
4.37E−03
2.64
1.70


L3.PY/P6E01
2.20E+06
1.31E−02
0.88
5.96


L3.PY/L1.PS/H2.QR
5.25E+05
6.70E−04
17.23
1.28


L3.PY/L1.PS/H2.DY
1.90E+06
3.78E−03
3.06
1.99


L3.PY/L1.PS/H2.YQ
2.00E+06
3.74E−03
3.09
1.87


L3.PY/L1.PS/H2.LT
2.17E+06
4.11E−03
2.81
1.89


L3.PY/L1.PS/H2.HA
1.45E+06
2.69E−03
4.30
1.86


L3.PY/L1.PS/H2.QL
6.57E+05
6.36E−04
18.17
0.97


L3.PY/L1.PS/H3.YA
1.77E+06
9.98E−03
1.16
5.65


L3.PY/L1.PS/H3.AE
2.46E+06
4.13E−03
2.80
1.68


L3.PY/L1.PS/H3.AQ
2.52E+06
4.33E−03
2.67
1.72


L3.PY/L1.PS/H3.TAQ
2.58E+06
5.52E−03
2.09
2.14


L3.PY/L1.AH/H2.QR
2.20E+06
4.91E−03
2.35
2.23


L3.PY/L1.AH/H2.DY
2.32E+06
4.51E−03
2.56
1.95


L3.PY/L1.AH/H2.YQ
1.58E+06
4.31E−03
2.68
2.74


L3.PY/L1.AH/H2.LT
2.19E+06
2.96E−03
3.91
1.35


L3.PY/L1.AH/H2.HA
2.58E+06
4.39E−03
2.63
1.70


L3.PY/L1.AH/H2.QL
2.62E+06
9.55E−03
1.21
3.65


L3.PY/L1.AH/H3.YA
2.37E+06
5.26E−03
2.20
2.22


L3.PY/L1.AH/H3.AE
2.25E+06
3.56E−03
3.25
1.58


L3.PY/L1.AH/H3.AQ
2.24E+06
3.99E−03
2.90
1.78


L3.PY/L1.AH/H3.TAQ
2.28E+06
3.02E−03
3.83
1.32


L3.PY/L1.FF/H2.QR
2.55E+06
4.21E−03
2.75
1.65


L3.PY/L1.FF/H2.DY
2.66E+06
5.00E−03
2.31
1.88


L3.PY/L1.FF/H2.YQ
2.19E+06
3.26E−03
3.55
1.49


L3.PY/L1.FF/H2.LT
2.19E+06
3.41E−03
3.38
1.56


L3.PY/L1.FF/H2.HA
2.33E+06
4.17E−03
2.77
1.79


L3.PY/L1.FF/H2.QL
2.36E+06
4.49E−03
2.57
1.91


L3.PY/L1.FF/H3.YA
2.46E+06
4.16E−03
2.77
1.69


L3.PY/L1.FF/H3.AE
2.85E+06
5.01E−03
2.31
1.76


L3.PY/L1.FF/H3.AQ
2.18E+06
3.29E−03
3.51
1.51


L3.PY/L1.FF/H3.TAQ
2.32E+06
3.76E−03
3.07
1.62


L3.PY/L1.PH/H2.QR
2.42E+06
4.36E−03
2.65
1.80


L3.PY/L1.PH/H2.HA
1.61E+06
5.53E−03
2.09
3.44


L3.PY/L1.PH/H3.AE
2.61E+06
2.02E−03
5.72
0.77


L3.PY/L1.PH/H3.AQ
2.28E+06
3.41E−03
3.39
1.50


L3.PY/L1.PH/H3.TAQ
2.51E+06
3.20E−03
3.61
1.28


L3.PY/L3.KY/H2.QR
2.05E+06
7.74E−03
1.49
3.78


L3.PY/L3.KY/H2.DY
1.96E+06
2.43E−03
4.75
1.24


L3.PY/L3.KY/H2.YQ
1.27E+06
2.58E−03
4.47
2.04


L3.PY/L3.KY/H2.LT
1.82E+06
2.32E−03
4.98
1.27


L3.PY/L3.KY/H2.HA
2.28E+06
3.18E−03
3.63
1.40


L3.PY/L3.KY/H2.QL
2.75E+06
4.09E−03
2.83
1.49


L3.PY/L3.KY/H3.YA
1.84E+06
4.28E−03
2.70
2.33


L3.PY/L3.KY/H3.TAQ
1.81E+06
1.92E−03
6.03
1.06


L3.PY/L3.KF/H2.DY
2.08E+06
3.68E−03
3.14
1.77


L3.PY/L3.KF/H2.YQ
1.41E+06
5.01E−03
2.30
3.55


L3.PY/L3.KF/H2.LT
1.91E+06
4.13E−03
2.80
2.16


L3.PY/L3.KF/H2.QL
1.42E+06
3.10E−03
3.73
2.18


L3.PY/L3.KF/H3.YA
2.10E+06
7.96E−03
1.45
3.78


L3.PY/L3.KF/H3.AE
1.85E+06
5.64E−03
2.05
3.05


L3.PY/L3.KF/H3.AQ
2.55E+06
2.38E−03
4.85
0.93


L3.PY/L3.KF/H3.TAQ
2.01E+06
1.91E−03
6.05
0.95


















TABLE 4C








Human BCMA
Cyno BCMA













Antibody
ka (1/Ms)
kd (1/s)
KD (pM)
ka (1/Ms)
kd (1/s)
KD (pM)
















P5A2_VHVL (P5A)
6.96E+06
3.87E−02
5567
1.61E+06
1.64E−02
10230


A02_Rd4_0.6nM_C06
3.49E+06
7.37E−05
21
1.81E+06
1.05E−04
58


A02_Rd4_0.6nM_C09
5.50E+06
9.75E−05
18
2.13E+06
1.74E−04
82


A02_Rd4_6nM_C16
1.56E+06
1.41E−04
90
1.34E+06
1.58E−04
118


(P5AC16)








A02_Rd4_6nM_C03
1.69E+06
1.26E−04
75
1.17E+06
1.85E−04
158


A02_Rd4_6nM_C01
3.11E+06
9.20E−05
30
1.45E+06
5.83E−04
401


A02_Rd4_6nM_C26
4.26E+06
1.39E−04
33
2.21E+06
4.48E−04
203


A02_Rd4_6nM_C25
2.75E+06
1.80E−04
65
1.50E+06
3.30E−04
220


A02_Rd4_6nM_C22
3.38E+06
1.82E−04
54
1.84E+06
3.24E−04
176


A02_Rd4_6nM_C19
3.00E+06
1.48E−04
49
2.54E+06
6.61E−04
260


A02_Rd4_0.6nM_C03
4.27E+06
1.82E−04
43
2.12E+06
4.26E−04
201


A02_Rd4_6nM_C07
1.48E+06
1.89E−04
128
6.91E+05
7.86E−04
1138


A02_Rd4_6nM_C23
1.22E+07
2.55E−04
21
2.63E+06
4.14E−04
157


A02_Rd4_0.6nM_C18
4.73E+06
2.29E−04
48
3.24E+06
6.39E−04
197


A02_Rd4_6nM_C10
4.51E+06
3.15E−04
70
1.90E+06
8.98E−04
472


A02_Rd4_6nM_C05
3.10E+06
3.08E−04
99
1.36E+06
1.29E−03
950


A02_Rd4_0.6nM_C10
2.30E+06
2.96E−04
129
8.83E+05
1.63E−03
1842


A02_Rd4_6nM_C04
4.47E+06
6.03E−04
135
2.18E+06
8.31E−04
381


A02_Rd4_0.6nM_C26
7.26E+06
4.43E−04
61
2.71E+06
2.56E−03
941


A02_Rd4_0.6nM_C13
8.53E+06
5.66E−04
66
2.29E+06
1.28E−03
560


A02_Rd4_0.6nM_C01
4.74E+06
9.15E−04
193
2.39E+06
1.57E−03
655


(P5AC1)








A02_Rd4-6nM_C08
3.92E+06
7.38E−04
188
2.23E+06
1.13E−02
5072


P5C1_VHVL (PC1)
1.16E+07
6.92E−02
5986
3.53E+06
5.38E−02
15231


C01_Rd4_6nM_C24
7.47E+06
3.48E−03
467
3.17E+06
8.91E−04
281


C01_Rd4_6nM_C26
1.50E+07
1.36E−03
90
4.75E+06
1.99E−03
419


C01_Rd4_6nM_C02
1.61E+07
1.44E−03
89
5.12E+06
2.18E−03
426


C01_Rd4_6nM_C10
1.31E+07
2.12E−03
162
4.44E+06
2.19E−03
493


C01_Rd4_0.6nM_C27
1.23E+07
3.74E−03
303
3.34E+06
2.85E−03
852


C01_Rd4_6nM_C20
6.02E+06
2.76E−03
459
3.60E+06
6.25E−03
1737


C01_Rd4_6nM_C12
1.21E+07
6.49E−03
535
4.51E+06
3.70E−03
820


C01_Rd4_0.6nM_C16
1.55E+07
6.30E−03
407
4.95E+06
4.64E−03
939


C01_Rd4_0.6nM_C09
1.51E+07
8.25E−03
545
5.28E+06
9.36E−03
1773


C01_Rd4_6nM_C09
1.58E+07
1.28E−02
811
3.73E+06
8.68E−03
2328


C01_Rd4_0.6nM_C03
1.55E+07
1.50E−02
964
4.72E+06
1.19E−02
2528


C01_Rd4_0.6nM_C06
1.82E+07
1.54E−02
847
6.22E+06
1.21E−02
1948


C01_Rd4_6nM_C04
2.33E+07
4.97E−02
2134
6.34E+06
3.27E−02
5156


COMBO_Rd4_0.6nM_C22
1.97E+06
7.15E−05
36
1.34E+06
6.66E−05
50


COMBO_Rd4_6nM_C21
1.17E+07
7.34E−05
6
3.17E+06
2.48E−04
78


COMBO_Rd4_6nM_C10
5.47E+06
9.72E−05
18
1.52E+06
1.60E−04
105


COMBO_Rd4_0.6nM_C04
1.07E+07
1.58E−04
15
3.52E+06
1.37E−04
39


COMBO_Rd4_6nM_C25
7.98E+06
1.13E−04
14
2.85E+06
2.26E−04
79


COMBO_Rd4_0.6nM_C21
1.34E+07
1.15E−04
9
3.63E+06
3.04E−04
84


COMBO_Rd4_6nM_C11
6.74E+06
1.24E−04
18
2.64E+06
4.12E−04
156


COMBO_Rd4_0.6nM_C20
7.65E+06
1.46E−04
19
3.09E+06
2.84E−04
92


COMBO_Rd4_6nM_C09
8.85E+06
1.43E−04
16
2.37E+06
3.18E−04
134


COMBO_Rd4_6nM_C08
8.99E+06
1.69E−04
19
3.06E+06
4.28E−04
140


COMBO_Rd4_0.6nM_C19
7.86E+06
1.55E−04
20
2.92E+06
9.79E−04
336


COMBO_Rd4_0.6nM_C02
8.57E+06
1.85E−04
22
3.01E+06
4.94E−04
164


COMBO_Rd4_0.6nM_C23
7.39E+06
2.10E−04
28
2.81E+06
5.31E−04
189


COMBO_Rd4_0.6nM_C29
1.47E+07
2.77E−04
19
4.00E+06
3.36E−04
84


COMBO_Rd4_0.6nM_C09
1.04E+07
3.19E−04
31
3.77E+06
3.46E−04
92


COMBO_Rd4_6nM_C12
1.38E+07
2.70E−04
20
3.29E+06
4.86E−04
148


(PC1C12)








COMBO_Rd4_0.6nM_C30
4.35E+06
2.82E−04
65
1.68E+06
8.08E−04
481


COMBO_Rd4_0.6nM_C14
8.66E+06
3.28E−04
38
3.48E+06
6.45E−04
185


COMBO_Rd4_6nM_C07
1.05E+07
3.71E−04
35
3.94E+06
9.34E−04
237


COMBO_Rd4_6nM_C02
1.05E+06
4.43E−04
422
7.95E+05
1.36E−03
1714


COMBO_Rd4_0.6nM_C05
4.32E+06
4.97E−04
115
1.94E+06
1.72E−03
886


COMBO_Rd4_0.6nM_C17
8.68E+06
8.01E−04
92
3.06E+06
1.01E−03
330


COMBO_Rd4_6nM_C22
3.03E+06
7.75E−04
256
1.70E+06
1.65E−03
972


(COM22)








COMBO_Rd4_0.6nM_C11
5.11E+06
1.06E−03
207
2.20E+06
4.23E−03
1924









Example 2
BCMA Specific CAR-T Cells

This example demonstrates functional activity of BCMA specific CAR-T cells against BCMA positive (BCMA+) tumor cells.


Among all the BCMA specific CAR molecules generated, eight were selected for further activity tests based on affinity to BCMA, cross-reactivity to human BCMA and cyno BCMA, and epitope. The CAR molecules tested included: P5A, P5AC1, P5AC16, PC1, PC1C12, COM22, P6DY, and P6AP. Three different architectures were designed: version 1 (v1) comprises an FcγRIIIα hinge, version 2 (v2) comprises a CD8α hinge, and version 3 (v3) comprises and IgG1 hinge. The chimeric antigen receptors (CARs) shown in Table 5 were prepared and used and assessed for their degranulation activity towards BCMA+cells. Degranulation activity was determined upon transient expression of each CAR in human T cells.









TABLE 5







Exemplary BCMA specific CARs









CAR
CAR Amino Acid Sequence
Components





P5A-V1
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;



ASGFTFSSYAMNWVRQAPGKGLEWVSAISDSGGSTYYADSVK
P5A2_VHVL VH (Table



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDIWGQ
1 SEQ ID NO: 33);



GTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATL
GS linker;



SCRASQSVSSSYLAWYQQKPGQAPRLLMYDASIRATGIPDRFS
P5A2_VHVL VL (SEQ ID



GSGSGTDFTLTISRLEPEDFAVYYCQQYGSWPLTFGQGTKVEIK
NO: 34);



GLAVSTISSFFPPGYQIYIWAPLAGTCGVLLLSLVITLYCKRGRK
FcγRIIIα hinge;



KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRS
CD8α TM domain;



ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR
41BB ISD;



RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ
CD3ζ ISD



GLSTATKDTYDALHMQALPPR (SEQ ID NO: 343)






P5A-V2
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;



ASGFTFSSYAMNWVRQAPGKGLEWVSAISDSGGSTYYADSVK
P5A2_VHVL VH;



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDIWGQ
GS linker;



GTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATL
P5A2_VHVL VL;



SCRASQSVSSSYLAWYQQKPGQAPRLLMYDASIRATGIPDRFS
CD8α hinge;



GSGSGTDFTLTISRLEPEDFAVYYCQQYGSWPLTFGQGTKVEIK
CD8α TM domain;



TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFAC
41BB ISD;



DIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPV
CD3ζ ISD



QTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLY




NELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQ




KDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALH




MQALPPR(SEQ ID NO: 344)






P5A-V3
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;



ASGFTFSSYAMNWVRQAPGKGLEWVSAISDSGGSTYYADSVK
P5A2_VHVL VH ;



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDIWGQ
GS linker;



GTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATL
P5A2_VHVL VL;



SCRASQSVSSSYLAWYQQKPGQAPRLLMYDASIRATGIPDRFS
IgG1 hinge;



GSGSGTDFTLTISRLEPEDFAVYYCQQYGSWPLTFGQGTKVEIK
CD8α TM domain;



EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVT
41BB ISD;



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV
CD3ζ ISD



VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN




NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPGKIYIWAPLAGTCGVLLLSLVITLYCKRGRKKL




LYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD




APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR




RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR(SEQ ID NO: 345)






P5AC1-
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


V1
ASGFTFSSYAMNWVRQAPGKGLEWVSAILsSGGSTYYADSVK
A02_Rd4_0.6nM_C01



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDIWGQ
VH (SEQ ID NO: 72);



GTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATL
GS linker;



SCRGGQSVSSSYLAWYQQKPGQAPRLLMYDASIRATGIPDRFS
A02_Rd4_0.6nM_C01



GSGSGTDFTLTISRLEPEDFAVYYCQQYQSWPLTFGQGTKVEIK
VL (SEQ ID NO: 73);



GLAVSTISSFFPPGYQIYIWAPLAGTCGVLLLSLVITLYCKRGR
FcγRIIIα hinge;



LKKLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR
CD8α TM domain;



ASADPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR
41BB ISD;



RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR (SEQ ID NO: 346)





CD3ζ ISD





P5AC1-
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


V2
ASGFTFSSYAMNWVRQAPGKGLEWVSAILSSGGSTYYADSVK
A02_Rd4_0.6nM_C01



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDIWGQ
VH;



GTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATL
GS linker;



SCRGGQSVSSSYLAWYQQKPGQAPRLLMYDASIRATGIPDRFS
A02_Rd4_0.6nM_C01



GSGSGTDFTLTISRLEPEDFAVYYCQQYQSWPLTFGQGTKVEIK
VL;



TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFAC
CD8α hinge;



DIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPV
CD8α TM domain;



QTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLY
41BB ISD;



NELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQ
CD3ζ ISD



KDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALH




MQALPPR (SEQ ID NO: 347)






P5AC1-
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


V2.1
ASGFTFSSYAMNWVRQAPGKGLEWVSAILSSGGSTYYADSVK
A02_Rd4_0.6nM_C01



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDIWGQ
VH;



GTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATL
GS linker;



SCRGGQSVSSSYLAWYQQKPGQAPRLLMYDASIRATGIPDRFS
A02_Rd4_0.6nM_C01



GSGSGTDFTLTISRLEPEDFAVYYCQQYQSWPLTFGQGTKVEIK
VL; rituximab epitope;



GSGGGGSCPYSNPSLCSGGGGSCPYSNPSLCSGGGGSTTTPAP
CD8α hinge;



RPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWA
CD8α TM domain;



PLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED
41BB ISD;



GCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLG
CD3ζ ISD



RREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMA




EAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALP




PR (SEQ ID NO: 396)






P5AC1-
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


V3
ASGFTFSSYAMNWVRQAPGKGLEWVSAILsSGGSTYYADSVK
A02_Rd4_0.6nM_C01



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDIWGQ
VH;



GTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATL
GS linker;



SCRGGQSVSSSYLAWYQQKPGQAPRLLMYDASIRATGIPDRFS
A02_Rd4_0.6nM_C01



GSGSGTDFTLTISRLEPEDFAVYYCQQYQSWPLTFGQGTKVEIK
VL;



EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVT
IgG1 hinge;



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV
CD8α TM domain;



VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP
41BB ISD;



QVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN
CD3ζ ISD



NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPGKIYIWAPLAGTCGVLLLSLVITLYCKRGRKKL




LYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD




APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR




RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR (SEQ ID NO: 348)






P5AC16-
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


V1
ASGFTFSSYAMNWVRQAPGKGLEWVSAISdFGGSTYYADSVK
A02_Rd4_6nM_C16 VH



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDIWGQ
(SEQ ID NO: 39);



GTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATL
GS linker;



SCRASQSVSDIYLAWYQQKPGQAPRLLMYDASIRATGIPDRFS
A02_Rd4_6nM_C16 VL



GSGSGTDFTLTISRLEPEDFAVYYCQQYQTWPLTFGQGTKVEIKG
(SEQ ID NO: 40);



LAVSTISSFFPPGYQIYIWAPLAGTCGVLLLSLVITLYCKRGRKK
FcγRIIIα hinge;



LLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD
CD8α TM domain;



APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR
41BB ISD;



RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ
CD3ζ ISD;



GLSTATKDTYDALHMQALPPR (SEQ ID NO: 349)






P5AC16-
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


V2
ASGFTFSSYAMNWVRQAPGKGLEWVSAISdFGGSTYYADSVK
A02_Rd4_6nM_C16



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDIWGQ
VH;



GTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATL
GS linker;



SCRASQSVSDIYLAWYQQKPGQAPRLLMYDASIRATGIPDRFS
A02_Rd4_6nM_C16 VL;



GSGSGTDFTLTISRLEPEDFAVYYCQQYQTWPLTFGQGTKVEIK
CD8α hinge;



TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFAC
CD8α TM domain;



DIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPV
41BB ISD;



QTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLY
CD3ζ ISD



NELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQ




KDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALH




MQALPPR (SEQ ID NO: 350)






P5AC16-
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


V3
ASGFTFSSYAMNWVRQAPGKGLEWVSAISdFGGSTYYADSVK
A02_Rd4_6nM_C16



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDIWGQ
VH;



GTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATL
GS linker;



SCRASQSVSDIYLAWYQQKPGQAPRLLMYDASIRATGIPDRFS
A02_Rd4_6nM_C16 VL;



GSGSGTDFTLTISRLEPEDFAVYYCQQYQTWPLTFGQGTKVEIK
IgG1 hinge;



EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVT
CD8α TM domain;



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV
41BB ISD;



VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP
CD3ζ ISD



QVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN




NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPGKIYIWAPLAGTCGVLLLSLVITLYCKRGRKK




LLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSA




DAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR




RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYO




GLSTATKDTYDALHMQALPPR (SEQ ID NO: 351)






PC1-V1
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;



ASGFTFSSYPMSWVRQAPGKGLEWVSAIGGSGGSTYYADSVK
P5C1_VHVL VH (SEQ ID



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDSWG
NO: 76);



QGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERA
GS linker;



TLSCRASQSVSSTYLAWYQQKPGQAPRLLIYDASSRAPGIPDRF
P5C1_VHVL VL (SEQ ID



SGSGSGTDFTLTISRLEPEDFAVYYCQQYSTSPLTFGQGTKVEIK
NO: 77);



GLAVSTISSFFPPGYQIYIWAPLAGTCGVLLLSLVITLYCKRGRK
FcγRIIIα hinge;



KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRS
CD8α TM domain;



ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR
41BB ISD;



RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ
CD3ζ ISD



GLSTATKDTYDALHMQALPPR (SEQ ID NO: 352)






PC1-V2
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;



ASGFTFSSYPMSWVRQAPGKGLEWVSAIGGSGGSTYYADSVK
P5C1_VHVL VH;



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDSWG
GS linker;



QGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERA
P5C1_VHVL VL;



TLSCRASQSVSSTYLAWYQQKPGQAPRLLIYDASSRAPGIPDRF
CD8α hinge;



SGSGSGTDFTLTISRLEPEDFAVYYCQQYSTSPLTFGQGTKVEIK
CD8α TM domain;



TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFAC
41BB ISD;



DIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPV
CD3ζ ISD



QTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLY




NELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQ




KDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALH




MQALPPR (SEQ ID NO: 353)






PC1-V3
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;



ASGFTFSSYPMSWVRQAPGKGLEWVSAIGGSGGSTYYADSVK
P5C1_VHVL VH;



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDSWG
GS linker;



QGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERA
P5C1_VHVL VL;



TLSCRASQSVSSTYLAWYQQKPGQAPRLLIYDASSRAPGIPDRF
IgG1 hinge;



SGSGSGTDFTLTISRLEPEDFAVYYCQQYSTSPLTFGQGTKVEIK
CD8α TM domain;



EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVT
41BB ISD;



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV
CD3ζ ISD



VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN




NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPGKIYIWAPLAGTCGVLLLSLVITLYCKRGRK




LKLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRS




ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR




RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR (SEQ ID NO: 354)






PC1C12-
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


VI
ASGFTFSSYPMSWVRQAPGKGLEWVSAIGgSGGWSYYADSVK
C01_Rd4_6nM_C12 VH



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDSWG
(SEQ ID NO: 83);



QGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERA
GS linker;



TLSCWLSQSVSSTYLAWYQQKPGQAPRLLIYDASSRAPGIPDRF
C01_Rd4_6nM_C12 VL



SGSGSGTDFTLTISRLEPEDFAVYYCQQYSEWPLTFGQGTKVEIK
(SEQ ID NO: 84);



GLAVSTISSFFPPGYQIYIWAPLAGTCGVLLLSLVITLYCKRGRK
FcγRIIIα hinge;



KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRS
CD8α TM domain;



ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR
41BB ISD;



RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ
CD3ζ ISD



GLSTATKDTYDALHMQALPPR (SEQ ID NO: 355)






PC1C12-
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


V2
ASGFTFSSYPMSWVRQAPGKGLEWVSAIGgSGGWSYYADSVK
C01_Rd4_6nM_C12



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDSWG
VH;



QGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERA
GS linker;



TLSCWLSQSVSSTYLAWYQQKPGQAPRLLIYDASSRAPGIPDRF
C01_Rd4_6nM_C12 VL;



SGSGSGTDFTLTISRLEPEDFAVYYCQQYSEWPLTFGQGTKVEIK
CD8α hinge;



TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFAC
CD8α TM domain;



DIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPV
41BB ISD;



QTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLY
CD3ζ ISD



NELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQ




KDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALH




MQALPPR (SEQ ID NO: 356)






PC1C12-
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


V3
ASGFTFSSYPMSWVRQAPGKGLEWVSAIGgSGGWSYYADSVK
C01_Rd4_6nM_C12



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYWPMDSWG
VH;



QGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERA
GS linker;



TLSCWLSQSVSSTYLAWYQQKPGQAPRLLIYDASSRAPGIPDRF
C01_Rd4_6nM_C12 VL;



SGSGSGTDFTLTISRLEPEDFAVYYCQQYSEWPLTFGQGTKVEIK
IgG1 hinge;



EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVT
CD8α TM domain;



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV
41BB ISD;



VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP
CD3ζ ISD



QVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN




NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN




HYTQKSLSLSPGKIYIWAPLAGTCGVLLLSLVITLYCKRGRKKL




LYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD




APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR




RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ







GLSTATKDTYDALHMQALPPR (SEQ ID NO: 357)



COM22-
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


VI
ASGFTFSSYAMNWVRQAPGKGLEWVSAISdSGGSRWYADSV
COMBO_Rd4_0.6nM_C



KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRYWPMDIWG
22 VH (SEQ ID NO: 92);



QGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERA
GS linker;



TLSCRASVRVSSTYLAWYQQKPGQAPRLLMYDASIRATGIPDRF
COMBO_Rd4_0.6nM_C



SGSGSGTDFTLTISRLEPEDFAVYYCQQYMKWPLTFGQGTKVEI
22 VL (SEQ ID NO: 93);



KGLAVSTISSFFPPGYQIYIWAPLAGTCGVLLLSLVITLYCKRGRK
FcγRIIIα hinge;



KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRS
CD8α TM domain;



ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGK
41BB ISD;



PRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY
CD3ζ ISD



QGLSTATKDTYDALHMQALPPR (SEQ ID NO: 358)






COM22-
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


V2
ASGFTFSSYAMNWVRQAPGKGLEWVSAISdSGGSRWYADSV
COMBO_Rd4_0.6nM_C



KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRYWPMDIWG
22 VH;



QGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERA
GS linker;



TLSCRASVRVSSTYLAWYQQKPGQAPRLLMYDASIRATGIPDRF
COMBO_Rd4_0.6nM_C



SGSGSGTDFTLTISRLEPEDFAVYYCQQYMKWPLTFGQGTKVEI
22 VL;



KTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFA
CD8α hinge;



CDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPV
CD8α TM domain;



QTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQ
41BB ISD;



LYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNE
CD3ζ ISD



LQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDA




LHMQALPPR (SEQ ID NO: 359)






COM22-
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


V3
ASGFTFSSYAMNWVRQAPGKGLEWVSAISdSGGSRWYADSV
COMBO_Rd4_0.6nM_C



KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRYWPMDIWG
22 VH;



QGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERA
GS linker;



TLSCRASVRVSSTYLAWYQQKPGQAPRLLMYDASIRATGIPDRF
COMBO_Rd4_0.6nM_C



SGSGSGTDFTLTISRLEPEDFAVYYCQQYMKWPLTFGQGTKVEI
22 VL;



KEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEV
IgG1 hinge;



TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR
CD8α TM domain;



VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE
41BB ISD;



PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
CD3ζ ISD



NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE




ALHNHYTQKSLSLSPGKIYIWAPLAGTCGVLLLSLVITLYCKRGRK




KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRS




ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGK




PRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY




QGLSTATKDTYDALHMQALPPR (SEQ ID NO: 360)






P6DY-V1
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;



ASGFTFGSYAMTWVRQAPGKGLEWVSAIDYSGGNTFYADSVK
L3.PY/H2.DYVH (SEQ



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVSPIASGMDY
ID NO: 25);



WGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPG
GS linker;



ERATLSCRASQSVSSSYPSWYQQKPGQAPRLLIYGASSRATGIP
L3.PY/L1.PS/P6E01



DRFSGSGSGTDFTLTISRLEPEDFAVYYCQHYPYPPSFTFGQGTK
VL (SEQ ID NO: 18);



VEIKGLAVSTISSFFPPGYQIYIWAPLAGTCGVLLLSLVITLYCK
FcγRIIIα hinge;



RGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVK
CD8α TM domain;



FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMG
41BB ISD;



GKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHD
CD3ζ ISD



GLYQGLSTATKDTYDALHMQ (SEQ ID NO: 361)






P6DY-V2
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;


CAR
CAR Amino Acid Sequence
Components



ASGFTFGSYAMTWVRQAPGKGLEWVSAIDYSGGNTFYADSVK
L3.PY/H2.DYVH;



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVSPIASGMDY
GS linker;



WGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPG
L3.PY/L1.PS/P6EO1



ERATLSCRASQSVSSSYPSWYQQKPGQAPRLLIYGASSRATGIP
VL;



DRFSGSGSGTDFTLTISRLEPEDFAVYYCQHYPYPPSFTFGQGTK
CD8α hinge;



VEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD
CD8α TM domain;



FACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRP
41BB ISD;



VQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQN
CD3ζ ISD



QLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYN




ELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR (SEQ ID NO: 362)






P6DY-V3
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;



ASGFTFGSYAMTWVRQAPGKGLEWVSAIDYSGGNTFYADSVK
L3.PY/H2.DYVH;



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVSPIASGMDY
GS linker;



WGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPG
L3.PY/L1.PS/P6EO1



ERATLSCRASQSVSSSYPSWYQQKPGQAPRLLIYGASSRATGIP
VL;



DRFSGSGSGTDFTLTISRLEPEDFAVYYCQHYPYPPSFTFGQGTK
IgG1 hinge;



VEIKEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP
CD8α TM domain;



EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST
41BB ISD;



YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP
CD3ζ ISD



REPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP




ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH




EALHNHYTQKSLSLSPGKIYIWAPLAGTCGVLLLSLVITLYCKRGR




KKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR




SADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG




KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGL




YQGLSTATKDTYDALHMQALPPR (SEQ ID NO: 363)






P6AP-V1
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;



ASGFTFGSYAMTWVRQAPGKGLEWVSAISGSGGNTFYADSVK
P6AP-V1 VH (SEQ ID



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVSPIAAPMDY
NO: 8);



WGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPG
GS linker;



ERATLSCRASQLGSFYLAWYQQKPGQAPRLLIYGASSRATGIPD
P6AP-V1 VL(SEQ ID



RFSGSGSGTDFTLTISRLEPEDFAVYYCQHYNYPPSFTFGQGTKV
NO: 80)



EIKGLAVSTISSFFPPGYQIYIWAPLAGTCGVLLLSLVITLYCKR
FcγRIIIα hinge;



GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKF
CD8α TM domain;



SRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG
41BB ISD;



KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGL
CD3ζ ISD



YQGLSTATKDTYDALHMOA (SEQ ID NO: 364)






P6AP-V2
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;



ASGFTFGSYAMTWVRQAPGKGLEWVSAISGSGGNTFYADSVK
L1.LGF/L3.KW/H3.AP



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVSPIAAPMDY
VH;



WGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPG
GS linker;



ERATLSCRASQLGSFYLAWYQQKPGQAPRLLIYGASSRATGIPD
P6AP-V1 VL;



RFSGSGSGTDFTLTISRLEPEDFAVYYCQHYNYPPSFTFGQGTKV
CD8α hinge;



EIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDF
CD8α TM domain;



ACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPV
41BB ISD;



QTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQ
CD3ζ ISD



LYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNE




LQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDA




LHMQALPPR (SEQ ID NO: 365)






P6AP-V3
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCA
CD8α signal peptide;



ASGFTFGSYAMTWVRQAPGKGLEWVSAISGSGGNTFYADSVK
L1.LGF/L3.KW/H3.AP



GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVSPIAAPMDY
VH;



WGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPG
GS linker;



ERATLSCRASQLGSFYLAWYQQKPGQAPRLLIYGASSRATGIPD
P6AP-V1 VL;



RFSGSGSGTDFTLTISRLEPEDFAVYYCQHYNYPPSFTFGQGTKV
IgG1 hinge;



EIKEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPE
CD8α TM domain;



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY
41BB ISD;



RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR
CD3ζ ISD



EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE




ALHNHYTQKSLSLSPGKIYIWAPLAGTCGVLLLSLVITLYCKRGRK




KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRS




ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGK




PRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY




QGLSTATKDTYDALHMQALPPR (SEQ ID NO: 366)









For the activity assays, T cells from thirteen healthy donors (Donors 1-13) were obtained. Briefly, the T cells were purified from buffy-coat samples and activated using CD3/CD28 beads. Cells were transiently transfected with mRNAs encoding the different CAR molecules at D11/12 after activation. CAR activity was assessed by measuring their degranulation capacity, the inteferon-γ (IFNγ) release, and the cytotoxic activity when co-cultured with (a) cells expressing BCMA (MM1S, KMS12BM, and L363), or (b) cells that do not express the BCMA protein (K562). Also included for each assay were mock transfected T cells (T cells in buffer) to determine baseline activity of T cells that do not express a CAR.


CAR detection was done using a fusion protein in which the extracellular domain of the human BCMA protein was fused to a mouse IgG1 derived Fc fragment. Binding of the CAR at the cell surface with the BCMA portion of the fusion protein was detected with anti-Fc PE-conjugated antibody and analyzed by flow cytometry.


Materials and Methods


Primary T Cell Cultures


T cells were purified from Buffy coat samples provided by EFS (Etablissement Français du Sang, Paris, France) using Ficoll gradient density medium (Ficoll Paque PLUS/GE Healthcare Life Sciences). The PBMC layer was recovered and T cells were purified using a commercially available T cell enrichment kit (Stem Cell Technologies). Purified T cells were activated in X-Vivo™-15 medium (Lonza) supplemented with 20 ng/mL Human IL-2 (Miltenyi Biotech), 5% Human Serum (Sera Laboratories), and Dynabeads Human T activator CD3/CD28 at a bead:cell ratio 1:1 (Life Technologies). After activation cells were grown and maintained in X-Vivo™-15 medium (Lonza) supplemented with 20 ng/mL Human IL-2 (Miltenyi Biotec) and 5% Human Serum (Sera Laboratories)


CAR mRNA Transfection


Transfections were done at Day 4/5 or Day 11/12 after T cell purification and activation. 5 millions of cells were transfected with 15 μg of mRNA encoding the different CAR constructs. CAR mRNAs were produced using the mMESSAGE mMACHINE T7 Kit (Life Technologies) and purified using RNeasy Mini Spin Columns (Qiagen). Transfections were done using PulseAgile™ Cytopulse technology, by applying two 0.1 mS pulses at 3000 V/cm followed by four 0.2 mS pulses at 325 V/cm in 0.4 cm gap cuvettes in a final volume of 200 μl of “Cytoporation buffer T” (BTX Harvard Apparatus). Cells were immediately diluted in X-Vivo™-15 media (Lonza) and incubated at 37° C. with 5% CO2. IL-2 (from Miltenyi Biotec was added 2 h after electroporation at 20 ng/mL.


Degranulation Assay (CD107a Mobilization)


T cells were incubated in 96-well plates (50,000 cells/well), together with an equal amount of cells expressing or not the BCMA protein. Co-cultures were maintained in a final volume of 100 μl of X-Vivo™-15 medium (Lonza) for 6 hours at 37° C. with 5% CO2. CD107a staining was done during cell stimulation, by the addition of a fluorescent anti-CD107a antibody (APC conjugated, from Miltenyi Biotec) at the beginning of the co-culture, together with 1 μg/ml of anti-CD49d (BD Pharmingen), 1 μg/ml of anti-CD28 (Miltenyi Biotec), and 1× Monensin solution (eBioscience). After the 6 h incubation period, cells were stained with a fixable viability dye (eFluor 780, from eBioscience) and fluorochrome-conjugated anti-CD8 (PE conjugated Miltenyi Biotec) and analyzed by flow cytometry. The degranulation activity was determined as the % of CD8+/CD107a+ cells, and by determining the mean fluorescence intensity signal (MFI) for CD107a staining among CD8+ cells. Degranulation assays were carried out 24 h after mRNA transfection. Results are summarized in the Tables 6A-9H and 9A-9C below. In the tables, the second column (labeled “CAR-T cell”) indicates the BCMA specific CAR being expressed in the transfected T cells.


CD107a expression on cells is a marker of antigen specific activation. The percent and MFI of CD107a on CD8 T cells expressing BCMA specific CARs increase when incubated with BCMA high (H929), medium (MM1S) and low (KMS12BM, L363) expressing cells but not BCMA negative cells (K562 and Daudi) (Tables 6A-9H and 9A-9C). CD107a expression levels did not increase on mock transfected T cells contacted with BCMA. Thus, the BCMA specific CAR-T cells are activated in the presence of BCMA-expressing cells but not in the presence of cells that do not express BCMA.


These results demonstrate that T cells expressing BCMA specific CARs are activated when incubated with BCMA expressing cells, and that the activation is antigen-specific.


IFNγ Release Assay


T cells were incubated in 96-well plates (50,000 cells/well), together with (a) cells expressing BCMA (MM1S, KMS12BM, and L363) or (b) cells that do not express the BCMA protein (K562). Co-cultures were maintained in a final volume of 100 μl of X-Vivo™-15 medium (Lonza) for 24 hours at 37° C. with 5% CO2. After this incubation period the plates were centrifuged at 1500 rpm for 5 minutes and the supernatants were recovered in a new plate. IFNγ detection in the cell culture supernatants was done by ELISA assay (Human IFNγ Quantikine ELISA Kit, from R&D Systems). The IFNγ release assays were carried by starting the cell co-cultures 24 h after mRNA transfection. Results are summarized in the Tables 8A-8D and 10 below.


As shown in Tables 8A-8D and 10, CD8 T cells expressing BCMA specific CARs produce IFNγ when incubated with either medium BCMA-expressing cells (MM1S) or low BCMA-expressing cells (KMS12BM, L363). In contrast, CD8 T cells expressing BCMA specific CARs produce negligible IFNγ when incubated with BCMA negative cells (K562).


These results demonstrate that T cells expressing BCMA specific CARs are activated when incubated with BCMA expressing cells, and that the activation is antigen-specific.


Cytotoxicity Assay


T cells were incubated in 96-well plates (100,000 cells/well), together with 10,000 target cells (expressing BCMA) and 10,000 control (BCMAneg) cells in the same well. Target and control cells were labeled with fluorescent intracellular dyes (CFSE or Cell Trace Violet, from Life Technologies) before co-culturing them with CAR+ T cells. The co-cultures were incubated for 4 hours at 37° C. with 5% CO2. After this incubation period, cells were labeled with a fixable viability dye (eFluor 780, from eBioscience) and analyzed by flow cytometry. Viability of each cellular population (target cells or BCMAneg control cells) was determined and the % of specific cell lysis was calculated. Cytotoxicity assays were carried out 48 h after mRNA transfection. Results are summarized in the Tables 7A-7H below. In the tables, the cytotoxicity data are shown as percent viable cells, then calculated as a ratio of live BCMA positive cells/live BCMA negative cells. Cell lysis is calculated as 100—mock transfected T cells.


As shown in Tables 7A-7H, T cells expressing BCMA specific CARs exhibit killing activity when incubated with either medium BCMA-expressing cells (MM1S) or low BCMA-expressing cells (L363). In contrast, CD8 T cells expressing BCMA specific CARs do not exhibit killing activity when incubated with BCMA negative cells (K562).


In summary, T cells expressing the selected BCMA specific CARs shown in Table 5 are selectively activated upon contact with BCMA-expressing cells. While all versions of the BCMA specific CARs exhibited BCMA-specific activation, BCMA specific CARs comprising a CD8α hinge (v2) exhibited increased activation levels compared to BCMA specific CARs comprising a FcγRIIIα (v1) hinge or IgG1 (v3) hinge.









TABLE 6A







Degranulation Assay Results, Donor 1











%



MFI
CD107a+



CD107a+
(in CD8+)














Donor
mock
T cells
410
2.45


1
transfected
PMA/Iono
4038
76.1



T cells
MM1S
547
6.78











K562
610
7.55













P6DY
v1
T cells
588
5.19





PMA/Iono
3758
75.1





MM1S
850
14.9





K562
829
9.76




v2
T cells
756
6.86





PMA/Iono
4103
75.5





MM1S
3872
75.4





K562
1130
20.7




v3
T cells
707
7.71





PMA/Iono
4336
78.7





MM1S
3665
72.6





K562
612
7.7



P6AP
v1
T cells
604
4.61





PMA/Iono
3526
72.8





MM1S
1847
46.4





K562
503
4.28




v2
T cells
1380
27.8





PMA/Iono
2504
58





MM1S
5299
83.9





K562
949
14.6




v3
T cells
856
12.6





PMA/Iono
2500
58.9





MM1S
3638
73





K562
718
9.15
















TABLE 6B







Degranulation Assay Results, Donor 2











%



MFI
CD107a+



CD107a+
(in CD8+)














Donor
mock
T cells
270
1.66


2
transfected
PMA/Iono
3872
88.3



T cells
MM1S
499
11











K562
492
8.78













P5A
v1
T cells
423
7.2





PMA/Iono
6034
96.3





MM1S
2670
77.6





K562
648
16.6




v2
T cells
428
7.14





PMA/Iono
4420
90.7





MM1S
5019
91.8





K562
620
13.8




v3
T cells
451
8.87





PMA/Iono
4835
93.2





MM1S
4191
88.5





K562
607
14.1



P5A_C1
v1
T cells
315
4.12





PMA/Iono
3567
85.8





MM1S
2193
68.6





K562
537
10.1




v2
T cells
413
7.46





PMA/Iono
4423
91.1





MM1S
4575
90.6





K562
660
17.2




v3
T cells
429
7.82





PMA/Iono
4442
93.5





MM1S
3710
84.4





K562
597
13.9



P5A_C16
v1
T cells
424
7.95





PMA/Iono
4325
91.1





MM1S
1858
61.6





K562
636
14.9




v2
T cells
401
5.69





PMA/Iono
3007
80





MM1S
4228
87.9





K562
696
17.6




v3
T cells
372
5.25





PMA/Iono
3611
86.6





MM1S
3372
83.6





K562
476
7.72
















TABLE 6C







Degranulation Assay Results, Donor 3











%



MFI
CD107a+



CD107a+
(in CD8+)














Donor
mock
T cells
338
3.61


3
transfected
PMA/Iono
7111
98.1



T cells
MM1S
464
9.44











K562
533
9.73













PC1
v1
T cells
454
6.67





PMA/Iono
5226
96.5





MM1S
2178
75.6





K562
753
22.3




v2
T cells
507
13





PMA/Iono
4743
95.2





MM1S
759
25.5





K562
649
15.5




v3
T cells
463
6.84





PMA/Iono
7092
98.1





MM1S
2857
87.2





K562
665
15



PC1C12
v1
T cells
373
3.35





PMA/Iono
6214
97.2





MM1S
1960
68.2





K562
513
7.61




v2
T cells
579
11.5





PMA/Iono
6341
97.5





MM1S
4478
95.1





K562
680
15




v3
T cells
533
10.1





PMA/Iono
5785
97.4





MM1S
3739
91





K562
648
13.2



COM22
v1
T cells
354
2.74





PMA/Iono
5894
96.7





MM1S
2219
76.1





K562
445
5.62




v2
T cells
401
6.52





PMA/Iono
5802
94.6





MM1S
2372
79.2





K562
534
8.9




v3
T cells
501
10.4





PMA/Iono
6387
97.6





MM1S
2780
85.9





K562
648
13.8
















TABLE 6D







Degranulation Assay Results, Donor 4











%



MFI
CD107a+



CD107a+
(in CD8+)
















Donor
mock
T cells
248
2.64



4 (v3
transfected
PMA/Iono
5750
94.9



only)
T cells
MM1S
363
8.89





K562
368
6.86




P5A
T cells
335
3.82





PMA/Iono
6025
93





MM1S
3150
86.7





K562
418
9.91




P5AC1
T cells
505
22.1





PMA/Iono
6950
98.3





MM1S
2975
84.7





K562
575
23.3




P5AC16
T cells
368
6.2





PMA/Iono
5775
97.7





MM1S
3675
86.8





K562
420
9.73




PC1
T cells
403
9.05





PMA/Iono
6975
97.8





MM1S
4625
93





K562
543
15.8




PC1C12
T cells
485
12.9





PMA/Iono
6400
96.5





MM1S
3575
90.4





K562
585
18.9




COM22
T cells
535
20.5





PMA/Iono
7250
98.3





MM1S
3725
91.4





K562
533
16.9




P6DY
T cells
313
3.08





PMA/Iono
5125
94.3





MM1S
2435
79.9





K562
438
10.4




P6AP
T cells
430
10.4





PMA/Iono
6100
94.2





MM1S
3800
91.7





K562
478
14.6
















TABLE 6E







Degranulation Assay Results, Donor 5










%




CD107a+
MFI



(in CD8+)
CD107a+
















Donor
CAR-
L363
47
917



5 (v3
BCMA-
MM1S
65.3
1713



only)
P5A
K562
3.65
247





T cells
1.71
199





PMA/iono
98.6
4797




CAR-
L363
50.6
1117




BCMA-
MM1S
65.5
1753




P5AC1
K562
5.29
265





T cells
1.93
213





PMA/iono
99.1
5755




CAR-
L363
57.2
1392




BCMA-
MM1S
73.9
2520




P5AC16
K562
4.13
273





T cells
2.57
232





PMA/iono
98.1
5120




CAR-
L363
71.9
2167




BCMA-
MM1S
82.9
2987




PC1
K562
4.5
316





T cells
2.47
273





PMA/iono
98.5
5556




CAR-
L363
57.8
1492




BCMA-
MM1S
71.5
2094




PC1C12
K562
3.72
313





T cells
2.53
272





PMA/iono
98.2
4480




CAR-
L363
61.3
1574




BCMA-
MM1S
78.1
2602




COM22
K562
5.84
296





T cells
5.26
284





PMA/iono
98.3
4434




CAR-
L363
43.4
859




BCMA-
MM1S
63.6
1624




P6DY
K562
3.99
256





T cells
1.95
228





PMA/iono
98.1
4075




CAR-
L363
63.4
1745




BCMA-
MM1S
77.8
2461




P6AP
K562
4.81
310





T cells
4.74
300





PMA/iono
98.9
32




mock
L363
2.54
200




transfected
MM1S
5.19
233




T cells
K562
4.02
201





T cells
1.95
192





PMA/iono
97.7
3216
















TABLE 6F







Degranulation Assay Results, Donor 6











%



MFI
CD107a+



CD107a+
(in CD8+)














Donor
BCMA_BC30_v3 (18)
Tcells
121
1.04


6

alone






T cells
5253
87.4




PMA






IONO






T cells
230
3.21




K562






T cells
1321
50.4




MM1S






T cells
986
41.8




L363





CAR_BCMA_P5AC1 _v2
Tcells
150
1.07




alone






T cells
4701
83.2




PMA






IONO






T cells
256
5.5




K562






T cells
2193
63.8




MM1S






T cells
1400
50.9




L363





CAR_BCMA_P5AC1 _v3
Tcells
166
0.96




alone






T cells
4518
80.2




PMA






IONO






T cells
301
6.87




K562






T cells
1101
40.7




MM1S






T cells
728
29.8




L363





CAR_BCMA_PC1_v3
Tcells
217
1.63




alone






T cells
4711
82.4




PMA






IONO






T cells
329
6.36




K562






T cells
2083
60.3




MM1S






T cells
1500
52.1




L363





CAR_BCMA_PC1C12_v2
Tcells
209
2.01




alone






T cells
5401
87.8




PMA






IONO






T cells
332
7.7




K562






T cells
2588
68.4




MM1S






T cells
1976
59.5




L363





CAR_BCMA_PC1C12_v3
Tcells
162
1.72




alone






T cells
5299
85.3




PMA






IONO






T cells
266
6.25




K562






T cells
669
28.8




MM1S






T cells
414
18.6




L363





CAR_BCMA_COM22_v3
Tcells
193
3.23




alone






T cells
4750
82.7




PMA






IONO






T cells
288
5.13




K562






T cells
814
35.7




MM1S






T cells
606
26.8




L363





CAR_BCMA_P6AP_v2
Tcells
359
9.69




alone






T cells
5521
87.4




PMA






IONO






T cells
327
7.69




K562






T cells
2289
63.8




MM1S






T cells
1876
56.9




L363





CAR_BCMA_P6AP_v3
Tcells
284
4.87




alone






T cells
4480
82.7




PMA






IONO






T cells
331
5.9




K562






T cells
1409
46.9




MM1S






T cells
926
35.3




L363





mock
Tcells
184
0.92



transfected
alone





T cells
T cells
3955
78.6




PMA






IONO






T cells
278
3.58




K562






T cells
393
4.7




MM1S






T cells
190
1.12




L363
















TABLE 6G







Degranulation Assay Results, Donor 7











%



MFI
CD107a+



CD107a+
(in CD8+)














Donor
mock
Tcells
68.3
1.55


7
transfected
alone





T cells
T cells
3097
94.6




PMA






IONO






T cells
118
7.15




MM1S






T cells
90.3
2.63




L363






T cells
144
3.4




K562






T cells
117
1.93




Daudi





BCMA_BC30_v3 (18)
Tcells
69.7
2.69




alone






T cells
2864
94.9




PMA






IONO






T cells
1630
68.9




MM1S






T cells
529
43.8




L363






T cells
125
3.85




K562






T cells
426
38.5




Daudi





P5AC1_v2
Tcells
111
3.67




alone






T cells
2859
95.6




PMA






IONO






T cells
2305
71.5




MM1S






T cells
877
53.1




L363






T cells
166
8.54




K562






T cells
770
51.5




Daudi





P5AC1_v3
Tcells
70.8
1.04




alone






T cells
2740
94.6




PMA






IONO






T cells
526
43.3




MM1S






T cells
209
20.4




L363






T cells
118
8.32




K562






T cells
450
35.9




Daudi





PC1_v3
Tcells
61
1.37




alone






T cells
2786
94.6




PMA






IONO






T cells
1027
56.3




MM1S






T cells
314
29.9




L363






T cells
140
12.1




K562






T cells
536
39.6




Daudi





PC1C12_v2
Tcells
98
5.95




alone






T cells
3493
95.3




PMA






IONO






T cells
1917
73.7




MM1S






T cells
939
56.2




L363






T cells
192
11.5




K562






T cells
1485
64.6




Daudi





PC1C12_v3
Tcells
84.2
2.28




alone






T cells
3017
95.2




PMA






IONO






T cells
342
28.2




MM1S






T cells
145
8.72




L363






T cells
186
7.53




K562






T cells
223
11.8




Daudi





COM22_v3
Tcells
93.6
5.32




alone






T cells
2989
96.3




PMA






IONO






T cells
540
40




MM1S






T cells
154
12.5




L363






T cells
138
8.29




K562






T cells
93.5
3.99




Daudi





P6AP_v2
Tcells
164
13.7




alone






T cells
3303
95.9




PMA






IONO






T cells
2755
76




MM1S






T cells
859
50.3




L363






T cells
287
15.8




K562






T cells
1263
58.2




Daudi





P6AP_v3
Tcells
114
10.5




alone






T cells
3084
94.5




PMA






IONO






T cells
849
51.6




MM1S






T cells
380
30.9




L363






T cells
211
8.46




K562






T cells
678
42.7




Daudi
















TABLE 6H







Degranulation Assay Results, Donor 8











%



MFI
CD107a+



CD107a+
(in CD8+)














Donor
mock
Tcells
154
0.67


8
transfected
alone





T cells
T cells
3777
66.2




PMA






IONO






T cells
229
2.16




MM1S






T cells
166
1.51




L363






T cells
220
2.08




K562





BCMA_BC30_v3 (18)
Tcells
210
1.05




alone






T cells
4302
70.6




PMA






IONO






T cells
1661
42




MM1S






T cells
1049
26.5




L363






T cells
262
3.46




K562





P5AC1_v2
Tcells
207
0.86




alone






T cells
4298
71.5




PMA






IONO






T cells
1648
40.8




MM1S






T cells
1099
26.5




L363






T cells
232
1.72




K562





P5AC1_v3
Tcells
187
0.84




alone






T cells
3989
68.8




PMA






IONO






T cells
766
21.2




MM1S






T cells
521
14.2




L363






T cells
258
2.05




K562





PC1_v3
Tcells
242
1.23




alone






T cells
4256
70.6




PMA






IONO






T cells
1046
23.1




MM1S






T cells
1183
27.4




L363






T cells
283
2.97




K562





PC1C12_v2
Tcells
257
1.87




alone






T cells
3487
60.2




PMA






IONO






T cells
2463
51.2




MM1S






T cells
1657
35.4




L363






T cells
314
4.05




K562





PC1C12_v3
Tcells
166
0.86




alone






T cells
4238
69.1




PMA






IONO






T cells
641
17.3




MM1S






T cells
507
14.2




L363






T cells
296
3.52




K562





COM22_v3
Tcells
283
2.55




alone






T cells
4800
75.9




PMA






IONO






T cells
1035
27.9




MM1S






T cells
704
22.7




L363






T cells
334
4.82




K562





P6AP_v2
Tcells
545
8.33




alone






T cells
4362
68.6




PMA






IONO






T cells
2273
46.7




MM1S






T cells
1671
34.7




L363






T cells
629
9.71




K562





P6AP_v3
Tcells
360
3.87




alone






T cells
3584
61.5




PMA






IONO






T cells
1553
34.5




MM1S






T cells
1045
23




L363






T cells
595
7.4




K562
















TABLE 7A







Cytotoxicity Data, Donor 6










Viability (mean)














CAR
L363
K562
MM1S
K562

















Donor
BC30_v3
22.93
89.90
16.30
88.43



6
P5AC1_v2
27.27
90.07
21.47
90.17




P5AC1_v3
36.03
89.30
19.80
88.50




PC1_v3
19.03
88.23
13.57
87.50




PC1C12_v2
19.60
86.13
14.67
84.67




PC1C12_v3
55.50
89.33
41.33
88.67




COM22_v3
42.00
90.33
25.67
88.30




P6AP_v2
29.40
80.27
21.07
82.10




P6AP_v3
48.53
85.20
25.57
81.30




mock
90.90
88.20
91.77
86.30




transfected








T cells
















TABLE 7B







Cytotoxicity Data, Donor 6

















Ratio to Mock















BCMA+/BCMA−
transfected T cells
Cell lysis















CAR
L363
MM1S
L363
MM1S
L363
MM1S

















Donor 6
BC30_v3
25.51
18.43
0.24752108
0.17333946
75.2
82.7



P5AC1_v2
30.27
23.81
0.29374647
0.22389502
70.6
77.6



P5AC1_v3
40.35
22.37
0.39152336
0.21040098
60.8
79.0



PC1_v3
21.57
15.50
0.2093085
0.14581122
79.1
85.4



PC1C12_v2
22.76
17.32
0.22079514
0.1629089
77.9
83.7



PC1C12_v3
62.13
46.62
0.60281513
0.4383953
39.7
56.2



COM22_v3
46.49
29.07
0.45113441
0.27335977
54.9
72.7



P6AP_v2
36.63
25.66
0.35539949
0.24131177
64.5
75.9



P6AP_v3
56.96
31.45
0.55272006
0.29573955
44.7
70.4



mock transfected
103.06
106.33
1
1
0.0
0.0



T cells






















TABLE 7C







Cytotoxicity Data, Donor 7










Viability (mean)














CAR
L363
K562
MM1S
K562

















Donor
mock
92.53
92.80
90.70
92.33



7
transfected








T cells








BC30_v3
46.00
90.40
34.00
89.83




P5AC1_v2
50.50
90.73
35.17
89.40




P5AC1_v3
60.20
89.97
43.03
89.53




PC1_v3
49.43
89.67
37.33
88.97




PC1C12_v2
40.23
88.50
22.53
87.53




PC1C12_v3
81.03
91.30
71.70
89.83




COM22_v3
67.87
90.00
52.97
89.20




P6AP_v2
57.33
89.93
32.87
87.10




P6AP_v3
66.37
91.60
46.35
94.00
















TABLE 7D







Cytotoxicity Data, Donor 7

















Ratio to Mock















BCMA+/BCMA−
transfected T cells
Cell lysis















CAR
L363
MM1S
L363
MM1S
L363
MM1S

















Donor 7
mock transfected
99.71
98.23
1
1
0.0
0.0



T cells









BC30_v3
50.88
37.85
0.51031598
0.38529434
49.0
61.5



P5AC1_v2
55.66
39.34
0.55818001
0.40044688
44.2
60.0



P5AC1_v3
66.91
48.06
0.67106507
0.48929577
32.9
51.1



PC1_v3
55.13
41.96
0.55288988
0.4271896
44.7
57.3



PC1C12_v2
45.46
25.74
0.45592406
0.26206149
54.4
73.8



PC1C12_v3
88.76
79.81
0.89010798
0.81251777
11.0
18.7



COM22_v3
75.41
59.38
0.7562472
0.60448985
24.4
39.6



P6AP_v2
63.75
37.73
0.63934647
0.38413929
36.1
61.6



P6AP_v3
72.45
49.31
0.7266149
0.50196463
27.3
49.8
















TABLE 7E







Cytotoxicity Data, Donor 8









Viability (mean)













CAR
L363
K562
MM1S
K562
















Donor 8
mock transfected
93.97
91.13
95.97
88.07



T cells



BC30_v3
67.97
86.80
46.40
78.87



P5AC1_v2
69.80
85.37
47.13
79.17



P5AC1_v3
77.90
88.77
62.70
84.40



PC1_v3
61.67
86.60
41.67
78.97



PC1C12_v2
62.43
85.27
35.27
78.20



PC1C12_v3
85.17
85.27
78.87
77.77



COM22_v3
76.70
87.87
56.40
84.50



P6AP_v2
77.23
84.90
61.47
83.47



P6AP_v3
83.23
85.67
72.57
84.63



cell lines
95.20
94.97
96.97
94.20
















TABLE 7F







Cytotoxicity Data, Donor 8

















Ratio to Mock















BCMA+/BCMA−
transfected T cells
Cell lysis















CAR
L363
MM1S
L363
MM1S
L363
MM1S

















Donor 8
mock transfected
1.03
0.95
1
1
0.0
0.0



T cells









BC30_v3
0.78
0.59
0.75941589
0.61953757
24.1
38.0



P5AC1_v2
0.82
0.60
0.79299515
0.62694429
20.7
37.3



P5AC1_v3
0.88
0.74
0.85112036
0.78229085
14.9
21.8



PC1_v3
0.71
0.53
0.69061501
0.5556331
30.9
44.4



PC1C12_v2
0.73
0.45
0.7101346
0.47489852
29.0
52.5



PC1C12_v3
1.00
1.01
0.96871004
1.06793091
3.1
−6.8



COM22_v3
0.87
0.67
0.84659295
0.70285469
15.3
29.7



P6AP_v2
0.91
0.74
0.88226799
0.77547847
11.8
22.5



P6AP_v3
0.97
0.86
0.94229927
0.9028984
5.8
9.7



cell lines
1.00
1.03
0.97223038
1.08396365
2.8
−8.4
















TABLE 7G







Cytotoxicity Data, Donor 9









Viability (mean)













CAR
L363
K562
MM1S
K562
















Donor 9
mock transfected
86.3
87.8
69.6
86.5



T cells



BC30_v3
27.1
86.6
16.0
86.6



P5AC1_v2
31.9
87.9
21.0
87.2



P5AC1_v3
46.9
85.1
36.3
84.0



PC1_v3
27.8
85.3
25.4
85.0



PC1C12_v2
29.3
88.7
15.0
86.0



COM22_v3
49.0
88.8
35.7
87.5



P6AP_v2
41.4
85.7
22.8
84.0



P6AP_v3
56.4
84.3
44.9
84.4



Cell lines
92.3
91.7
83.5
91.8
















TABLE 7H







Cytotoxicity Data, Donor 9

















Ratio to Mock















BCMA+/BCMA−
transfected T cells
Cell lysis















CAR
L363
MM1S
L363
MM1S
L363
MM1S

















Donor 9
mock transfected
0.98216319
0.80469954
1
1
0
0



T cells









BC30_v3
0.31331794
0.18444359
0.31900802
0.22920802
68.10
77.08



P5AC1_v2
0.3631539
0.24111578
0.36974905
0.29963455
63.03
70.04



P5AC1_v3
0.55133229
0.43231441
0.56134489
0.53723706
43.87
46.28



PC1_v3
0.32551778
0.29831439
0.33142942
0.37071525
66.86
62.93



PC1C12_v2
0.3298272
0.17473847
0.3358171
0.21714748
66.42
78.29



COM22_v3
0.55159475
0.40746382
0.56161212
0.50635523
43.84
49.36



P6AP_v2
0.48289269
0.27092424
0.49166238
0.33667751
50.83
66.33



P6AP_v3
0.66903915
0.53199052
0.68118939
0.66110454
31.88
33.89



Cell lines
1.00690909
0.90889292
1.02519531
1.1294811
−2.52
−12.95
















TABLE 8A







IFNγ Production (pg/mL), Donor 6


Donor 6










CAR
pg/ml















mock transfected T cells
Tcells alone
155.1



BCMA_BC30_v3 (18)

654.71



P5AC1_v2

174.035



P5AC1_v3

61.215



PC1_v3

255.045



PC1C12_v2

481.595



PC1C12_v3

463.08



COM22_v3

2996.305



P6AP_v2

1294.055



P6AP_v3

500.435



mock transfected T cells
T cells PMA IONO
81654.2



BCMA_BC30_v3 (18)

49368.7



P5AC1_v2

49102.7



P5AC1_v3

66837.7



PC1_v3

70798.2



PC1C12_v2

56402.2



PC1C12_v3

121954.7



COM22_v3

125878.7



P6AP_v2

73577.2



P6AP_v3

51242.7



mock transfected T cells
T cells K562
−83.215



BCMA_BC30_v3 (18)

265.565



P5AC1_v2

−10.05



P5AC1_v3

36.475



PC1_v3

−74.04



PC1C12_v2

344.72



PC1C12_v3

583.99



COM22_v3

610.97



P6AP_v2

40.66



P6AP_v3

36.775



mock transfected T cells
T cells MM1S
660.33



BCMA_BC30_v3 (18)

8004.42



P5AC1_v2

5667.72



P5AC1_v3

2619.735



PC1_v3

6152.67



PC1C12_v2

8526.27



PC1C12_v3

1405.945



COM22_v3

3330.27



P6AP_v2

5436.27



P6AP_v3

3881.115



mock transfected T cells
T cells L363
1287.38



BCMA_BC30_v3 (18)

6363.72



P5AC1_v2

3116.725



P5AC1_v3

2720.52



PC1_v3

6661.97



PC1C12_v2

9478.72



PC1C12_v3

1707.885



COM22_v3

2397.83



P6AP_v2

5911.97



P6AP_v3

3470.38

















TABLE 8B







IFNγ Production (pg/mL), Donor 7


Donor 7










CAR
pg/ml















mock transfected T cells
Tcells alone
−3.1



BCMA_BC30_v3 (18)

64.1



P5AC1_v2

−18.0



P5AC1_v3

−73.0



PC1_v3

6.1



PC1C12_v2

156.5



PC1C12_v3

100.1



COM22_v3

182.9



P6AP_v2

564.7



P6AP_v3

107.0



mock transfected T cells
T cells PMA IONO
44970.8



BCMA_BC30_v3 (18)

32725.3



P5AC1_v2

27476.6



P5AC1_v3

13100.5



PC1_v3

40824.4



PC1C12_v2

39884.0



PC1C12_v3

30245.2



COM22_v3

62690.4



P6AP_v2

69923.2



P6AP_v3

88578.4



mock transfected T cells
T cells MM1S
29.9



BCMA_BC30_v3 (18)

4662.6



P5AC1_v2

3420.3



P5AC1_v3

1173.7



PC1_v3

2478.5



PC1C12_v2

5314.6



PC1C12_v3

809.9



COM22_v3

1344.6



P6AP_v2

3020.3



P6AP_v3

2166.7



mock transfected T cells
T cells L363
15.6



BCMA_BC30_v3 (18)

2360.2



P5AC1_v2

2576.3



P5AC1_v3

582.7



PC1_v3

1723.3



PC1C12_v2

2962.9



PC1C12_v3

136.6



COM22_v3

467.4



P6AP_v2

2081.4



P6AP_v3

1119.0



mock transfected T cells
T cells K562
−80.5



BCMA_BC30_v3 (18)

−127.2



P5AC1_v2

−124.4



P5AC1_v3

−47.9



PC1_v3

−93.6



PC1C12_v2

21.8



PC1C12_v3

−55.4



COM22_v3

−36.1



P6AP_v2

83.8



P6AP_v3

83.8



mock transfected T cells

335.1



BCMA_BC30_v3 (18)
T cells Daudi
7794.8



P5AC1_v2

8093.7



P5AC1_v3

3870.6



PC1_v3

6068.9



PC1C12_v2

10190.2



PC1C12_v3

1638.8



COM22_v3

4287.6



P6AP_v2

6971.6



P6AP_v3

5280.0

















TABLE 8C







IFN-γ Production (pg/mL), Donor 8


Donor 8










CAR
pg/ml















mock transfected T cells
Tcells alone
−697.44



BCMA_BC30_v3 (18)

−660.92



P5AC1_v2

−603.38



P5AC1_v3

−543.44



PC1_v3

−552.22



PC1C12_v2

−399.26



PC1C12_v3

−652.73



COM22_v3

−530.09



P6AP_v2

17.24



P6AP_v3

−289.82



mock transfected T cells
T cells PMA IONO
37206.73



BCMA_BC30_v3 (18)

53311.73



P5AC1_v2

57732.14



P5AC1_v3

52577.56



PC1_v3

48925.48



PC1C12_v2

38310.06



PC1C12_v3

71881.73



COM22_v3

61941.73



P6AP_v2

82339.64



P6AP_v3

63337.14



mock transfected T cells
T cells MM1S
−684.65



BCMA_BC30_v3 (18)

2976.34



P5AC1_v2

2727.71



P5AC1_v3

769.05



PC1_v3

2682.98



PC1C12_v2

5019.05



PC1C12_v3

−198.04



COM22_v3

1155.19



P6AP_v2

2945.65



P6AP_v3

671.21



mock transfected T cells
T cells L363
−664.74



BCMA_BC30_v3 (18)

2934.77



P5AC1_v2

2342.50



P5AC1_v3

579.85



PC1_v3

2232.65



PC1C12_v2

3676.59



PC1C12_v3

−303.86



COM22_v3

695.72



P6AP_v2

1612.74



P6AP_v3

311.07



mock transfected T cells
T cells K562
−672.42



BCMA_BC30_v3 (18)

−583.71



P5AC1_v2

−631.02



P5AC1_v3

−650.83



PC1_v3

−615.50



PC1C12_v2

−501.18



PC1C12_v3

−615.17



COM22_v3

−596.02



P6AP_v2

−393.94



P6AP_v3

−476.71

















TABLE 8D







IFN-γ Production (pg/mL), Donor 9


Donor 9










CAR
pg/ml















mock transfected T cells
Tcells alone
93.2



BCMA_BC30_v3 (18)

1225.2



P5AC1_v2

1344.5



P5AC1_v3

632.3



PC1_v3

2745.7



PC1C12_v2

48.1



COM22_v3

2656.5



P6AP_v2

566.5



P6AP_v3

−335.8



mock transfected T cells
T cells PMA IONO
12505.8



BCMA_BC30_v3 (18)

12312.2



P5AC1_v2

10607.5



P5AC1_v3

12014.7



PC1_v3

12829.9



PC1C12_v2

13829.5



COM22_v3

13489.5



P6AP_v2

13182.1



P6AP_v3

13506.3



mock transfected T cells
T cells MM1S
1006.4



BCMA_BC30_v3 (18)

2376.8



P5AC1_v2

−359.5



P5AC1_v3

97.8



PC1_v3

290.1



PC1C12_v2

752.7



COM22_v3

−601.0



P6AP_v2

−304.1



P6AP_v3

−394.9



mock transfected T cells
T cells L363
−228.2



BCMA_BC30_v3 (18)

3000.2



P5AC1_v2

2314.0



P5AC1_v3

1646.4



PC1_v3

−15.4



PC1C12_v2

2796.5



COM22_v3

320.6



P6AP_v2

−163.0



P6AP_v3

−233.9



mock transfected T cells
T cells K562
−227.9



BCMA_BC30_v3 (18)

2027.5



P5AC1_v2

3928.4



P5AC1_v3

300.2



PC1_v3

74.9



PC1C12_v2

1835.7



COM22_v3

45.0



P6AP_v2

51.4



P6AP_v3

158.3

















TABLE 9A







Degranulation Assay Results, Donor 10











%



MFI
CD107a+


Donor 10
CD107a+
(in CD8+)













LT alone
mock transfected T cells
82.2
1.95



26859 P5AC1-V2
83.8
1.47



26868 PC1C12-V2
94.2
3.21



26871 COM22-V2
107
5.96


PMA Iono
mock transfected T cells
5933
99



26859 P5AC1-V2
5863
99



26868 PC1C12-V2
6366
99.4



26871 COM22-V2
6149
99


MM1S
mock transfected T cells
211
16.5



26859 P5AC1-V2
1377
74.4



26868 PC1C12-V2
1760
79.1



26871 COM22-V2
1470
76.5


H929
mock transfected T cells
141
6.09



26859 P5AC1-V2
1026
65.4



26868 PC1C12-V2
1262
71.1



26871 COM22-V2
784
59.2


L363
mock transfected T cells
153
6.48



26859 P5AC1-V2
793
60.1



26868 PC1C12-V2
1054
67.3



26871 COM22-V2
827
61.7


MM1S GFP LUC
mock transfected T cells
187
9.88



26859 P5AC1-V2
1228
70.5



26868 PC1C12-V2
1476
74.9



26871 COM22-V2
1095
68.5


H929 GFP LUC
mock transfected T cells
153
9.48



26859 P5AC1-V2
1648
77.8



26868 PC1C12-V2
1960
84



26871 COM22-V2
1029
69.4


L363 GFP LUC
mock transfected T cells
104
3.06



26859 P5AC1-V2
753
60.7



26868 PC1C12-V2
873
64.6



26871 COM22-V2
766
61.1


KMS12BM GFP LUC
mock transfected T cells
91.3
2.67



26859 P5AC1-V2
945
67.2



26868 PC1C12-V2
1192
71.2



26871 COM22-V2
961
67.2


K562
mock transfected T cells
127
6.06



26859 P5AC1-V2
136
9.1



26868 PC1C12-V2
119
9.49



26871 COM22-V2
135
9.55
















TABLE 9B







Degranulation Assay Results, Donor 11











%



MFI
CD107a+


Donor 11
CD107a+
(in CD8+)













LT alone
mock transfected T cells
69.9
0.57



26859 P5AC1-V2
68.3
0.62



26868 PC1C12-V2
67.2
0.88



26871 COM22-V2
80.9
3.95


PMA Iono
mock transfected T cells
5511
91.7



26859 P5AC1-V2
5360
97.4



26868 PC1C12-V2
4741
96.1



26871 COM22-V2
5066
95.7


KMS12BM GFP LUC
mock transfected T cells
77.8
1.81



26859 P5AC1-V2
1304
68.3



26868 PC1C12-V2
650
45.5



26871 COM22-V2
986
62.5


H929 GFP LUC
mock transfected T cells
73
1.04



26859 P5AC1-V2
738
49.6



26868 PC1C12-V2
428
30.9



26871 COM22-V2
468
35.5


MM1S
mock transfected T cells
121
2.67



26859 P5AC1-V2
854
52



26868 PC1C12-V2
399
26.4



26871 COM22-V2
486
33.4


K562
mock transfected T cells
125
3.08



26859 P5AC1-V2
140
3.35



26868 PC1C12-V2
123
1.84



26871 COM22-V2
161
4.11
















TABLE 9C







Degranulation Assay Results, Donor 12











%



MFI
CD107a+


Donor 11
CD107a+
(in CD8+)













LT alone
mock transfected T cells
69.9
0.57



26859 P5AC1-V2
68.3
0.62



26868 PC1C12-V2
67.2
0.88



26871 COM22-V2
80.9
3.95


PMA Iono
mock transfected T cells
5511
91.7



26859 P5AC1-V2
5360
97.4



26868 PC1C12-V2
4741
96.1



26871 COM22-V2
5066
95.7


KMS12BM GFP LUC
mock transfected T cells
77.8
1.81



26859 P5AC1-V2
1304
68.3



26868 PC1C12-V2
650
45.5



26871 COM22-V2
986
62.5


H929 GFP LUC
mock transfected T cells
73
1.04



26859 P5AC1-V2
738
49.6



26868 PC1C12-V2
428
30.9



26871 COM22-V2
468
35.5


MM1S
mock transfected T cells
121
2.67



26859 P5AC1-V2
854
52



26868 PC1C12-V2
399
26.4



26871 COM22-V2
486
33.4


K562
mock transfected T cells
125
3.08



26859 P5AC1-V2
140
3.35



26868 PC1C12-V2
123
1.84



26871 COM22-V2
161
4.11
















TABLE 10





IFN gamma release assay results, Donor 10


Donor 10


















mock transfected T cells
T cells alone
871.8
pg/mL


pCLS26859 CAR_BCMA_P5AC1_v2

1466.2
pg/mL


pCLS26868 CAR_BCMA_PC1C12_v2

1172.2
pg/mL


pCLS26871 CAR_BCMA_COM22_v2

1873.1
pg/mL


mock transfected T cells
MM1S LucGFP
1436.5
pg/mL


pCLS26859 CAR_BCMA_P5AC1_v2

12208.4
pg/mL


pCLS26868 CAR_BCMA_PC1C12_v2

13695.3
pg/mL


pCLS26871 CAR_BCMA_COM22_v2

10784.1
pg/mL


mock transfected T cells
MM1S
5329.0
pg/mL


pCLS26859 CAR_BCMA_P5AC1_v2

6060.3
pg/mL


pCLS26868 CAR_BCMA_PC1C12_v2

6776.1
pg/mL


pCLS26871 CAR_BCMA_COM22_v2

7827.0
pg/mL


mock transfected T cells
H929 LucGFP
754.2
pg/mL


pCLS26859 CAR_BCMA_P5AC1_v2

16589.9
pg/mL


pCLS26868 CAR_BCMA_PC1C12_v2

15989.7
pg/mL


pCLS26871 CAR_BCMA_COM22_v2

14410.4
pg/mL


mock transfected T cells
H929
809.8
pg/mL


pCLS26859 CAR_BCMA_P5AC1_v2

18072.7
pg/mL


pCLS26868 CAR_BCMA_PC1C12_v2

17948.1
pg/mL


pCLS26871 CAR_BCMA_COM22_v2

14437.3
pg/mL


mock transfected T cells
L363 LucGFP
1184.5
pg/mL


pCLS26859 CAR_BCMA_P5AC1_v2

11556.9
pg/mL


pCLS26868 CAR_BCMA_PC1C12_v2

13254.5
pg/mL


pCLS26871 CAR_BCMA_COM22_v2

11384.1
pg/mL


mock transfected T cells
L363
1777.3
pg/mL


pCLS26859 CAR_BCMA_P5AC1_v2

15685.1
pg/mL


pCLS26868 CAR_BCMA_PC1C12_v2

14929.1
pg/mL


pCLS26871 CAR_BCMA_COM22_v2

14995.7
pg/mL


mock transfected T cells
L363 LucGFP
1184.5
pg/mL


pCLS26859 CAR_BCMA_P5AC1_v2

11556.9
pg/mL


pCLS26868 CAR_BCMA_PC1C12_v2

13254.5
pg/mL


pCLS26871 CAR_BCMA_COM22_v2

11384.1
pg/mL


mock transfected T cells
KMS12BM LucGFP
1283.2
pg/mL


pCLS26859 CAR_BCMA_P5AC1_v2

9073.3
pg/mL


pCLS26868 CAR_BCMA_PC1C12_v2

10060.6
pg/mL


pCLS26871 CAR_BCMA_COM22_v2

10687.2
pg/mL


mock transfected T cells
K562
691.6
pg/mL


pCLS26859 CAR_BCMA_P5AC1_v2

684.1
pg/mL


pCLS26868 CAR_BCMA_PC1C12_v2

904.2
pg/mL


pCLS26871 CAR BCMA COM22 v2

969.0
pg/mL









Example 3
BCMA Specific CAR-T Cells Induce Tumor Regression in MM1.S Tumor Model

This example illustrates treatment of tumors with BCMA specific CAR-T cells using the MM1.S tumor model.


In vivo efficacy study of BCMA specific CAR-T cells was performed with MM1.S, expressing luciferase and GFP, orthotopic model. Five million MM1.S Luc2AGFP cells were injected intravenously through the tail vein into 6-8 weeks old female Nod/Scid/IL2Rg−/− (NSG) animals. Intraperitoneal injection of D-luciferin (Regis Technologies, Morton Grove, IL) (200 uL per animal at 15 mg/mL), followed by anesthesia with isofluorane and subsequent whole body bioluminescence imaging (BLI) enable monitoring of tumor burden. Bioluminescent signals emitted by the interaction between luciferase expressed by the tumor cells and luciferin were captured by imaging using an IVIS Spectrum CT (Perkin Elmer, MA) and quantified as total flux (photons/sec) using Living Image 4.4 (Caliper Life Sciences, Alameda, CA).


Three different BCMA specific CAR-T cells were used in this study: T cells expressing the BCMA specific CAR constructs P5AC1-V2, PC1C12-V2, or COM22-V2 (see, Table 5 above). Non-transduced control T cells were used as the negative control. All T cells were engineered to be TCRα deficient.


When the total flux reached an average of 45E6 for all animals (day 20 post tumor implant), the animals were randomized into four groups. A single dose of human either BCMA specific CAR-T cells or non-transduced control T cells was administered through bolus tail vein injection. Animals were terminated when they exhibit hindlimb paralysis or a 20% loss of body weight, an endpoint for MM1.S orthotopic models.


Results of this study are summarized in FIG. 1. In FIG. 1, total flux [p/s] represents tumor progression. Treatment with BCMA specific CAR-T cells (triangles, diamonds, squares) resulted in lower total flux as compared to the negative control (circles). Thus, treatment with BCMA specific CAR-T cells inhibited tumor progression as compared to the negative control.


These results demonstrate BCMA specific CAR-T cells are effective to induce tumor regression.


Example 4
Treatment of Multiple Myeloma with BCMA Specific CAR-T Cells

This example illustrates treatment of multiple myeloma with BCMA specific CAR-T cells using the Molp8 orthotopic model.


In vivo efficacy study of BCMA specific CAR-T cells was performed with Molp8, expressing luciferase and GFP, orthotopic model. Two million Molp8 Luc2AGFP cells were injected intravenously through the tail vein into 6-8 weeks old female NSG animals. Intraperitoneal injection of D-luciferin (Regis Technologies, Morton Grove, IL) (200 uL per animal at 15 mg/mL), followed by anesthesia with isofluorane and subsequent whole body bioluminescence imaging (BLI) enable monitoring of tumor burden. Bioluminescent signals emitted by the interaction between luciferase expressed by the tumor cells and luciferin were captured by imaging using an IVIS Spectrum CT (Perkin Elmer, MA) and quantified as total flux (photons/sec) using Living Image 4.4 (Caliper Life Sciences, Alameda, CA).


When the total flux reached an average of 30E6 for all animals (day 8 post tumor implant), the animals were randomized into three groups. Each group was administered one of the following cells: 1) non-transduced T cells TCR KO (“TCR KO”) used as a control, 2) BCMA specific CAR-T cells expressing P5AC1-V2.1 (“P5AC1 V2 R2 TCR KO”), or 3) BCMA specific CAR-T cells expressing P5AC1-V2 and the RQR8 suicide polypeptide (“P5AC1 V2 RQR8 TCR KO”). All of cells 1-3 are TCRα deficient. The BCMA specific CAR-T cells were prepared as described in example above. BCMA specific CAR constructs P5AC1-V2.1 and P5AC1-V2 are shown in Table 5 above. A single dose of 3 million control (TCR KO) or BCMA specific CAR-T (P5AC1 V2 R2 TCR KO or P5AC1 V2 RQR8 TCR KO) cells were administered through bolus tail vein injection. Animals were terminated when they lose more than 15% of total body weight, an endpoint for Molp8 orthotopic models.


Results from the study are summarized in FIG. 2. A single dose of 3 million P5AC1 R2 TCRKO BCMA specific CAR-T cells (squares) or P5AC1 RQR8 TCRKO CAR-T cells (triangles) BCMA specific CAR-T cells resulted in lower total flux from days 10-35 post tumor implant as compared to the negative control (circles) (FIG. 2). Thus, treatment with BCMA specific CAR-T cells inhibited tumor progression as compared to the negative control.


These results demonstrate BCMA specific CAR-T cells are effective to inhibit tumor progression.


Example 5
Treatment of Multiple Myeloma with BCMA Specific CAR-T Cells

This example illustrates the therapeutic activity of BCMA specific CAR-T cells in orthotopic mouse models of multiple myeloma.


Two humanized mouse models were used to evaluate the efficacy of BCMA specific CAR-T cells against human myeloma cell lines expressing BCMA. Six (6) to eight (8) week old female Nod/Scid IL2rg−/− (NSG) mice were purchased from the Jackson Laboratories. All animals were housed in a pathogen free vivarium facility at Rinat and experiments were conducted according to the protocols in accordance with the Institutional Animal Care and Use Committee (IACUC) guidelines.


The MM1.S and Molp-8 cell lines were purchased from the American Type Culture Collection (ATCC.org) and the Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH (DSMZ.de). Cell lines were engineered to express a Luc-GFP fusion protein using lentiviral particles (amsbio). Cells were cultured in RPMI 1640 medium with L-glutamine supplemented with either 10% fetal calf serum for MM1.S or with 20% FCS for Molp-8 cells at 37° C. in 5% carbon dioxide (CO2). Cells growing in an exponential growth phase were harvested and used for tumor inoculation.


Therapeutic BCMA specific CAR-T cells were produced as described. Healthy human donor cells, peripheral blood mononuclear cells (PBMC) or purified pan-T cells, are activated and transduced with lentiviral particles encoding a BCMA specific CAR and RQR8 driven by EF-1a promoter. Three different BCMA specific CARs were used in this study: P5AC1-V2, PC1C12-V2 and COM22-V2 (see, Table 5 above). T cells were gene edited for deletion of the TCRα gene. Cells were cultured for 14 to 17 days and then cryopreserved in 90% FCS/10% DMSO. For T cell injection, T cells were rapidly thawed in a 37° C. waterbath and washed twice with RPMI 1640 medium containing 25 mM Hepes. Cells were injected in 0.2 ml RPMI 1640 with 25 mM Hepes into the tail vein of tumor-bearing animals.


NSG mice were irradiated with 1 Gy total body irradiation (RAD Source Technologies) one day prior to tumor cell inoculation. 5×106 MM1.S/Luc2-EGFP cells or 2×106 Molp-8/Luc2-EGFP cells were injected into the tail vein in 0.1 ml of phosphate-buffered saline (PBS). Tumor burden was measured twice weekly using bioluminescence imaging. Mice were injected with 3 ug D-Luciferin dissolved in 0.2 ml PBS and anesthetized using isofluorane. 7 minutes after injection animals were imaged using a Perkin Elmer IVIS Spectrum camera system. The total body luminescence with the exception of the mouse tail was measured and tumor burden is reported as total flux (photons per second). Tumors were allowed to establish until exponential growth occurred. Animals were randomized into treatment groups based on total flux and treated with BCMA specific CAR-T cells or untransduced control T cells from the same donor. The effect of CAR-T treatment was assessed twice weekly using bioluminescence imaging and body weight measurements. The study endpoint was reached when the first animal exhibited end-stage disease as indicated by body weight loss (>20% of initial body weight), hindleg paralysis, or other signs of animal distress. Statistical analysis was performed using GraphPad Prism 6. Repeated measures one-way ANOVA with Tukey's correction was used to compare anti-tumor efficacy between all groups. P<0.05 was considered significant.


Results are summarized in Table 11 (MM1.S) and Table 12 (Molp-8) below (log10 values of total flux in photons per second +/−SEM). A suboptimal CAR-T cell dose was used to compare BCMA specific CAR-T cells having different scFvs. The BCMA specific CAR-T cell groups are P5AC1-V2, PC1C12-V2 and COM22-V2 (see, Table 5 above). In the MM1.S model, 3.5×106 CAR-expressing T cells were injected on day 17 after tumor implantation. In the Molp8 model, 4×106 CAR-expressing T cells were injected on day 7 after tumor implantation. Transduction efficiencies ranged from 19% to 29% for BCMA specific CAR-T cells dosed in MM1.S mouse model and 31% to 36% for BCMA specific CAR-T cells dosed in Molp8 mouse model. An equivalent total dose of untransduced T cells was used for the control group. The control T cell-treated group exhibited progressive tumor growth until the study endpoint was reached at day 35 for MM1.S and day 23 for Molp8. Statistical analysis of the tumor burden using the RM-ANOVA test with Dunnets correction showed that in all three BCMA specific CAR-T treated groups, tumor burden was significantly lower compared to the tumor burden in the control group (p<0.01) (Tables 11 and 12). For example, in the MM1.S tumor model, mean total flux in animals treated with P5AC1-V2 BCMA specific CAR-T cells was 6.44 log 10 photons/s at day 25, compared to 9.22 log 10 photons/s in animals given control T cells (Table 11). At day 35 post tumor implantation, mean total flux in animals treated with P5AC1-V2 BCMA specific CAR-T cells was 6.82 log 10 photons/s, compared to 10.18 log 10 photons/s in animals given control T cells (Table 11). In the Molp8 tumor model, mean total flux in animals treated with P5AC1-V2 BCMA specific CAR-T cells was 7.88 log 10 photons/s at day 14, compared to 9.39 log 10 photons/s in animals given control T cells (Table 12). At day 23 post tumor implantation, mean total flux in animals treated with P5AC1-V2 BCMA specific CAR-T cells was 9.29 log 10 photons/s, compared 10.37 log 10 photons/s in animals given control T cells (Table 12).


These results demonstrate that treatments with BCMA specific CAR-T cells are effective to induce tumor regression.









TABLE 11





Tumor bioluminescence measurements


of orthotopic MM1.S tumor model







Group 1: Control T cells












Days after tumor
Mean total flux





implantation
(log10 photons/s)
SEM
N







17
7.84
0.04
10



21
8.16
0.19
10



25
9.22
0.02
10



28
9.53
0.02
10



32
9.96
0.05
10



35
10.18
0.07
10
















Days after tumor
Mean total flux





implantation
(log10)
SEM
N











Group 2: P5AC1-V2 BCMA specific CAR-T cells












17
7.84
0.03
10



21
8.14
0.11
10



25
6.44
0.16
10



28
6.51
0.09
10



32
6.72
0.10
10



35
6.82
0.09
10







Group 3: PC1C12-V2 BCMA specific CAR-T cells












17
7.86
0.04
10



21
8.56
0.15
10



25
6.85
0.26
10



28
6.41
0.30
10



32
6.64
0.29
10



35
6.62
0.30
10







Group 4: COM22-V2 BCMA specific CAR-T cells












17
7.84
0.04
10



21
8.49
0.10
10



25
6.55
0.08
10



28
6.40
0.09
10



32
6.98
0.14
10



35
6.87
0.22
10

















TABLE 12





Tumor bioluminescence measurements


of orthotopic Molp-8 tumor model




















Days after tumor
Mean total flux





implantation
(log10)
SEM
N











Group 1: T cell only control












0
5.80
0.02
10



7
7.48
0.04
10



10
8.24
0.06
10



14
9.39
0.04
10



17
9.88
0.03
10



21
10.12
0.04
10



23
10.37
0.03
10







Group 2: P5AC1-V2 BCMA specific CAR-T cells












0
5.80
0.02
10



7
7.48
0.04
10



10
8.41
0.05
10



14
7.88
0.18
10



17
7.39
0.21
10



21
7.98
0.12
10



23
8.29
0.11
10







Group 3: PC1C12-V2 BCMA specific CAR-T cells












0
5.80
0.02
10



7
7.51
0.04
10



10
8.31
0.07
10



14
7.07
0.21
10



17
6.51
0.15
10



21
7.37
0.13
10



23
7.75
0.13
10











Group 4: COM22-V2 BCMA specific CAR-T cells












Days after tumor
Mean total flux





implantation
(log10
SEM
N







0
5.80
0.02
10



7
7.49
0.04
10



10
8.39
0.07
10



14
7.78
0.16
10



17
7.51
0.21
10



21
7.89
0.17
10



23
8.32
0.14
10










Example 6
Treatment of Multiple Myeloma with TCRα/dCK Knockout BCMA Specific CAR-T Cells

This example illustrates the therapeutic activity of BCMA specific CAR-T cells in orthotopic mouse models of multiple myeloma.


A humanized mouse model was used to evaluate the efficacy of BCMA CAR-T cells against human myeloma cell lines expressing BCMA. 6 to 8 week old female Nod/Scid IL2rg−/− (NSG) mice were purchased from the Jackson Laboratories. All animals were housed in a pathogen free vivarium facility at Rinat and experiments were conducted according to the protocols in accordance with the Institutional Animal Care and Use Committee (IACUC) guidelines.


The MM1.S cell lines was purchased from the American Type Culture Collection (ATCC.org). The Cell line was engineered to express a Luc-GFP fusion protein using lentiviral particles (amsbio) and gene edited using TALEN nucleases to disable the deoxycytidine (dCK) gene. Cells were cultured in RPMI 1640 medium with L-glutamine supplemented with 10% fetal calf serum at 37° C. in 5% carbon dioxide (CO2). Cells growing in an exponential growth phase were harvested and used for tumor inoculation.


Therapeutic CAR-T cells were produced as described. Healthy human donor cells, peripheral blood mononuclear cells (PBMC) or purified pan-T cells, are activated and transduced with lentiviral particles encoding for BCMA scFV, CD8 hinge, CD8 transmembrane, 41BB and CD3ζ with RQR8 genes under the control of the EF-1a promoter. The BCMA specific CAR-T cells were gene edited to delete the TCRα and/or the dCK gene using a combination of TCRα and dCK TALEN, or TCRα TALEN alone. Transduction efficiency for all T cells was 70%. TCRα knockout T cells were purified using magnetic selection kits for CD3-positive cells (Miltenyi); dCK knockout T cells were purified by expansion in the presence of 0.5 μM clofarabine. Cells were cultured for 14 to 17 days and then cryopreserved in 90% FCS/10% DMSO. For T cell injection, T cells were rapidly thawed in a 37° C. water bath and washed twice with RPMI 1640 medium containing 25 mM Hepes. For treatment, T cells were injected in 0.2 ml RPMI 1640 with 25 mM Hepes into the tail vein of tumor-bearing animals.


For the mouse tumor model, animals were injected with MM1.S/dCK KO tumor cells. Mice were then treated with 2.5×106 BCMA specific CAR-T cells on day 18 post tumor cell implantation. An equivalent dose of untransduced T cells that received TCRα and dCK TALEN was used as control. Animals were treated with clofarabine or vehicle for five days after T cell injection.


Results: the control T cell-treated group exhibited progressive tumor growth until the study endpoint was reached at day 35 (Table 13, Group 1). Compared against control, groups treated with TCRα knockout BCMA specific CAR-T cells and vehicle exhibited a significant decrease in tumor burden (p<0.05) that was diminished upon coadministration of clofarabine (p<0.05) (Table 13, Groups 2 and 3). Tumor burden was significantly reduced in animals treated with TCRα/dCK double knockout CAR-T cells, irrespective of whether the animals received vehicle or clofarabine (p<0.05) (Table 13, Groups 4 and 5). Reduction of tumor burden in the groups receiving TCRα/dCK double knockout T cells did not differ from the group receiving TCRα single knockout T cells and vehicle (p>0.1) (Table 13, Groups 2, 4, and 5).


These results demonstrate that treatments with TCRα/dCK double knockout BCMA CAR-T cells are effective to induce tumor regression in the presence of nucleoside analog therapies such as fludarabine and clofarabine.









TABLE 13





Tumor bioluminescence measurements of nucleoside analog


therapy-resistant orthotopic MM1.S tumor model.







Group 1: TCRα/dCK KO control T cells + clofarabine












Days after T cell
Mean total flux





administration
(log10 photons/s)
SEM
N







0
7.87
0.04
10



4
8.94
0.08
10



8
9.22
0.05
10



11
9.52
0.04
10



15
10.00
0.04
10



18
10.38
0.04
10














Days after T cell
Mean total flux




administration
(log10)
SEM
N










Group 2: TCRα KO BCMA specific CAR-T cells + vehicle










0
7.86
0.04
10


4
9.28
0.07
10


8
8.58
0.12
10


11
8.04
0.14
10


15
8.14
0.15
10


18
8.24
0.15
10







Group 3: TCRα KO BCMA specific CAR-T cells + clofarabine










0
7.87
0.04
10


4
9.33
0.07
10


8
9.17
0.07
10


11
8.95
0.14
10


15
9.36
0.08
10


18
9.50
0.07
10







Group 4: TCRα/dCK KO BCMA specific CAR-T cells + vehicle










0
7.86
0.04
10


4
9.19
0.08
10


8
9.08
0.12
10


11
8.59
0.18
10


15
8.60
0.21
10


18
8.69
0.18
10







Group 5: TCRα/dCK KO BCMA specific CAR-T cells + clofarabine










0
7.87
0.04
10


4
9.26
0.09
10


8
9.07
0.10
10


11
8.51
0.14
10


15
8.42
0.21
10


18
8.49
0.18
10









Although the disclosed teachings have been described with reference to various applications, methods, kits, and compositions, it will be appreciated that various changes and modifications can be made without departing from the teachings herein and the claimed invention below. The foregoing examples are provided to better illustrate the disclosed teachings and are not intended to limit the scope of the teachings presented herein. While the present teachings have been described in terms of these exemplary embodiments, the skilled artisan will readily understand that numerous variations and modifications of these exemplary embodiments are possible without undue experimentation. All such variations and modifications are within the scope of the current teachings.


All references cited herein, including patents, patent applications, papers, text books, and the like, and the references cited therein, to the extent that they are not already, are hereby incorporated by reference in their entirety. In the event that one or more of the incorporated literature and similar materials differs from or contradicts this application, including but not limited to defined terms, term usage, described techniques, or the like, this application controls.


The foregoing description and Examples detail certain specific embodiments of the invention and describes the best mode contemplated by the inventors. It will be appreciated, however, that no matter how detailed the foregoing may appear in text, the invention may be practiced in many ways and the invention should be construed in accordance with the appended claims and any equivalents thereof.

Claims
  • 1. A method of treating a condition associated with malignant cells expressing B-cell maturation antigen (BCMA) in a subject comprising: administering to a subject in need thereof an effective amount of a pharmaceutical composition comprising an engineered immune cell expressing at the surface a BCMA-specific chimeric antigen receptor (CAR) comprising an extracellular ligand-binding domain, a first transmembrane domain, and an intracellular signaling domain and wherein the extracellular ligand-binding domain comprises a single chain Fv fragment (scFv) comprising(i) a heavy chain variable (VH) region comprising the amino acid sequence shown in SEQ ID NO: 33 and a light chain variable (VL) region comprising the amino acid sequence shown in SEQ ID NO: 34;(ii) a heavy chain variable (VH) region comprising the amino acid sequence shown in SEQ ID NO: 112 and a light chain variable (VL) region comprising the amino acid sequence shown in SEQ ID NO: 38;(iii) a heavy chain variable (VH) region comprising the amino acid sequence shown in SEQ ID NO: 72 and a light chain variable (VL) region comprising the amino acid sequence shown in SEQ ID NO: 73;(iv) a heavy chain variable (VH) region comprising the amino acid sequence shown in SEQ ID NO: 39 and a light chain variable (VL) region comprising the amino acid sequence shown in SEQ ID NO: 40;(v) a heavy chain variable (VH) region comprising the amino acid sequence shown in SEQ ID NO: 76 and a light chain variable (VL) region comprising the amino acid sequence shown in SEQ ID NO: 77;(vi) a heavy chain variable (VH) region comprising the amino acid sequence shown in SEQ ID NO: 83 and a light chain variable (VL) region comprising the amino acid sequence shown in SEQ ID NO: 84;(vii) a heavy chain variable (VH) region comprising the amino acid sequence shown in SEQ ID NO: 92 and a light chain variable (VL) region comprising the amino acid sequence shown in SEQ ID NO: 93;(viii) a heavy chain variable (VH) region comprising the amino acid sequence shown in SEQ ID NO: 25 and a light chain variable (VL) region comprising the amino acid sequence shown in SEQ ID NO: 18; or(ix) a heavy chain variable (VH) region comprising the amino acid sequence shown in SEQ ID NO: 8 and a light chain variable (VL) region comprising the amino acid sequence shown in SEQ ID NO: 80,wherein the transmembrane domain comprises a CD8α chain transmembrane domain, and wherein the intracellular signaling domain comprises a CD3ξ signaling domain and/or a 4-1BB signaling domain.
  • 2. The method of claim 1, wherein the VH region comprises the amino acid sequence shown in SEQ ID NO: 33 and the VL region comprises the amino acid sequence shown in SEQ ID NO: 34.
  • 3. The method of claim 1, wherein the VH region comprises the amino acid sequence shown in SEQ ID NO: 112 and the VL region comprises the amino acid sequence shown in SEQ ID NO: 38.
  • 4. The method of claim 1, wherein the BCMA specific CAR comprises the amino acid sequence shown in SEQ ID NO: 344.
  • 5. The method of claim 4, wherein the BCMA specific CAR comprises a CD20 epitope.
  • 6. The method of claim 5, wherein the CD20 epitope comprises the amino acid sequence shown in SEQ ID NO: 397 or SEQ ID NO: 398.
  • 7. The method of claim 1, wherein the BCMA specific CAR comprises a CD8a signal peptide having the sequence of SEQ ID NO: 318; a VH region having the sequence of SEQ ID NO: 33; a GS linker having the sequence of SEQ ID NO: 333; a VL region having the sequence of SEQ ID NO: 34; a CD20 epitope having the sequence of SEQ ID NO: 398; a CD8a hinge having the sequence of SEQ ID NO: 320; a CD8α transmembrane domain having the sequence of SEQ ID NO: 322; a 4-1BB intracellular signaling domain having the sequence of SEQ ID NO: 323; and a CD3ζ intracellular signaling domain having the sequence of SEQ ID NO: 324;wherein the BCMA specific CAR further comprises a stalk domain between the extracellular ligand-binding domain and the first transmembrane domain;wherein the BCMA specific CAR further comprises a CD20 epitope;wherein the BCMA specific CAR further comprises another extracellular ligand-binding domain that is not specific for BCMA binding;wherein the engineered immune cell further comprises another CAR that is not specific for BCMA;wherein the engineered immune cell further comprises a polynucleotide encoding a suicide polypeptide; orwherein the engineered immune cell further comprises a disruption in one or more endogenous genes, wherein the endogenous gene encodes TCRα, TCRβ, CD52, glucocorticoid receptor (GR), deoxycytidine kinase (dCK), or an immune checkpoint protein.
  • 8. The method of claim 7, wherein the stalk domain is selected from the group consisting of: a human CD8α hinge, an IgG1 hinge, and an FcγRIIIα hinge.
  • 9. The method of claim 7, wherein the CD20 epitope comprises the amino acid sequence shown in SEQ ID NO: 397 or SEQ ID NO: 398.
  • 10. The method of claim 7, wherein the endogenous gene encodes an immune checkpoint protein.
  • 11. The method of claim 7, wherein the immune checkpoint protein is selected from the group consisting of PD-1, CTLA-4, LAG3, Tim3, BTLA, BY55, TIGIT, B7H5, LAIR1, SIGLEC10 and 2B4.
  • 12. The method of claim 1, wherein the engineered immune cell is selected from the group consisting of: a T cell, a dendritic cell, a killer dendritic cell, a mast cell, an NK-cell, and a B cell;wherein the engineered immune cell is an inflammatory T-lymphocyte, a cytotoxic T-lymphocyte, a regulatory T-lymphocyte, or a helper T-lymphocyte; orwherein the engineered immune cell is an autologous immune cell or an allogeneic immune cell.
  • 13. A method of treating a condition associated with malignant cells expressing B-cell maturation antigen (BCMA) in a subject comprising: administering to a subject in need thereof an effective amount of a pharmaceutical composition comprising an engineered immune cell expressing at the surface a BCMA-specific chimeric CAR comprising an extracellular ligand-binding domain, a first transmembrane domain, and an intracellular signaling domain, wherein the extracellular ligand-binding domain comprises a single chain Fv fragment (scFv) comprising(i) a VH region comprising a VH complementarity determining region 1 (VH CDR1), a VH complementarity determining region 2 (VH CDR2), and a VH complementarity determining region 3 (VH CDR3), wherein the VH CDR1 comprises the amino acid sequence shown in SEQ ID NO: 150, 151, or 152; the VH CDR2 comprises the amino acid sequence shown in SEQ ID NO: 153 or 154; the VH CDR3 comprises the amino acid sequence shown in SEQ ID NO: 155, anda VL region comprising a VL complementarity determining region 1 (VL CDR1), a VL complementarity determining region 2 (VL CDR2), and a VL complementarity determining region 3 (VL CDR3), wherein the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO: 209; the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO: 221; the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO: 222;(ii) a VH region comprising a VH CDR1, a VH CDR2, and a VH CDR3, wherein the VH CDR1 comprises the amino acid sequence shown in SEQ ID NO: 151, 156, or 157; the VH CDR2 comprises the amino acid sequence shown in SEQ ID NO: 158 or 159; the VH CDR3 comprises the amino acid sequence shown in SEQ ID NO: 155, anda VL region comprising a VL CDR1, a VL CDR2, and a VL CDR3, wherein the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO: 209; the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO: 221; the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO: 225;(iii) a VH region comprising a VH CDR1, a VH CDR2, and a VH CDR3, wherein the VH CDR1 comprises the amino acid sequence shown in SEQ ID NO: 150, 151, or 152; the VH CDR2 comprises the amino acid sequence shown in SEQ ID NO: 187 or 188; the VH CDR3 comprises the amino acid sequence shown in SEQ ID NO: 155, anda VL region comprising a VL CDR1, a VL CDR2, and a VL CDR3, wherein the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO: 249; the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO: 221; the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO: 225;(iv) a VH region comprising a VH CDR1, a VH CDR2, and a VH CDR3, wherein the VH CDR1 comprises the amino acid sequence shown in SEQ ID NO: 150, 151, or 152; the VH CDR2 comprises the amino acid sequence shown in SEQ ID NO: 165 or 166; the VH CDR3 comprises the amino acid sequence shown in SEQ ID NO: 155, anda VL region comprising a VL CDR1, a VL CDR2, and a VL CDR3, wherein the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO: 226; the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO: 221; the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO: 227;(v) a VH region comprising a VH CDR1, a VH CDR2, and a VH CDR3, wherein the VH CDR1 comprises the amino acid sequence shown in SEQ ID NO: 150, 151, or 152; the VH CDR2 comprises the amino acid sequence shown in SEQ ID NO: 159 or 162; the VH CDR3 comprises the amino acid sequence shown in SEQ ID NO: 161, anda VL region comprising a VL CDR1, a VL CDR2, and a VL CDR3, wherein the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO: 251; the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO: 252; the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO: 253;(vi) a VH region comprising a VH CDR1, a VH CDR2, and a VH CDR3, wherein the VH CDR1 comprises the amino acid sequence shown in SEQ ID NO: 151, 156, or 157; the VH CDR2 comprises the amino acid sequence shown in SEQ ID NO: 190 or 191; the VH CDR3 comprises the amino acid sequence shown in SEQ ID NO: 161, anda VL region comprising a VL CDR1, a VL CDR2, and a VL CDR3, wherein the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO: 262; the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO: 252; the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO: 263;(vii) a VH region comprising a VH CDR1, a VH CDR2, and a VH CDR3, wherein the VH CDR1 comprises the amino acid sequence shown in SEQ ID NO: 150, 151, or 152; the VH CDR2 comprises the amino acid sequence shown in SEQ ID NO: 154 or 169; the VH CDR3 comprises the amino acid sequence shown in SEQ ID NO: 155, anda VL region comprising a VL CDR1, a VL CDR2, and a VL CDR3, wherein the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO: 271; the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO: 221; the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO: 272;(viii) a VH region comprising a VH CDR1, a VH CDR2, and a VH CDR3, wherein the VH CDR1 comprises the amino acid sequence shown in SEQ ID NO: 129, 130, or 131; the VH CDR2 comprises the amino acid sequence shown in SEQ ID NO: 139 or 140; the VH CDR3 comprises the amino acid sequence shown in SEQ ID NO: 134, anda VL region comprising a VL CDR1, a VL CDR2, and a VL CDR3, wherein the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO: 217; the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO: 210; the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO: 216; or(ix) a VH region comprising a VH CDR1, a VH CDR2, and a VH CDR3, wherein the VH CDR1 comprises the amino acid sequence shown in SEQ ID NO: 129, 130, or 131; the VH CDR2 comprises the amino acid sequence shown in SEQ ID NO: 132 or 133; the VH CDR3 comprises the amino acid sequence shown in SEQ ID NO: 137, anda VL region comprising a VL CDR1, a VL CDR2, and a VL CDR3, wherein the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO: 377; the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO: 210; the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO: 214,wherein the transmembrane domain comprises a CD8α, chain transmembrane domain, and wherein the intracellular signaling domain comprises a CD3ξ signaling domain and/or a 4-1BB signaling domain.
  • 14. The method of claim 13, wherein the extracellular ligand-binding domain comprises a single chain Fv fragment (scFv) comprising (i) a VH region comprising a VH CDR1, a VH CDR2, and a VH CDR3, wherein the VH CDR1 comprises the amino acid sequence shown in SEQ ID NO: 150, 151, or 152; the VH CDR2 comprises the amino acid sequence shown in SEQ ID NO: 153 or 154; the VH CDR3 comprises the amino acid sequence shown in SEQ ID NO: 155, anda VL region comprising a VL CDR1, a VL CDR2, and a VL CDR3, wherein the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO: 209; the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO: 221; the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO: 222.
  • 15. The method of claim 13, wherein the extracellular ligand-binding domain comprises a single chain Fv fragment (scFv) comprising a VH region comprising a VH CDR1, a VH CDR2, and a VH CDR3, wherein the VH CDR1 comprises the amino acid sequence shown in SEQ ID NO: 151, 156, or 157; the VH CDR2 comprises the amino acid sequence shown in SEQ ID NO: 158 or 159; the VH CDR3 comprises the amino acid sequence shown in SEQ ID NO: 155, anda VL region comprising a VL CDR1, a VL CDR2, and a VL CDR3, wherein the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO: 209; the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO: 221; the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO: 225.
  • 16. The method of claim 13, wherein the BCMA specific CAR comprises the amino acid sequence shown in SEQ ID NO: 344.
  • 17. The method of claim 16, wherein the BCMA specific CAR comprises a CD20 epitope.
  • 18. The method of claim 17, wherein the CD20 epitope comprises the amino acid sequence shown in SEQ ID NO: 397 or SEQ ID NO: 398.
  • 19. The method of claim 13, wherein the BCMA specific CAR comprises a CD8a signal peptide having the sequence of SEQ ID NO: 318; a VH region having the sequence of SEQ ID NO: 33; a GS linker having the sequence of SEQ ID NO: 333; a VL region having the sequence of SEQ ID NO: 34; a CD20 epitope having the sequence of SEQ ID NO: 398; a CD8a hinge having the sequence of SEQ ID NO: 320; a CD8α transmembrane domain having the sequence of SEQ ID NO: 322; a 4-1BB intracellular signaling domain having the sequence of SEQ ID NO: 323; and a CD3ζ intracellular signaling domain having the sequence of SEQ ID NO: 324;wherein the BCMA specific CAR further comprises a stalk domain between the extracellular ligand-binding domain and the first transmembrane domain;wherein the BCMA specific CAR further comprises a CD20 epitope;wherein the BCMA specific CAR further comprises another extracellular ligand-binding domain that is not specific for BCMA binding;wherein the engineered immune cell further comprises another CAR that is not specific for BCMA;wherein the engineered immune cell further comprises a polynucleotide encoding a suicide polypeptide; orwherein the engineered immune cell further comprises a disruption in one or more endogenous genes, wherein the endogenous gene encodes TCRα, TCRβ, CD52, glucocorticoid receptor (GR), deoxycytidine kinase (dCK), or an immune checkpoint protein.
  • 20. The method of claim 19, wherein the stalk domain is selected from the group consisting of: a human CD8α hinge, an IgG1 hinge, and an FcγRIIIα hinge.
  • 21. The method of claim 19, wherein the CD20 epitope comprises the amino acid sequence shown in SEQ ID NO: 397 or SEQ ID NO: 398.
  • 22. The method of claim 19, wherein the endogenous gene encodes an immune checkpoint protein.
  • 23. The method of claim 19, wherein the immune checkpoint protein is selected from the group consisting of PD-1, CTLA-4, LAG3, Tim3, BTLA, BY55, TIGIT, B7H5, LAIR1, SIGLEC10 and 2B4.
  • 24. The method of claim 13, wherein the engineered immune cell is selected from the group consisting of: a T cell, a dendritic cell, a killer dendritic cell, a mast cell, an NK-cell, and a B cell;wherein the engineered immune cell is an inflammatory T-lymphocyte, a cytotoxic T-lymphocyte, a regulatory T-lymphocyte, or a helper T-lymphocyte; orwherein the engineered immune cell is an autologous immune cell or an allogeneic immune cell.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 16/384,719, filed on Apr. 15, 2019, which is a divisional of U.S. application Ser. No. 15/085,317, filed on Mar. 30, 2016, now issued as U.S. Pat. No. 10,294,304 on May 21, 2019, which claims the benefit of U.S. Provisional Application No. 62/146,825 filed Apr. 13, 2015, U.S. Provisional Application No. 62/286,473 filed Jan. 25, 2016, and U.S. Provisional Application No. 62/301,177 filed Feb. 29, 2016, all of which are hereby incorporated by reference in their entireties.

US Referenced Citations (52)
Number Name Date Kind
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4754065 Levenson et al. Jun 1988 A
4800159 Mullis et al. Jan 1989 A
4816567 Cabilly et al. Mar 1989 A
5037743 Welch et al. Aug 1991 A
5143830 Holland et al. Sep 1992 A
5545806 Lonberg et al. Aug 1996 A
5545807 Surani et al. Aug 1996 A
5569825 Lonberg et al. Oct 1996 A
5625126 Lonberg et al. Apr 1997 A
5633425 Lonberg et al. May 1997 A
5661016 Lonberg et al. Aug 1997 A
5750373 Garrard et al. May 1998 A
5858358 June et al. Jan 1999 A
5883223 Gray Mar 1999 A
6352694 June et al. Mar 2002 B1
6534055 June et al. Mar 2003 B1
6692964 June et al. Feb 2004 B1
6867041 Berenson et al. Mar 2005 B2
6887466 June et al. May 2005 B2
6905680 June et al. Jun 2005 B2
6905681 June et al. Jun 2005 B1
6905874 Berenson et al. Jun 2005 B2
7067318 June et al. Jun 2006 B2
7083785 Browning et al. Aug 2006 B2
7144575 June et al. Dec 2006 B2
7172869 June et al. Feb 2007 B2
7175843 June et al. Feb 2007 B2
7232566 June et al. Jun 2007 B2
9243058 Armitage et al. Jan 2016 B2
9765342 Kochenderfer Sep 2017 B2
9969809 Kuo et al. May 2018 B2
10040860 Kuo et al. Aug 2018 B2
10294304 Kuo et al. May 2019 B2
10793635 Kuo Oct 2020 B2
11155630 Kuo Oct 2021 B2
11312782 Kuo et al. Apr 2022 B2
20060121005 Berenson et al. Jun 2006 A1
20080267965 Kalled et al. Oct 2008 A1
20120082661 Kalled et al. Apr 2012 A1
20130280280 Algate et al. Oct 2013 A1
20140161828 Armitage et al. Jun 2014 A1
20140288275 Moore et al. Sep 2014 A1
20150051266 Kochenderfer Feb 2015 A1
20150093401 Pule et al. Apr 2015 A1
20150284467 Lipp et al. Oct 2015 A1
20150368351 Vu et al. Dec 2015 A1
20160297885 Kuo et al. Oct 2016 A1
20180298108 Kuo et al. Oct 2018 A1
20190241669 Kuo et al. Aug 2019 A1
20200261503 Chang et al. Aug 2020 A1
Foreign Referenced Citations (47)
Number Date Country
2762497 Aug 2014 EP
3023437 May 2016 EP
3029068 Jun 2016 EP
3283520 May 2020 EP
3757128 Dec 2020 EP
2017513478 Jun 2017 JP
2017527271 Sep 2017 JP
WO-1987004462 Jul 1987 WO
WO-1999058572 Nov 1999 WO
WO-2010104949 Sep 2010 WO
WO-2010104949 Sep 2010 WO
WO 2012007576 Jan 2012 WO
WO-2012058458 May 2012 WO
WO-2012066058 May 2012 WO
WO-2013072406 May 2013 WO
WO-2013072415 May 2013 WO
WO-2013154760 Oct 2013 WO
WO-2013158856 Oct 2013 WO
WO-2013158856 Oct 2013 WO
WO-2014039523 Mar 2014 WO
WO-2014068079 May 2014 WO
WO-2014089335 Jun 2014 WO
WO-2014089335 Jun 2014 WO
WO-2014122143 Aug 2014 WO
WO-2014122144 Aug 2014 WO
WO-2014140248 Sep 2014 WO
WO-2014152177 Sep 2014 WO
WO-2014172584 Oct 2014 WO
WO-2014184143 Nov 2014 WO
WO-2014184741 Nov 2014 WO
WO-2014184744 Nov 2014 WO
WO-2014191128 Dec 2014 WO
WO-2015052536 Apr 2015 WO
WO-2015052538 Apr 2015 WO
WO-2015128653 Sep 2015 WO
WO-2015128653 Sep 2015 WO
WO-2015158671 Oct 2015 WO
WO-2015166073 Nov 2015 WO
WO-2016014565 Jan 2016 WO
WO-2016014565 Jan 2016 WO
WO-2016014789 Jan 2016 WO
WO-2016014789 Jan 2016 WO
WO-2016090320 Jun 2016 WO
WO-2016094304 Jun 2016 WO
WO-2016094304 Jun 2016 WO
WO-2016120216 Aug 2016 WO
WO 2016166630 Oct 2016 WO
Non-Patent Literature Citations (80)
Entry
Chiu et al. Hodgkin lymphoma cells express TACI and BCMA receptors and generate survival and proliferation signals in response to BAFF and April. Blood 109: 729-739, 2007.
Maia et al. Aberrant expression of functional BAFF-system receptors by malignant B-cell precursors impacts leukemia cell survival. PLoS ONE 6(6): e20787, 2011.
Novak et al. Aberrant expression of B-lymphocyte stimulator by B chronic lymphocytic leukemia cells: a mechanism for survival. Blood 100: 2973-2979, 2002.
Novak et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 103: 689-694, 2004.
Carpenter et al., “B-cell Maturation Antigen is a Promising Target for Adoptive T-cell Therapy of Multiple Myeloma,” Clin. Cancer Res., 2013, vol. 19, No. 8, p. 2048-2060.
European Office Action for European Patent Application No. 20172811.0, dated Aug. 25, 2022, 9 pages.
Extended European Search Report for European Patent Application No. 20172811.0, dated Nov. 6, 2020, 11 pages.
Sievers et al., “CARs: Beyond T cells and T cell-derived signaling domains,” Int. J. Mol. Sci. 2020, 21, 3525, 30 pages. (Apr. 5, 2012; Kalled et al.); White, C.A. et al. (2001).
White et al. (2001) “Antibody-Targeted Immunotherapy for Treatment of Malignancy,” Ann. Rev. Med. 52: 125-145.
Yang Min et al., “B-cell maturation antigen can induce NF-κb activation,” Journal of the Fourth Military Medical University, 2003, pp. 1729-1732.
Substantive Examination Adverse Report for Malaysian Application No. PI2021003979 dated Feb. 24, 2023, 7 pgs.
Examination Report for Australian Application No. 2020256365 dated Feb. 17, 2023, 3 pgs.
Abdiche et al., “Expanding the ProteOn XPR36 biosensor into a 36-ligand array expedites protein interaction analysis.” Analytical biochemistry 411.1 (2011): 139-151.
Accelrys Software, Inc: ““Abm” 0 results found”, Accelrys.com Search Tool, Aug. 10, 2018 (Aug. 10, 2018), Retrieved from the Internet: URL : ˜1ttp:i/search.accelrys .com/solr/collection 1 /browse?fq=u rl%3A%22http0/.03A%2F0io2Faccelrys.com%22&q=Abm&btnG:::Search [retrieved on Aug. 10, 2018].
Al-Lazikani, et al. “Standard conformations for the canonical structures of immunoglobulins.” Journal of molecular biology vol. 273,4 (1997): 927-48.
Atkins et al., “A case for “StopGo”: Reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go),” Cold Spring Harbor Laboratory Press 13: pp. 803-810, 2007.
Bierer, Barbara E., et al. “Cyclosporin A and FK506: molecular mechanisms of immunosuppression and probes for transplantation biology.” Current opinion in immunology 5.5 (1993): 763-773.
Bird, et al. “Single-chain antigen-binding proteins.” Science 242.4877 (1988): 423-426.
Boerner, et al. “Production of antigen-specific human monoclonal antibodies from in vitro-primed human splenocytes.” The Journal of Immunology 147.1 (1991): 86-95.
Brenner et al., NIH Public Access Author Manuscript (May 12, 2011) of “Adoptive T Cell Therapy of Cancer,” published in Current Opinion in Immunology 22(2): 251-257 (2010).
Canadian Office Action for Canadian Patent Application No. 2,925,589, dated Mar. 28, 2022, 4 pages.
Capel, et al., “Heterogeneity of human IgG Fc receptors.” Immunomethods 4.1 (1994): 25-34.
Chothia et al., “Conformations of immunoglobulin hypervariable regions,” Nature Publishing Group, vol. 342, pp. 877-883, Dec. 1989.
Cole et al., “The EBV-Hybridoma Technique and its Application to Human Lung Cancer,” Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77-96, 1985.
Dayhoff, M.O. (ed.), “A model of evolutionary change in proteins,” Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington DC vol. 5, Suppl. 3, pp. 345-358, 1978.
De Haas, M. “Fc gamma receptors of phagocytes.” J Lab Clin Med 126.4 (1995): 330-341.
Diamond, B. et al. (1984). “Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity,” PNAS 81: 5841-5844.
Donnelly and Elliott, “Nuclear Localization and Shuttling of Herpes Simplex Virus Tegument Protein VP13/14,” Journal of Virology, vol. 75, No. 6, p. 2566-2574, Mar. 2001.
Doronina et al., “Site-Specific Release of Nascent Chains from Ribosomes at a Sense Codon,” Molecular and Cellular Biology, vol. 28, No. 13, pp. 4227-4239, Jul. 2008.
Dubel et al. (2014) 9.8.3 Automated Modeling Tools In “Handbook of Therapeutic Antibodies—vol. 3 (2nd ed),” Wiley Blackwell, Weinheim (Germany) ISBN: 978-3-527-32937-3; p. 217.
Eshhar et al., “Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the [gamma] or [zeta] subunits of the immunoglobulin and T-cell receptors,” Proc Natl. Acad. Sci. USA 90(2): 720-724 (1993).
Fellouse, et al. “High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries.” Journal of molecular biology 373.4 (2007): 924-940.
Glienke et al. Advantages and applications of CAR-expressing natural killer cells. Front Pharmacol 6: 21, 2015 (7 total pages).
Guyer, Koshland, and Knopf. “Immunoglobulin binding by mouse intestinal epithelial cell receptors.” The Journal of Immunology 117.2 (1976): 587-593.
Hein, “[39] Unified approach to alignment and phylogenies.” Methods in Enzymology (1990): vol. 183, pp. 626-645.
Henderson, D. J., et al. “Comparison of the effects of FK-506, cyclosporin A and rapamycin on IL-2 production.” Immunology 73.3 (1991): 316-321.
Higgins and Sharp, “Fast and sensitive multiple sequence alignments on a microcomputer,” IRL Press, vol. 5, No. 2, pp. 151-153, 1989.
Hoogenboom, Hennie R., and Greg Winter. “By-passing immunisation: human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro.” Journal of molecular biology 227.2 (1992): 381-388.
International Search Report for International Appln. No. PCT/IB2016/051808 completed on May 24, 2016, 6 pages.
International Search Report dated Aug. 30, 2016, for PCT Application No. PCT/IB2016/051801, filed on Mar. 30, 2016, 8 pages.
Jacobsohn, DA et al. (2007). “Acute graft versus host disease,” Orphanet J Rare Dis. 2:35.
Jayasena, “Aptamers: An Emerging Class of Molecules That Rival Antibodies in Diagnostics,” Clinical Chemistry, vol. 45, No. 9, pp. 1628-1650, 1999.
Jeger, L. (1990). Klinicheskaja immunologija I allergologija, 2nd ed.; M.: Meditsina, 3 volumes, vol. 1, pp. 219-222 (with English translation), 4 total pages.
Jones et al. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol 5: 254, 2014 (8 total pages).
Kim et al, “Localization of the site of the murine IgG1 molecule that is involved in binding to the murine intestinal Fc receptor,” Eur. J. Immunol, 24:2429-2434, 1994.
Kohler and Milstein, “Continuous cultures of fused cells secreting antibody of predefined specificity,” Nature Publishing Group, vol. 256, pp. 495-497, Aug. 1975.
Koiko, R. et al., (2008). Irnmunologiya, M.: Akademiya, pp. 156, 160 (with English translation), 4 total pages.
Lin et al. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell 8(8): 573-589, 2017.
Liu et al., “Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity.” Biochemistry 31.16 (1992): 3896-3901.
Lonial et al., “Treatment Options for Relapsed and Refractory Multiple Myeloma,” Clinical Cancer Res. 17(6): 1264-1277 (2011).
MacCallum, et al. “Antibody-antigen interactions: contact analysis and binding site topography.” Journal of molecular biology vol. 262,5 (1996): 732-745.
Makabe et al., “Thermodynamic consequences of mutations in vernier zone residues of a humanized anti-human epidermal growth factor receptor murine antibody, 528,” Journal of Biological Chemistry, vol. 283, iss. 2, pp. 1156-1166, Jan. 2008.
Marks et al., “By-passing Immunization. Human Antibodies from V-gene Libraries Displayed on Phage,” J. Mol. Biol., vol. 222, pp. 581-597, 1991.
McCafferty, et al., “Phage antibodies: filamentous phage displaying antibody variable domains.” Nature vol. 348, pp. 552-554, 1990.
Myers and Miller, “Optimal alignments in linear space.” Bioinformatics 4.1 (1988): 11-17.
Myszka, “Improving biosensor analysis.” Journal of molecular recognition: JMR vol. 12: 279-284 (1999).
Ohno, S. et. al. (1985). “Antigen-binding specificities of antibodies are primarily determined by seven residues of VH,” PNAS 82:2945-2949.
Peru Office Action for Peruvian Patent Application No. 001979-2017/DIN, dated Apr. 19, 2022, 5 pages.
Qin et al. Chimeric antigen receptor beyond CAR-T cells. Cancers 13: 404, 2021 (17 total pages).
Rajkumar, NIH Public Access Author Manuscript (Sep. 15, 2013) of “Treatment of multiple myeloma,” published in Nature Rev. Clinical Oncol. 8(8): 479-491 (2011).
Ramadoss, N, et al. (2015). “An anti-B ceil maturation antigen bispecific antibody for multiple myeloma,” J. Am. Chem. Soc. 137:5288-5291.
Ravetch and Kinet “Fc receptors.” Annual review of immunology 9.1 (1991): 457-492.
Robinson, “Comparison of Labeled Trees with Valency Three,” Journal of Combinatorial Theory 11, pp. 105-119, 1971.
Rosenberg et al., NIH Public Access Author Manuscript (Sep. 25, 2008) of “Adoptive cell transfer: a clinical path to effective cancer immunotherapy,” published in Nature Reviews Cancer 8(4): 299-308 (2008).
Rudikoff, S. et al. (1982) “Single amino acid substitution altering antigen-binding specificity,” PNAS 79:1979-1983.
Russian Patent Application 2019136144 Mar. 30, 2016, pp. 1-2.
Sadelain et al., HHS Public Access Author manuscript (Aug. 8, 2017) of “The promise and potential pitfalls of chimeric antigen receptors,” published in Curr. Opin. Immunol. 21(2): 215-233 (2009).
Saitou and Nei. “The Neighbor-joining method: a new method for reconstructing phylogenetic trees.” Molecular biology and evolution vol. 4,4 (1987): 406-25.
Sheets et al., “Efficient construction of a large nonimmune phage antibody library: The production of high-affinity human single-chain antibodies to protein antigens,” Proc. Natl. Acad. Sci. USA, vol. 95, pp. 6157-6162, May 1998.
Tang, Q. et al. (2008). “The Foxp3+ regulatory T cell: A jack of all trades, master of regulation,” Nat. Immunol. 9:239-244.
Torikai, H., et al. (2012). “A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR,” Blood 119:5697-5705.
Vaughan et al., “Human Antibodies with Sub-nanomolar Affinities Isolated from a Large Non-immunized Phage Display Library,” Nature Publishing Group, vol. 14, pp. 309-314, Mar. 1996.
Ward et al., “Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli,” Nature Publishing Group, vol. 341, pp. 544-546, Oct. 1989.
Wilbur and Lipman, “Rapid similarity searches of nucleic acid and protein data banks,” Proc. Natt Acad. Sci. USA, vol. 80, pp. 726-730, Feb. 1983.
Written Opinion for International AppIn. No. PCT/IB2016/051808 completed on May 24, 2016, 10 pages.
Written Opinion of the International Searching Authority dated Aug. 30, 2016, for PCT Appln. No. PCT/IB2016/051801, filed on Mar. 30, 2016, 18 pages.
Yang, Y. et al. (2015). CD4 CART cells mediate CDS-like cytotoxic anti-leukemic effects resulting in leukemic clearance and are less susceptible to attenuation by endogenous TCR activation than CD8 CART cells, Blood 126:100, 5 total pages.
Yarilin AA, “Osnovy immunologli”, M.: Meditsina, 1999, pp. 172-174 (with English summary).
Zhang, C. et al. (2017). “Engineering CAR-T cells,” Biomaker Res. 5:22, 6 total pages.
Zhong, X.S et al. (2010). “Chimeric Antigen Receptors Combining 4-1 BB and CD28 Signaling Domains Augment PI3kinase/AKT/Bcl-XL Activation and cos+ T cell-mediated Tumor Eradication,” Mol. Ther. 18:413-420.
Related Publications (1)
Number Date Country
20220340671 A1 Oct 2022 US
Provisional Applications (3)
Number Date Country
62301177 Feb 2016 US
62286473 Jan 2016 US
62146825 Apr 2015 US
Divisions (2)
Number Date Country
Parent 16384719 Apr 2019 US
Child 17695769 US
Parent 15085317 Mar 2016 US
Child 16384719 US