The present disclosure relates to enclosures or packaging for semiconductor dies, and especially to packaging sensors for relief of stresses associated with their use.
Many sensors, including fingerprint sensors, exist as part of a semiconductor die having micro-component transducers such as antennas. One popular fingerprint sensor is presented on a semiconductor die as an array of radio frequency (RF) antennas that receive low power transmissions directed to reflect from a user's finger presented above the array. One typical application of such a sensor, for example, is a laptop computer provided with a fingerprint sensor pad at one external surface. The laptop or other device may employ, mounted near an outer surface, a fingerprint scanner (or other biometric device), such as the “FingerLoc® 8600” (AFS8600) manufactured by AuthenTec. In such a case, the die may have a sensing area that comprises an RF fingerprint sensing array, which may be externally exposed as a sensor pad. The user presses a designated finger or thumb downward on the pad to identify themselves to the device and gain access.
Pressing a finger on a sensor pad often causes mechanical force to be applied to the sensor. In some cases, such force may overstress the structure of the sensor and package by, for example, bending the die or bending the package sufficiently to crack or break conductive layers within the package, causing electrical failure. Because the sensor pad is presented at an exposed surface, it may be subjected to other forces such as being struck or squeezed by common scenarios like the device being hand-carried, dropped, or having object stacked on top of it.
Some previous sensor packages provide compressible material beneath the sensor array to help absorb such forces. However, such schemes typically suffer from a variety of problems. One problem is that a semiconductor die containing the sensor or sensor array may be bent by the stress and may fail or crack as a result. Another problem is that downward forces may cause the sensor die to peel away from the flexible circuit to which it is mounted. Still further, the forces applied to the sensor array may cause mechanical stress and failure at other parts of the sensor package, such as conductive traces, or output connection contacts, for example.
What is needed are semiconductor circuit modules or packages that enable semiconductor die or other sensor transducers to be presented along an outer surface of the package while still absorbing forces applied to the sensor sufficiently to prevent failure.
This specification describes technologies relating to enclosures or packaging for semiconductor dies, and especially to packaging sensors for relief of stresses associated with their use. In general, one aspect of the subject matter herein is a circuit module including a flexible circuit and a die electrically coupled to the flexible circuit. The die has a sensing area. The flexible circuit is preferably folded over an interior area, which is provided with compressible material to help absorb applied forces. In some preferred embodiment, a gap may be provided between at least one side of the die and the compressible material to help prevent the die peeling away from the flexible circuit, In some embodiments, the die may have a reinforcing layer or a high modulus material attached to the bottom surface or disposed about the bottom surface and sides of the die in a manner sufficient to at least partially protect the die from flexural loads. Preferably, the reinforcing layer has a coefficient of thermal expansion closely matching that of the die. Low modulus material may also be disposed in the interior region and about the high modulus material in a manner sufficient to at least partially absorb compressive loads applied to the die.
In some embodiments, the flexible circuit is preferably folded over an interior area, which is provided with compressible material to help absorb applied forces. Low modulus material compressible material may be used including a patterned gap formed in the low modulus material under the bottom surface of the die. Additionally, a dry film adhesive may be placed between at least part of the upper surface of the die and the flexible circuit, preferably to provide further point impact resistance and protection.
Consumer devices such as, for example, laptop computers, personal digital assistants (PDAS), mobile phones, or other such devices, may be provided with a circuit module 10. The module preferably is housed to place the sensing area of the die along the outer surface or skin of the product, although some variants may have another covering, such as an access panel, above the sensor circuit module. Some devices have a security access system programmed to receive identifying data from a sensor on the circuit module and provide device access based on the identity or lack of an identifying match. Other devices may use the sensor data for other purposes.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the invention will become apparent from the description, the drawings, and the claims.
Like reference numbers and designations in the various drawings indicate like elements.
Flexible circuit 11 may be bent to form an interior region 13. Flexible circuit 11 contains one or more conductive layers connected to a conductive footprint 22 expressed along the bottom side 17 of flexible circuit 11 (the downward-facing surfaces of flexible circuit 11). When bent in such a way, flexible circuit 11 may form a portion of the semiconductor package for die 12 while presenting the sensing area of die 12 to the outside of the housing. Sensor signals from die 12 are preferably transmitted through a metal free window portion of the flexible circuit. Other sensor transducers may be used.
In one embodiment, the entire circuit module 10 may be mounted as a ball grid array (BGA) device on the system board of a consumer device (e.g., fingerprint scanner). In other embodiments, circuit module 10 may be leaded or another kind of package. In yet other embodiments, circuit module 10 may use any other suitable type of surface-mounted packaging, such as that used for integrated circuits.
In some embodiments, die 12 may be mounted above a reinforcing layer 14, such as a metal (e.g., an iron-nickel alloy) reinforcement. Such a reinforcing layer 14 may be bonded to the back of die 12, serving to protect die 12 from bending or damages from other forces when pressure is applied to the top side 15 of die 12. The construction material for reinforcing layer 14 may be chosen to have a high modulus of elasticity (e.g., of at least about 25 giga-Pascals), a high tensile strength (e.g., of at least about 70 mega-Pascals) necessary for constructing, and a coefficient of thermal expansion matching that of die 12 sufficiently to prevent damage from different thermal expansion rates in the desired application (e.g., within 5%, but preferably an exact match or as close as possible, like within 1%). One preferred material is the Invar® nickel-iron alloy (FeNi36) which has a low coefficient of thermal expansion (CTE) in the range from room temperature up to 230° C. This alloy is has machinability similar to stainless steel and typically does not suffer from stress corrosion cracking. Other suitable alloys or non-metal reinforcing layers may be used, such as, for example, FeNi42. Such matching coefficients of thermal expansion can, for example, prevent thermal expansion stress faults in and between die 12 and reinforcing layer 14. Where a reinforcing layer is employed with gaps at the side of the die, the gaps may extend parallel to sides of the reinforcing layer as well, may terminate above the reinforcing layer as depicted, or terminate below the reinforcing layer.
Preferably, a portion or all of the sensing area of die 12 is protected by a polyimide window 23 (
Die 12 (plus its stacked reinforcing layer 14) may be mounted above a resilient low modulus material 16 to absorb loads applied to die 12. For example, having resilient low modulus material 16 with a lower elastic modulus than that of die 12 may help prevent damage to the die surface from excessive force applied to a small area of the die's surface.
In some embodiments, a gap pattern 18 may exist between the bottom of the reinforced die 12 and the resilient low modulus material 16. Gap pattern 18 may consist of voids shaped to provide bumps between the voids, or gap pattern 18 may consist of multiple ridges having voids in between, The gap pattern (or “patterned gap”) may be formed of voids shaped to provide, between the voids, bumps that soften initial resistance of the low modulus material to downward compressive forces on the die. The bumps or the ridges (or other suitable shapes) may soften initial resistance of the low modulus material 16 to downward compressive forces on die 12, such as to provide an initial pressure relief when a force is applied to the exposed outer surface of die 12. While angular bums are shown, other bumps such as smoothly curved bumps or half-circles may be used. Gap pattern 18 may cover the entire bottom of the reinforced die 12, or the surface of the resilient low modulus material 16 may be patterned (with bumps, for example) so that initial displacement sees a soft force, and the force increases with additional displacement. Outside pressure initially compresses the flex against the surrounding resilient pad. The reinforced die 12 may be restrained from displacement only by the flexible circuit, the polyimide window thereof, and/or contact with any gap pattern 18 in the supporting the resilient low modulus material 16. Additional displacement may result in vertical support being supplied by contact with the bulk of the resilient low modulus material 16 below gap pattern 18.
The area around die 12 on the top side 15 of flexible circuit 11 may be substantially larger than the die area itself. In some embodiments, die 12 may be surrounded by gaps 20 between the edges of die 12 and the proximate edges of the resilient low modulus material 16. Such gaps 20 may reduce “peel force” when downward force is applied on the top surface of die 12. For example, gaps 20 may reduce the concentration of stresses along the edges of die 12 when forces on the top surface of die 12 would otherwise have the tendency to peel the flex away from the die.
The module 10 is depicted mounted to circuit board in operating environment 5 which is preferably consumer device or security device such as, for example, a laptop computer, personal digital assistant, mobile phone, access panel, or other such device. Other module mounting schemes may be employed, such as flexible circuit or circuits in which a module 10 is part of a larger circuit module, for example. The module preferably is housed to place the sensing area of the die along the outer surface or skin of the product, although some variants may have another covering, such as an access panel, above the sensor circuit module. Some devices have a security access system programmed to receive identifying data from a sensor on the circuit module and provide device access based on the identity or lack of an identifying match. Other devices may use the sensor data for other purposes.
Referring to
Depicted are exemplar traces 42 (e.g., made of copper) at the level of conductive layer 52. Traces 42 connect contacts 27 to flex contacts 54. The flexible circuit may have multiple conductive layers 52 with cross traces such as the depicted dotted-line trace 42 in
Inside of footprint 27 is depicted a polyimide “window” or metal free zone 23. Die 12 is preferably mounted to position its sensing array facing window 23 for optimum direction of sensors to acquire data through window 23. The die sensing area exposed, either underneath polyimide window 23 or protected in some other suitable manner, may be referred to as a sensor pad or sensor panel, depending, of course, on the number and type of sensors provided on the die sensing area and whether multiple die are employed. Further, while a die is taught, other suitable sensors or sensor arrays may be mounted using techniques described herein. A preferred embodiment uses a single die sensor having pixel sensor plates, an excitation signal reference plane, a semiconductor subtrate, and sense amps, or some other semiconductor-based fingerprint reader that uses small RF signals to detect the fingerprint ridge and valley pattern. Such RF sensor signals may be employed in some cases to improve detection accuracy through dirt, dead skin, or other contamination on the fingerprint surface.
Die 12 (plus its enclosing reinforcing layer 24) may further be mounted within low modulus material 26 that surrounds the reinforced die 12. The low modulus material 26 may be disposed in interior region 13 and about the high modulus material of reinforcing, layer 24 in a manner sufficient to at least partially absorb compressive loads applied to the die. For example, having low modulus material 26 with a lower modulus of elasticity than that of die 12 may help prevent damage to the die surface from excessive force applied to a small area of the die's surface. This allows the reinforced die 12 to “float” oil the low modulus material 26 within flexible circuit 11.
Other features described herein may be added to the design depicted in
Other features herein may be added to circuit module 10 depicted in
While this specification describes several embodiments, these should not be construed as limitations on the scope of the invention or of what may be claimed. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
Number | Name | Date | Kind |
---|---|---|---|
3411122 | Schiller et al. | Nov 1968 | A |
3436604 | Hyltin | Apr 1969 | A |
3654394 | Gordon | Apr 1972 | A |
3746934 | Stein | Jul 1973 | A |
3766439 | Isaacson | Oct 1973 | A |
3772776 | Weisenburger | Nov 1973 | A |
3806767 | Lehrfeld | Apr 1974 | A |
3983547 | Almasi | Sep 1976 | A |
4079511 | Grabbe | Mar 1978 | A |
4288841 | Gogal | Sep 1981 | A |
4381421 | Coats et al. | Apr 1983 | A |
4406508 | Sadigh-Behzadi | Sep 1983 | A |
4420794 | Anderson | Dec 1983 | A |
4437235 | Burns | Mar 1984 | A |
4513368 | Houseman | Apr 1985 | A |
4587596 | Bunnell | May 1986 | A |
4645944 | Uya | Feb 1987 | A |
4696525 | Coller et al. | Sep 1987 | A |
4712129 | Orcutt | Dec 1987 | A |
4722691 | Gladd et al. | Feb 1988 | A |
4733461 | Nakano | Mar 1988 | A |
4758875 | Fujisawa et al. | Jul 1988 | A |
4763188 | Johnson | Aug 1988 | A |
4821007 | Fields et al. | Apr 1989 | A |
4823234 | Konishi et al. | Apr 1989 | A |
4833568 | Berhold | May 1989 | A |
4839717 | Phy et al. | Jun 1989 | A |
4862249 | Carlson | Aug 1989 | A |
4884237 | Mueller et al. | Nov 1989 | A |
4891789 | Quattrini et al. | Jan 1990 | A |
4903169 | Kitagawa et al. | Feb 1990 | A |
4911643 | Perry et al. | Mar 1990 | A |
4953060 | Lauffer et al. | Aug 1990 | A |
4956694 | Eide | Sep 1990 | A |
4983533 | Go | Jan 1991 | A |
4985703 | Kaneyama | Jan 1991 | A |
5012323 | Farnworth | Apr 1991 | A |
5016138 | Woodman | May 1991 | A |
5034350 | Marchisi | Jul 1991 | A |
5041015 | Travis | Aug 1991 | A |
5041902 | McShane | Aug 1991 | A |
5050039 | Edfors | Sep 1991 | A |
5057903 | Olla | Oct 1991 | A |
5064782 | Nishiguchi | Nov 1991 | A |
5068708 | Newman | Nov 1991 | A |
5081067 | Shimizu et al. | Jan 1992 | A |
5099393 | Bentlage et al. | Mar 1992 | A |
5104820 | Go et al. | Apr 1992 | A |
5117282 | Salatino | May 1992 | A |
5122862 | Kajihara et al. | Jun 1992 | A |
5138430 | Gow, 3rd et al. | Aug 1992 | A |
5138434 | Wood et al. | Aug 1992 | A |
5158912 | Kellerman et al. | Oct 1992 | A |
5159434 | Kohno et al. | Oct 1992 | A |
5159535 | Desai et al. | Oct 1992 | A |
5168926 | Watson et al. | Dec 1992 | A |
5198888 | Sugano et al. | Mar 1993 | A |
5198965 | Curtis et al. | Mar 1993 | A |
5214307 | Davis | May 1993 | A |
5219794 | Satoh et al. | Jun 1993 | A |
5222014 | Lin | Jun 1993 | A |
5224023 | Smith et al. | Jun 1993 | A |
5229641 | Katayama | Jul 1993 | A |
5229916 | Frankeny et al. | Jul 1993 | A |
5239198 | Lin et al. | Aug 1993 | A |
5240588 | Uchida | Aug 1993 | A |
5241454 | Ameen et al. | Aug 1993 | A |
5243133 | Engle et al. | Sep 1993 | A |
5247423 | Lin et al. | Sep 1993 | A |
5252855 | Ogawa et al. | Oct 1993 | A |
5252857 | Kane et al. | Oct 1993 | A |
5259770 | Bates et al. | Nov 1993 | A |
5261068 | Gaskins et al. | Nov 1993 | A |
5262927 | Chia et al. | Nov 1993 | A |
5276418 | Klosowiak et al. | Jan 1994 | A |
5281852 | Normington | Jan 1994 | A |
5289062 | Wyland | Feb 1994 | A |
5289346 | Carey et al. | Feb 1994 | A |
5313097 | Haj-Ali-Ahmadi et al. | May 1994 | A |
5337388 | Jacobowitz et al. | Aug 1994 | A |
5343366 | Cipolla et al. | Aug 1994 | A |
5345205 | Kornrumpf | Sep 1994 | A |
5347159 | Khandros et al. | Sep 1994 | A |
5347428 | Carson et al. | Sep 1994 | A |
5357478 | Kikuda et al. | Oct 1994 | A |
5361228 | Adachi et al. | Nov 1994 | A |
5362656 | McMahon | Nov 1994 | A |
5375041 | McMahon | Dec 1994 | A |
5384690 | Davis et al. | Jan 1995 | A |
5386341 | Olson et al. | Jan 1995 | A |
5394303 | Yamaji | Feb 1995 | A |
5396573 | Ecker et al. | Mar 1995 | A |
5397916 | Normington | Mar 1995 | A |
5428190 | Stopperan | Jun 1995 | A |
5432630 | Lebby et al. | Jul 1995 | A |
5438224 | Papageorge et al. | Aug 1995 | A |
5448511 | Paurus et al. | Sep 1995 | A |
5477082 | Buckley, III et al. | Dec 1995 | A |
5484959 | Burns | Jan 1996 | A |
5502333 | Bertin et al. | Mar 1996 | A |
5509197 | Stone | Apr 1996 | A |
5516989 | Uedo et al. | May 1996 | A |
5523619 | McAllister et al. | Jun 1996 | A |
5523695 | Lin | Jun 1996 | A |
5572065 | Burns | Nov 1996 | A |
5588205 | Roane | Dec 1996 | A |
5594275 | Kwon et al. | Jan 1997 | A |
5610833 | Chang et al. | Mar 1997 | A |
5612570 | Eide et al. | Mar 1997 | A |
5620782 | Davis et al. | Apr 1997 | A |
5631193 | Burns | May 1997 | A |
5642055 | Difrancesco | Jun 1997 | A |
5644839 | Stone | Jul 1997 | A |
5646446 | Nicewarner, Jr. et al. | Jul 1997 | A |
5654877 | Burns | Aug 1997 | A |
5657537 | Saia et al. | Aug 1997 | A |
5677569 | Choi et al. | Oct 1997 | A |
5717556 | Yanagida | Feb 1998 | A |
5729894 | Rostoker et al. | Mar 1998 | A |
5744827 | Jeong et al. | Apr 1998 | A |
5751553 | Clayton | May 1998 | A |
5763296 | Casati et al. | Jun 1998 | A |
5764497 | Mizumo et al. | Jun 1998 | A |
5776797 | Nicewarner, Jr. et al. | Jul 1998 | A |
5778522 | Burns | Jul 1998 | A |
5783464 | Burns | Jul 1998 | A |
5789815 | Tessier et al. | Aug 1998 | A |
5801439 | Fujisawa et al. | Sep 1998 | A |
5804870 | Burns | Sep 1998 | A |
5805422 | Otake et al. | Sep 1998 | A |
5835988 | Ishii | Nov 1998 | A |
5841721 | Kwon et al. | Nov 1998 | A |
5852326 | Khandros et al. | Dec 1998 | A |
5869353 | Levy et al. | Feb 1999 | A |
5895969 | Masuda et al. | Apr 1999 | A |
5895970 | Miyoshi et al. | Apr 1999 | A |
5899705 | Akram | May 1999 | A |
5917709 | Johnson et al. | Jun 1999 | A |
5922061 | Robinson | Jul 1999 | A |
5925934 | Lim | Jul 1999 | A |
5926369 | Ingraham et al. | Jul 1999 | A |
5933712 | Bernhardt et al. | Aug 1999 | A |
5949657 | Karabatsos | Sep 1999 | A |
5953215 | Karabatsos | Sep 1999 | A |
5959839 | Gates | Sep 1999 | A |
5963427 | Bolleson | Oct 1999 | A |
5973395 | Suzuki et al. | Oct 1999 | A |
5995370 | Nakamori | Nov 1999 | A |
6002167 | Hatano et al. | Dec 1999 | A |
6002589 | Perino et al. | Dec 1999 | A |
6013948 | Akram et al. | Jan 2000 | A |
6014316 | Eide | Jan 2000 | A |
6028352 | Eide | Feb 2000 | A |
6028365 | Akram et al. | Feb 2000 | A |
6034878 | Osaka et al. | Mar 2000 | A |
6040624 | Chambers et al. | Mar 2000 | A |
6072233 | Corisis et al. | Jun 2000 | A |
6084293 | Ohuchi | Jul 2000 | A |
6084294 | Tomita | Jul 2000 | A |
6084778 | Malhi | Jul 2000 | A |
6097087 | Farnworth et al. | Aug 2000 | A |
6102710 | Beilin et al. | Aug 2000 | A |
6111761 | Peana et al. | Aug 2000 | A |
6114763 | Smith | Sep 2000 | A |
6121676 | Solberg | Sep 2000 | A |
RE36916 | Moshayedi | Oct 2000 | E |
6130477 | Chen et al. | Oct 2000 | A |
6157541 | Hacke | Dec 2000 | A |
6165817 | Akram | Dec 2000 | A |
6172874 | Bartilson | Jan 2001 | B1 |
6178093 | Bhatt et al. | Jan 2001 | B1 |
6186106 | Glovatsky | Feb 2001 | B1 |
6187652 | Chou et al. | Feb 2001 | B1 |
6205654 | Burns | Mar 2001 | B1 |
6208521 | Nakatsuka | Mar 2001 | B1 |
6218731 | Huang et al. | Apr 2001 | B1 |
6222737 | Ross | Apr 2001 | B1 |
6225688 | Kim et al. | May 2001 | B1 |
6233650 | Johnson et al. | May 2001 | B1 |
6234820 | Perino et al. | May 2001 | B1 |
6236565 | Gordon | May 2001 | B1 |
6262895 | Forthun | Jul 2001 | B1 |
6265660 | Tandy | Jul 2001 | B1 |
6265766 | Moden | Jul 2001 | B1 |
6266252 | Karabatsos | Jul 2001 | B1 |
6271058 | Yoshida | Aug 2001 | B1 |
6272741 | Kennedy et al. | Aug 2001 | B1 |
6281577 | Oppermann et al. | Aug 2001 | B1 |
6285560 | Lyne | Sep 2001 | B1 |
6288907 | Burns | Sep 2001 | B1 |
6300679 | Mukerji et al. | Oct 2001 | B1 |
6303981 | Moden | Oct 2001 | B1 |
6310392 | Burns | Oct 2001 | B1 |
6313998 | Kledzik | Nov 2001 | B1 |
6316825 | Park et al. | Nov 2001 | B1 |
6320137 | Bonser et al. | Nov 2001 | B1 |
6323060 | Isaak | Nov 2001 | B1 |
6329708 | Komiyama | Dec 2001 | B1 |
6336262 | Dalal et al. | Jan 2002 | B1 |
6351029 | Isaak | Feb 2002 | B1 |
6360433 | Ross | Mar 2002 | B1 |
6360935 | Flake | Mar 2002 | B1 |
6368896 | Farnworth et al. | Apr 2002 | B2 |
6376769 | Chung | Apr 2002 | B1 |
6384339 | Neuman | May 2002 | B1 |
6392162 | Karabatsos | May 2002 | B1 |
6410857 | Gonya | Jun 2002 | B1 |
6414384 | Lo et al. | Jul 2002 | B1 |
6423622 | Chen et al. | Jul 2002 | B1 |
6426240 | Isaak | Jul 2002 | B2 |
6426549 | Isaak | Jul 2002 | B1 |
6426560 | Kawamura et al. | Jul 2002 | B1 |
6433418 | Fujisawa et al. | Aug 2002 | B1 |
6437990 | Degani et al. | Aug 2002 | B1 |
6444490 | Bertin et al. | Sep 2002 | B2 |
6444921 | Wang et al. | Sep 2002 | B1 |
6446158 | Karabatsos | Sep 2002 | B1 |
6447321 | Perino et al. | Sep 2002 | B1 |
6449159 | Haba | Sep 2002 | B1 |
6452826 | Kim et al. | Sep 2002 | B1 |
6462408 | Wehrly, Jr. | Oct 2002 | B1 |
6462412 | Kamei et al. | Oct 2002 | B2 |
6462423 | Akram et al. | Oct 2002 | B1 |
6465877 | Farnworth et al. | Oct 2002 | B1 |
6465893 | Khandros et al. | Oct 2002 | B1 |
6473308 | Forthun | Oct 2002 | B2 |
6486544 | Hashimoto | Nov 2002 | B1 |
6487078 | Kledzik et al. | Nov 2002 | B2 |
6489178 | Coyle et al. | Dec 2002 | B2 |
6489687 | Hashimoto | Dec 2002 | B1 |
6492718 | Ohmori | Dec 2002 | B2 |
6500697 | Ahmad | Dec 2002 | B2 |
6504104 | Hacke et al. | Jan 2003 | B2 |
6509639 | Lin | Jan 2003 | B1 |
6514793 | Isaak | Feb 2003 | B2 |
6522018 | Tay et al. | Feb 2003 | B1 |
6528870 | Fukatsu et al. | Mar 2003 | B2 |
6532162 | Schoenborn | Mar 2003 | B2 |
6538895 | Worz et al. | Mar 2003 | B2 |
6549413 | Karnezos et al. | Apr 2003 | B2 |
6552910 | Moon et al. | Apr 2003 | B1 |
6559521 | Tuttle | May 2003 | B2 |
6560117 | Moon | May 2003 | B2 |
6572387 | Burns et al. | Jun 2003 | B2 |
6576992 | Cady et al. | Jun 2003 | B1 |
6588095 | Pan | Jul 2003 | B2 |
6590282 | Wang et al. | Jul 2003 | B1 |
6600222 | Levardo | Jul 2003 | B1 |
6608763 | Burns et al. | Aug 2003 | B1 |
6614664 | Lee | Sep 2003 | B2 |
6617510 | Schreiber et al. | Sep 2003 | B2 |
6620651 | He et al. | Sep 2003 | B2 |
6624507 | Nguyen et al. | Sep 2003 | B1 |
6627984 | Bruce et al. | Sep 2003 | B2 |
6646333 | Hogerl | Nov 2003 | B1 |
6657134 | Spielberger et al. | Dec 2003 | B2 |
6660561 | Forthun | Dec 2003 | B2 |
6670700 | Hashimoto | Dec 2003 | B1 |
6673651 | Ohuchi et al. | Jan 2004 | B2 |
6677670 | Kondo | Jan 2004 | B2 |
6683377 | Shim et al. | Jan 2004 | B1 |
6689634 | Lyne | Feb 2004 | B1 |
6690584 | Uzuka et al. | Feb 2004 | B2 |
6699730 | Kim et al. | Mar 2004 | B2 |
6707148 | Mostafazedeh et al. | Mar 2004 | B1 |
6707684 | Andric et al. | Mar 2004 | B1 |
6709893 | Moden et al. | Mar 2004 | B2 |
6724076 | Kahlisch et al. | Apr 2004 | B1 |
6746894 | Fee et al. | Jun 2004 | B2 |
6762495 | Reyes et al. | Jul 2004 | B1 |
6762742 | Moon et al. | Jul 2004 | B2 |
6765288 | Damberg | Jul 2004 | B2 |
6768660 | Kong et al. | Jul 2004 | B2 |
6773848 | Nortoft et al. | Aug 2004 | B1 |
6776797 | Blom | Aug 2004 | B1 |
6778404 | Bolken et al. | Aug 2004 | B1 |
6781240 | Choi et al. | Aug 2004 | B2 |
6803651 | Chiang | Oct 2004 | B1 |
6812567 | Kim et al. | Nov 2004 | B2 |
6821029 | Grung et al. | Nov 2004 | B1 |
6833984 | Belgacem | Dec 2004 | B1 |
6841855 | Jaeck et al. | Jan 2005 | B2 |
6849949 | Lyu et al. | Feb 2005 | B1 |
6867496 | Hashimoto | Mar 2005 | B1 |
6869825 | Chiu | Mar 2005 | B2 |
6876074 | Kim | Apr 2005 | B2 |
6879047 | Heo | Apr 2005 | B1 |
6884653 | Larson | Apr 2005 | B2 |
6891729 | Ko et al. | May 2005 | B2 |
6893897 | Sweterlitsch | May 2005 | B2 |
6908792 | Bruce et al. | Jun 2005 | B2 |
6914324 | Rapport et al. | Jul 2005 | B2 |
6919626 | Burns | Jul 2005 | B2 |
6965166 | Hikita et al. | Nov 2005 | B2 |
6998704 | Yamazaki et al. | Feb 2006 | B2 |
7023701 | Stocken et al. | Apr 2006 | B2 |
7081373 | Roeters et al. | Jul 2006 | B2 |
7104804 | Batinovich | Sep 2006 | B2 |
7129571 | Kang | Oct 2006 | B2 |
20010006252 | Kim et al. | Jul 2001 | A1 |
20010013423 | Dalal et al. | Aug 2001 | A1 |
20010015487 | Forthun | Aug 2001 | A1 |
20010035572 | Isaak | Nov 2001 | A1 |
20010040793 | Inaba | Nov 2001 | A1 |
20020006032 | Karabatsos | Jan 2002 | A1 |
20020030995 | Shoji | Mar 2002 | A1 |
20020044423 | Primavera et al. | Apr 2002 | A1 |
20020048849 | Isaak | Apr 2002 | A1 |
20020076919 | Pelers et al. | Jun 2002 | A1 |
20020101261 | Karabatsos | Aug 2002 | A1 |
20020114143 | Morrison et al. | Aug 2002 | A1 |
20020126951 | Sutherland et al. | Sep 2002 | A1 |
20020139577 | Miller | Oct 2002 | A1 |
20020164838 | Moon et al. | Nov 2002 | A1 |
20020180022 | Emoto | Dec 2002 | A1 |
20030016710 | Kamoto | Jan 2003 | A1 |
20030045025 | Coyle et al. | Mar 2003 | A1 |
20030049886 | Salmon | Mar 2003 | A1 |
20030081392 | Cady et al. | May 2003 | A1 |
20030107118 | Pflughaupt et al. | Jun 2003 | A1 |
20030109078 | Takahashi et al. | Jun 2003 | A1 |
20030113998 | Ross | Jun 2003 | A1 |
20030164551 | Lee et al. | Sep 2003 | A1 |
20030168725 | Warner et al. | Sep 2003 | A1 |
20040000708 | Rapport et al. | Jan 2004 | A1 |
20040004281 | Bai et al. | Jan 2004 | A1 |
20040021211 | Damberg | Feb 2004 | A1 |
20040031972 | Pflughaupt et al. | Feb 2004 | A1 |
20040045159 | DiStefano et al. | Mar 2004 | A1 |
20040065963 | Karnezos | Apr 2004 | A1 |
20040075991 | Haba et al. | Apr 2004 | A1 |
20040099938 | Kang et al. | May 2004 | A1 |
20040104470 | Bang et al. | Jun 2004 | A1 |
20040115866 | Bang et al. | Jun 2004 | A1 |
20040150107 | Cha et al. | Aug 2004 | A1 |
20040157362 | Beroz et al. | Aug 2004 | A1 |
20040203190 | Pflughaupt et al. | Oct 2004 | A1 |
20040217461 | Damberg | Nov 2004 | A1 |
20040217471 | Haba | Nov 2004 | A1 |
20040238931 | Haba et al. | Dec 2004 | A1 |
20040245617 | Damberg et al. | Dec 2004 | A1 |
20040267409 | De Lorenzo et al. | Dec 2004 | A1 |
20050018495 | Bhakta et al. | Jan 2005 | A1 |
20050035440 | Mohammed | Feb 2005 | A1 |
20050040508 | Lee | Feb 2005 | A1 |
20050047250 | Ruckerbauer et al. | Mar 2005 | A1 |
20050133897 | Baek et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
004215467 | Nov 1992 | DE |
004214102 | Dec 1992 | DE |
0426-303 | Oct 1990 | EP |
359088863 | May 1984 | JP |
60-254762 | Dec 1985 | JP |
60254762 | Dec 1985 | JP |
3641047659 | Mar 1986 | JP |
62-230027 | Aug 1987 | JP |
63-153849 | Jun 1988 | JP |
4-209582 | Jul 1992 | JP |
4-4368167 | Dec 1992 | JP |
60-29534 | Feb 1993 | JP |
2000-88921 | Mar 2000 | JP |
2000307828 | Nov 2000 | JP |
2001077294 | Mar 2001 | JP |
2001085592 | Mar 2001 | JP |
2001332683 | Nov 2001 | JP |
2003037246 | Feb 2003 | JP |
2003086760 | Mar 2003 | JP |
2003086761 | Mar 2003 | JP |
2003309245 | Oct 2003 | JP |
2003309247 | Oct 2003 | JP |
2003347475 | Dec 2003 | JP |
2003347503 | Dec 2003 | JP |
WO9744824 | Nov 1997 | WO |
WO 03037053 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080122054 A1 | May 2008 | US |